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Introduction

A long-standing question is the following:

Conjecture. Let AG be a finite solvable group and assume G<1 4G, (|4],|G)=1
and Cg(4)=1. Then the Fitting height of G is bounded above by the compo-
sition length of A (i.e. the number of primes dividing |A4|, counting multipli-
cities).

In 1973 Berger [9] (using [2-5, 7, 8]) proved the conjecture for 4 nilpotent
and Z "\ Z, free for all primes p (here Z,\Z,, is the wreath product). The con-
jecture is also known in some other cases [1, 10]. For more details on the his-
tory of the problem before 1973 see [9]. The main result of the following work
is the proof (Theorem 4.7) of the conjecture if A is supersolvable and every
proper subgroup of A is Z \Z, free (for all r,s) and G, p",gq) free (for
G(e, p", q) not nilpotent). G(g, p”, q) is defined in 1.1 and some of its properties
are given in Proposition 1.2. As special cases of this theorem we get all the
known cases of the conjecture (see note after Definition 4.4).

The conjecture is naturally translated into a representation-theoretic ques-
tion. Namely: if AG is as in the conjecture, the Fitting height of G is equal to
the composition length of 4 and M is a faithful irreducible kAG-module (k an
algebraically closed field, char (k).f |4]), can C,,(4)=0?

Since Cg(4)=1, M is always induced from N, a k4, G-module where 4,
cA. Now, if N, is induced from a kA4, G,-module N,(G,<G), we need to
study the permutation representation of 4, on the cosets of 4,G, in 4,G.
Since G is solvable this essentially reduces to the study of the permutation
structure of IF , A,-modules (p a prime, p||G:G,l). We prove (Theorem 2.2) that
under our hypothesis if Wis a IF, 4,-module then there is a vector ve W such
that C, (v)=ker (W) (we say that 4,/ker Whas a regular orbit on W). This ge-
neralizes a result of Berger [8].

So we get to the situation where N, is a primitive faithful k4, G,-module
(4, and G, quotients of A, and G, respectively). At this point there is an ex-
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traspecial p-group PG, P<14,G, such that Z(P)=Z(4,G,) and A, acts
faithfully on P/Z(P). If G, is nilpotent we get information easily, so we may as-
sume that there is a subgroup H< A4, G,,PSH<G, such that [H,Pj=P and
H/Cy(P/P) is elementary Abelian. Under these hypothesis we show. {Theo-
rem 3.4) that N,|,, contains a regular direct summand (a copy of kA,). This ge-
neralizes a result of Berger [8].

We need to have the subgroup H in order to apply Theorem 3.4, so we de-
fine the subgroup supp ,(G) of G (Definition 4.2) to be the appropriate part of
F(G) (the Fitting subgroup of G). supp,(G) essentially behaves as the Fitting
subgroup (see Proposition 4.3). We obtain Theorem 4.6 which easily implies the
main result and would be false with F(G) in place of supp,(G).

The work is divided into four sections. The last is the proof that Theo-
rem 2.2 and Theorem 3.4 are sufficient to prove the conjecture in our case. The
first three sections are a proof of Theorem 2.2 and Theorem 3.4.

To prove Theorem 2.2 we consider two cases: either W is induced and we
apply induction and Proposition 1.6; or it is not in which case the structure is
very tight (Proposition 2.1) and we have necessary and sufficient conditions for
the existence of regular orbits (Proposition 1.4).

To prove Theorem 3.4 we consider P/P" as an A, H-module. There are es-
sentially two cases: either it is induced (then N,|, is “tensor induced”) and
again we apply Proposition 1.6; or it is not induced in which case the structure
is very tight (Proposition 3.1) and we describe N,|, , in great detail (Theo-
rem 3.2). In my view Theorem 3.2 is likely to find applications in other prob-
lems in finite solvable group theory. This is why, although only the non-mod-
ular case is used, it is proved in slightly more general form. In any case,
Theorem 3.2 allows us to apply {again} Proposition 1.4 which now gives suf-
ficient conditions for the existence of regular modules.

In view of possible applications and to clarify the method, I have tried to
work with slightly more general groups than supersolvable ones. We assume
only some consequences of supersolvability as needed for the various argu-
ments. We do need, however, 4 to be supersolvable in the final Theorem 4.7.

1. Basic Definitions and Results

Definitions and Notation 1.1. For p" a power of a prime p and ¢=~1 or a
power of 2 such that ¢|n define:

E(p")=IF%. (the multiplicative group of the field of p" elements) if ¢>0;
=subgroup of order p"+1 of I}, if = —1.

Gal(l, p")=Gal(F ,.:IF ) (the Galois group of IF ).

Gal(—1,p")=0,.(Gal(F ... F ).
If e+ +1 Gal(e,p")={0> xGal(~1,p"?) where ¢ is the automorphism of
E(p"): x—>x=F"7.

G(g, p")=Gal(e, p")o><F,(p") (the semi-direct product).

o(x)=order of x.
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If 5eGal(e, p™) and yeF,(p") we denote N, the norm map ie.

N,w= [] «)=y-0()...a"= ().

e{a)

Suppose that g is a prime and divides |Gal{(g, p"). Define
GN(e,p", q)=A<N<=G(e, p"

where A is the subgroup of Gal(e, p") or order ¢, and

N={xeE(p"): [To(x)=1}

ocd
the set of all elements of F,(p") of norm 1 under a non-trivial element of A.

Proposition 1.2. For any e p,n,g such that GN(e p" q) is defined take N
=GN, p", Q) N E(p"). We have the following:

1) N is a cyclic normal subgroup of GN (g, p", q) of index q and every element
of GN (e, p", q) not in N has order q.

2) If gis odd or s>1, GN(2%, p", q)=GN(1, p", q).

3) If e= £ LIN|=(p"—&)/(p"™® —¢).

4) If e=2=¢,|N|=p™?» 1.

5) For any prime r dividing |N|, we have r=q and either r=q or r=1(g).

6) If GN(s, p", q) is nilpotent one of the following is satisfied:

a) q=3,p=2,e=—1,n=3, GN(sp", q) is elementary Abelian of order 9 and
E(p™) is a 3-group.

b) g=2, p=3, e=2, n=2, GN(¢,p", q) is elementary Abelian of order 4 and
E(p") is a 2-group.

C) q=2, p is a Mersenne prime, e=1, n=2 and GN(g, p",q) is non-Abelian
dihedral of order 2(p+1).

d) q=2, p is a Fermat prime greater than 3, ¢=2, n=2 or p=3, ¢=2, and n
=4. In any case GN(s, p", q) is non-Abelian dihedral of order 2(p™? —1).

7) If GN(e, p", q) is Abelian, then ¢+1 and F(p") is a g-group. Any nilpotent
non-Abelian GN (g, p", q) contains the dihedral group of order 8.

Proof. 1) Take oeGal(e, p") xeF,(p"), then (6x)"®) = N_(x). So we have 1).

2) is clear from the definition.

3) and 4) see Proposition 1.3 a).

5) Clearly if xeN and xeZ(GN(s,p", q)), then x?=1, so if r||[N| and r=gq is
a prime ¢g|r—1.

6) Let GN (g, p", g) be nilpotent. This implies that N is a g-group. So assume
that N is a g-group.

Suppose first that g+2. We may assume then that ¢= +1 by 2). Now if

b —¢ =g we have a). So suppose that g° p—&
4

n
- n
m W:E Set azm and we have

n

D —¢&
p—¢

=pm@-Dpgpma-2 1 g1
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Clearly p"=e+agq (¢*) for some aeZ, so
(mod g?) [N|=pmd~Dpepm=2 4 et
=(e+aq) V+e(e+agf P+ ..+
=g 4 (g—1)age? 2+ 1+ (g—2)aqe? 2+ .. 407!
9(¢—1)
2

=g 14+ 2 T gqet-?=qe7 ! since g+ 2.
=q =q

This is a contradiction.
So assume now that g=2. This means that GN(g, p", ¢) is either Abelian or
a dihedral 2-group. We also have ¢+ —1. If e=1,

p"—1

INI= a7

=p(n/2) +1

so that we get c). By 2), since n=2, this excludes the possibility ¢>2. If e=2,
INf=p®>—1

and we get b) and d). This completes the proof.

7} This follows from 6).

The first part of the next proposition can be viewed as a generalization of
Hilbert’s Theorem 90.

Proposition 1.3. a} Let 0eGal(s, p") be of order s and set

N={xeE(p"): N,(x)=1}.

