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1. Introduction 

The concentration-compactness principles, discovered by P.L. Lions [15], [16], 
have proved to be very effective methods in variational problems involving a 
critical Sobolev exponent. In the current literature these principles are referred 
to as the first and second concentration-compactness principles (CCP1, CCP2) 
(Lemma 1 in [16] p. 115 and Lemma 1.1 in [15] p. 158). The proofs of both 
concentration-compactness principles can also be found in the monograph by 
Struwe [17]. Both concentration-compactness principles are used to examine the 
behaviour of weakly convergent sequences in Sobolev spaces in situations where 
the lack of compactness occurs either due to the appearance of a critical Sobolev 
exponent or due to the unboundedness of a domain. The application of these 
principles helps to find level sets of a given variational functional for which the 
Palais-Smale condition holds. 

The main purpose of this article is to formulate a variant of these two prin- 
ciples, namely, the concentration-compactness principle at infinity (CCPoo) for 
both critical and subcritical case. This variant, in the critical case, has already 
been introduced in [7] and subsequently has been used in [4] to improve the 
results of paper [6]. The most interesting feature of this variant at infinity is 
that it can be used instead of the first variational principle. The CCP2,  roughly 
speaking, is only concerned with a possible concentration of a weakly convergent 
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sequence at finite points and it does not provide any information about the loss 
of mass of a sequence at infinity. To overcome this difficulty, the CCP1 is used 
to show that a sequence is tight and that the so-called vanishing and dichotomy 
cannot occur. In general, the use of the CCP1 is cumbersome and very technical. 
In this article we show how one can avoid the use of the first concentration- 
compactness principle by applying a version at infinity of the second principle 
(Proposition 2 in Sect. 3). In a subcritical case the situation is different. Due to 
the Sobolev compact embedding theorem a possible loss of mass of a weakly 
convergent sequence can only occur at infinity. Proposition 3 of Sect. 3 expresses 
this phenomenon in quantitative terms. In a subcritical case, a number of the ex- 
istence results have been obtained by thorough examination of the Palais-Smale 
sequences (see [1], [5], [16] and [20] and references given there). One of the 
deepest results in this direction (Lemma 3.1 [5], Lemma on p.5 in [3] or The- 
orem 4.1 in [20]) explains how the Palais-Smale sequence fails to be relatively 
compact. Each term of such a sequence can be split into the same finite number 
of terms which are related to a possible loss of mass at infinity. This allows to 
estimate level sets of a given variational functional for which the Palais-Smale 
condition holds. The application of this procedure (the use of variants of Lemma 
3.1 in [5]) can be eliminated by the use of Proposition 3 from Sect. 3. 

The paper is organized as follows. Section 3 contains versions of concentration- 
compactness principle at infinity for critical and subcritical case. The rest of the 
paper is devoted to applications of Propositions 2 and 3 from Sect. 3. As an 
application of Proposition 2 we consider in Sect. 4 the following problem 

- A u  - ~k(x)u = K(x)lul2"-Zu in I~N, 
(1) 

u ( x ) > O  On~N and u EDI '2(~N),  

where 2* = ~-xT,~ N _> 3, and )~ is a positive parameter. We impose on functions 
k and K conditions ensuring that this problem can be written in a variational 
form. We aim to show that there exists ~,o > 0 such that for each 0 < A < )~o, 
problem (1) has at least one solution. The constant )~o is determined as the first 
eigenvalue of the following problem 

- - A u -  Ak(x)u = 0 in ]I~ N 
(2) u ~ 0, u E D~'Z(~u). 

To prove the existence of the first eigenvalue to problem (2), we derive in Sect. 2 
a compact embedding of the space D I'2(~N) into a weighted Lebesgue space. 
Problem (1), which originates in differential geometry (the Yamabe problem), 
has attracted a considerable interest in recent years. The method, that we use 
to solve problem (1), relies on the rain-max principle of the mountain pass 
type. It is quite natural to apply both concentration-compactness principles to 
determine level sets for which a variational functional for problem (1) satisfies 
the Palais-Smale condition. We avoid the use the CCP1 by applying Proposition 
2. Applications of Proposition 3 to subcritical cases are discussed in Sects. 5 and 
6. In Sect. 5 we show that the problem 
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(3) - A u  + )~u = lulP-2u in g?, 

where A > 0 is a constant, 2 < p < 2* and ~2 is a periodic domain, has a 
nontrivial solution. We reprove the existence result from paper [20] (Theorem 
4.2); however, we believe that our approach is simpler because we avoid the 
use of a global compactness result of type Lemma 3.1 in [5] or Theorem 4.1 in 
[20]. We also give some improvements of Corollaries 3.2 and 3.4 from paper 
[5]. Finally, Sect. 6 is devoted to the study of the existence of a solution to the 
problem 

(4) - A u  + u = ~Xb(x)lulp-2u +c(x)[ulq-2u in II~N, 

where 2 < p, q < 2* and ,~ > 0 is a parameter. The existence theorem of 
this section is related to the existence result contained in paper [10] (Theorem 
2.4). Again, we believe that our approach is simpler and under slightly weaker 
condition on c than in [10]. 

