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By 

PHILIP HARTMAN 

In this paper, "it is shown that  LIOOVlLLi~'S theorem [Theorem (III)] on 
conformal mappings of space is valid for (local) transformations of class C 1. 
This is deduced by  a procedure used to prove TheOrem (I) dealing with the 
smoothness of solutions of overdetermined systems o f  partial differential 
equations. This procedure depends on the notion of strong L*-derivatives. 
A particular,case of Theorem ̀  (I) implies that if two non-singular Riemann 
metrics of class C ~, where a = 1, 2 .. . . . .  ar e isometric by  virtue of a mapping 
of class C 1, then the mapping is necessarily of class C1+*; Theorem (II). 

t. O v e r d e t e r m i n e d  s y s t e m s .  The first theorem of this paper concerns 
smoothness properties of solutions of overdetermine6 systems of partial dif- 
ferential equations. 

v d (I) Let u ~ (u 1, , u d) and v = (v 1, v d 1 , ~), where �9 . . . . . . .  ). Let f ( u ,  v, vl,  % . . . . .  
I = t , 2 , . . , � 8 9  be ]unctions o/ class C a, ~ ' t ,  on a ( d + d + d * )  - 
dimensional domain. Let v = v (u) be o] class C 1 and satis/y the system o] partial 
differential equations 

(~) f (u, v, 0 v 1/a u 1 . . . . .  OVd/a U a) = O, where I = t . . . . .  ~ d (d + t ) ,  

o n  some u-domain. I n  addition, let 

(2) A (u)+ 0, 

where A(u) is the determinant o/ the matrix o/ coefficients o/ ~*v~/auiau k in 
the system o / { d  ~ (d + t ) l inear  equations obtained by differentiating ( t ) /ormally 
with r ~ v c t  to ~ , . k  = ! . . . . . .  d, and assuming ~2v*]~ui ~u* = ~2v~]~uk ~u i. Then 
v = v (u) . i s  o / . das s  C~+*. 

This tl~eorem (with d = 2) was proved in [4~ under the stronger assumption 
that v = v (~) is of class C 2 (instead of class C1). The question as to whether 
or not the above form of (I):is true was left open. 

T h e  proof of (I) below..wiU depend on properties of functions having a 
finite "modified Dirichlet integral" in which partial derivatives are replaced 
by difference quotients. Essentially, (I) will first be proved in an LZ-sense 
for  the case a = t. 

I t  will be clear from the proof of (I) that  an analogue holds if u and v 
are vectors of different dimensions, say, u is a d'-vector and v is a d-vector. 

~') The preparation of this paper was sponsored in part  by the Office of Naval Research, 
U. S. Navy. Reproduction in whole or in part  is 'permitted for any purpose of the United 
States Government. 
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In this case, t h e  system ( t ) o f  {d (d  + t) equations must be replaced by  a 
system of [�89 t )~ -~]  equations and condition (2) must be replaced by  
the assumption that  the rank of the corresponding d ' [ { d ( d ' + t ) + { ]  by 
{ d d ' ( d ' +  t) matrix of coefficients of the ~ d d , ( d ' + t )  variables ~vi/Ouiau~=- 
a2vi]aUkou i is { d d ' ( d ' +  t) at every point u 'under consideration. 

2. I s o m e t r i e s .  I t  is clear from [4] that  (I) has applications in differential 
geometry  (and, in some cases; leads to refinements of the assertions in [4]). 
In particular, the considerations of E4J indicate that  (I) has the following 
corollary (cf. Section 8 below) : 

(II) Let  u = ( u  I . . . . .  ud), v = ( v l , . : . , v d ) .  L e t  (gik(u)), (h~k(v)) be non- 
singular, symmetric matrices o/class C ~ in vicinities o / u  = O, v = O, respectively. 
Let v = v (u) be a, mapping o/class 0 in a vicinity o~ u = 0 satis/ying v (0) --- 0 
and trans/orming the Riemannian metric 

(3) ds ~ = gik dui duk 

into 

(4) ds ~ -= hik dvi dv ~. 

