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On Isometries and on a Theorem of Liouville*)
By
PHILIP HARTMAN

In this paper, ‘it is shown that LiouviLLE’S theorem [Theorem (ITT)] on
conformal mappings of space is valid for (local) transformations of class C.
This is deduced by a procedure used to prove Theorem (I) dealing with the
smoothness of solutions of overdetermined systems of partial differential
equations. This procedure depends on the notion of strong L2-derivatives.
A particular,case of Theorem (I) implies that if two non-singular Riemann
metrics of class C°, where 0=1, 2, ..., are isometric by virtue of a mapping
of class C1, then the mapping is necessarily of class C**°; Theorem (II).

1. Overdetermined systems. The first theorem of this paper concerns
smoothness properties of solutions of overdetermined systems of partial dif-
ferential equations.

(D) Let u= (", ..., w%) and v=(v% ..., v%). Let f(n, v, v}, v, ..., v3), where
I=1,2,...,3d(d-1), be functions of class C°, ¢=1, on a (d+d-+d?-
dimensional domain. Let v—=v(u) be of class C* and satisfy the system of partial
differential equations

(1) (v, 0v2ud, ..., 8v*ouf) = 0, where 1 =1,...,2d{d +1),
on some u-domain. In addition, let
@ A(u) +0,

where A(u) is the determinant of the matrix of coefficients of 82v'|0uw/du* in
the system of $d2(d + 1) linear equations obtained by differentiating (1) formally
with yéspest to ﬁk,.k-:-fl,,. .., d, and assuming 020'|0w 0u® = 20 |ouF 0. Then
v = (ss).3s of class C1+°.

This theorem (with d = 2) was proved in [4] under the stronger assumption

that v=1v () is of class C? (instead of class C!). The question as to whether
or not the above form of (I) is true was left open.
"~ The proof of (I} below, will depend-on properties of functions having a
finite “modified Dirichlet integral” in which partial derivatives are replaced
by difference quotients. Essentially, (I} will first be proved in an L%-sense
for -the case o=1.

It will be clear from the proof of (I) that an analogue holds if » and »
are vectors of different dimensions, say, # is a d@'-vector and v is a d-vector.
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In this case, the system (1) of {d(d+1) equations must be replaced by a
system of [1d(d'+1)+ 2] equations and condition (2) must be replaced by
the assumption that the rank of the corresponding d’[34(d'+1)+3] by
1dd’(d’+1) matrix of coefficients of the Ldd’(d’+1) variables 82404 du* =
2/ out 0o is 1dd'(d'+1) at every point % under consideration.

2. Isometries. Itis clear from [£] that (I) has applications in differential
geometry (and, in some cases, leads to refinements of the assertions in [4]).
In particular, the considerations of [£] indicate that (I) has the following
corollary (cf. Section 8 below}): '

(D) Let w=(ut,...,u%), v={",.:.,9%). Let (g;, (%)), (M(v)} be mon-
singular, symmetric matrices of class C° in vicinities of u==0, v=0, respectively.
Let v=1v(u) be & mapping of class C* in a vicinity of w=0 satisfying v(0) =
and transforming the Riemannian metric

3) dst=g;,du’ du®
nto
. (4) d82=h,-kd'vidvk.

Then v=v(u) is of class C**°.

If =0, this theorem is trivial. If ¢ >1 and if v=v(#) is of class C?
(instead of class C%), then (II) follows from the transformation rules for the
Christoffel symbols. For these rules show that the second order partial
“derivatives of ¢* can be expressed as polynomlals in g/*, K/* and the first order
partial derivatives of v/, girand &

. Using the theory of geodesms and parallel transport (II) was proved in
[3], pp. 222—226, in the binary (d=2), positive definite case. In [5], (II)
was proved for d =2 without the assumption that (3) is a positive definite
metric. The proof in [4] is not applicable to the case of 4 (>>2) dimensions;
for example, in the positive definite case, it depends on the Cauchy-Riemann
equations.

3. Liouville’s theorem. Theorem (II) and the arguments used in the
proof of (I) will be used to obtain the following form of LIOUVILLE’S theorem.

(1) Let d=3, u=(u?, ..., u"), v=(",...,v%). Let v=2v{n) be a (local)
mapping of class C* with non-vanishing Jacobian which maps the Euclidean
metric

(5) ds?= (doY)2+ - F (dvh2
into a conformal metric
(6). ds?=p2[(du)2+ - 4 (du%)?], where y =.y(u) > 0.

Tkm v=uv(u) is a Mobius transformation (hence, analytic).