2. Preliminaries, compact embeddings of DI'2(]~N) and WI'2(]~N) 

In a given Banach space X, we denote by "--+" and " ~ "  strong and weak 
convergence, respectively. 

By DI'2(~N) we denote the closure of Co~(]~) with respect to the norm 

11"ll2 = IDul2dx" 

The dual space to DI'2(~N) is denoted by D-I'2(]~N), that is, DI'2(]~N)* -- 
D-I'2(]~N). It is well known that the space D 1'2(]~N) is not compactly embedded 
in LZ(~N). However, this embedding is compact if we replace the space L2(]~N) 
by a weighted Lebesgue space LZ(~N) under a suitable assumption on a weight 
r. Let r C L~oc(~N) and r >_ 0, r ~ 0 on ~N, we define LPr (~r~) by 

L~(~N) = {U ~ L~Oc(~N); A lu(x)lPr(x)dx < ~ }  
N 

equipped with the norm 

IPul]Pr,p = f~ lu(x)lPr(x)dx" 
N 

By Q(x, / ) ,  l > 0, we denote the cube of the form 

l 
Q ( x , l ) =  {y c ~N; fYj -- xjl < ~ , J  = 1 , . . . , N } .  
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P_.P._ 
Lemma 1. Suppose that r E L 1 (]~N) f"] L]o c (]~N), for some 2 < p < 2", r > 0 
and r g~ 0 on I~U and moreover 

(5) fQ P lim r(y)~ -~- dy = 0 
Ixl-'c~ (x,/) 

for some l > O. Then Dl,e(~u) is compactly embedded into L 2 ( ] ~ N ) .  

Proof Without loss of generality we may assume that l = 1. It suffices to show 
that for every ~ > 0 there exists j > 0 such that 

(6) I[f -fxQ(0j)llr,2 </5 

for a l l f  E Da'2(~N), such that Ib:ll -< 1, where XQ(oj) is a characteristic function 
of the cube Q(O,j). Indeed, let {fro} be bounded sequence in D1'2(~N). We may 
assume that Itfml[ -< 1 for all m > 1 and that there exists f E DI'2(~N) such 
that fm --+f in LP(Q(0,R)) for each R > 0 and Dfm ~ Df in L2(~N). It follows 
from (6) that 

f~ [l'm -fl2rdx <_ 2& 
u - Q ( O d )  

Since fro ---~f in LP(Q(O,j)), the last inequality implies that fm ---~f in LZ(~u). 
To prove (6) we cover ~N with cubes Q(z, 1), z c ZN. For ~7 > 0 we use (5) to 
findj E I~I such that fQ r(y), -~- dy <_ ~ for every Q = Q(z, 1) outside Q(O,j) and 

f~u-Q(Oj) r(y)dy < ~7. If Q is any such cube then by the Sobolev and HSlder 
inequalities we have 

(7) f Q f z d x  <~ 0el 2. dx ~ S-1[[Of[I 2, 

where S denotes the best Sobolev constant. Also, by the Sobolev inequality we 
have 

(8) fa If(x) -fa]Pdx <_ C [Of[2 dx 

where fQ = fof(x)dx, for some constant C > 0 and for all 2 < p < 2*. It 
follows from (7) and (8) that 

fQf 2rdx < - 2 [ f Q ' - f Q [ 2 r d x + ~  (fo~C(x)ldx)2r(y)dy 

[(fQ )2 ( f  a dy) p-2 T 
<_ 2 [f-fQlPdx r(y)p p-z-2 

+ [f12* dx r(y)dy 
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e.=2 

< Cl ( fa lDf l2dx ) ( fQr , - -~ -2dx )  p 

+ 2 S - l ( f Q l D f l 2 d x )  ( f a r d x ) ,  

where C1 > 0 is a constant independent of ~. We now add all these inequalities 
over Q(z, 1) outside Q(O,j) to get 

f~u f2r  dx < ClOe~ + 2 s - l  f~  r dx <_ Cl~l~  + 2S-171. 
-Q(Od)  N - Q ( O j )  

Inequality (5) follows by taking ~ so small that 

z~ 
Lemma 2. Suppose that r C Lloc(~N) for some r and q satisfying 2 < q < 
q + e  < 2*, r > O, r ~ O and that 

lim f r(y ) +~,~ dy = 0 
Ixl~oo J Q(x,l) 

for some l > O. Then W1'2(~N) is compactly embedded into Lqr(I~N). 

The proof is similar to that of Lemma 1 and is omitted (see also [11]). 
We now use Lemma 1 to establish the existence of the first eigenvalue to 

problem (2). 