Then we have that xeN iff x=@ for some yeF(p"). Furthermore we have
y

pt—e

Nj=—e— g=+1,

l [ vp(n/s)_g -
_r=-1r
_W ex>1leks,

p'—1
=m 8>18iS.

b) Let A be a subgroup of G(e, p"). Set B=ANE,(p"). There exists a conjugate
A, in G(e,p") of A such that for any xeA\B of prime order q,, there is
geA; nGal(e, p") o1 such that o>=1.
Proof. a) Clearly N, ( (y))—-l so that f(y)=—— s ;
into N. Y

is a homomorphism of E(p")

o’ (y)

we have

_o(6"" ()" " ?(y)...y)
T " V(e ).y

If for some r, z=
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so that we may replace ¢ by ¢" provided that (r, s)=1. So we may suppose
o(x)=x*"""  xeF("

where o= —1 if 6>1 and ¢ls, and a=1 otherwise, and f=2if e=—1, and =1
otherwise,

(Bn/s) (s~ 1) pBn/si(s - 1)
N,(x)=x-x""""  x= 7P =x"

pPr—1

where v=1+4ap¥"® 4 . 4o~V plrint—1 PO
ap!Bre) —

So

An

W|(%mrawww
Now f(x)=x#"""-1 5o that

Iker f|=(ap® — 1, |F,(p")}).
Ifes—1,

p"_..l n _ p”__l
Kot 1= a1, D 1]

Hence a) is satisfied in this case.
If e=—1, then s is odd and

2n n
p—1 P+
iN‘:(p(ln/S)_l’p +1)_p(”/s’+l’

ket f1=@®" 1, p"+ 1)=p® + 1.

Hence we have a) in all cases.

by Write |Gal(e, p") =47 ... 4% qgfl‘ .gy a product of primes such that A\B
has elements of order g, 1—1 ,§ but not of order ¢, 4, ...,q,. Assume also
that g, <g,<...<q.,.

Take 4* a conjugate of A which contains elements o,,...,0,_,€Gal(s, p")
of order g, ..., q; | respectively, with i as large as possible. Assume i <s.

Take xe A*\B of order g;. We may write x=g¢, with 0,eGal(g, p") of order
¢; and aeF(p"). We have 1=(0; )% =N, («).
Since ¢,€4* for j=1,...,i—1 we have [0;,x]ed* and [o;,x]=[0},0;a]
=o;'a o7 g,;0,0=[0;,a]. On the other hand 6, normalizes {x), and since
N, (2)=1, any prime dividing [{«)| is at least as large as g, (Proposition 1.2, 5).
Therefore g;4|{a>| and

(@ =C o) x [0, {D].

Since [o;,<ap]=<([5;,a]>SA4* and o,acA*, there is yeC(a,) such that
g, yeA*.
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This process actually gives yeC,,.(5,,...,0;_,) such that o,ye4* and (of
course) N, (y)=1.
Now if i=1, or i>1 and ¢, is a field automorphism, yeF,(p"“4t-%-) and

. o' (2)
by a) there is ze F,(p™¥@'%-Y) such that y:_'_z~~

automorphism then ¢, =2, ¢=2 and

CFz(p'l/(llszli- 1))(0'1)_—_}?- 1(pn/(‘h-..'li- 1))’

.Ifi>1 and o is not a field

-1
. . o7 'z
so that by a) in any case there is z€ Cp (0, ..., 0,_,) such that y=—’——(—).

Take A*% Then, since ze Cy m(0y,...,0,_;), 0,€A* for j=1,...,i—1.
0,=0,0; (z"Nyz=z"'0,yze 4%

a contradiction. So we have b).

Propositon 1.4. G(s, p") acts on the left in a natural way on F,(p"), with E(p") act-
ing by multiplication and Gal(e, p") in its natural way. Let ASG{e, p") and B
=ANFE(p"). Then the following are equivalent:

A) A has a regular orbit on E(p").

B) For any prime q, GN (&, p", q} is not conjugate in G(e, p") to a subgroup of
A.

C) For any prime q such that AN\B has an element of order g, if we take
0,6Gal(e, p") of order g and N,={xeF,(p"): N, (x)=1}. Then N, B.

Proof. Set F=F,(p") and n={g a prime: A\B has an element of order g}. By
Proposition 1.3 b), we may assume that, for any gen, o,€Gal(e,p")n 4 is an
element of order . Now B) and C) are equivalent.
In this proposition C, denotes the fixed points in F under the action de-
scribed in the statement of the proposition. We get U# Cp(a)=|J Cx(a) where
acA

a runs through the elements of prime order of A\B. So

U CF(a)zu U Cp(b-a,).
acA ¥ gen beB
7,(x)
X
by Proposition 1.3, a). Since F is cyclic,
F={J | Cplbay) iff | ) Cplb-o))=F
beB

gen beB

But () CF(b~aq):{xeF: EB} is a subgroup of F and is proper iff N, ¢B,
beB

for some gemn, or equivalently N,< B for some gen. This shows Proposition 1.4.

Definition 1.5. We shall say that a maximal subgroup 4 of G is relevant iff
there is an Abelian normal subgroup N<1G with a subgroup N; € N such that
N;(N) < A.

Proposition 1.6. Let G be a solvable group that does not contain any section of
the form Z \Z, (r and s possible equal; Z,"\.Z  being the wreath product) and
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such that for every chief factor N/M of G, G/Cs(N/M) has a regular orbit on the

elements of N/M. Suppose A is a maximal subgroup of G and K is a normal sub-

group of A such that () K*=1 and A/K operates on the left by permutations on
xeG

some given set () with a regular orbit and at least one other orbit.

Then G permutes Q=100 XX, @2 x...xx,_ ;R where x denotes car-
tesian product and x,=1, X,,...,X,_, is a system of representatives of
{xA: xeG}. Moreover G has at least three orbits on Q€ and if any of the follow-
ing is satisfied, then G has a regular orbit on Q°F.

1) 241G : A4, and, if 2{|K|, G has a normal Sylow 2-subgroup;
or 2} 2X|G:A|, A/K is a cyclic 2-group of order at least 4, and if 8/|G|, G is
supersolvable;
or 3) A/K has more than two orbits on Q;
or 4) A is relevant;
or 5) A<aG;
or 6) K=1.

Proof. Let M be maximal with respect to the properties M< A and M<aG. Let
N/M be a chief factor of G. Then Nn4<AN=G. But McSNnA<A and
therefore M =N A.

() Also C,(N/M)sAN=G and C,(N/M)=M.

Let x,=1 and x,,...,x,_, be representatives of the classes N/M. We label
X, a representative of a class in a regular orbit under G/C4z(N/M) on N/M. We
have n=|N/M|. Then x; i=0,1,...,n—1 is a system of representatives of the
classes x4 in G since if x; 4=x; 4, then x; 'x,eAnN=M and i=j, and if geG
=N-A, g=n-a,neN,acA, and nex; M for some i so that gex; MA=x; A.

Set B=A/K. We have the Frobenius homomorphism G—S,\ B defined by

g—(s(g), b(g)), where s(g) is the permutation x;4—gx;A taken to be of
{0,1,...,n—1} and

b(g):{0,1,...,n—1}—-B,
b(g) ()= ‘x;(gl)(i) gx; K.

Since gx,€X,4q) As Xy 8X€A and x;, gx;KeB. This gives a homomor-
phism since by definition of S, "B,

(@1, f) (o, f)=(my omy, (fi 0 7s) o),
and we have for g, g'eG,
(s(g), b(g)) (s(g"), b(g) =(s(gg", b(gg"),
since of course s(gg’)=s(g)o s(g’) and
[(B(g)os(g)- b () =b(2) [s() ()] -b(g) (D)

i —1 - . . —1 . /- .
=Xsexs@1n 8 Xsyiy Xsigry & %t K

-1 ’
=Xgeei) 88 "X K.
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It is clear that the kernel of this homomorphism is contained in K and is
therefore 1. From now on we consider G contained in S,\B.
S,\B has a natural action on 1@ Qxx; ®2x ... xx, , ®Q defined by

(/) (x; @ 1) = (%, @ (D) A)

and the action of G on Q€ is the restriction to G of this action.

We denote the elements of QF as n-tuples of elements of Q. Note that if
meM then s(m)=1. If geG, then ged iff s(g)(0)=0. If acA then ax;4
=ax;a"' A and therefore s(a) corresponds to the action xM—axa™*M of 4
on N/M. If geG and s(g)(0)=0 and s(g)(1)=1 then ged, and since x; M gen-
erates a regular orbit of G/C4(N/M), by (), ge C ,(N/M)=M and s(g)=1.

Take w to be a representative of a regular orbit of 4/K on @ and v a repre-
sentative of another orbit of A/K on Q. It is clear that at least (o, w, ..., ),
(w,v,...,v) and (v, w, ..., w) belong to different G-orbits, so that G has at least
three orbits on Q° Hence we suppose that G has no regular orbit on Q°,

Then we have (it is possible that n=2 and some of the final letters do not
actually appear):

a) 1+ C4((w, o, ...,w) and 1+¢,€5,NG;

b) 1% Cy((v, o, ...,w) and 1#(0,, (44, 1, ..., 1))eG with ¢,(0)=0;

c) 1+Csl(w,v,0,...,w) and 14(a,, (1,4, 1,...,1))eG with o5(1)=1;

d) 1+C4((v,v,0,...,0) and 1+(1,(4;, 45,1,...,1))=1eG where either 1=1,
or t1(0)=1 and z(1)=0.

If AwG then 4=M and o,=1 and 1+(4,,1,...,1)eG. But in this case
6,(0)#+0 and {o,,(4,1,...,1)) has a section isomorphic to Z,\Z_. If K=1
Csl(w, v, ..., v))=1. Hence one of 1)-4) is satisfied.

