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1. Introduction

The concentration—compactness principles, discovered by P.L. Lions [15], [16],
have proved to be very effective methods in variational problems involving a
critical Sobolev exponent. In the current literature these principles are referred
to as the first and second concentration—compactness principles (CCP1, CCP2)
(Lemma 1 in [16] p. 115 and Lemma 1.1 in [15] p. 158). The proofs of both
concentration—compactness principles can also be found in the monograph by
Struwe [17]. Both concentration—compactness principles are used to examine the
behaviour of weakly convergent sequences in Sobolev spaces in situations where
the lack of compactness occurs either due to the appearance of a critical Sobolev
exponent or due to the unboundedness of a domain. The application of these
principles helps to find level sets of a given variational functional for which the
Palais—Smale condition holds.

The main purpose of this article is to formulate a variant of these two prin-
ciples, namely, the concentration—compactness principle at infinity (CCPoo) for
both critical and subcritical case. This variant, in the critical case, has already
been introduced in [7] and subsequently has been used in [4] to improve the
results of paper [6]. The most interesting feature of this variant at infinity is
that it can be used instead of the first variational principle. The CCP2 , roughly
speaking, is only concerned with a possible concentration of a weakly convergent
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sequence at finite points and it does not provide any information about the loss
of mass of a sequence at infinity. To overcome this difficulty, the CCP1 is used
to show that a sequence is tight and that the so-called vanishing and dichotomy
cannot occur. In general, the use of the CCP1 is cumbersome and very technical.
In this article we show how one can avoid the use of the first concentration—
compactness principle by applying a version at infinity of the second principle
(Proposition 2 in Sect.3). In a subcritical case the situation is different. Due to
the Sobolev compact embedding theorem a possible loss of mass of a weakly
convergent sequence can only occur at infinity. Proposition 3 of Sect. 3 expresses
this phenomenon in quantitative terms. In a subcritical case, a number of the ex-
istence results have been obtained by thorough examination of the Palais—Smale
sequences (see [1], {51, [16] and [20] and references given there). One of the
deepest results in this direction (Lemma 3.1 [5], Lemma on p.5 in [3] or The-
orem 4.1 in [20]) explains how the Palais—Smale sequence fails to be relatively
compact. Each term of such a sequence can be split into the same finite number
of terms which are related to a possible loss of mass at infinity. This allows to
estimate level sets of a given variational functional for which the Palais—Smale
condition holds. The application of this procedure (the use of variants of Lemma
3.1 in {5]) can be eliminated by the use of Proposition 3 from Sect. 3.

The paper is organized as follows. Section 3 contains versions of concentration-
compactness principle at infinity for critical and subcritical case. The rest of the
paper is devoted to applications of Propositions 2 and 3 from Sect.3. As an
application of Proposition 2 we consider in Sect. 4 the following problem
) { —Au — Meu = Kx)|u|? ~2u in Ry,

u(x) >0 on Ry and u € D2(Ry),
where 2* = lei’ N > 3, and X is a positive parameter. We impose on functions
k and K conditions ensuring that this problem can be written in a variational
form. We aim to show that there exists Ao, > O such that for each 0 < A < A,
problem (1) has at least one solution. The constant A, is determined as the first
eigenvalue of the following problem

@ —Au — Mk{x)u =0 in Ry
u#0,ucDVRy).

To prove the existence of the first eigenvalue to problem (2), we derive in Sect.2
a compact embedding of the space D!*(Ry) into a weighted Lebesgue space.
Problem (1), which originates in differential geometry (the Yamabe problem),
has attracted a considerable interest in recent years. The method, that we use
to solve problem (1), relies on the min—max principle of the mountain pass
type. It is quite natural to apply both concentration—compactness principles to
determine level sets for which a variational functional for problem (1) satisfies
the Palais—Smale condition. We avoid the use the CCP1 by applying Proposition
2. Applications of Proposition 3 to subcritical cases are discussed in Sects. 5 and
6. In Sect. 5 we show that the problem
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3) —Au+ i = [ulP%u in 02,

where A > 0 is a constant, 2 < p < 2* and {2 is a periodic domain, has a
nontrivial solution. We reprove the existence result from paper [20] (Theorem
4.2); however, we believe that our approach is simpler because we avoid the
use of a global compactness result of type Lemma 3.1 in [5] or Theorem 4.1 in
[20]. We also give some improvements of Corollaries 3.2 and 3.4 from paper
[5]. Finally, Sect.6 is devoted to the study of the existence of a solution to the
problem

) —Au+u= )\b(x)|u|"_2u +c)|u|?%u in Ry,

where 2 < p,q < 2* and A > 0 is a parameter. The existence theorem of
this section is related to the existence result contained in paper [10] (Theorem
2.4). Again, we believe that our approach is simpler and under slightly weaker
condition on ¢ than in [10].