The proofs of LIOUVILLE’s theorem in standard texts require that v =1v (%)

is of class C3. A proof in which it is only assumed that v = v () is of class C?

is given in [2]. In (III), there is, of course, no assumption on the smoothness

of y; if y is assumed to be of class Ct, then (III) follows from [2] and (II).
14%
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4. Two lemmas. The proofs of (I), (II), (III) will depend on two simple
lemmas. The first is a consequence of a result of S6rvi [8]. The second is
obtained by a crude variation of arguments of MORREY [6] dealing with
quasi-conformal maps .and generalizations of these arguments by NIREN-
BERG [7].

The following notation will be used below: The range of a lower case index
is to 1 to 4, that of I is 1 to $d(d+1). Repeated indices denote summation.
When there is no possibility for confusion, partial differentiation with respect
to the ¢-th component % of  will be denoted by the subscript 5. If g=g(u)
is of class C* on a u-domain R, the D1r1ch1et integral of g over R will be
denoted by Ir(g),

]
Tele) =2 IJI (u)|*du,

where du=du'...du®.  If g{u) is continuous on a domain containing the
closure of R, then, for small | 4| >0, I, (g) will denote the modified Dirichlet
integral

2 Iru(g)

IIM&.

f|Aig{2d“’
1R

where A; denotes the difference operator
(8) Aig=g@d, ..., L+ kit uh) — g, ..., uf).

The following is implied by Sérvr’s paper [8] (cf. Section 5 below):
Lemmad. Let g=g(u) be a continwous function on a domiain containing
the closure of a sphere T. Lgt there exist a constant K satisfying

9 It =K

for small |h|>0.. Then g(u) has strong L*-derivatives on compact subsets of T.
. In particular, the partial derivatives g,(u), £=1,...,d, exist almost
everywhere on T. Below, this lemma will be applied to the components
g="v;{u) of v; —61)/81)7 It will follow that +* has second order partial deri-
vatives v]k—-vk, almost everywhere and t’hat if fu,v, 01, ..., 99 is of class
Ctin its d +d -+ d? variables, then f(u, v(u), v} (1), ..., v§(u)) can be differenti-
ated by the chain rule almost everywhere with respect to o, k=1,...,d.
Lemma 2. Let z=z(u) = (2 (%), ., 22(u)) be a vector function of class ct
on a bounded wu-domain R. Let there exzst constants Cy, Cy, Ciip Such that
|2 (w)] < Cy and

(101 Z Z]z,!ﬂg Ciinm 02, 202 (uF, w™) + C,.

1—1 j=1

Then, for any compact subset T of R, there exists- a constant K, depending only
on R, T,Cy,Cy, Cijppm, such that the Dirichlet iniegrals of 2 satisfy

(11) ﬁlzr (H<K.
P
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5. Proof of Lemma 1. In order to make clear the meaning of ‘“‘strong
L?-derivatives” and the validity of the remarks following Lemma 1, a veri-
fication of Lemma 1 will be indicated.

In this verification, there is no loss of generality in supposing that
g, ..., u%) is of period 27 in each variable %' and that (9) holds for the
parallelopiped T: |#/| < m; [8], pp.53—54. Let g(u) have the Fourier

development o) ~ 3 a,én %,

where n=(1y,...,%;), n-uw=nu+--i+nu* and n,=0, +1,.... Let
g" (u) denote the (finite) Fejér sum

g¥w) =2 (1—|m|/N)...(1 — |m4|/N) a,é*%,  where |m] <N.
The inequality (9) implies the convergence of the d-fold series
2l pl2 = 2(p? L .o ) < oo
(8], pp. 49—s0. 2 |ltl#lP=ZlanfPin A e ) < oo

From the continuity of g, it follows by FEJER’s theorem that gN-»g
uniformly as N— co. Finally, from the last formula line, it follows that, for
j=1, ..., d, the sequence 9g1/ow/, 0g?du/, ... converges in the L>mean on T:

k| < : . ]
|*| <7, to g~ 3 in;a, 6,

6. Proof of TLemma 2. Without loss of generality, it can be supposed
that 7 is a sphere, say |#| < a, and that R contains the slightly larger sphere
T(6): |#| < a/6, where 0 is a fixed number on the range 0<<6<1. Let ¢(7)
be a non-negative. function of class C* for = 0 satisfying e=1 for 0<7< a
and e=0 for = }{(a+a/0).

An integration by parts gives

fe2(n) gz, — ) du—= —2 [ee 7 (7, — dr,)du,
T(8) ()
where 7 =|%| and ¢'=de¢/dr. This integration by parts is valid even though
z is only of class C' (rather, than of class C%). -

If £>0, then the absolute value of the 1aét integral is majorized by
e [ (224 |2h|?) du+ e2CY [e'2(r)du,
“T(6) ) T(O.)
since |ab| < ea%+ 3e28?, || < C, and |7y, |7, < 1. Thus (10) implies that

d
2
1=1

where K is a constant depending only on C, Cy; C;jpm, & R, T and the
function e(r). Hence if ¢ is chosen so small that'2d%¢|C;;;,,|'< §, then

a d : .
Je2l2du<e 3| Coinml (|2 ]2+ |24]?) du + EK,
=) i=1 Ti6)

7

Zd Zd [elAPdu<K.

i=1j=1 T(8)

Since ¢ 0 for #= 0 and e=1 for 7 < a, the ineqiality (11) follows.
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7. Proof of (I). Consider first the case 0 =1. In view of the local nature
of the assertion of (I), it is sufficient to prove it for a vicinity of a given
point, say # =0, in the domain of definition of v=1v(u).