Suppose (o, f, 1, ..., 1)eG with a=1. Then if g,(0)%=0 we have a section of

oy By 1y ey 1y (05 (LA L o, D)X BxIx .. x DAL xBx1x...x1)

isomorphic to Z,\Z, Therefore o;=1 and 1#(1,4,1,...,1)eG. If
(o, B, 1,...,1)eG with f'+1, in the same way we get 13:(4,, 1, ..., 1)eG. Hence
if 115,245, 1,...,DeG, we get 1£(4,,1,...,1)eG and 1%(1,4,,1,...,1)eG.
But o, does not fix both 0 and 1 and so a section of G is Z," Z . Hence we
have

(%) (X5, 25,1, ..., 1)eG implies 2, =45 =1.

Now we get 7+1 and t?=1 since t*=1. If 1) is satisfied 2./|G: 4|, so ¢t is
conjugate in G to an element of 4. This element will act trivially on w, so that
2/ |K|. On the other hand ¢ acts non-trivially on N/M so that either Z,\Z, is
involved in G or G does not have a normal Sylow 2-subgroup. Hence 1) is not
satisfied.

If 2) is satisfied again we get 2| |[K| and G is supersolvable. Now n=|N/M|
is an odd prime and {4/M||n—1. Since B is a cyclic 2-group, if P is a Sylow n-
subgroup |P|=n and P<G’ since 4 acts non-trivially on N/M. Because G 1s
supersolvable, P centralizes any G-chief factor of M, and hence P centralizes
M. Since B is Abelian, this means that if (i, ..., g, ;)M we have py=p,=...
=u,_ ;. So M is cyclic and M <Z(G). Since A/M is cyclic we get that A4 is
Abelian.
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Consider all elements of the form F:

(Ua.u'l w:ﬂzw: ...,,un_l(,o)

with w;eB. There are |B|"~! of them. For each q,=2, q,, ..-»q, the distinct pri-
mes dividing [4/M], take a coset I} in A/M of order ¢, i=1,...,y. Now

CG((Ua :ui w, '-'Hun—l (L)))g(A\M)U{I},
so that for some i=1, ..., 7,
EmCG((v9u1 @, "'::un-—l CO)):FQ’,

i.e. contains an element of order g;.

Now there are at most 2 elements of order 2 in I; and at most 1 element of
order g; in I; for j=2,...,7, because A4 is Abelian and M is a cyclic 2-group.
On the other hand each element of prime order in I; fixes the first coordinate
and acts with orbits of length g; on the others. It can be conjugated by an ele-
ment of Bx...xB to an element of S,, so it centralizes [B|"~ 1% elements of
the form F. Therefore we get [Bj"~'<2|B|"~ 12 4 . 4 |B|™ "%, The right hand
side has at most n—2 summands and we get |B|""!<(n—2)2|B|" V2. There-
fore we get |B|"~ 1?2 <2(n—2) and |B|=4 n>3, which is a contradiction. Hence
2) is not satisfied.

If 3) is satisfied, let v, be a representative of a third orbit of B on Q. We get
1+ Cs((v, 01, m, ..., w)) and 1%(4,, 15,1, ..., 1)eG, which contradicts (++). Hence
3) 1s not satisfied.

Hence 4) is satisfied, ie. A is relevant. There is V<G Abelian and V, =V
such that t¢Ng(V,). Let veV, be such that v'¢V,. Then (v, v, D> is
isomorphic to Z,"\Z, for some r. This contradiction completes the proof of
Proposition 1.6.

2. The Regular Orbit Theorem

Proposition 2.1. Let A be a finite group and C<1A be a cyclic group such that
C(C)=C. Suppose that M is an irreducible faithful I¥ , A-module such that M|
is homogeneous. Then we may identify M with IF), (n=dimg(M)) and A
G, p") with AnF,(p")=C and the action of A on M is given by the natural
action of G(1,p") on IF .. M| is irreducible.

Proof. Let k2IF, be a splitting field for A and C. Then k® M is a direct
sum of faithful irreducible modules all distinct and conjugate under the Galois
group Gal(k:IF,) (since chark+0 the Schur index is trivial, see for example
[12] Theorem 9.21). But each is induced from a faithful irreducible k C-module
and therefore k®g M| is a sum of non-isomorphic k C-modules. Since M| is
homogeneous as a IF, C-module, this means that M is irreducible as a IF, C-
module. Let e be the primitive idempotent of IF, C such that eM +0. Then
p4|C| and, by Schur’s lemma, el , C is a field, say el C=F~TFF .
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Let veM v+0, then define:

m: F—->M,
m(f)= fv.

This is an isomorphism as IF , C-modules.

Every element acA centralizes e and so normalizes F. f—»f* " is an auto-
morphism of F, let us denote it by ¢(a). Define y(a)eF* by a-v=4/(a) "-v.
Then if a, be A,

a-b-v=a-y®Y v=y®P " av

=y®) " Yy

and
Yia-b)=[y®y " Y@ 1’
=y )Y (@)’ =y (b)-a(b~ )Y (a),

so that a—(o(a), ¥(a)) is an injective homomorphism of A4 into G(1, p") and the
action of 4 onIF}, is the natural one:

a-i=a(a)(y(a)- A).

Theorem 2.2. Let G be a finite group and W an IF ,G-module (p a prime) which
is the direct sum of irreducible IF , G-modules. Assume for all sections G* of G we
have:

) Z.\Z, is not isomorphic to G*,

2) GN(1,p%, q) (q a prime, a2 1) is not isomorphic to G*;

3) If all Abelian normal subgroups of G* are cyclic then G* has a cyclic self-
centralizing normal subgroup;

4) If N/M is a chief-factor of G* then G*/Cg(N/M) has a regular orbit on
N/M.

Then G has a regular orbit on W.

Note. Conditions 3) and 4) are always satisfied if G is supersolvable. In view of
Proposition 1.2, 7), if G is nilpotent, Condition 1} implies Condition 2).

Proof of Theorem. Assume false and choose a counter-example which minimizes
|G|+ dimg, (W). Then if W=W, @ W, a direct sum of IF, G-modules, if we set
K,=ker W, (i=1,2), by the choice of G and W there are v,e W, such that C;(v)
=K;. Then Cg4(v, +v,)=1, a contradiction. So Wis irreducible.

Suppose 4A<a1G is Abelian. If A is not cyclic W], is not homogeneous. Let
C be a homogeneous component of W|,. Consider G, a maximal subgroup of
G sucthhat G2 N;(C (C)2Ng(C). Then there is a IF , G,-module V such that
W=v"

Now set K =ker V. We have that G,/K has a regular orbit and the orbit {0}
on V. By Proposition 1.6, 4), since G, is relevant, G has a regular orbit on W, a
contradiction. So 4 is cyclic.

So by Condition 3), G has a self-centralizing cyclic normal subgroup C.
Consider W|.. If W|. is not homogeneous, let ¥, be a homogeneous com-
ponent of Wi, then we may set G, 2 N;(V;) a maximal subgroup, W, a IF G-
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module such that W=WS and K,=ker(W,). We see that K,nC=1 and
therefore [K,,C]=1 and so K,=1. So G, has a regular orbit on W, and
Proposition 1.6, 6) gives that G has a regular orbit on W. So W|. is homo-
geneous. ‘

Hence we may apply Proposition 2.1 and G=G(l, p”) and the non-zero ele-
ments of Wcan be identified with F,(p"). Now if G contains GN(1,p" ¢) it also
contains GN(1, p%", g) where ¢” is the g-part of n. So Proposition 1.4 shows that
G has a regular orbit. This concludes the proof of the theorem.

3. The Regular Module Theorem

Proposition 3.1. Let A be a finite group and C<aA a cyclic subgroup such that
C(C)=C. Let M be an irreducible faithful IF , A-module of dimension 2n with an
A-invariant non-singular symplectic form {, ). Then

1) If M| is homogeneous, we may identify A with a subgroup of G(1, p**) and M
with lez,, and the form is given by {x,y)=Tr(ulxp(y)—o(x)y)) where Tr:
IE,.—~IF, is the trace, ¢ is the field automorphism of TF .. of order 2, uelF*
,u+<;o(,u) 0 and for any 6eGal(—1, p") o(p)y=p.

Further CSF_,(p"), G(—1,p )ﬁxes {,> and for any subgroup N<C, if ei-
ther [N{>2 or |A: C| is odd, we have C ,(N)SG(—1,p".

In addition if p=2 and M is endowed with an A-invariant quadratic form
0: M-IF, such that Qu+w)=Q )+ <{v,w)+ QW) for all v,weM, then after
the previous zdentlﬁcatlon Ox)=Tr(xp(x)) for every xeM and Q is invariant
under G(—1, p").

2) If M| is the sum of two distinct totally isotropic homogeneous components,
set G=G(1,p", V—IF‘S. and let © act on G by centralizing Gal(l, p") and invert-
ing F,(p") and let 1*= —1€F,(p"). We may identify A with a subgroup of (> G
and M with V@ V* (where V* is the dual of V) with form

o)) =1 ) —f(v)

and the action of G is the natural one and

(0, )=(=t"1(f), t(v))

p2n>

where
I Y

is the isomorphism
t(A):F,.»IF, tAHx)=Tr(lx}) xelF,,

and Tr:IF . —IF , the trace map. () G fixes (, ).

Also if 2°|n with $>0, we take {eGal(l,p") of order 2°-n,. (n,. the odd part
of n) and «€lF . such that % —1. Then we identify G(2°,p") with
{tla)y < Fi(p")= (1) G. The set G(2°, p")<=<{1) G is independent of { and «.