Lennna 3. Suppose that k C LI(~N) f3 C(]~N), k ~ O, k is somewhere positive 
and that 

lim Ik~)l ,-= dy = 0 
Ixl--,~ (x,t) 

for some l > 0 and 2 < p < 2*. Then there exists a positive function v E 
DI'2(~N ) such that 

0 < Ao = inf{[IDu[122; Ilullk,2 = 1, u ~ D~ '2 (~N)}  = IlOull~- 

Proof. Let {urn} be a minimizing sequence. Since {urn} is bounded in D1'2(~N) 
we may assume that Um ~ v in DI'2(/$N). Consequently, f~N v2k dx = 1 and 

'Dvl2dx < limm--cr f~ [Dvm{2dx =A~ 
N N 

and the result follows. 
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3. Concentration-compactness principle at infinity 

We recall the second concentration-compactness principle of  P.L. Lions [15]. 

Proposition 1. Let {urn } be a weakly convergent sequence to u in DI'2(II~N) such 
that lure la" *. u and IDum 12 *-~ # in the sense of  measures. Then, for  some at most 
countable index set J we have 

(/) " =  lul 2" + ~ j c J  -j~x,, -j > o, 
(ii) ~ >_ lDula + ~ j e j  ~:~x~, /z: >o, 

2._ 

(iii) Su]* <_ #j, 

where S is the best Sobolev constant, xj E RN, ~Sxj are Dirac measures at xj and 
#j, uj are constants. 

This result does not provide any information about a possible loss of  mass 
at infinity. Proposition 3 below expresses this fact in quantitative terms. 

Proposition 2. Let {urn} be weakly convergent sequence in D I'2(~N) and define 

(i) u ~  = l i m R ~  limsUpm~c ~ flxl>n lUml2* dx, 

(ii) # ~  = l i m n ~  lim S U p m ~  flxl>n IDum [2 dx. 

The quantities u ~  and # ~  exist and satisfy 

(iii) l i m s u p m ~  f~u lUml2* dx = f~u du  + u~,  l i m s u p m ~  f ~  IDumlZ dx = 

fI~u d #  + # ~ ,  and 

(iv) S u ~  <_ # ~ .  

The quantities # ~  and uc~ were introduced in [7], where the proof of  (iv), 
based on the Sobolev inequality can be found. A very simple proof  of relations 
(iii) can be found in [4]. Obviously, Proposition 2 remains true in the space 
Dol'2(y2), where Y2 is an unbounded domain in J~N and D1'2(y2) is the closure of  
Co~(Y2) with respect to the norm 

IlDull~ = fs~ IDu(x)12 dx" 

We now shift our attention to a subcritical case in W1'2(~2), where ~ C ~N 
is unbounded domain. Let A > 0 and 2 < p < 2* and we set 

(M) 0 < ~;~(s = i n f { / ( I D u l  z + AuZ)dx; Ilullp = 1}. 

Proposi t ion 3. Let {urn} be a weakly convergent sequence to u in WoL2(f2) and 
define 

(a) c ~  = l i m n ~  lim SUpm___,c ~ fS2n(Ixl>R) I um [P dx, 

(b) /3~ = l i m R ~  lim supra__, ~ fsm(ixl>R)(IDum 12 + Au~)dx.  
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These quantities are well defined and satisfy 

(c) lim SUPm~o ~ fs~ lure[ p clx = f a  lul p dx + ~o~, 
(d) lira sup,,~o~ fs~(IOum[ 2 + Au~)dx > f~<[Oul 2 + AuU)dx + 300 

and 
2_ 

(e) a; ,a~ </3o~. 

Proof Let ~b~ E Cl(~u)  be such that ~bR(x) = 0 for Ixl < R and ~bR(x) = 1 for 
Ix l > R + 1 and 0 < ~bR(x) _< 1 on RN. It follows from (M) that 

Since 

and 

f 
lim limsup J I~Ru,n] p dx = aoo, 

R----~oo m--~cx~ JaQ 

lira limsup f (IOuml 2 + ; ~ u ~ ) ~ a x  = 300, 
g----+oo r~/--~oo J jQ  

lira lim f DUmD~R~RUm dx = 0 
R---too m---~oG f f ~  

/ ,  

lim lira I lumOq3RlZdx = O, 
R ~ O G  m ---~ OG Js~ 

the inequality (e) follows. To show (c) we write 

lim sap I [Um {P dx = ~ In I p dx + lim sup f [Um IP dx. 
m~cc as2 ds2n(Ixl<R) m--.o~ as2n(lxl>R) 

Letting R --- oo, relation (c) follows. By a similar argument, using the lower 
semicontinuity of the L2-norm with respect to the weak convergence, we deduce 
(d). 

4. Existence result for problem (1) 

Throughout this section it is assumed that 

(A) k E C (~N ) n L I (KN ), k ~ 0 on RN and 

lira f IkCy)l dy = 0 
[xl -"~176 Ja(x,l) 

for s o m e l > 0 a n d 2 < p  < 2 " .  
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(B) K E C(~N)fqLC~(~N) and there exist xo E ~N, constants cr > 0, C1 > 0, 
C2 > 0 and R > 0 such that 

[ K ( x o ) - K ( x ) [  < Cl[x -Xol 2 f o rN  =4,  

IK(xo) -  K(x)[ _< Ca [xo -x l  2+~ for N > 5, 

k(xo) > 0 and [k(xo) -  k(x)[ < Czlx - x o [  for all Ix -Xo]  < R and 

K(xo) = IIKII~. 
We define a functional F : DI'2(~N) --~ ~ by 

1 A 
F(u) = ~ f~  [Dul2 dx - -~ ~ k(x)u2 dx - l f~N K(x)[ul2* dx. 

It follows from Lemma 1 that functional F is well defined. Critical points of this 
functional are solutions of problem (1). 