Then v----v(u) is o] class C!+*. 

If a = 0, this theorem is trivial. If a >  t and if v = v  (u) is of class C ~ 
instead of class O),  then (II) follows from the transformation rules for t h e  

Christoffel symbols. For these rules show that  the second order partial 
derivat ives of v i can be expressed as polynomials in gik, hik and the first order 
partial derivatives of v i, .gi.~ and h i ~. 

Using the theory of geodesics and parallel transport, (II) was proved in 
[3], pp. 222-226,  in the binary ( d =  2), positive definite c a s e .  In [.5], (II) 
was proved for d = 2 without the assumption that  (3) is ~ positive definite 
metric. The proof in [5] is not applicable to the case of d ( >  2) dimensions; 
for example, in the positive definite case, it depends on the Cauchy-Riemanu 
equations. 

}. L i o u v i l l e ' s  t h e o r e m .  Theorem (Ii) and the argument s used in the 
proof of (I) will be used to obtain the following form of LIOUVlLLE'S theorem. 

(III) Let d ~  31 u = ( u  1 . . . . . .  ua), v = ( v  1 . . . . .  va). Let v = v ( u )  be a (local) 
map.ping o] class 0 with non-vanishing Jacobian whicl, maps the Euclidean 

metric  

(5) ds~ = (dye) "~ +. . .  -/(rival* 
into a Con/ormal metric 

(6) ds~=v2[(dul)~ + .. .  + (dua)z], where ~ =?~(u) > 0. 

Then v = v (u) is a M6bius trans]ormation (hence, analytic). 

The proofs of LIOUVlLLE'S theorem in standard texts require that  v = v (u) 
is of class Ca, A proof in which it is only assumed that  v = v (u) is of class C ~ 
is given in [2J. In (nI), there is, of course, no assumption on the smoothness 
of 7; if ~, is assumed to be of class C 1, then (III) follows from [2] and (ii)i 

14" 
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4. Two l e m m a s .  The proofs of (I), (II), (III) will depend on two simple 
lemmas. The first is a consequence of a resul t  of S6LYI [8]. The second is 
obtained by a crude variation of arguments of MORREu [6] dealing with 
quasi-conformal maps ~and generalizations of these arguments b y  NIREI~- 
B~G [Z]. 

The following notation will be used below: The range of a lower case index 
is to t to d, that  of I is t to �89  t). Repeated indices denote summation. 
When there is no possibility for confusion, partial differentiation with respect 
to the i-th component u ~ of u will be denoted by  the subscript i. If g = g(u) 
is of class C 1 on a u-domain R, the Dirichlet integral of g over R will be 
denoted by  I R (g), 

d 

~(g) - -Y f Ig,(u)l'd~, 
i=1  R 

where d u = d u l . . ,  du d. If g (u ) i s  continuous on a domain containing the 
closure of R, then, for small ]hi >0,  ZRh(g) will denote the modified Dirichlet 
integral 

d 
(7) IRa(g)  = h-~ 7. f !A,gi~du, 

i=1 R 

where A i denotes the difference operator 

(8) A i g  = g (u  I . . . . .  u 6-1,  u i + h ,  u $+1, - . . ,  u d) - -  g (u  I . . . . .  ud ) .  

The following is implied by S6LYI'S paper [8] (cf. Section 5 below): 

Lemma t. Let g =g(u)  be'a continuous /unction on a domain containing 
the closure o / a  sphere T. ~ t  there exist a constant K satis/ying 

(9) I r  h (g) ~ K 

/or small ] h i >  0., Then g (u) has strong L2-derivatives on compact subsets o/ T. 