Finally CSF,(p") and, if NSC is a subgroup and |N|>2, then C,{(N)
=Gl(e, p) for some ¢\n a power of 2.
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Proof. 1) Since M| is homogeneous we may identify M ~IF /. and A<= G(1, ™"
with C S F,(p*") by Proposition 2.1.

Consider the automorphism of C:x—x7", it extends to an automorphism
@ of IF, C. If e is the unique primitive idempotent of IF, C such that eM =0,
then since 0%<{eM, M>={M, p(¢) M) we have g(e)=e¢. So ¢ gives an auto-
morphism of IF ,,=elF, C of order 2 (since [C|>2). IF .. has a unique auto-
morphism of order 2. Now for all v,weM, {(p,wd={v-L,w)={l e@w)>=
—{p)w,1>=~1,p(w)v). First we show: (x) There is uelF},. such that
1wew)—e@)w)elF ., p+o()=0 and {v,w)=Tr(u(veWw)—e{v)w) for all
v,weM.

If p=2, there is pelFf. such that (1,x)=tr(ux) for all xeM, where
tr:IF ,,—IF , is the trace map (different from Tr). But {1, @(v)w) =<1, ve(w))
for all v, weM, and tr (ux)=tr (ue (x))=tr (p(u) x) for all xeM, so that p(u)=p
and pu+o(u)=0 and {v,wd>=tr(u-e@)w)=Tr(u(pv)w-+ve(w))). Hence we
have (*) in this case.

Ifp+2<{v,w) = we(w)—e(v)w), 1) for any v,weM. Let p,elF}%, such that
py +@(u;)=0. Then there is p,€lF% such that Tr(u,x)=C{Gpr'x, 1) for all
x€lF .. But now (o,w)=Tr(u,u (vopw)—@@)w)), since pu{@e(w)
— @) w)elF .. Setting p=u, u, we get ().

If we choose AelF;. and set Y(v)=4i"'v for all veM, we get a new identifi-
cation of A with a subgroup of G(1, p*") and M with IF >, with form given by

v, wy =Tr (u(Ave(Aw) — @ (1) Aw))
=Tr(ude () (e (W) — @ (©) ),

ie. we may choose 4 to be any element of IF%,.. provided x+¢(u)=0. In partic-
ular we may choose u so that for any geGal(—1,p") we have o(¢)=y and,if p
=2, u=1.

The subset of elements of F,(p*") which leave (, ) invariant is F_,{(p"} and,
from o{w)=p above, we get that G(—1,p") leaves {,) invariant. Since C
CF,(p*" and fixes {, », we have C<F_,(p"). If N& C and |N|>2, we get that
|C ,(N): C| is odd, since ¢ inverts F_,(p"); so C(N)=G(—1,p").

Finally assume that p=2 and Q is a quadratic form as in the last sentence
of 1). Then clearly if ceC we have Q(c)=Q(c™ ') since Q is A-invariant. Let

a,beM and suppose Q(a)=Q(@(a)) and Q(b)=Q(¢(b)). Then

Q(a+b)=0(a)+2(b)+<a,b)>=0(p (@) + 2(e 1)+ (b), p(a)) = Q(pla+b))

(the middle equality follows from <{a,b)={1,¢(a)b)=<¢b), ¢(a)), C being
Abelian). Hence Q(a)=Q{p(a)) for any aeM, because C linearly spans M. Now
if leM, Q(A+o(W)={, oA =Tr{(A+e()?) (u=1 in this case). So Q(1)
=Tr(le(1))=Q(c})=Tr(ce(c)) for any ceC, since Q is A-invariant and ce(c)
=1. Notice that Tr((a+b)@(a+b)=Tr{ap(a))+Tr(be(b)+<a,b); but then
since Q(c)=Tr(cp(c)) for ceC and C linearly spans M we get Q(v)="Tr(ve(v))
for all ve M. From this, one gets 1).

2) Suppose now that M|, is the sum of two distinct totally isotropic homo-
geneous components, Let ¥ be one of them. Let B=N,(V) be its inertia group.

1
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By Clifford’s Theorem V is an irreducible B-module. We may apply Proposi-
tion 2.1 to B and V and we may assume BSG(1,p"), C<F,(p") and V=IF}.
We also know that Vis totally isotropic.

Let W be the other homogeneous component of M|, so that M|.=V@® W.
Let V* be the dual of V. For each feV* there is a unique weW such that
{v,w)= f(v) for all veV (there is one because ¢, ) is non-singular and if {v, w)
={v,w) for all veV, then w—w'eVn W=0). Therefore we may identify W
=V* and B acts on V* by the dual action to that on V (hence for beB, feV*
we have (bf)(v)= f(b~'v) for veV). Furthermore we have ((v, f), (v', f')> =f"(v)
—f() for v,v'eV, f,f'eV*. Set S to be the subgroup of the linear group of
V@® V* which fixes the form. Let G=S be the representation of G on V@ V*
and set  for the representation of any subgroup of G. G normalizes C and G
SN(C)n Ns(V). Since Cy(C)=F,(p") (because C is irreducible on V),
Ng(C)n Ny(V) has a normal cyclic self-centralizing subgroup and acts faithfully
on V¥ so that Proposition 2.1 shows that |Ng(C)n Ny(V) 21G(1, p")|=|Gl. So we
have G = N4(C)n Ny(V).

Define 7 as acting on V@ V* as in the statement of the proposition. For
any v, v'eV, f,f eV* we have

@@, ) ==t ) o), (=t~ (), )
=t@)(—t (N —t@) (=t (f")
=—Tr@ -t~ (fN+Trw-t~(f)
= =S+ 1" ) =L@.1), @, D

So teS. It is clear that t? is multiplication by —1 on M and that if
AeF, (p") At(v)=t(A""v) for all veV, and if aeGal(l, p") o-t(v)=t(a(v)). There-
fore © normalizes C, inverts F., 1(p") and centralizes Gal(l, p"), and interchanges
Vand V*. Now since G=N;(C)n Ny(V) has index at most 2 in N, (C) we have
(1)G= NS(C) It is clear that the representation A<S of A normalizes C so A
=<1>G.

If 2°|n with s>0, we take CeGal(l p") of order 2°-n,.. Clearly N(—1)=1 so
that by Proposition 1.3 a), there is aeF,(p") with a~!{(x)= —1. Now (tla)?
=tlotlo=1>*{" a Ha={? so that o(t{a)=0({)=2°-n, and {t{a) acts by
conjugation on F,(p") as Gal(2%,p"), so we may identify (t{a)i<F,(p") with
G(2°, p"). Clearly the set G(2°, p")={t) G does not depend on aeF, (p") and con-
tains (" for any {'eGal(1,p") of order 2°-n,.. So G(2%,p") < (x> G is indepen-
dent of {.

Finally we know that C=F,{(p"). Let N be a subgroup of C and assume
IN|>2. Denote by F, the subfield of IF,. generated by N. Clearly
Gal(IF .. Fy) F, (p") = CG(N) If Cr.ye(N)=£G=G(1,p") we take =1 and we are
done. So assume there is 1{eC,,,s(N) a 2-element with {eGal(1,p") and set
o(t{)=2% Now s>0 and (t{)*={*(—1)e C4(N). Since |N|>2, { is non-trivial on
F, so that (* generates a Sylow 2-subgroup of Gal(IF ,.:F,) and 2°|n. Take {, a
generator of a Hall 2'-subgroup of Gal(lF,.: F)), then el Fi(ph = CmG(N)
= G(2% p"), as we wanted to show. This completes the proof of the proposition.
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Theorem 3.2. Let p and q be distinct primes n>0 a natural number. Let

A= 0{17, ay ( CGal(s, p")(oq(F; E"M<E("

(for some &) act on an extraspecial p-group P with the actions and the symplectic
form on P/P’ given by Proposition 3.1, 1) for ¢=—1, and Proposition 3.1, 2} for
£>0. Let k be an algebraically closed field of characteristic q. Then any faithful
irreducible kP-module M can be extended to a kAP-module in such a way that
there is a one-to-one function
v: E(p) M

with the following properties:

a) If x- A (xeA, AcF,(p")) denotes the action of A on F(p") where E(p") acts
by multiplication, then x(v(A))=v(x- 1) for any xe A, AeFE,(p").

b) Either v(F.(p") is linearly independent, or e= —1 and every proper subset
of v(E,(p") is linearly independent.

Note. If qf|G(e,p")| then A=0_(G(e, p").

Proof of Theorem. Fix the data of the proposition. Since (|4|,|P|)=1, we may
extend M to a k4AP-module in such a way that det,,(a)e{+1, —1} for any ae4
(see [12] (6.28) for this result of Gallagher).

Let R be the full ring of algebraic integers in € and take I a maximal ideal
of R such that gel. If we identify R/I with a subfield of k we can define con-
sistently Brauer characters (see for example [12] Chapt. 15 for a brief descrip-
tion of Brauer characters). Denote by B the Brauer character of AP on M.

It follows from results of Glauberman ([12] Chap. 13), or more explicitly
Isaacs [13] or Berger [7], that we have:

A) For every g-regular ac 4, B(a)eZ, and B(a)? is the number of fixed points
in P/P' under a. Choose y a generator of Gal(s,p")nA and we choose M
such that:

B) If y, is the 2-part of y, B(y,)=0.