We commence by finding level sets of the functional F for which the Palais- 
Smale condition holds. 

We recall that {urn } C D a'2(L~n) satisfies the Palais - Smale condition at level 
c (the (PS)c condition for short) if F(um)  --+ C and Ft(um) --+ 0 in D-I '2(~N) 
imply that {urn} possesses a convergent subsequence in ol'2(]~N). 

We need the truncated Talenti extremal function [19] 

$(x) 
u~(x ) = ~,-2 , c > O, 

(c+ IX_Xol ) 

R and ~b(x) = 0 where 4~ E C~(gu), 0 _< qS(x) _< 1 on gu ,  qS(x) = 1 for Ix --Xol < 
for [ x -Xo I > R. 

Lemma 4. For c > 0 sufficiently small we have 

s~ s-~ 
supF(tv~) < ~_~ - 
t>_o NK (xo)-'r- ~-~ ' N[[KH~-- 

where v~(x) = u,(x) Ilu, lr2." 

Proof We only outline the main steps of the proof and for details we refer to 
the paper [9]. According to formulae (1.11), (1.12) and (1.13) in [8] we have 

ilu~ll~ = Kl u-2 +O(1), N > 3 ,  
g-'W" 

itU, tt22. = X2 u-2 +O(e), N > 3 
C ---y- 

and 
~_34 + O(1), N > 5 

= K31 log e[ +O(1), N = 4 ,  

K 3+O(e�89 , N = 3 ,  
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where K1, K2 and/(3 are positive constants depending only on N,  and S = ~ .  

We now observe that there exists a unique point t, E (0, (x~) such that 

N 
x [  

F(t~v~) = maxF(tv~) - ~-2 
t>o NV~-~-- 

where 

x ,  = f~u(iDv~12 - Akv~)clx and ve = f~NKv2*dx. 

To estimate X, we write 

.x S~,,, ~'-':<~- .xk(xo)llu, ll~ 1 (k(x)_ ~(xo)) ax] 
llu, ll~. + Ilu, l - - - /~ [.x/~,< ( , + ~  _--x~l--2].r~-_~ e,(.,,:) ~- 

and we get 

L 
{ Xek(xo)K3 uT2 ~ -- 3 O(e~), N 5, + O ( e  ~ )-v > 

-A  kv~ dx < ~2 -- Ak(xo)K3e[ logel  . . . .  
- r~ + u t e ) ,  N = 4 .  

I f N  = 4 ,  then tK(x) - K(xo)l ~ Cllx - xo l  2 for Ix - x o [  < R and this gives the 
following estimate 

1 N 
C s  - - f  

v, > K(xo) II II;-u/'" - K(xo)+ O(e) 

for some constant C > 0. If  N >__ 5 we use the inequality IK(x) - K(xo)l <_ 
C1 Ix - Xol 2+~ to obtain 

V~ >_ K(Xo) + O(el+~). 

Combining these estimates we get 

F(t~v,) <_ { 

S 7 ;~k(Xo )K ~ "2- 
[ K2o j 

N--2 ~r N --2 

NK(xo)'-f'- [l+o(el+"2" )] 

" [,-~<,',,,--,'~ +o(+} S "2 x2 s 
NK(xo)(l+O(e)) 

f o r N  > 5 ,  

f o r N  = 4  

and taking e > 0 small the assertion follows. It can be checked that the case 
N = 3 is inconclusive. 

We now are in a position to formulate the first existence result. It will follow 
from the proof of  Theorem 1 below that the (PS)c condition holds for c E 

N 
(0, s--~5_~ ) 

N ilgll--'r- 

Theorem 1. Let 0 < A < Ao and N > 4. Then problem (1) has a solution. 
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Proof We define a functional F .  : DI'2(]RN) --+ ]~ by 

l f~ [2 A f~ k ( u + ) Z d r l  j~ K(u+)Z*dx r , ( u ) = ~  [Du d r - ~  ~2 , 
N N N 

where u + = max(0, u). It follows from Lemma 3 and the Sobolev inequality that 

1(1 Z)IIDulI2 2 IIKII~IIDuII~* 
F,(u)>_2 - Ao 2"ST2" 

for all u E DI'2(II~N). Hence there exists constants a > 0 and p > 0 such that 

F,(u) >_ a for Ilull = p. 

w e  also have F,(0)  = 0 and F,(toV,) = F(toV,) < 0 for to > 0 sufficiently large, 
where e > 0 is chosen so that Lemma 4 holds. Let 