2. Preliminaries, compact embeddings of D}*(Ry) and W1?(Ry)

In a given Banach space X, we denote by “—” and “—” strong and weak

convergence, respectively.
By D'2(Ry) we denote the closure of C(Ry) with respect to the norm

”””2=/m \Dul dx.

The dual space to DV2(Ry) is denoted by D~V%(Ry), that is, DV?(Ry)* =
D~ 12(Ry). It is well known that the space D?>(Ry) is not compactly embedded
in L2(Ry). However, this embedding is compact if we replace the space L?>(Ry)
by a weighted Lebesgue space L2(Ry) under a suitable assumption on a weight
r.Letre Lioc(]RN) and r > 0, r # 0 on Ry, we define L{(Ry) by

LP®Ry)={u € L’I’OC(JRN); / |u(x)Pr(x)dx < oo}
By

equipped with the norm
lull, = [ o reoas.
By
By Q(x,!), I > 0, we denote the cube of the form

I
O, ={y €Rw; lyj — x| < 5,j=1...,N}.
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P
Lemma 1. Suppose that r € L'(Ry) N L;{;é(IRN), for some2 <p <2 r >0
and r # 0 on Ry and moreover

5) lim r)iidy =0
lxl—00 J g 1)

for some | > 0. Then D'2>(Ry) is compactly embedded into L2(Ry).

Proof. Without loss of generality we may assume that [ = 1. It suffices to show
that for every § > 0 there exists j > 0 such that

(6) If —Fxooipll, , <6

for all f € DV2(Ry), such that ||f|| < 1, where X g, is a characteristic function
of the cube Q(0,). Indeed, let {f,,} be bounded sequence in D'*(Ry). We may
assume that ||f,,]] < 1 for all m > 1 and that there exists f € D2 (Ry) such
that f;, — f in LP(Q(0, R)) for each R > 0 and Df,, — Df in L2(Ry). It follows
from (6) that

/ fiw —frdx <26.
By — 20,

Since f, — f in LP(Q(0,5)), the last inequality implies that f,, — f in LZ(Ry).
To prove (6) we cover Ry with cubes Q(z,1), z € Zy. For n > 0 we use (5) to
findj € N such that fQ r(y)!’%i dy < nfor every Q = Q(z, 1) outside Q(0,j) and
me_ 00,) r(y)dy < n. If Q is any such cube then by the Sobolev and Holder
inequalities we have

<
o

@ /szdx < (/Q IF dx) <spf|,

where S denotes the best Sobolev constant. Also, by the Sobolev inequality we
have

4
® /Q FG) —folP dx < C [ /Q |Df|2dx] ,

where fp = fo(x)dx, for some constant C > Q0 and for all 2 < p < 2*. It
follows from (7) and (8) that

| fora 2[/Qlf*fQ|2rdx+/Q</Q v<x>|dx)2r<y>dy}
2[(/Qlf—fgipdx>% (/Qrw’i—zdy)p'#
(e (fros)

IA

IA
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< G (/Q |Df]2dx> (/Qr;i%dx>
() ([ )

where C; > 0 is a constant independent of 1. We now add all these inequalities
over Q(z,1) outside Q(0,j) to get

=2
P

/ Ffrdv < Ci'F +2S“/ rdx < Cin'7 +257 1.
By —0(0,) By —Q(0,)

Inequality (5) follows by taking # so small that

Cin'7 +28" 1 < 6.

Lemma 2. Suppose that r ¢ ngjc(RN) for some € and q satisfying 2 < g <
g+e<2*r >0 r#0and that

lim r(y)g; dy=0
Kl—oo J g1y
for some I > 0. Then WH2(Ry) is compactly embedded into LI(Ry).

The proof is similar to that of Lemma 1 and is omitted (see also [11]).
We now use Lemma 1 to establish the existence of the first eigenvalue to
problem (2).