Ill particular, the partiat derivatives g~(u), k = l , .  ~,, d, exist almost 
everywhere on T. Below, this lemma will be applied to the components 
g=v~(U) ~ vi--av/avi. I t  will follow that  v i has second order partial deri- 
vatives v~-----v*~i almost everywhere and that  if /(u, v, v~ . . . . .  v~) is of class 
O in its d + d + #  variables, t h e h / ( u ,  v(u), v~(u) . . . . .  v~(u)) can be differenti- 
ated by  the chain rule almost everywhere with respect to u ~, k = t . . . . .  d. 

Lemma 2. "Let z=z (u )  ~ (zX(u), ., zd(u)) be a vector /unction o/ class C x 
on a bounded u-domain R. Let there exist constants C1, C~, C~i~, ~ such that 
l~'(u)l ~ q a,d 

d d 
,0o~ X S 14P ~ c,;~,,, a(~,, ~)/~ (u~, u")+ c~. 

i=1 i=1 

Then,/or any compact subset T o /R ,  there exists a constant K, depending only 
on R, T, Cx, C~, Ciik,~, such that the Dirichlet i~egrals o~ z i satis/y 

d 
(t t) X z.(z~) < K. 

i=x 
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5. P r o o f  of L e m m a  t.  In order to make  clear the meaning of "strong 
L*-derivatives ' ' and the validity of the  remarks following Lemma t,  a veri- 
fication of Lemma I will be indicated. 

In this verification, there is no loss of generality in supposing that  
g(u 1 . . . . .  u d) is of period 2z~ in each variable U i and that  (9) holds for the 
paralielopiped T: ]ui l~z~;  [8], pp. 53--54. Let g(u) have the Fourier 
development g (u) ~-, Y. a,  e ~ ' u ,  

wtiere n = ( n  1 . . . . .  nd) , n . u = n l u l + . . , + n a u  d and n i = 0 , 4 - t  . . . . .  Let  
gN(u) denote the (finite) Fej6r sum 

(u) = Y~ (l  - [ nil /N). . .  (l - I nd l/N) an e'"u,  where I nil < N.  

The inequality (9) implies the convergence of the d-fold series 

[8], pp. 49--50. E l a ' l z [ n [ ~ = E l a " 1 2 ( n ~ + ' " + n ~ ) < ~ 1 7 6  

From the continuity of g, it  follows by  FEJER'S theorem that  gN..+g 
uniformly as N-+  oo. Finally, from the last formula line, it  follows that ,  for 
j----t . . . . .  d, the sequence agl/Ou i, Og2/au i, . .  converges in the L2-mean on T: 

gi ~'  X i n i a . e " " .  

6. P r o o f  of L e m m a  2. Without loss of generality, it can be supposed 
that  T is a sphere, say ] u] ~ a,, and  that  R contains the slightly larger sphere 
T(O) : [ u] < a/O, where 0 is a fixed number on the range 0 < 0 < t.  Let  e (r) 
be a non-negative function of class C ~~ for r ~ 0 satisfying e = t for 0 ~ r < a 
and e = 0  for r ~  �89 

An integration by  parts gives 

f e '  (r) (4 z~ -- ~'~ 4) du = -- 2 f  e ~' z' (z~ r~ -- 4 r~l du,  
r(o) r(o) 

where ~--]~l and e ' =  de~dr. This integration by  parts is valid even though 
z is only of class c 1 (rather, than of class C~). 

If e > 0 ,  then the absOlute value of tile last integral is majorized by  

e f e* (IZ~ I z + Izs ~) d .  + .-a C~,f ,,3 ('1 d,.,, 
r(o) T(O) 

sincelabl ~ ~ ' - ' ~ l ~ ' l ~ q a n d  , Thus(tO) implies that 
d d d 

Y, Y:, f e$1z~pdu< eE lc..,,l/e'(Izs 141') d,, + ~-K., 
i = i  i = l  T(O) i=1 T(O) 

where K "is a constant depending only on Cx, C=, Ciik,~, ~; R, T and the 
function e(r). Hence if ~ is chosen so small, that, 2d'~ IC,~. l< �89 then 

d d 

Y, Y, f e~lz~.l'di~<.K.: 
i----1 i=1 T(O) 

Since e >  0 for r ~  0 and e =  t for r ~  a; the ineq/aalit T ( t t )fol lows.  
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7. P r o o f  of (I). Consider first the case a = 1. In view of the local nature 
of the assertion Of (I), it is sufficient to prove it for a vicinity of a given 
point, say u : -0,  in the domain' of definition of v----v (u). 