/" = {9 E C([0, 1],DI'2(RN)); 9(0) = 0 and 9(1) = toV,} 

and we put 

(9) c = inf sup F.(9(t)). 
9E/" tE[0,1] 

It is clear that a _< c and by Lemma 4 we have 

s-~ 
(10) c < N-2" 

NIIKII~ ~-- 
By the mountain pass principle without the (PS) condition (see Theorem 2.2 
in [8]) there exists a sequence {urn} C DI'2(RN) such that F.(um) ~ c and 
F'.(um) ~ 0 in D-I 'z (NN).  We now check that {urn} is bounded in D1,2(It~N). 
Indeed, we have 

, (f.(um), urn) = DumDu m dr - A ku+mU~ dr 
N N 

- -  K i U m )  Um dr = -- [Ouy, lZ dx. 
N N 

Since F'.(um) ~ 0 in D-I'2(I~N), we see that u,7 --+ 0 in D1,2(I~N) and hence 
F(U+m) = F.(u+~) ~ c. On the other hand we have 

(F.(um), Urn) IOu +..12 dx - )~ 
N N N 

Consequently, 

c+o(1) 1 

A 1 ( 1  _ _A_A) g f~N k(u+)zdr> Ao f~N 'ou+~12dr 
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and the claim easily follows. Since {urn } is bounded in D 1'2(~1~N) we may assume 
+ ~ u + in L2*(RN). By Lemma 1 that um ~ u in Dl'2(]~u), ur, ~ u a. e. and u m 

f~N k (u~+) 2 dx ---+ f~N k (u § dx; taking a subsequence if necessary. This means 
that 

- A u  -- Aku + = K(u+) 2. in D-I'2(]~N). 

Taking as a test function u -  we get 

~ IDu-12dx=O 
N 

which implies that u -  = 0 on I~N, that is, u _> 0 on ~u .  We now show that 
u ~ 0 and consequently u > 0 on I~u by the Harnack inequality. Towards this 
end we follow the argument [8]. From the fact that F.(um) --+ c we easily deduce 
that 

l = lim [ IDu,nl2dx > O. 
? n - - + O ~  J ~ N  

By Lemma 3 have 

lim Af k(u+)adx=.k~ ku2dx. 
m - - + c ~  J ~ N  N 

We now show that A f~u ku2 dx ~ O. Otherwise I = l i m m ~  f~u K (u +) 2" dx > 0 

t t t On the other hand we have and c = 7 - ~ -  = ~.  

l = lim IlDumllZ2 >S  lim llumH22. 
m ----> O~  m ----~ OQ 

N - - 2  

> S}lKll~-mFl_+m ~ K(u+)  2 dx =StIKI[g t x 
N 

N 2--N ~ 2--N 

which is equivalent to l > $ 7  Ilgl12--, that is, c _>  -Ilgll  and this contra- 
dicts (10). By virtue of  Proposition 1 there exist measures # and u, an at most 
countable set J ,  sequences of  positive constants {/zj }, {uj } , j  E J ,  and a sequence 
{xj } C EN, j E J, such that relations (a), (b) and (c) hold. We now follow an 
argument from [1], [2]. Let xk be a singular point of  measures # and u and let 
r E Clo(~N) be such that r = 1 for Ix --xk[ < ~, q~6(x) = 0 for Ix - x k l  > 2& 
0 _< r _< 1 and ]Dq~6(x)[ _< 2 

we get 

~N Ce d # -  

< 

< 

in k s .  Since (Ft.(urn), Umq36) ~ 0 as m ~ oo 

)~ f~u kuZ r dx - f~N K fbe du 

l imsup f IDumllUmllDqb61dx 
m - - - * o o  J ] ~ N  

where C = supm>t IIDull2. By virtue of  the H61der inequality we have 
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2 
(11) _< 1 6 ~  lul r dx , 

k - - x l < 2 6  

where wu is a volume of a unit ball in I~N. Letting ~ -+ 0 in (11) we deduce 

that K(Xk)Uk >_ #k. We may assume that K(Xk) > 0, since otherwise there is no 
singularity at x~. Combining this with (c) of Proposition 1 we deduce that either N 
(i) uk = 0 or (ii) vk > ~ . In order to consider a possible concentration 

of  measures u and # at infinity we introduce constants u ~  and # ~  defined in 

Proposition 2. Letting K ( o o ) =  lim sUplxl_._,~ g(x),  we see that 

(12) l im l imsup  [ K(x)[Uml 2. dx <_ K ( ~ ) v ~ .  
R ~ m - - - + ~  J I x [ > R  

Also, by Lemma 1 we have 

(13) tim lim j (  k(u+m)2r 
R--.-~oc~ rn-.-*c~ N 

where CR is a function defined in the proof  of Proposition 3. Since (F~. (urn), Um (PR) 
--~ 0 as m --+ ~ ,  we deduce, using (12) and (13), that # ~  < K(cx~)vc~. It now 

follows from Proposition 2(iv) that either (iii) uoo = 0 or (iv) v ~  >_ K-C&5 

Here, we assume that K(oc)  > 0, since otherwise there is no concentration at 

infinity. To complete the proof we show that u ~  = 0 and uk = 0 for each k. 