Lemma 3. Suppose that k € L'(Ry) N C(Ry), k Z 0, k is somewhere positive
and that

lim k)72 dy =0
Ixl—00 Jo@,1

Jor some | > 0 and 2 < p < 2*. Then there exists a positive function v €
DV2(Ry) such that

0 < Ao = inf{||Dul|3; llull, , =1, u € DY2@Ry)} = | Dull3.

Proof. Let {u, } be a minimizing sequence. Since {,, } is bounded in DV2(Ry)
we may assume that #, — v in D'*(Ry). Consequently, [ vk dx =1 and

/ |Dv|?dx < lim/ |Dv, |2 dx = Ao
mN m—00 ]EN

and the result follows.
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3. Concentration—compactness principle at infinity

We recall the second concentration—compactness principle of P.L. Lions [15].

Proposition 1. Let {u,,} be a weakly convergent sequence to u in DVA(Ry) such
that |uy|*" 2 v and |Duy,|* 2 1 in the sense of measures. Then, for some at most
countable index set J we have

(i) v=luf +3e, 18, v >0,

(i) > [Dul+3 e iy, 1 >0,
2

(iii) ST < py,

where S is the best Sobolev constant, x; € Ry, 6, are Dirac measures at x; and
Lj, vj are constants.

This result does not provide any information about a possible loss of mass
at infinity. Proposition 3 below expresses this fact in quantitative terms.

Proposition 2. Let {u,, } be weakly convergent sequence in D'2(Ry) and define

(i) Voo = limg_, oo limsup,, _, fIXI>R |um |2 dx,
(ii) fioo = limp—sco M SUP,,_,o0 fir5r |Du,, |? dx.

The quantities v, and |1, exist and satisfy
(iii) imsup,, o fy lum* dx = [5 dv + veo, limsup,, Ju [Pt |?dx =
Js, A1+ pioo, and
2

(iv) SVE& < poo-

The quantities ., and v, were introduced in [7], where the proof of (iv),
based on the Sobolev inequality can be found. A very simple proof of relations
(iii) can be found in [4]. Obviously, Proposition 2 remains true in the space

Dé’Z(Q), where {2 is an unbounded domain in Ry and 03’2(9) is the closure of
C2(£2) with respect to the norm

|Du2 = /Q IDuto)[? d.

We now shift our attention to a subcritical case in WC,I’Z(Q), where 2 C Ry
is unbounded domain. Let A > 0 and 2 < p < 2* and we set

M) 0 <oan(f2)= inf{/ (IDul + \u*ydx; ||ull, = 1}.
n

Proposition 3. Let {u,, } be a weakly convergent sequence to u in Wa2(02) and
define

(@) Qoo =HMR o0 HMSUP, oo, o jei>py Hm |7 X,
(b) /Boo = limg_,00 Iim SUPy, 00 f.Qﬂ([x|>R)(lDum |2 + )\u;)dx
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These quantities are well defined and satisfy

(c) limsup,, . o [unlf dx = [ |uP dx + o,
(d) limsup,, ., fg(‘Dumlz"')‘ui)dX > fQ(lDul2+>‘u2)dx + 00

and
2
(e) arado < Po-
Proof. Let ¢ € C'(Ry) be such that ¢r(x) = 0 for |x| < R and ¢g(x) = 1 for
|x] > R +1 and 0 < ¢p(x) <1 on Ry. It follows from (M) that

arlnnl} < [ (DG b+ Mo as.

Since
hm hmsup/ |t [P dx = oo,
R—>0 m oo
hm lim sup/ (|Dum | + )\u,i)qb,ze dx = B,
R—00 oo
lim lim Du,Dororuy, dx =0
R—oom—oc o
and

hm lim |umD¢R| dx =0,

R—oam—o0

the inequality (e) follows. To show (c) we write

n—»Cco m—00

lim sup/ (Um [P dx = [ulf dx +lim sup/ [t P dx.
o) 20(x|<R) 20(x|>R)

Letting R — oo, relation (c) follows. By a similar argument, using the lower
semicontinuity of the L>-norm with respect to the weak convergence, we deduce

(d).

4. Existence result for problem (1)

Throughout this section it is assumed that

(A) k € CRy)NL'Ry), k # 0 on Ry and

lim k()72 dy =0
lxf—00 SO0

for some / >0 and 2 < p < 2*.
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(BY K € C(Ry) N L*®(Ry) and there exist x, € Ry, constants o > 0, C; > 0,
Cy > 0 and R > 0 such that

K (xo) — K(x)| < Ci|x — x,|* for N =4,

|K (%) — K(x)| < Cilxo —x|**° for N > 5,

k(x;) > 0 and |k(x.) — k(x)] < Cylx — x| for all [x — x,] < R and
K(xo) = ||K|| -

We define a functional F : D*(Ry) — R by

F(u)=% |Du|* dx — %/m keowds — [ K@l dx.