Let i be a fixed integer, t _~ i ~  d, and h be a number such that  ]hi > 0  
is small. Put  

(12) z = h -1/tip, 

where A i is the difference operator defined in (8). Thus z :- z(u, h) = (z I . . . . .  z d) 
is a vector function of class C 1 for small lu] and Ih]>0 .  It  is a continuous 
function, even for h = 0 ,  if z(u, 0)is  defined to be av/au ~. 

Apply the difference operator h-1/[i to the equation (t). By the mean 
value theorem of differential calculus, the result can be written as 

(~f/a~')o + (~/~/avJ)ozJ § (~l'/~V,)0d = 0, 

where the subscript 0 means that  the partial derivative is evaluated at a 
suitable intermediary point. By virtue of the continuity assumptions, the 
last equation can be written a s  

d d 

(a~ af-z,~ _- y, y, o0)I~'~l + gq*,, h), 
i = I  . = i  

I 1 I where dr" is the value of ~f/aV~ at the point (~,, ~, ~ ,  .... ~ = (O,v(O), v~(O), 
.... ~(0)); o0) refers to l"i~O and O<lhl~o; and d(,,,h) denotes a 
continuous function for small ] u], [ hi ( ~  0}. 

Multiply (t3) by z~ and write the resulting equation in the form 

d rm d "t 
I n  i k I n  i k zlz ; ,o,o+ z 'o' 1 

j = l  n = l  n = m + l  

d d d 
a ~ dr" ,. =y~ (~,.,zk.-z;z~)+E Y,o(~Yl4l~+g'4, 

j = l  n = m + l  I j = l  n = l  

where I .=1  . . . . .  � 89  m = i  . . . . .  d and k is fixed. This gives an in- 
homogeneous, linear system Of -~-d~(d + i) equation in the { # ( d +  i) variables 
i k where 1 ~ ] ~ d  and t ~ _ n ~ m ~ d .  The definition of A(u) in (2) shows gn gm, 

that  the determinant oi this system is A (0)4= O. Hence, ziz~, where t ~ n 
m ~ d, can be written in the form 

d d 

CpqrsO(gp gq)/o(.r, .s) _~ E Z O(J) IZPql $ §  cqlgl ~q, 
p=l q=l 

where %,,, ~ are constants. In particular, l?,?, when m=~ ..... a, is of 
this form. Since k is arbitrary on the range I ~ k ~ d, an application of an 
inequality of the type Ig~l  <�89189 ~ and the boundedness of gt 
imply that  

d d 

Y. Y. (! - �89 + o0))I~'.1'< c,,,.,a(~*.z,)la(,', ,') 4- c~-,, 
k = l  m ~ l  
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for suitable constants Cm, , and C. 

I t  follows from Lemma 2 that  there exists a constant K such that  ( t i)  
holds for small I hi > 0 if T is a fixed Small sphere I u [ ~ a. The definitions 
of IT and z=h-lAiv show, therefore, that  

d d 

h-*X Z ./'lA,v~]~du--~K 
k = l  m = l  T 

for every i = t .  . . . . .  d. Hence, Irh(v~) ~ Kd. 
By virtue of Lemma t,  v~ has strong LZ-derivatives and ~%~/au i au'~: 

~%k[ou~au~exist almost everywhere. Furthermore, f (u, v (u), v 1 (u) . . . . .  ~(u))  
can be differentiated by  the chain rule almost everywhere with respect to u k, 
k : l . . . . .  d. The resulting Set of {# (d  + t) equat ions ,  

af /~u~+  (~f/av'~ r + (~ f /av~)~  = o, 

is linear in the variables v~k = v~ i and can be solved for these variables, by  
virtue of (2). The continuity of the functions 

(t4) ~l'l~,, ~, (~flar v~, afla~ 
shows that  aZv~]~ui~u k can be extended to continuous functions. Thus, v has 
continuous, second order partial derivatives~ This  proves the case a~,-- 1 of (I). 