Indeed, we have for every continuous function ~ ,  with 0 _< ~ _< 1 on I~u, that 

c = lim F. (um) -  ~(F.(um),Um 
m " *  0 0  

= 1 lim [ K(u+)2*dx > ~-2Lm f~ ~3K(u+)2*dx. 
m m ~  J~m - u 

Assuming (ii), we see that the set J must be finite and taking ~ = r we get, 

letting 6 ~ 0, that 

~_ s~ s~- 
c >_ K(xk)uk >_ ~-2 >-- u~2 

NK(x,~)--r-- NtlKII~--- 
which is impossible, so Uk = 0 for each k. Similarly, if (iv) occurs, we take 
~# = CR and then let R ~ cx~ to get 

s-~ s-~ 
C _ > N-2 -- > u-2 

NK(cc)-r- NllKll~-- 
which is impossible, so u ~  = # ~  = 0. It is now routine to show that um --+ u in 
D I'2(RN). 
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5. Application to problem (3) 

We establish the existence of a solution to problem (3) in unbounded periodic 
domains. In a final part of  this section we discuss the Palais-Smale condition for 
an exterior domain. 

We first consider problem (3) in a'2 = {(x l ,x ' )  E R x 11~N-1, [X'] < r},  r > 0. 
It will be clear that Thereom 2 below can be extended to periodic unbounded 
domains whose definition will be given later. 

We obtain a solution to problem (3) by considering the minimization problem 
(M). We set 

G(u) = ~l fs (lDuli + Au2)dx - l fa  [ulP 

As a norm in W1'2(~2) we take 

liull 2 = fs([Dul2 +/~u2)dx. 

Theorem 2. The minimization problem (M) has a solution, that is, problem (3) 
admits a nontrivial solution. 

1...2_ 
Proof Let {urn} be a minimizing sequence for (M) and we put vm = c~-2Um. It 
follows from Theorem 2.1 in [20] that 

(14) 
1 1 ~-- 

= - p)CL~ -2 G(vm) (~ +o(1 )  and G'(vm)=o(1) in w-l'2(~'~). 

Our objective is to show that {vm } is, up to a translation, relatively compact in 

W1'2(~). Let 0 < s < (�89 - l)a~e-~-~ and according to (14) we may assume that 
G (Vm) > s for all m. Let 

Qm : {(x1, xt) E ~ x R N - 1 ;  [xtl • r and m _< Xl < m + 1} 

and we put 

d. = max [IVn IIL,(Qm)" 
mE1~ 

We now claim that there exists a 5 > 0 such that d, > 5 for all n = 1 ,2 , . . . .  
Indeed, by (14) 

[Ivm I1 , = I[Vmllp p + o(1), 

and hence 

1 1 /,~ 1 1 
G(vm) = (~ - p )  .oo IvmlPdx+o(1)= (~ - p)l[vmllp p = o(1). 

2p, Letting b = ~ we obtain by the Sobolev inequality that 
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bc(v. )+o(1)  = f~  lv.lpdx = ~ Ilv~176 
mCs 

p--2 2 
<_ maxllvnll~<am) ~ IIv, ll~(am) 

mE~ 
mE~ 

< dPn-2C ~7_,fm(IDv. 12+Av2)dx 
meg Q 

= dp-2c Ilvn II~, = dP.-ZCba(v,,) + o(1) 

for some constant independent of n. Since G(vn) > s > 0 for n = 1 , . . . ,  we see 
that there exists a constant 6 > 0 such that d n >  5 for n = 1 , . . . .  For each n we 
choose Qr~, such that 

5 

This means that for each n there exists an integer Yn = Ym. such that 

5 
(15) IIv, llu(a...) = IIv,(" +Y,)Ilu(Qo)-> ~- 

Since by (14) {vn(" + y,)}  is bounded in Wo/'2(g2) we see that we can select a 
subsequence of  {vn(-+ y~)}, which we again relabel as {v, (. + y,)}  such that 

v,(. + y,) ~ v in Wl'2(f2), 

vn(. + Yn) ~ v in L~oc(g2) 

and by (15) we have Ilvll~(eo) -> ~, that is, v ~ 0. We put We(X) = v,(x +y,)  
and denote by ao~ and /3o~ the quantities related to {win} by (a) and (b) of  
Proposition 3. We write for R > 0 

]Wm(X)IP dx'I" fO ]'Wm(X)lP dx ~-ol~ 2~-'~ . 
n(Ixl<R) n(lxl>e) 

Letting m ~ e~ and then R ~ oo we get 

L '- (16) Iv(x)l pax + ~ = ~-=  

To complete the proof it is sufficient to show that ~oo = 0. Arguing indirectly, 
we assume that c~m > 0. Since v ~ 0, it follows from (16) that 

(17) c~oo < c ~  -~ 

Let ~bR be the function from the proof  of  Proposition 3. Since Gt(wm) ---+ 0 in 
W-1,2(IRN) and we have 

o(1) = {G'(w,,),Wm~R) = f (IOw,,lz~bR +AfbRw2)dx 
as7 

+ faDwmD~RW,ndx - f a  lwmlP(gRdx . 
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Letting m ~ ~ and then R ~ cx~ we find that a m  = 3oo- This combined with 
2_ 

(e) of Proposition 3 gives c~;~c~ _< c ~ ,  that is, a~ -~ < c ~ ,  which contradicts 

(17). 