Let 7 be a fixed integer, 1 < i< d, and % be a number such that || >0
is small. Put

(12) 2=h14v,
where A, is the difference operator defined in (8). Thus z=2z(u, k) = (2, ..., 2%
is a vector function of class C* for small || and |%|>0. It is a continuous
function, even for A=0, if z(#,0) is defined to be Sv/on’.

Apply the difference operator A4, to the equation (1). By the mean
value theorem of differential calculus, the result can be written as

(8 2w+ (8112907 + ({603}, = 0,

where the subscript 0 means that the partial derivative is evaluated at a
suitable intermediary point. By virtue of the continuity assumptions, the
last equation can be written as

(13) d;", —Z Z ()] + &' (7).

j=1 n=
where d]* is the value of 8//9v}, at the point (v, v, v}, ..., v§) = (0,v(0),} (0),
.., U5(0)); o(1) refers to |#|—>0 and 0<|h|—>0; and g'(u, k) denotes a
continuous function for small |u|, || (= 0).

Multiply (13) by 2% and write the resulting equation in the form

i[Zd’”ﬂz + Z " 2y 2 ]

j=1ln=1 nm+1

®

d

P
Z Z d’”(z’ Zf— k) 4+ > o(1)|2|2 + g" 4k,

1n= m+1 f== n=1

=

where [=1,...,3d(d+1), m ,d and % is fixed. This gives an in-
homogeneous linear system of } dz (d —|— 1) equation in the {d2(d 4 1) variables
#zk, where 1<7<d and 1< ng m=<d. The definition of A(u) in (2) shows
that the determinant of this system is 4(0) 0. Hence, 7,2f,, where 1 <n <
‘m < d, can be written in the form

]
Chars (@, 2)[00F, u‘)+§ ZoW+ de'z,

where ¢,,,,, ¢} are constants. In partlcular, ]zf,,|2, when m=1,...,d, is of
this form. Since % is arbitrary on the range 1< k< d, an application of an
inequality of the type |g’2f| < 1¢|2%|2+}&71|g’|?2 and the boundedness of g
imply" that

S 5 (1 —det o) AP Cppred (e, )0, ) + C 7,

k=1 m=1
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for suitable constants C,,,, and C. _

It follows from Lemma 2 that there exists a constant K such that (11)
holds for small |4|>0 if T is a fixed small sphere |#| < a. The definitions
of I and z=A"14,v show, therefore, that

4
B2y
k=1

for every i=1,...,d. Hence, I, (%) < Kd.

By virtue of Lemma 1, v%, has strong ‘L?-derivatives and %v*/9u/ du™ —
&' {0u™ 9w exist almost everywhere. Furthermore, /7 (4, v (), vi (), ..., v (u))
can be differentiated by the chain rule almost everywhere with respect to ",
k=1, ...,d. The resulting set of 3d%(d+1) equations,

‘ 3f1/auk+ (afl/avi) v;; -+ (3}‘1/3‘0}) v,’:k_= 0,

is linear in the variables v}, =v}; and can be solved for these variables, by
virtue of (2). The continuity of the functions

(14) of jout, (0fJov) ok, ~ of vt

shows that 824%/du 9u* can be extended to continuous functions. Thus, v has
continuous, second order partial derivatives: This proves the case g=1 of (I).

If =2, it follows that the functions (14) are of class C! and, hence,
2%4*/0uf 0u" is of class C?; that is, v is of class C3. Clearly, (I) follows for any
o=1 by iuduction.

b=

fl4. 45 2du< K

m=1T

8. Proof of (II). The transformation rule for metric tensors shows that
the equivalence ot (3) und (4) means that the 1d(d-1) equations

(15) gi(u) v} v — B (w) =0
hold, where (g"), (#*™) are the (symmetric) matrices inverse to (g;;), (As.),
respectively. The function of (u,v, 1, ..., v%) on the left of (15) is of class

C° with respect to its d+d - d? variables, by the assumptions of (II). If
v=v(u) and vf=0v*(u)/0u’, formal differentiation of (15) with respect to
', where =1, ..., d, leads to a linear system of equations for the second
order partials of v. Furthermore, the determinant of the matrix of coefficients
of - these ‘derivatives does not vanish; cf. the transformation rule for the
Christoffel symbols. Hence (II) is the particular case of (I) in which (15)
plays the role of (1).