By 2* Ja,
It follows from Lemma 1 that functional F is weli defined. Critical points of this
functional are solutions of problem (1).

We commence by finding level sets of the functional F for which the Palais—
Smale condition holds.

We recall that {u,, } C DV*(R,) satisfies the Palais - Smale condition at level
¢ (the (PS), condition for short) if F(u,,) — ¢ and F'(u,) — 0 in D™12(Ry)
imply that {u, } possesses a convergent subsequence in D12(Ry).

We need the truncated Talenti extremal function [19]

P(x)

N_—Z’
(e+]x —x,|2) 2

u(x)= € >0,

where ¢ € C1(Ry), 0 < ¢(x) < 1 on Ry, ¢(x) =1 for |x —x,| < & and ¢(x) =0
for |x —x5| > R.

Lemma 4. For € > 0 sufficiently small we have
S5 S

sup F(tv,) < — = 7
20 NKG)'T N|K|T

ue(x)

where v(x) = Tacls

Proof. We only outline the main steps of the proof and for details we refer to
the paper [9]. According to formulae (1.11), (1.12) and (1.13) in [8] we have

K;
luell; = =5 +0O(1), N >3,
€2

K
lell3- = = +0(), N >3
€2
and
2+ o), N>5
2 e T
lluell; = 4 Ks|loge]  +O(1), N =4,
K;+0(e2) , N=3,
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where K, K, and Kj; are positive constants depending only on N, and S = &1
We now observe that there exists a unique point z. € (0, 00) such that

N
X2

F(t.v.) =max F(tv.) = —
120 NV, ?

where

X.= [ (Dv|]* — Mkv?)dx and V.= / Kv? dx.
)Y Ry

To estimate X, we write

2
[ b L

— p(x
By luelye Ml U Jmy (415 —xo[HV=2

(k) ~ke) o dx}

and we get

A k?ar < { — 2l 4 0T +0(h), N =35,

2,
Ak (xo)Kze| )
T — bl 4 o), N =4.

If N =4, then {K(x) — K(xo)| < Cilx — xo|* for |x — xo| < R and this gives the
following estimate

Cel~%
Ve 2 K(xo) =~ —— = K(x) + 0(e)

|ue 2+

for some constant C > 0. If N > 5 we use the inequality |[K(x) — K(x,)} <
C1|x — xo|?*7 to obtain

Ve > K(x,) + O("%).
Combining these estimates we get

N
N . 7
s [1-4*"‘;;;“ +0(¢%)]

~= ) for N > 5,
NK (o)~ T [1+0(e““f)] =

F(teve) <

=

vl

N
sT [1—*—‘%’40(5)

NE(xo)(1+0() for N =4

and taking € > 0 small the assertion follows. It can be checked that the case
N =3 is inconclusive.

We now are in a position to formulate the first existence result. It will follow

from the proof of Theorem 1 below that the (PS). condition holds for ¢ €
N

0, —3%Z

N—=2 }-
g

Theorem 1. Let 0 < A < A, and N > 4. Then problem (1) has a solution.
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Proof. We define a functional F, : DV2(Ry) — R by
1 A 1 *
Fu(u)= _/ |Duf? dx — —/ k()de — — [ K(u*)? dx,
2 Jg, 2 Jpy 2%

Ry

where u* = max(0, u). It follows from Lemma 3 and the Sobolev inequality that

oA 2 Kl py i2°
Few) 2 5 (1= ) 1Dull; = 2 1Dull,

for all u € DV*(Ry). Hence there exists constants o > 0 and p > 0 such that
F(u) > a for ||u||=p.

We also have F,(0) =0 and F,(t,v.) = F(t,v.) < O for £, > O sufficiently large,
where € > 0 is chosen so that Lemma 4 holds. Let

I'={g € C((0,1],D"*(Ry)); 9(0) =0 and g(1) = tovc}
and we put

© c=inf sup F.(g(®)).
) 961’:6[0},)1] I

It is clear that o < ¢ and by Lemma 4 we have
L

(10) ¢ < ——.