Following [20] we introduce the definition of a periodic domain. We say that 
g2 C Ii~s is a periodic domain if there exists a partition {Qm) of ~ and sequence 
of points {Ym } C ] ~  such that 

( i )  {Ym } forms a subgroup of I~N, 

(ii) Qo is bounded and Qm = Qo + ym. 

Typical examples of periodic domain are: 1) 1-21 = O x Rm, where O is a bounded 
domain in ~p and N = m +p ,  2) ~ 2  = ]~-N, 3) ~3 = {(x,y) E ]~2, sinx < y < 
1 + sinx).  

Inspection of the proof of Theorem 2 shows that 

Corollary 1. The problem (3) admits a nontrivial solution on any periodic 1"2 C 
~N domain. 

Obviously, we have reproved here Theorem 4.2 from [20] whose proof was 
based on the global compactness Theorem 4.1 of this paper. The first existence 
result for problem (3) was obtained by Esteban [13] in a special class of symmet- 
ric functions. Later, a similar result without symmetry conditions, was established 
by P.L. Lions ([16], Theorem V.5 on p. 278). 

Let us now consider functional G with f2 = ~N - D, where D is a bounded 
domain. A starting point is the observation made by Benci and Cerami that 
problem (M) does not have a solution and that a;~(~) = o~)~(]~u) (see Theorem 
2.4 in [5]). Suppose that G(um) ~ c, with c > 0 and Gl(um) ~ 0 in W-1,2(S2). 
If  {urn } has a subsequence {Um~ } such that Um~ ~ u in W~'2((2), then 

1 12 l lflulPdx" c = - ( I O u  + = - 

Obviously, u ~ 0 and since a;~(Y2) is not achieved we must have 

2 

~ 
The last two relations imply that 

(18 )  c > 

If  {u,n } is not relatively compact in Wol'2(Y2), we may assume that 

liln /y2(lDuml2+ )~u2)dx - ~ Into[ pdx -l - p-22P e. 
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2 P.2-- 
It follows from the definition of a;~(~2) that a;~l~ < 1, that, is a~ -2 < I, This 
again implies that (18) holds. Consequently, one can expect that the Palais- 
Smale condition holds for levels c satisfying (18). In fact, it was proved in [5] 
(see Corollary 3.4 there) that if 

1 1 1 1 p-- 
( ~ - ) a ~  -~ <c<2(  -p)a~ -~, 

then every sequence {urn} of nonnegative functions in WoL2(S2) such that 
G(um) --+ c and G~(u~) -+ 0 in w - l ' 2 ( f 2 )  is relatively compact in w i ' 2 ( f ' ~ ) .  

We now establish a complementary result. 

Proposition 4. Suppose that {urn) C wl '2(~)  is such that G(um) ~ c, with 

1 1 2 _  (~ - p ) a ~  -2 < c _< 2(~ -l~aJ~-2pj ;~ 

and G'(um) --+ 0 in W-1'2(0). I f  {Um~} is a subsequence of  {urn} such that 
Umk ~ u in W1'2((2), with u ~ O, then Umk --+ U in Wol'2(g2). 

Proof Our proof is based on Proposition 3. For simplicity we denote again our 
subsequence {urn,) by {Urn}. We now observe that G'(um) ~ 0 in W-L2(~2) 
implies that 

f2(lDuml2 + Au2)dx = falumlP dx +o(1) 

and we may write 

G(um) 1 _1 /~ 12 = ( ~ - - ~ )  ([Oum +Au2)dx+o(1 )  

1 1 f ?  = ( ~ - p )  lumlPdx+o(1) - 

Let a ~  and/300 be quantities from Proposition 3 corresponding to the sequence 
{Uz}. Again, it is sufficient to show that a00 = 0. Suppose that a00 > 0. It 
follows from Proposition 3(a), (b) and the previous relation that 

(19) 

and 

11(/  ) 
c = - p )  ful, d x  + 

1 ) 
(20) c >  (~ - p)  (LOu12 + Au2)dx + /300 

Since (Gr(um), UmOR) --* 0, as m --* co, where ~bR is a function from the proof 
of Proposition 3, we see that a00 =/300. This combined with (d) of Proposition 
3 gives 

_2_ 
(21) a~, -~ _< a ~ .  
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On the other hand (19) and (20) yield that 

(22) fn(lDul2 + Au2)dx <_ fa lulP dx. 

Since c~;~(f2) is not achieved we have 

2 

and by virtue of (22) we obtain 

which is equivalent to 

p 

~-~ < lulP dx. 