Set F=F(p"). The next result follows from Hall-Higman {11] and Shult
[14]. For a uniform proof in the case p+2 see Berger [6].
C) Mlp~kF/S if e=—1, and

~kF®S 1if ¢>0,

where S is a l-dimensional sub-kF-module of kF generated by Z U, x where

xeF

ue{l, —1} for xeF and a(}, pu,x)= 3 u,x for every automorphism o of F.

xeF xeF
Set H=0,(F) and @ =0,(F). Take Ml|y=N,®N,;®D...® N, the sum of the
distinct homogencous components, with N, the component of S|; (note:
dim, N, 20 and dim N;>0i=1,...,r). {(y) permutes the sets N,..., N, fixing
Ny. Set y, the irreducible H- character corresponding to N;, for i=0,...,s. Then

if Eedy), EN=N, iff kerxl_{é( X, GH} {C(x) xeF} since & centralizes Q.
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f( ), :xeFp. Let d(é)=dim, ) N,
where i runs through i€{0,1,...,r} such that éNi—Ni. Then by the above and
C) we have:

D) d(&)= pn/O(i) +2 if e>1 and eo(é), and
=p"o® otherwise.

If e>1, let 7,£,{ and « be as in Proposition 3.1, 2). Then (t{ 2)*={?, so the
number of fixed points of £e{y> on P/P’ is known except if e>1 and glo{¢). In
this case {=t{a for some odd s. Let {,={°, we have &?=(3. If &(x,f)
=(x,/)eV®V*, we get (3(x)=x and f=1({y(xx)). Conversely, if {3 (x) x and f
=1({,(x x)), we have f={,a~ ! t(x) (see proof of Proposition 3.1, 2)) and therefore
—t N - )=—t" MG o tx)={E(x)=x, because (5 ()at=—1
since s is odd. Hence ¢ fixes exactly p?"/° elements of V@ V*. Furthermore in
this case both p and g are odd. Take g, a generator of H. We get 2|p"°©® 41
and Ny(go)=(£g,)"@+1 by Proposition 1.3, a). Hence g, fixes exactly one
element of V@ V*. We obtain by A) and Proposition 1.3, a):

E) For any ¢ and £e{y) we have B(¢)= +p"°9; if ¢>1 and ¢|o(¢) then

B{¢gy)=+1 and g0¢{@ xeF}

By Proposition 1.3a) we know the order of

Suppose x a g-regular element acts on a k-vector space N. Denote by By(x)
the Brauer character of x on N. Suppose &, e(y) and ¢2=¢. Assume, if possi-
ble, that By ()= —dim, N; for all i such that ¢N,=N,. Then By (¢,) is an in-
teger multiple of ]/—1 for each i such that &, N;=N,. B(¢)) ZB (&,) where i
runs through those with &, N;=N,, so that B(¢,) is also a multiple of ]/ 1
which contradicts E). Now B(¢) ZB (&) where i runs through those with &N,

=N, and B({)= td(¢) by D) and E). So we get, since By () is the sum of
dlmkN roots of unity,

F) If { is a square in (y), By (§)=dimN, for every {-invariant N;.

Suppose ¢>1 and ¢lo(£). Recall that y, is the 2-part of y. Then d(y,)=p"°"?
+2 and B(y,)=p"°"? by D), E) and B). Let L_, and L, be the —1 and +1
respectively eigenspaces of y, on the sum of the y,-invariant N;s. By F) we get
dim, L_,=1 and dim, L, =p"*">+1. Since L_, < N, for some i, let y,=y,. By
E) we have +1=Y By.(7,8,) where N, runs through the yz-mvarlant Ns. So,
using C), +1=ro(80)—20o(g0)+ ¥, 101 %:(80} Now ¥ 1(go)=0 since by E)

72(%). : +1
o¢{ X xeF}. By C) Zo(go)=£ 1, s0 from Yolgo)= 2L we get (g
=H) y,=yx,. Define Ly=L, + > N, We have, using F),

i=1

G) If e>1 and é¢lo(y), Lyly is isomorphic to |Q] copies of the regular H-re-
presentations and for any £e({y) and N, such that {N;=N,, ¢ acts trivially on
LynN,.

Now since Q centralizes {y) H, it stabilizes L _, and N,nL, (of dimension
|Q]) for i=0,...,r. On the other hand by C), M|, is the dlrect sum of free kQ-
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modules (each indecomposable) and a linear kQ-module. Hence NnL, is a
free kQ-module for each i=0,...,s. This shows

H) If e>1 and églo(y), Lylp is a free kK F-module.
If e=1 or sto(y) we define L, to be the sum of a kF-direct factor of N, free

for @ (which exists by C)) and Z N,. Clearly L, is isomorphic to kF as kF-

modules. If e= —1 take L,=M, LO_kF /S then. In either case by D), E) and B)
we have that if y,N=N, then By (y,)=dim; N;. Hence we obtain from F) and
G)

I) For any ¢ and ey}, if EN,=N, then & acts trivially on N,nL,.

Take L to be kF/S if e=—1 and kF if e —1. {y>F acts naturally on L
with F by multiplication and y naturally. We have L)y~ L|,. From I) one sees
that in fact L~L, as {y) F-modules. So now the proposition follows from the
definition of I and the fact that S=k ) u, x with =0 for all xeF.

xeF
Proposition 3.3. Let G=AN be a finite solvable group with N1 a cyclic r-
group for some prime r, N<AN A1 and (JA|,IN)=1. Let k be an algebraically
closed field such that char(k)y|C (N)N| and M be a kG-module. Suppose that M
contains the image of the kC,(N)N-module kC (N)N under the kC,(N)N-
map @ with kernel of k-dimension at most 1. Then M|, has a submodule kA-
isomorphic to kA.

Furthermore if | | denotes the image in the corresponding Grothendieck ring,
and [M|,]—[kA] has A-composition length at most 1, then r is odd, |[N|=r,
|A/C (N)|=r—1, C4(N) is either elementary Abelian or 1, [M|c, wn]
— [k C(N)N] has no non-trivial representative module, and A acts transitively
on the non-trivial irreducible characters of C ,(N).

Proof. Clearly we may assume that [kC,(N)N]—[e(kC,(N)N)] is G-in-
variant. If char(k)¥|4], A has at most two irreducible characters only if |4|=
So if C(N)=A4 we get the result, since (|N|, j4])=1 in this case. So we assume
A+ C,(N). So r is odd.

Let ¢ be a C,(N) irreducible character and w a non-trivial irreducible
character of N. Since Yy ®w is not G-invariant, M|,y contains the direct
sum of Y (1) copies of Yy ®w. Now @ w*" is G-irreducible and projective and
therefore M|, contains the direct sum of (1) modules isomorphic to Z4, where
E is a kC (N)-module with character . So kA is isomorphic to a kA4-module
of M|,.

Suppose [M]|,]—[kA] has A-composition length at most 1. The above can
be repeated for each non-trivial irreducible character of N, so A/C,(N) has
only one regular orbit on N and |N|=r, r is odd and |4/C  (N)|=r—1. Let M,
be the G-submodule sum of all trivial k N-submodules of M. Then M ;=0 or is
irreducible under 4. So all classes of C (N)-irreducibles of M, are conjugate
under A. Hence either C,(N)=1, or C,(N) is elementary Abelian and
[M|c w1 =Lk C,(N)N] has no representative module. If C ,(N)=1, 4 1s cyclic
and every irreducible A-module is one dimensional so 1z=dim M —|4|
=dim, M —(IN|—1). We get [N|=dim, M. Hence we have the result.
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Theorem 34. Let AG be a finite group with G<1AG, (|A},|G)=1 and
P<=G P<1AG an extraspecial p-group (for some prime p) such that Z(P)< Z(AG)
and A is faithful on P/Z(P). Let M be a k AG-module, where k is an algebraically
closed field with char(k)Y|A] p, such that Z(P) is not trivial on M.

Suppose RS G is an A-invariant r-group for some prime r and R/Cr(P/Z(P))
is elementary Abelian. Assume further:

1) R acts non-trivially on every non-identity R-invariant section of P/Z(P).

2) If S is a section of AR/Cx(P/Z(P)) where all Abelian normal subgroups are’
cyclic, then S has a self-centralizing cyclic normal subgroup.

3) No section of A is isomorphic to Z\Z,. or to GN{e,p" q) whenever ¢=
—1 or a power of 2, n is a positive integer, q is a prime dividing (|4}, |Gal(e, p")|),
and if £+ 1, r| |[F(p")l.

4) For any section S of A and any chief factor X of S,S/C4(X) has a
regular orbit on X.

5y If rp=15 any chief 2-factor of A is cyclic and, if further 8||A|, then either
A is supersolvable or has a normal Sylow 2-subgroup.

Then M|, has a proper A-regular direct summand and if the A-composition
length of [M|j—TkA] is 1 and A+1, A is a cyclic group of order 4 or 8 and rp
=13.

Note. If A is supersolvable conditions 2), 4) and 5) are always satisfied. If 4 is
nilpotent and Z \Z, free for all primes s, in view of Proposition 1.2, 7),
conditions 2) to 5) are always satisfied.