NIK|los

By the mountain pass principle without the (PS) condition (see Theorem 2.2
in [8]) there exists a sequence {u,} C DV2(Ry) such that F.(u,) — ¢ and
Fl(un) — 0 in D™12(Ry). We now check that {u,} is bounded in D'2(Ry).
Indeed, we have

(Fl(um)yuy) = / Duy,Du,, dx — X | kuju, dx
’ By By

——/ K(u;)z*_lu,;dx=—/ |Du | dx.
By By

Since F.(un) — 0 in D~L2(Ry), we see that u, — 0 in DV*(Ry) and hence
F(u}) = Fu(u}) — c. On the other hand we have

(Fl(tp), u) =/ |Dut 2 dx — ,\/ k(uh)? dx — K(u,’,'l)z*dx —0.
By By Ty

Consequently,

1
c+o(l) = Ful)— 2—1*(F*(um),u,‘;) =— |Du,:|2dx

N Jg,
A 2 1 A

—— | k() dx>—-(1—--) ] |Dut)dx
N By ( m) N Ao JLiTY
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and the claim easily follows. Since {u,, } is bounded in D"?(Ry) we may assume
that u,, — u in DVX(Ry), un — # a. e. and u}, — u* in L* (Ry). By Lemma 1

Js, k (u,;)zdx — Ju, K (u*)zdx; taking a subsequence if necessary. This means
that .
—Au — Mt = K(Lf')2 in D™V2(Ry).

Taking as a test function 4~ we get

/ |Du=?dx =0
By

which implies that u~ = 0 on Ry, that is, u > 0 on Ry. We now show that
# # 0 and consequently # > 0 on Ry by the Harnack inequality. Towards this
end we follow the argument [8]. From the fact that F,(u,,) — ¢ we easily deduce
that

[ = lim |Du |* dx > 0.

m—oo EN

By Lemma 3 have

lim /\/ k(u,’;,)zdx=/\/ ku? dx.
m—00 By Ty

We now show that A [ ku?dx # 0. Otherwise | = limp—co f3, K (u,j;)zi dx >0

and ¢ = é - 2% = ﬁ On the other hand we have

[

]

. 2 . 2
lim {[Duy,|5 > S lim |um 5
m-—oo n—00

N2

sikZ um [ [ k@) a] " =siies

v

which is equivalent to [ > § ]]KH:TN, that is, ¢ > %HKH::_?E and this contra-
dicts (10). By virtue of Proposition 1 there exist measures & and v, an at most
countable set J, sequences of positive constants {y; }, {¢;},j € J, and a sequence
{xi} C Ry, j € J, such that relations (a), (b) and (c) hold. We now follow an
argument from {1], [2]. Let x; be a singular point of measures y and v and let
¢s € CL(Ry) be such that g5 =1 for |x — xx| < 8, ¢s(x) =0 for |x — x| > 26,
0 < ¢s(x) < 1 and |Dgs(x)| < % in Ry. Since (FL(ttm), umps) — 0 as m — oo
we get

/ dsdp— A / ku*¢sdx — | Kosdv
EN IESN

Ry

IN

m-—oc

%
< C(/ u2|D¢5|2dx) ,
Ry

where C = sup,,>q ||Dul|,. By virtue of the Holder inequality we have

lim sup |Dity, ||t || D 95| dx
Ry
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2
[ wFa) ([ e as
| —x|<26 [ —x| <28
2 . =
16wp / [ul* dx |
| —x]<26

where wy is a volume of a unit ball in Ry. Letting § — 0 in (11) we deduce
that K(xz )y > pr. We may assume that K (x;) > 0, since otherwise there is no
singularity at x;. Combining this with (c) of Proposition 1 we deduce that either

2
3%

IA

/ w?|Dgs[? dx
Ry

11

IN

. .. 7 . ) .
@A) v =0or (i) vy > (%) . In order to consider a possible concentration

of measures v and p at infinity we introduce constants v and po defined in
Proposition 2. Letting K (c0) = lim Sup|, K(x), we see that

|—>DO

(12) lim lim sup / K@)|um|* dx < K(00)oo.
x| 2R

R—00 mo0

Also, by Lemma 1 we have

. . 2 _
(13) nggo Jim /mN k(uy,) ¢g dx =0,
where ¢ is a function defined in the proof of Proposition 3. Since (F, (i), U, Or)
— 0 as m — oo, we deduce, using (12) and (13), that po, < K(00)Vs. It now

follows from Proposition 2(iv) that either (iii) oo = 0 or (iv) v > (7(—(—{53) ’