Finally, this combined with (19) and (21) leads to the inequality 

which is impossible. 

6. Application to problem (4) 

We make the following assumption on coefficients b and c of equation (4). 

(I) b C L~176 with b > 0, b ~ 0 on II~N and limlxl~oo b(x)  = [~ > O, 

(II) c G L l o c ( ~ )  for some e satisfying 2 < q < q + e < 2% c > 0, c ~ 0 on 
~N and 

lim [ c(y ) ~ dy = 0 
Ixl--*~162 J Q(x,l) 

for some 1 > 0. 

According to Lemma 2 W I'2(RN) is compactly embedded into the weighted 
Lebesgue space Lq(RN). 

To write problem (4) in a variational form we introduce a functional H : 
wl ,Z(~u)  --+ I~ given by 

J; 'L H(u)  = ~ + u 2 ) d x  - ~- b(x)lulP dx - - r dx.  
P N q 

We consider the constrained minimization problem 

(23) I~ = inf{H(u); u E i ~ } ,  

where 
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M;~ = {u E WI'2(~N); u ~ 0 and ( H ' ( u ) , u ) =  0}. 

It follows from the Lag-range multiplier method that every minimizer of (23) is 
a nontrivial solution to problem (4) (see [10] and [18]). Let 

Hc(u) = ~ (iDul2 + u2)dx _ 1 e(x)lulq dx" 
N q N 

1 By Lemma 2 the functional f ( u )  = -~ f~u c(x)lul q dx is weakly continuous on 

W I'2(~N). Therefore, the constrained minimization problem 

0 < I* = inf{Hc(u); u C M.}, 

where 
M. = {u E wl'2(~N); (H~c(U), u) = O, u ~ 0}, 

has a solution which satisfies the equation 

-A lu  +u =c(x)[u[q-2u in ~u .  

Consequently, we can check as in Proposition 2.1 in [10] that 

(24) I:~ <_ I* for each A > 0. 

As in Sect. 3 we set 

0 < al  = al(NU) = i n f { [  (IDu[ 2 + u 2 ) d x ;  [ lul l  p = 1}. 
N 

p-2ap-~-2 ()~[~) p~2, then problem (4) has a non- Theorem 3. Suppose that I;~ < 21, 1 
trivial solution. 

Proof  Applying Ekeland's variational principle [12] we can find a minimizing 
sequence {urn} C MA such that H(um) --* I;~ and H'(um) ---* 0 in W-~,2(NN) 
(see the proof of Theorem 2.4 in [10]). It is easy to check that {urn} is bounded 
in W1'2(NN) and we may assume that u,n ~ u in WI'2(NN). Our objective is to 
show that {urn} is relatively compact in W1,2(NN). Towards this end we set 

3e~ = lim l i m s u p f  lumlPdx 
R ~ o o  ra--*~ Jlxl>R 

and 

a ~ =  lim l i m s u p /  (IOum[2+U2m)aX. 
R--~oc~ m---~c~ J l x l > R  

It follows from Proposition 3(e) that 

_2 
(25) a l a ~  < 3 ~ .  

It is sufficient to show that ac~ = 0. Suppose that ao~ > 0 and let CR be the 
function defined in the proof of Proposition 3. Since (Ht(um), UmdPR) ~ 0 as 
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m ~  

combined with (25) gives 
in W - I ' 2 ( ] ~ a N )  , We easily deduce from this that too _< Abaoo. This 

(26) 

On the other hand we have 

ao~ > ",Ab/ 

H(um) - l (Ht(um),Um) 

1 1 ~ 1 1 f c(x)lumlqd x = (~-- )A b(x)iuml p d x + ( ~ - q )  
N N 

> (p - 2)A f 
- -2P d~ b(x)lum [PeR dx. 

N 
Letting m --~ :x~ and then R --* cx~ we see that 

1;~ _> p - 2Aba~ .  
2/, 

This combined with (26) leads to 

Ix _> p - 2  (~1~ ~ p - 2  ~ ( ~ )  p~ 
2p \.Xb/ b'~ = - '~ -p  C~1 

which is impossible. 

A straightforward calculation (see Proposition 2.2 in [ 10]), based on a unique- 
ness result for positive radial solutions (see [14]) for equation (4) with b = 
and c - 0 ,  shows that 

I~,O - P Z.2ap -~-2 (Ab) p:--2 
2p 1 

where 

with 

and 

I ~  = inf{Fo~(u); u E M ~ } ,  

F~(u) = ~l f~u (iDul2 + u2)dx ~ ~ ~lulP d X 

M ~  = {u e WI'2(~N); u ~ 0 and (F'(u),u) =0}.  

The assumption of Theorem 3 takes the form I;~ < I ~  which is a condition used 
in papers [15] and [16]. 

Finally, taking into account (24) we can reformulate Theorem 3 in the fol- 
lowing way 

( ( ~ a~b- ' ) ,  thenproblem(4)admits C o r o l l a r y  2. Suppose that A C O, , 2-~77/ 
a nontrivial solution. 
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