Proof of Theorem. Assume false. Let (AG, M) be a counterexample with |4G|
+dim, M minimal. We split the proof into a series of steps.

Step 1. A+1, G=RP, r+p, M|, is kP-irreducible and R is elementary Abelian
and faithful on P/P".

Proof. Clearly ARP and M satisfy the hypothesis of the theorem but not its
conclusion, Hence G=RP. Since R is not trivial on an irreducible R-invariant
section of P/P’, r+p. Take M;/M, , a kAG-chief factor of M such that Z(P)
acts non-trivially on M;/M, ,. Such a factor exists since p=char(k). If
dim(M;/M, ;)<dim, M, then (M;/M, )|, properly contains the regular repre-
sentation, so that M is k 4G-irreducible.

Since Z(P)< Z(AG), now M|, is homogeneous. Take N an irreducible kP-
module isomorphic to a submodule of M|,. Since (JAR],p)=1, N can be ex-
tended to an ARP-module N in a unique way subject to the condition that if
xeAR then dety(x)=1. We know that there exists a kARP/P-module L such
that M~N®L (see [12] (6.17) for this result of Gallagher). Now if
{ARP/ker N|+dim, N <]AG|+dim, M, N|, properly contains a regular A-repre-
sentation and so the theorem is satisfied for M|,, a contradiction. So ker N=1
and dim, N=dim, M. So, M|, is irreducible and since ker N=C x(P), R is
faithful on P/P’ and therefore by hypothesis elementary Abelian.

Step 2. AR is irreducible on P/P'.

Proof. Set P=P/P’ and f: P x P—P'f(x, y)=[x, y], f is a non-singular symplectic
form. Suppose first that there is P, <P a non-trivial AR-submodule of P where
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f is non-singular. We set P,= P the orthogonal complement. Then P=P, @ P,.
Set P,o P’ such that P/P'=P, and P=P, x P, the direct product of P, and P,
considered as abstract groups. Then P, is an extraspecial group and we take N,
to be an irreducible kP-module such that Nj|,. @ M|, is homogeneous. Now
AR acts in a natural way on P=P, x P, so we can form the semidirect product
ARP. We view N, as a ?/Pj module for i4j. So N; can be extended to an ARP
module N, such that dety (x)=1 for xe AR. Define

@: AR><(P, x P,)->ARP
oix, (2, .B))) =xop.

This is a homomorphism onto ARP and ker ¢ Sker(N, ® N,). Therefore we
view N;®N, as a ARP-module and M~N,®N,®L for some linear ARP/P-
module L. We get M|,~N/|,®N,|,®L|,. Now since dety(x)=1 for any
x€AR, C p(P) acts trivially on Nfi=1,2). By induction, therefore, N ¢,
properly contains k[A/C ,(P)]. Since C (P )nC, (P,)=1, M|, contains k4 and
the A-composition length of [M|,J—[kA] is at least 2, a contradiction. So f is
singular on every non-trivial proper 4R-submodule of P.

Assume B is an irreducible proper AR-submodule of P. B is totally isotro-
pic by the above. Let C be an irreducible AR-submodule of P such that
C¢B*. Then CnB'=0 so that f is non-singular on B+ C, hence B+C=P
and C is “dual” to B. Therefore AR is faithful on both B and C. Let B2 P’ be
such that B/P'=B. Now B is Abelian, B<tARP and B=[R, B] x Cx(R)={R, B]
x P’. Take 6 to be the character of B which extends the irreducible character
of M|p. by being trivial on [R, B]. It is well known that 0 is the character of a
B-submodule of M|,. Now let I(f) be the inertia group of 6 in ARP. Clearly
1(0)=ARB. By Clifford’s theorem, there is an ARB-module N such that
M ~N*RP_ By Mackey M|, =Y N* ipp~~4", where x runs through a set of re-
presentatives of the double cosets ARBx4 of AG. Clearly the set of represen-
tatives can be chosen inside P and then they are representatives for the orbits
of A on P/B. We know that A is faithful on P/B, so by Theorem 2.2 we may
take x,€P to generate an A-regular orbit in P/B. Suppose ac(ARB)*n A, then
[a,x5'1ePNARB=B so that a=1. Hence (ARBy*nA4A=1 and M|, properly
contains the regular A-representation. Hence we get [4{+1=|P/B|. But
[P/Bl=1 (r) and this is impossible. This completes step 2.

Step 3. Take B<a AR Abelian. Then (P/P')|; is either homogeneous or the direct
sum of two totally isotropic homogeneous components.

Proof. Let B, be the #-Hall subgroup B. Then [B,,RI<B;nR=1, so that B; R
is Abelian and contains B. Hence we assume that R< B and step 3 is not satis-
fied for (P/P)|p.

Take I < P/P’ B-irreducible. If [ is isomorphic to its dual, we set V the sum
of all B-submodules of P/P’ isomorphic to [. Clearly f is non-singular on V. If
I is not isomorphic to its dual take V, the sum of all B-submodules of P/P’
isomorphic to I. Clearly V, is totally isotropic. If we now take V) to be the
sum of all B-submodules of P/P’ isomorphic to the dual of I, V] is totally iso-
tropic and we set V=V,@®V,. f is non-singular on V. In all cases we have
0% V+P/P and V is a non-singular B-module.
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Take A, a maximal subgroup of 4 such that 4, 2N (V). Step 2 and Clif-
ford theory give that there is an A, R-irreducible submodule X of P/P’ such
that P/P'~ X“® as AR-modules. Furthermore f is non-singular on X. Let P, be
the preimage of X in P. Take x; =1,x,,...,x,64 cosets representatives for x4,
in 4, and set C=A,R/ker X. We have a Frobenius map

F:AR-S,<(Cx...x CO)=S,\.C

where n=|4: 4,|, see Proposition 1.6. Since 4R is faithful on P/P’ by step 1, F
is injective and we may assume that AR<S,\, C. Now set

G=(5,\ O)<(P, ... x P,)

where there are n copies of P, and Cx...x C acts by components on P, x ...
x P, and S, permutes the components. Let N be an 4, RP,-module such that
Nlp, Is irreducible, dety(x)=1 for xe 4, R and N|; @ M|,;, is homogeneous.
Take

M=N®..®QN (ntimes)

and let G act on M with (Cx...x C)x(P, x ... x P,) by components and S,
permuting the components of the elementary tensors (if seS, and
1;,®..®v,eN®...®N, we have

5(0;0...QV)=0,-11)®... @ Vg 1)

Now M is a G-module (tensor induced from N) such that M|p . p, is irre-
ducible. Define
@: AR(P, x ... x P))-»ARP

plar(yy,...,y)=aryi 'y

@ is a homomorphlsm onto ARP and ker ¢ Sker(M| AR(P, x ... x P)- SO We may
consider M as an ARP-module and M|~ M|,. By Gallagher’s theorem there is
L a linear ARP/P-module such that

M=>~M)|, 2 p®L.

Set K=C,,(P,). By induction, N|,, contains a proper A,-direct summand
which contains an A,/K-regular orbit of linearly independent vectors Q,.
Choose A;-irreducible submodules N; of N so that N=kQ,@®N,®...®N,. We
know s=1. Set Q=0,U{N,,...,N,}. 4, acts naturally on Q with one regular
A,/K-orbit and s other (trivial) orbits. Consider the action of A on Q4 as in
Proposition 1.6. We now show that 4 has a regular orbit on Q4 and at least two
other orbits. If s> 1, this follows from Proposition 1.6, 3). If s=1 and 4, =K, then
|P,|=8 and 2}|A4| so the result follows from Prop. 1.6, 1). If s=1 and 4, +K,
then rp=15 and A4,/K is cyclic of order 4 or 8, so by 5) any chief 2-factor of 4
is eyclic. So if 2||A: A,| we have |4: A,]=2 and 4,<14 and by Proposition 1.6,
3), we get the result. Finally if 2/[4:4,| we may apply either Proposition 1.6,
1) or 1.6, 2) to get the claim in all cases.
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Define a function f: Q- N, with f(v)=v for veQ, and 0% f(NjeN, (i
=1,...,5). Suppose. (v,,...,v,) generates a regular orbit in Q4 then
f(v)®...® f(v,) generates an orbit of linearly independent vectors in M under
A, and different orbits generate linearly independent A-submodules of M.
Hence M| , properly contains the regular A-module and the A-composition length
of [M|,]1—[kA] is at least 2. The same is true for M|,~M|,®L|,. This con-
tradiction completes step 3.

Step 4. We have the proposition.