Here, we assume that K(co) > 0, since otherwise there is no concentration at
infinity. To complete the proof we show that v, = 0 and v, = 0 for each k.
Indeed, we have for every continuous function 1, with 0 < 1 <1 on Ry, that

o
I

mli_)moo [F*(um) - %(Fi(um), um>]

1-\1,— im [ K@) dre>~ tim | 9K () d.

m—0Q iy m—00 Bx
mn

Assuming (it), we see that the set J must be finite and taking i = ¢5 we get,
letting § — 0, that

s% sy
75 2 2
NK @)™~ N|K |2

1
c> NK(xk)Vk >

which is impossible, so v, = 0 for each k. Similarly, if (iv) occurs, we take
1) = ¢g and then let R — oo to get

S% >S¥

¢ I < vz
T NI|K|lg

" NK(c0)

which is impossible, s0 v, = poo = 0. It is now routine to show that u,, — u-in
D' (Ry).
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5. Application to problem (3)

We establish the existence of a solution to problem (3) in unbounded periodic
domains. In a final part of this section we discuss the Palais—Smale condition for
an exterior domain.

We first consider problem (3) in £2 = {(x1,x") € Rx Ry_1, |x'| <r}, r > 0.
It will be clear that Thereom 2 below can be extended to periodic unbounded
domains whose definition will be given later.

We obtain a solution to problem (3) by considering the minimization problem
(M). We set

G(u):%/n(|Du|2+)\u2)dx—ll)/n[u|pdx.

As a norm in W23(£2) we take
ull3 = / (|Du)? + Au?)dx.
o)

Theorem 2. The minimization problem (M) has a solution, that is, problem (3)
admits a nontrivial solution.

1
Proof. Let {uy} be a minimizing sequence for (M) and we put v = o} 1. It
follows from Theorem 2.1 in [20] that

)l +0(1) and G'(vs) = o(1) in W12(02).

B —
-

(14) G(vn) = (

Our objective is to show that {v,} is, up to a translation, relatively compact in
WOI’Z(Q). LetO<s < (% - %)a,\FF:Z and according to (14) we may assume that
G(vp) > s for all m. Let

Om ={(x,x) € Rx Ry_1; x| <r and m <xy <m + 1}
and we put
dy = max |[v, l1,@n)-

We now claim that there exists a 6 > O such that d, > § forall n = 1,2,....
Indeed, by (14)
o 13 = llvmlly +0(D),

and hence

1

1 1 1
G(v,) = (5 - ;) /n |vm|P dx +o0(1) = (—2— - }—))vaHI’; =o(1).

Letting b = 1%’ we obtain by the Sobolev inequality that
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bG(u)+o(1) = / [vnlf dx = Z ”Un“IIJ)(Q,,,)
2 meEy
-2 2
< max lon 5. D lon g,y
mEL

< AP | (Du, P+ Mvdydx
me7z O
= dP7EC |5 = dP2ChG (v,) + 0(1)

for some constant independent of n. Since G(v,) > s >0forn=1,..., we see
that there exists a constant § > 0 such that d, > é forn = 1,.... For each n we

choose (, such that
é
H'Un ”U(an) 2 ‘2‘

This means that for each n there exists an integer y, = y,,, such that

b
(15) ||vn||U(an) = HUn(' +)’n)HU’(QO) > E

Since by (14) {v,(- + yn)} is bounded in A ’2((2) we see that we can select a
subsequence of {v,(- +¥,)}, which we again relabel as {v,(- + y,)} such that
Up(-+yy) — v in WI’Z(Q),
V(- +yn) — vin LII’OC(Q)

and by (15) we have [[v]|p., > % that is, v # 0. We put wy,(x) = v(x + y»)
and denote by a and [ the quantities related to {wy,} by (a) and (b) of
Proposition 3. We write for R > 0

2
[ umpds [ jun@Pds=af?
20(|x|<R) 021 (lx|>R)

Letting m — oo and then R — oo we get
4

(16) /g [o()P dx + as = 0} 7.

To complete the proof it is sufficient to show that oy, = 0. Arguing indirectly,
we assume that a,, > 0. Since v Z 0, it follows from (16) that

£
(17) Goo < 0D

Let ¢g be the function from the proof of Proposition 3. Since G'(wy) — 0 in
W—L4(Ry) and we have

o) = (G'wn),wndr) = /{Z (IDwnl2dx + Abgwl)dx

+/ Dme¢medx—/ |wm]~”¢Rdx.
2 9]
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Letting m — oo and then R — 0 we find that aoo Boo- This combined with

(e) of Proposition 3 gives a,\aoo < (e, that is, a/\ ? < (o, Which contradicts
7).