If a = 2 ,  it follows that  the functions (t4) are of class C 1 and, hence, 
a2v~/auiau ~ is of class C1; that  is, v is of class C 3. Clearly, (I) follows for any 
a ~ t by  induction. 

8. P r o o f  of (II). The transformation rule for metric tensors shows that  
the equivalence ot (3) und (4) means that  the �89 t) equations 

05) # ( u )  v~ v 7 - h~'(v) = o 
hold, where (gii), (hk,~) a re  the (symmetric) matrices inverse to (gii), (hkm), 
respectively. The function of (u, v, v~ . . . . .  v~) on the left of (t 5) is of class 
C ~ witfi respect to its d + d  +d* variables, by  the assumptions of (II). If 
v : v ( u )  and v~=Ovk(u)/au i, formal differentiation of (15) with respect to 
u i, where / '=  l . . . . .  d, leads to a linear system of equations for the second 
order partials of v. Furthermore;  tile determinant of the matrix of coefficients 
of these derivatives does not vanish;  cf. the transformation rule for the 
Christoffel symbols. Hence ClI) is the particular case of ( I ) i n  which (t5) 
plays the role o f  (1). 

9. P r o o f  of (III). The equivalence of (5) a n d  (6) means that  
d 

(16) X v~ v{ = 7 2 6' i, 
k = l  

where 8~i is I or 0 according a s / = i  or i:4=]. After an affine change of variables, 
it can be supposed that  u = 0 is 'a point Of the u-domain Under consideration 
and that  

(t 7) v~ (o) = ~J*. 
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Let i, h, A i, and z have the same significance as in (t2). Then (t6) and 
(t 7) show that 

d d 

(t8) 4 + q = (h-iA,r~) ~;~ + y y o (1) I z~l, 
m = l  n=l 

where the,o(1) refers to 1.1-~0 and 0 < l h l - ~ o .  
If j = k, then the last relation becomes 

d d 

09) z i=  ~cn-iA,?,) + r. y. o(t) lcl .  
m = l  tr 

This formula and the corresponding one for z~ show that 
d d 

(20) zi-~i=r, X o 0 ) l ~ l .  
m = l  n = l  

Hence, by  (t8) and (20), where j =~ k, 
d d 

~=1 n=l 

dear ly ,  this implies an inequality of the type (t0). 
The proof of (I) implies, therefore, that  the function v = v (u) (of class C 1) 

has strong, second order, L~-derivatives in a vicinity of u = 0 ;  in particular, 
~2vi /auiSu ~ exists and equals 8*v~/Sukau i almost everywhere. It  follows from 
(16) and ? > 0  that ? has strong, first order, L*-derivatives. 

It  will now be verified that  a standard proof of LIOUVlLLE'S theorem 
([1~, pp. 460--462) involving the Lain6 equations can be carried out .under 
these differentiability conditions on v = v (u) and ?---- ? (u). 

The derivation formulae for (16) (that is, the transformation rules for the 
Christoffel symbols) are valid almost everywhere and give 

(22) Vii = ?-i (?i v~ + ?~ vj) if i ~: i,  

(23) -~,, = ?-1 (?,~,_ y ?, ~). 
k4=i  

Let Yl----' Y~(U) denote  the unit vector 

(24) Yi = 2v~, where 2 = ?,1. 