Proof. From step 1 and step 3 we get that every Abelian normal subgroup of
AR is cyclic, so by 2) AR contains a self-centralizing cyclic normal subgroup.
Soagainstep 3 gives that we may apply Proposition 3.1,and forsome eéand nwe have

C 4r(R) S 0p(Gle, p")-

By Proposition 3.1 we may assume that O,(G(e,p") acts on P. By the Fong-
Swan theorem we may assume that char(k)¥p|G(e, p")l. By Theorem 3.2 there is
a linear 0,.(G(s, p"))><P/P-module L and a function v: F,(p")—»M ® L satisfying
properties a) and b) of that theorem. Now r||F,(p")], so by 3) GN{(g,p",q) is not
conjugate to a subgroup of C,(R) for any g a prime dividing |Gal{g, p")l. On
the other hand if aeC (R)\F,(p") is of prime order, aeC(R) and ITx*
=x"@=1 if xeR and x+1. So no conjugate of a GN(g, p",q) in G(e, p") lies in
C 4g(R).Now by Proposition 1.4 we getthat M|, .y ® Ll¢ , o) cONtains the C 4p(R)-
homomorphic image of the regular C,z(R)-module under a C,4(R)-map with
kernel of dimension at most 1. The same is true of M| _ g

By Proposition 3.3 M|, has an A-submodule isomorphic to k4. Hence the
A-composition length of {M| ] — [k A] is at most 1. We use Proposition 3.3 in what
follows. We get that [M|. g r]—[kC,4(R)R] has no non-trivial representative
module, so by condition b) of Theorem 3.2 we get that e= —1 and |C,(R)R|
=p"+1. We also know that r is odd and |4/C,(R)|=r—1 is even. It is easy to
see that if xeG(1,p*)\F_,(p") and x*>=1 then x does not fix the form of
Proposition 3.1, 1). So we have 2|{|AnF_,(p")l. We know that 4 is transitive on the
non-trivial irreducible character of C,(R), so C (R)=F_,(p") and |C(R)|=2.
We have |4/C(R)||2n, so if we set p, =p®"*~1), since p is odd, p, is an odd
integer and p¢~12+1=2r (the last equation follows from |C,(R)R|=p"+1).
Since r is odd we deduce that either p=3, r=>5 and |4/C 4(R)|=4 and A4 is cyc-
lic of order 8, or p=3, r=3 and {4/C(R)|=2 and 4 is cyclic of order 4. This
concludes the proof of step 4 of the theorem.

4. An Application

Proposition 4.1. Suppose AG is a finite group with G<t AG and ([A|,|G))=1. Let V
be a k AG-module with char(k).k|A| such that C,(A)=0 and C,(A4,)=*0 for every
Ag<tA, Ao+ A. Let G, =G be A-invariant and W, be a kAG-module such that
V=W Set Go= | G}. Assume

xeAG
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1) G/G,, is solvable;

2) For any elementary Abelian A-invariant section X of G/G, irreducible un-
der A, A/C (X) has a regular orbit on X.

Then G=G,Cg(4).

Proof. Assume false. Choose a counterexample such that |4G| is minimal.
Clearly |G: G,|>1. Take M 2G, a maximal 4-invariant proper subgroup of G.
Take K< M, K<1AG maximal with these properties. Take H=G such that
H/K is an AG-chief factor. Then, since K=2G,, H/K is Abelian and HnM
<MHA=AG, so that HnM =K and HM =G.

Choose x,=1,...,x, representatives for xK in H such that C(x,)
=C,(x;K):={acA:[a,x;]eK}, which is possible because (|4],|G)=1. Set num-
bering so that x, K is a generator for a regular 4/C (H/K) orbit on H/K, and
Xg, ..., Xs are coset representatives for AMx A4 in AG.

We show that for i=0,...,] we have (AM)y*nA=Cy(x). Clearly
C (x)s(AM)*nA. Suppose ac(AM)*nA, then acA and a=(a, -my)™ with
ape4 and myeM. Since (J4],IM|)=1 there is meM a,eA such that a,m,=aj.
Now a=a7}" and
_1 —

[aaxi]za‘—lxi ax;=(aj

Wrsixtax,=x;7'm~'a; 'max,e(AM)*.

L 13

So [a,x]e(AM)y“nH=(AMnH)*=K. By the choice of x; in x,K we have
aeC (x;) and so C  (x;)=(AM)*n A4, as desired.
Now set W= W™ We have V=W and by Mackey

S
Vi=Ww4, = 2 x'® W’CA(xi)IA-

i=0

Set N=C,(H/K)=C ,(x,). Clearly NS C,(x,) for i=0,...,s, and N<A. If V],
contains the trivial representation, for some iy, 0=<i,<s, we have that
Xio '@ Wl oIy contains the trivial representation and by Mackey, for some
acd, a '®x;'®W|y contains the trivial representation. Since N-<14,
xi;'@WIy=21, and since x,eC4(N) (i=0,...,s), x; '@ W|,21, and therefore
V|4 =1,, a contradiction. So V|y® 1y, and hence by hypothesis since N<14, N
=A4. 80 C(H/K)=A4 and G=MH =M C4(A).

Now V|, =(I+1)(W],), so we may apply the proposition to 4, M, W,G, and
W, we get a fortioi M=G,-Cy(4) and hence G=G,-CyA4). Now
[G,A]<G, and [G, A]< 4G, so G,=()G{2[G, A] and so G=G,- C4(A). This
completes the proof of the proposition.

Definition 4.2. Let G be a solvable group and 4 act on G. A4 subgroup G is cal-
led a generating A-support subgroup of G if:

1) P<aAG, P<G and P is a p-group for some prime p.
2) There are AG-invariant subgroups P, and H such that
Ay P < Z(P), P/P, is elementary Abelian and AG-completely reducible,
B) He Cy(Py),
C) H/HNCy(P/P,) is elementary Abelian for some prime r,
D) H acts non-trivially on each H-chief factor of P/P,.
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We call the 4-support of G {denoted supp,{G)) the subgroup generated by
all subgroups S<G such that S<tAG and either S is Abelian or a generating
A-support subgroup of G.

Note. This is related but not equivalent to Berger’s notion of L-support.

Proposition 4.3. Let G be a solvable group and A act on G. Then we have the fol-
lowing :

1) (Ce(X)< F(G) (where X runs through the AG-chief factors of supp ,(G)).
In particular Cg(supp 4(G)) < F(G). '

2) If NG and N<1 AG, supp ,(G) N/N =supp ,(G/N).

3) If B€ A and (|Al,|G|)=1, suppgz(G) =2supp 4(G).

4) C 4(supp4(G) = C4(G/F(G)).

Proof. 1) Suppose false. Then if Y={)C4(X), then Y<1G so that F(Y)< F(G)
and there is x€Y an r-element acting non-trivially on O,(G) for r and p distinct
primes. Take P<t4G, P<0,(G) minimal such that x acts non-trivially on P.
Now P is not Abelian; let P, = P be such that P,<t4G. We have xe C4(P,) and
hence [C4(P,), P1<P and x is not trivial on [C4(P,), Pl<AG. So [Cy(P)), Pl
=P< C4(P,) and P, & Z(P). So we have that P/Z(P) is elementary Abelian and
AG-irreducible.
We also have
CelZ(P) = C(Z(P)N Co(P/Z(P)),

so we may take H<1 AG,
Co(Z(P))2 Ho Ce(Z(P) Ce(P/Z(P)),

minimal with these properties. Now since G is solvable H/C/Z(P))
NCg(P/Z(P))) is elementary Abelian. Consider (P/Z(P))|,. By Clifford’s Theo-
rem it is the direct sum of H-irreducibles none trivial. So P is a generating A-
support subgroup, and x acts non-trivially on the AG-chief factor P/Z(P), a
contradiction.

2) is clear from the definition.

3) If P is a generating A-support subgroup of G, (P/P,)l; is totally reducible
and hence, since (|G],|4]}=1, (P/P,)|zs is also. The rest is clear.

4) Set S=supp(G) and A,=C (S). We have [S,4,,G]=1 and [G,S, 4,]
=1, so that [4,,G] = C4(S)<S F(G) by 1). This shows 4).

Definition 4.4. Let A be a finite group and = a set of primes. We say that A4 is
n-regular if:

1) n(A)na=g;

2) For any pen and any elementary Abelian p-group H on which A4 acts
and any section S of AH, if all Abelian normal subgroups of § are cyclic, S has
a self-centralizing cyclic normal subgroup;

3) For any section S of 4 and any chief-factor X of §, S/Cy(X) has a re-
gular orbit on X;

4) If {3,5} ==, any chief 2-factor of 4 is cyclic and if further 8{|A4|, either 4
is supersolvable or it has a normal Sylow 2-subgroup;
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5) No section of A is isomorphic to Z,\Z, (any r,s>1) or to GN(g,p", q)
where pen,nz1 is an integer, g||Gal(e,p")| is a prime and if e+1 n(F,(p")
N+ .

Note. Conditions 2), 3) and 4) are always satisfied if 4 is supersolvable. If 4 is
nilpotent, satisfies 1) and is Z,"\,Z -free for all p, in view of Prop. 1.2, 7), 4 is
n-regular.

Proposition 4.5. Let AG be a finite group where G<a AG is solvable and V a
kAG-module. Assume the following:

1) k is a splitting field for all subgroups of AG;

2) Vl|g is homogeneous and faithful (i.e. it is the direct sum of isomorphic
faithful irreducible k G-modules);

3) Cy(A4)=0;

4}y A is {char(k)}un(G)-regular.
Then

Cy(C 4(supp,4(G)))=0.

Proof. Assume false. Take a counterexample with |AG|+ dim, ¥ minimal. Set S
=supp 4(G).
Step 1. V is irreducible and for each 4, =4 we have C,(4,)=+0.