9. Proof of (III). The equivélence of (5) and (6) means that
a
(16) 2 tvh =28,
k=1

where §*/is 1 or 0 according as i =4 or ¢ =={. ‘After an affine change of variables,
it can be supposed that #=0 is a point of the #-domain under consideration
and that

(17) vh(0) = &'*.
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Let 4, &, 4;, and 2z have the same significance as in (12). Then (16) and
(17) show that
(18) z};—i—zf—( 1497 6”’—!—2 Z (1) ]=2],
m=1 n=1
where the.o(1) refers to |#|—0 and 0<|%|—0.
If § =&, then the last relation becomes

(19) A= Fh14;,0%) +Z 20(1 JEAR

m=1 p=1

This formula and the corresponding one for 2z} show that
Z 4
(20 d—zk=2 2o()|&].
m=1 n=1

Hence, by (18) and (20), where 7<%,
4

@) A A=+ Idl 121 + 3 S ol

Clearly, thls implies an inequality of the type (10).

‘The proof of (I) implies, therefore, that the function v=v(u) (of class C%)
has strong, second order, L2-derivatives in a vicinity of #=0; in particular,
8200wl 0u® exists and equals 2%v%/0u* du! almost everywhere. It follows from
(16) and >0 that y has strong, first order, L*-derivatives.

It will now be verified that a standard proof of L1ouviLLE’S theorem
([1], pp. 460—462) involving the Lamé equations can be carried out .under
‘these differentiability conditions on v=v(%) and y =y (u).

The derivation formulae for (16) (that is, the transformation rules for the
Christoffel symbols) are valid almost everywhere and give

(22) v =y yvityiv) iRy,
(23) V=7 ( Z VrUr)-

Let y,=1y;(#) denote the unit vector
(24) y, = Av;,  where A=y "
{(Note that the subscript 7 on y; does not denote partial differentiation.) The
vectors (24) have strong L2-derivatives and. (22), (23) imply
(25) dyjow =~k it iz,
(26) 3y,lou =T v,
ki
almost everywhere.

Let the i-th coordinate #* be fixed, not on a certain 4-dimensional zero
set. Then (25) gives

(27) ]f Aid‘U#O;
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if J is, for example, the boundary of a rectangle @/ < W/ < ¥, a* < uf < BF,
w"=const if m=={, k; i=F7, k; and the numbers &, ¥, a*, b* do not belong to
certain 1-dimensional zero sets. Obvious modifications of the proof of Theo-
rem 2, [2], p. 328, show that 4; does not depend on o if j 5= ¢; that is, A,= 04/0u’
which is defined almost everywhere is a function only of the 4-th component
#* of u. (The proof in [2] remains essentially valid for the present situation
since the property of having strong L2%-derivatives is invariant under C!
changes of the independent variables.)

If 4,7 (s=1) are fixed, the relations (25), (26) imply
7 E+i.

if J is the boundary of a rectangle a < ' < b, a < 4/ < B, u* =const if k=1, 4,
and ‘4, b, a, § do not belong to a certain 1-dimensional zero set. Since A,
depends only on #*, (28) gives

(29) 24;(b) s(b) — 4;(a k§ A (P [1(B) — ()] =0,
where
(30) { s(uf) = s, o, B) = v(ud, ...,/ L, B, Wt .. ut) —
— v, W o, WY L u)
and
b
(31) ik (’M’) = tk (ui’ a, b) = f 43 (M) dui‘

a

Rewrite (29) in the form
32)  s(0) [A:(0) — Ai(a)] = — Ai(a) [s (b) — s(a)] +k§ﬁk (") [84(B) — t (e0)].

Consider a, «, 8, u® for ==7 to be fixed and & to be a variable. Then
s(b) is of class Cl. Also #,(u, a, b) is of class C!, as a function of b; cf. (31).
Thus, by (32), s(b)[4;(b) —A;{a)] is of class C'. The vector s{b) does not
vanish if « and § are suitably chosen (and fixed), for v cannot be a constant
on any #/-interval; cf. (16). '

It follows that 2,(u’) = 34/0u* can be extended to a continuous function
and so, A4 has continuous partial derivatives with respect to #, i =1, ..., d.
Thus 4 (hence ) is of class C1. By (II), v =wv (%) is of class C2.

Divide (32) by b —a and let b—a. It follows that A, has a derivative A,;
with respect to #’ and that

s(a) 2;4(a) = — A;(a) {v;} - 2 4 (M) (v},
k+1
where {g} denotes the difference of the values of ¢ when w'=a, w=3 ind
#'=a,w—=a«. Consequently, A has continuous second derivatives, Ai;and 4,,=0
if 7=k, Hence, by (II), v =v(#) is of class 3. The proof of (IT]) can n(w\ be
completed as in [1], pp. 460--4062.
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