(Note that  the subscript i on y~ does not denote partial differentiation.) The 
vectors (24)have strong La-derivatives and. (22), (25) imply 

,(25) 8 y d S u  i = - -  2ivi  if i ~ j ,  

(26) ~ Yd Ou~ = X 21, v~ 
k e~.i 

almost everywhere, 

Let the i-th �9 u i- be fixed, not on a certain t-dimensional zero 
set, Then (25) gi,ves 
(27) f 3.i d.v = O, 

J 
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if J is, for example ,  the b o u n d a r y  of a rectangle a j ~ ui ~ b j, ak N u k ~ b ~, 
u " = c o n s t  if m =t=]', k;. i ~ / ' ,  k; and the  numbers  a ~', b i, a ~, b k do not  belong to 
certain l -d imensional  zero sets. Obvious modif icat ions of the  proof of  Theo- 
rem 2, [2], p. 328, show tha t  hi does not  depend on uiif]=4=i; t ha t  is, $~= O~/Ou ~ 
which is defined a l m o s t  everywhere  is a funct ion only  of the i - th  componen t  
u ~ of u. (The proof in [2]  remains  essential ly val id for the present  s i tuat ion 
since the  p rope r ty  of hav ing  s t rong L2-derivatives i s  invar ian t  under  C ~ 
changes of the independent  variables.)  

I f  i , i  (4=0 are fixed, the relat ions (25), (26) imply  

(2s) :f o, 

if J is the bounda ry  of a rectangle a ~ u i ~_ b, ~ ~ u i K fl, u ~ = const if k =t= i, 1", 
and:  a, b, ~, fl do not  belong to a certain l -d imensional  zero set. Since ~ 
depends only on u ~, (28) gives 

~ (b) ~ (b) - 4, (~) ~ (~) - Y, ~ (u ~) Vt,, (~) - t~ (~)1 = o ,  (29) 

where 

(3o) 

and  

s ( u  ~) = s (u~, ~, ~) = ~ ( ~  . . . . .  ~J-~, ~, uJ+~, . . . .  u~)  - 

- - -  7) (U 1 . . . . .  U ~-1,  ~X, U j + l  . . . . .  U d) 

b 
tk (-;)  = t,~ (u;, ~, b) = f vk (-)  a u  ~. 

Rewri te  (29) in the form 

(32) s(b) [~,(b) - ~ , (a)]  = - ~,(~) Is(b) - s(a)3 + Y ~ ( u  ~) [t~68) " t~(~)l .  

Consider a, e, fl, u k for k 4 i  to be fixed and b to be a variable.  Then 
s(b) is of class C 1. Also tk(u i, a, b) is of class C 1, as a function of b; cf. (3/). 
Thus,  b y  (32), s(b)[~.i(b)--~i(a)~ is of class C 1. The  vector  s(b) does not  
vanish if e and fl are sui tably  chosen (and fixed), for v cannot  be a constant  
on any  uLinterval ;  cf. (t6). 

I t  follows t h a t  2ti(u i) =c~./Ou" can be extended to a cont inuous function 
and so, ~ has continuous par t ia l  der ivat ives  with respect  to u ~, i : t ,  . . , ,  d. 
Thus  ~ (hence ~) is of class C 1. By  (II), v = v (u) is of class C ~. 

Divide (32) b y  b - - a  and let b-->a. I t  follows tha t  ,~i has a der iva t ive  ~ii 
with respect  to u ~ and tha t  

S (a) ~ i i ( a )  = - -  ~i (a) {Vl} -1- Z ,~/,, (~k) {Vk} ' 

where {g} denotes the difference of the values of g when ui=a,  u ' - - f l  m d  
u i =  a, u i =  ~. Consequently,  ~. has cont inuous second derivat ives,  ] i i  and ~',.i = 0 
if i--I=]. Hence,  b y  (II),  v = v ( u )  is of class C '~. The proof c~f ( I l I )  can now be 
comple ted  aa in [11, pp. 460-,-462. 

Malh~'matischl! Z~dlsehl"ifL Bd. (i,~ 1.1;I 
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