Following [20] we introduce the definition of a periodic domain. We say that
2 C Ry is a periodic domain if there exists a partition {Q,, } of {2 and sequence
of points {y,} C Ry such that

(i) {ym} forms a subgroup of Ry,
(i) Q. is bounded and Q, = Qo + Y-

Typical examples of periodic domain are: 1) 2, = O xR, where O is a bounded
domain in R, and N = m +p, 2) £, = Ry, 3) £ = {(x,y) € Ry; sinx <y <
1 +sinx}.

Inspection of the proof of Theorem 2 shows that

Corollary 1. The problem (3) admits a nontrivial solution on any periodic 2 C
Ry domain.

Obviously, we have reproved here Theorem 4.2 from [20] whose proof was
based on the global compactness Theorem 4.1 of this paper. The first existence
result for problem (3) was obtained by Esteban [13] in a special class of symmet-
ric functions. Later, a similar result without symmetry conditions, was established
by P.L. Lions ([16], Theorem V.5 on p. 278).

Let us now consider functional G with 2 = Ry — D, where D is a bounded
domain. A starting point is the observation made by Benci and Cerami that
problem (M) does not have a solution and that ax(£2) = ax(Ry) (see Theorem
2.4 in [5]). Suppose that G(u,,) — ¢, with ¢ > 0 and G'(u,,) — 0 in W—12(£2).
If {1} has a subsequence {uy, } such that u,, — u in Wo3(12), then

1 1 / 5 » I 1
c=(z—— (1Dul* + Au“)ydx = —-——/u”dx.
(3-5) [0ou G-5) [ W
Obviously, u # 0 and since @) (£2) is not achieved we must have

ay (/ |u|"dx); < /(IDu|2+)\u2)dx.
o) 0

The last two relations imply that
(18) c>(z—=)af.

If {u,} is not relatively compact in W2"*({2), we may assume that

lim (|Dum|2+)\uf1)dx=/.|um|pdx=l= 2,
n p

mn—o0 -2 '
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It follows from the definition of a)(f2) that a>\l 5 < [, that, is aj’\ P~ < | This
again implies that (18) holds. Consequently, one can expect that the Palais—
Smale condition holds for levels ¢ satisfying (18). In fact, it was proved in [5]
(see Corollary 3.4 there) that if
1 1, & 1 1, 55
(5 “;)a§ T<e<2(3 “;)ai Y
then every sequence {u,} of nonnegative functions in Wo2(£2) such that
G(um) — ¢ and G'(u,) — O in WH2(£2) is relatively compact in W12($2).
We now establish a complementary result.
Proposition 4. Suppose that {u,,} C Wa ’2({2) is such that G(u,,) — c, with
1 1. % 1 1, ;2
(3 =87 <e<2(y--)ad”

and G'(up) — 0 in W YD) If {um,} is a subsequence of {u,,} such that
U, — U in Wa2(92), with u # O, then uy, — u in Wa'(£2).

Proof. Our proof is based on Proposition 3. For simplicity we denote again our
subsequence {u,, } by {u,}. We now observe that G'(u,) — 0 in W~12(£2)
implies that

/(|Du,,,|2+,\u,%l)dx=/ |t P dx +0(1)
2 02

and we may write

Glup) = (%—%)/ﬂ(lDumlz+)\u§,)dx +0(1)
1 1
= (5—1—7)/0|um|1’dx+0(1).

Let o and [, be quantities from Proposition 3 corresponding to the sequence
{un}. Again, it is sufficient to show that a,, = 0. Suppose that a, > 0. It
follows from Proposition 3(a), (b) and the previous relation that

(19) c= %_Il) (/ [u]”dx+aoo>

and

(20) c> (1 —1) (/ (IDu|2+/\u2)dx+ﬁoo>-
2 p o)

Since (G'(up), undr) — 0, as m — oo, where ¢p is a function from the proof
of Proposition 3, we see that o, = Su. This combined with (d) of Proposition
3 gives

21) af™” < .