Proof. If V is not irreducible, take V* any kAG-chief factor of V. Since
char(k)t|A|, we may replace V by V* and still have the hypothesis of the theo-
rem and, since dim, V* <dim,V, we have C,(C,(S))=0, a contradiction. So V
is irreducible.

If 4, = A is such that C,(4,) =0, we have by induction and Proposition 4.3, 3)

0=Cy(C,,(supp,,(G)) 2 Cy(C 4(supp 4(G),
which is a contradiction.
Step 2. For any Abelian subgroup C< G such that C<at AG we have [4, C]=1.

Proof. Since V|; is homogeneous and (|4],|G|)=1, by a well known lemma of
Glauberman ([12], (13.9)), there is a homogeneous component ¥, V|, such
that N,(V)=24. Set G, =N, (V), we have N,,(V;)=AG,. Now since k is a
splitting field, A centralizes the action of C on V,. By Theorem 2.2, Proposi-
tion 4.1 and Clifford’s Theorem we have

V=Y x7'®V, with x,eCg(A).

Hence
[4, C]=[4, C*]=[A4, CT" < (ker V})*,

and so [4, C}=1, as desired.

Now A4 does not centralize all generating A-support subgroups of G. Let P
be a generating A-support subgroup of G not centralized by A, minimal with
these properties. Choose p, P,, r and H according to the definition. It is clear
that 4 centralizes every proper AG-invariant subgroup of P.
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Step 3. P is extraspecial, Z(P)< Z(AG) and P/Z{P) is AG-irreducible.

Proof. We know that A< C ;(Z(P)). Set G, =Cg4(P,) and assume G,+G. We
have C,;(P)=AG,. Now AG,<14G and so [4,G]SG, and G=G, - C4(A4).

Choose W a homogeneous component of V], such that N,;(W)=4. Set K
=kerg, (W). By induction we have

Cw(C 4(supp4(G,/K))=0.

But V=Y y;'® Wwith y,eCs(A4) and we get

M Cy(C 4(supp (G, /K))=0.

If we set A, ={xeA:[x, Pl= K} we have by Proposition 4.3, 2) and the fact
that P<supp,(G,),

@ A, 2 C4(supp4(G,/K)).
For any ye C;(A) we have
[4,,P]=[A,,P]=[4,,PP<K’,

so,since (| K’=1, we have [4,,P]=1 and
yeCg(4)

(3) A1 S C4(P).

Now (1) (2) and (3) give C,(C,(P))=0, so by step 1, C,(P)=A. This contradic-
tion shows that P, = Z(AG).

Since Vis irreducible this gives that P, is cyclic. Since P/Z(P) has exponent
p and P'S P, we get |P'|=p. Suppose P'£F,. Let C be a cyclic subgroup of P
containing P, maximal with those properties. Then there is K < P such that K
NnC=P and (K, C>=P. Now if xeK we have x’e KN C=P so x?=z" for
some zePF,. Hence xz~'eQ,(P) and P=Q,(P)C. If p%2, A acts non-trivially
on Q,(P) and, if p=2, P/Q,(P) is cyclic and 4 acts trivially on it, so in any
case P=Q, (P). Let he Cy;(P/P,) and xeP with x? =1. Then x"=x-z, zeP,, with
(x-z2)f =zF=1. So zeP’ and Cyx(P/B)=Cyx(P/P). P=[H,P]PR, so A acts non-
trivially on [H, P] and [H, P]=P. Now p¥|H/Cyx(P/P)| so BS Cp(H)SP', a
contradiction. Hence P, =P'.

Now since P/P’ is AG-completely reducible P/P" is AG-irreducible and Z(P)
=P’ and P is extraspecial as desired. This completes step 3.

Step 4. We have the proposition.

Proof. By step3 V|, is homogeneous. Let U be the irreducible P-module of
V|p. Since AG is irreducible on P/P’, det,(x)=1 for any xeP. Extend U to an
AP-module such that det,(x)=1 for xeAP. Further extend U to a projective
AG-representation with det,(x)=1 for xe AG. This shows that there is a finite
central extension AG of AG by a p-group such that U is an ordinary AG-mod-
ule. Hence n(G)=7(G). Let R be an A-invariant Sylow r-subgroup of the cor-
responding extension of H. Since A is n(G)u {char(k)}-regular, setting A,=4
nker (U)=C (P/P'), we have, by Theorem 3.4,

(¥) Ul, contains an A/4, regular direct summand.
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On the other hand V=U® M where M is an irreducible 4G-module. So
Vi=Ul,®M|,,
and since 4,< A, we have by step 1,
14, SVIa=Uls, ® M|,

Ay<1A and A,<ker U, so there is some A-irreducible module I in M|, such
that I|,,, is the sum of irreducible conjugate modules containing the trivial mod-
ule, ie. A,<kerl. Take I* the dual module of I. I*< U|, by (%), and there-
fore I*®I<V],, ie. C,{4)+0. This contradiction completes the proof of the
proposition.

Theorem 4.6. Let AG be a finite group with G<1 AG solvable and (|A},|G|)=1. Let
M be an irreducible kAG-module with k a field and set m=n(G)u {char (k)}. As-
sume '

1) M is faithful for G;

2) B, > B, are normal subgroups of A with |B,/B,| a prime;

3) Cy(By)=0and Cyy(B)+0;

4) Either A) or B):

A) There is 1+ C= G, C<1AG Abelian, C(A)=1 and for any A, cA, A, is
n-regular;

B} B, is n-regular.

Then if we set S=supp ,(G), we have

Cs(B,)=Cy(B,) and CG/F(G)(BI)= CG/F(G)(BZ)'
Proof. There is no loss in assuming that k is a splitting field for all subgroups
of AG, so we do. Take a counterexample with [4G| minimum.
Step 1. M| is homogeneous.

Proof. Suppose not. Let 4, <4 and N be an irreducible A, G-module such that
M =N*S Let K=Kkerg(N). Clearly () K°=1. Write G=G/K and use the barr

acA
convention. For i=1,2, by Mackey, we choose a;;€4 with

AG 15 Bi . ij i
My =N*p =Y N®| 0, gl =D N\, pl®,
J J

since B;<1A4. So by Frobenius reciprocity C,(B;)=0 iff Cy(4,B)=0. This

shows that 4, "B, £ B, and that we may apply induction, which together with

Proposition 4.3, 2) gives:

(%) Csgx(BinA;)=Cggx(B,nA,) and
Cerey(BinA)=Cgp (BN Ay).

Now

[Cs(B,), Bi]=[Cs(B,), (4, nB)B,]<[Cs(B,nA,),A,nB,]<K.
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Since [Cg(B,), B,] is A-stable, we have Cg(B,)= Cy4(B,). Next take F/K = F(G).

[Cor)(B2): B 1= [CG/F(G)(B 2 (BinA)B,]
< [CG,F(G,(B2 NnA,), B nA,1=F/F(G).

(| F* is a nilpotent normal subgroup of G (since (| K°=1) and therefore
acA acd

(Y F*=F(G). Since [Cgp)(B2),B,] is A-stable, we have Cgpe(B,)
acAd

= Cg/r@)(B;)- A contradiction. This shows step 1.

Step 2. We have the proposition.

Proof. If 4) A) holds, the fact that (|A], |G])=1 and M|, is homogeneous gives
that A centralizes a non-trivial quotient of C=[4, C], a contradiction. So 4) B)
holds. By step 1 we may apply Proposition 4.5 to get

Cyu(Cp,(supps, (G)) =0,
or a fortiori, by Proposition 4.3, 3),
Cp(Cp,(8)=0.
Since C,(B,)=+0, this means B, =B, Cp (5).
[Cs(By), B;1=[Cs(B,), B, Cp,(8)]=1,

s0 Cgs(B,)=C5(B,).
By Proposition 4.3, 4), if we set H=G/F(G) we have Cy (S)= Cy (H). We
get

LCy(B,), B,1=[Cg(B,), B, CBl(H):} =1,
s0 Cyx(B,)= Cyx(B,). This concludes the proof of the theorem.

Theorem 4.7. Let AG be a group where G<tAG is solvable, ({4}, |G]})=1 and
Co(A)=1. Assume that A is supersolvable and every proper subgroup B A is
n(G)-regular {Definition 4.4). Let Ay=1c A c...cA,=A be a chief series of A.
Set h the Fitting height of G. Then h<n.

Proof. By Proposition 4.3, 1) and the fact that if G1 then supp,(G)=+1, if
k>0 we may choose an AG chief factor of F, of supp,(G) such that G/C,(F))
has Fitting height h—1. If h—1>0, we may choose F, a chief factor of
supp 4 (G/C4(F,)) such that G/C4(F,) has Fitting height h—2. Continuing this
process we get AG chief factors of G

(*) F,F,,...,F, such that, for i, j=1,...,h and j>i, either F; is a factor of
supp,, (G/C4(E)) or F, is a factor of (G/Cg(G))/F (G/Cq4(F)).

Since Cy (4)=1, we may define a map

f:A{L,...,hk}={1,...,n}
f(iy=smallest k such that C (4,)=1.
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If k=f(@)=f(j) and, say, j>i, we have 4,/4, , of prime order (since A is
supersolvable) and therefore Theorem 4.6, the fact that (|4, |G[)=1 and () give

CF,-(Ak)= CFj(Ak—- )

a contradiction. So fis one-to-one and h<n as required.
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