Concentration—compactness principle at infinity 509
On the other hand (19) and (20) yield that

(22) /([Du|2+)\u2)dx g/ lulP dx.
2 £

Since «)(§2) is not achieved we have

o (/ |u|pdx>; </(|Du|2+)\u2)dx
2 fe)

and by virtue of (22) we obtain

=2
P

a < (/nluV’dx) ,

-
ol </ luf? dx.
n

Finally, this combined with (19) and (21) leads to the inequality

which is equivalent to

c> 2(-;— - %)af:%

which is impossible.

6. Application to problem (4)

We make the following assumption on coefficients b and ¢ of equation (4).
@D beL>®@y) with b >0, b # 0 on Ry and limyy| o b(x) =5 > 0,
I c e Lly(i(]RN) for some € satisfying 2 < g < g+e¢< 2% ¢ >0,c #0on
Ry and
Jim () dy=0

kl—=o0 Jow
for some / > 0.
According to Lemma 2 W12(Ry) is compactly embedded into the weighted
Lebesgue space LI(Ry).

To write problem (4) in a variational form we introduce a functional H :
WL2(Ry) — R given by

H(u)=%j£ (|Du|2+u2)dx—$/m

We consider the constrained minimization problem

b(x)|ulf dx — l/ cx)|ul? dx.
9 Juy

(23) I = inf{Hu); u € M)},

where
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My={uecW"2Ry); u #0and (H'(u),u) = 0}.

It follows from the Lagrange multiplier method that every minimizer of (23) is
a nontrivial solution to problem (4) (see [10] and [18]). Let

Hc(u)=—;- (|Du|? + u*) dx —é/ c(x)|ul? dx.
Ry By

By Lemma 2 the functional f(u) = % me c(x)u)? dx is weakly continuous on
WL2(Ry). Therefore, the constrained minimization problem

0 <I™ =inf{H (1), u € M.},
where
={u € W Ry); (H/),u) =0, u # 0},
has a solution which satisfies the equation
~Au+u= c(x)|u|‘1—2u in Ry.
Consequently, we can check as in Proposition 2.1 in [10] that

(24) I, <I* foreach A > 0.

As in Sect. 3 we set

0< ar=an(Ry)=inf{ [ (DuP +udyds ul, = 1}
=inf( ),

Theorem 3. Suppose that I, < Lpa P (2b) ”‘2, then problem (4) has a non-
trivial solution.

Proof. Applying Ekeland’s variational principle [12] we can find a minimizing
sequence {u,} C M) such that H(u,) — I and H'(u,) — 0 in W~12(Ry)
(see the proof of Theorem 2.4 in [10]). It is easy to check that {u,, } is bounded
in W12(Ry) and we may assume that u,, — u in W1H2(Ry). Our objective is to
show that {u,, } is relatively compact in W12(Ry). Towards this end we set

Boo = hm lim sup / |4t |P dx
Ix|>R

R—00 pooo

and

Qoo = hm lim sup (| Dty |* + u2) dx.
R—00 00 Jx|>R

It follows from Proposition 3(e) that
2

(25 108 < feo.

It is sufficient to show that oo, = 0. Suppose that a,, > 0 and let ¢ be the
function defined in the proof of Proposition 3. Since (H’(uy,), um¢r) — 0 as
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m — oo in W-L2(Ry), we easily deduce from this that 3o < Abao. This
combined with (25) gives

) =
(26) 2 (53)
On the other hand we have
1
H(uy) — E(H/(um)y um)
= (1 - —1-))\/ b P dx + (l - l) / ()| |4 dx
2 p' Jay 2 q’ Jay
(@ — DX
> O /m 0

Letting m — oo and then R — oo we see that
_9
1> 2" "5bo..
, 2p
This combined with (26) leads to

— ra) — I
bz = ()7 6 el )

which is impossible.
A straightforward calculation (see Proposition 2.2 in [10]), based on a unique-

ness result for positive radial solutions (see [14]) for equation (4) with b = b
and ¢ = 0, shows that

2p
where
I =inf{Foo(u); u € My*},
with : \
Foow)== | (|Dul?+u*)dx — —/ blulP dx
2 By P Ry
and

M ={uecW'Ry); u £0 and (F (u),u) = 0}.
The assumption of Theorem 3 takes the form Iy < I° which is a condition used
in papers [15] and [16].
Finally, taking into account (24) we can reformulate Theorem 3 in the fol-
lowing way
A
Corollary 2. Suppose that )\ € (O, (}277_1%’) afb“), then problem (4) admits

a nontrivial solution.
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