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Introduction 

A long-standing question is the following: 

Conjecture. Let AG be a finite solvable group and assume G<AG, (IAI, ]GI) = 1 
and Ca(A )= 1. Then the Fitting height of G is bounded above by the compo- 
sition length of A (i.e. the number of primes dividing IAI, counting multipli- 
cities). 

In 1973 Berger [9] (using [2-5, 7, 8]) proved the conjecture for A nitpotent 
and Zp%Zp free for all primes p (here 2gp%Zp is the wreath product). The con- 
jecture is also known in some other cases [1, 10]. For more details on the his- 
tory of the problem before 1973 see [9]. The main result of the following work 
is the proof  (Theorem 4.7) of the conjecture if A is supersolvable and every 
proper subgroup of A is 2gr%2g ~ free (for all r,s) and G(~,p",q) free (for 
G(e,p", q) not nilpotent). G(e,p", q) is defined in 1.1 and some of its properties 
are given in Proposition 1.2. As special cases of this theorem we get all the 
known cases of the conjecture (see note after Definition 4.4). 

The conjecture is naturally translated into a representation-theoretic ques- 
tion. Namely: if AG is as in the conjecture, the Fitting height of G is equal to 
the composition length of A and M is a faithful irreducible kAG-module (k an 
algebraically closed field, char (k)X [AI), can C~t(A ) = 0? 

Since C~(A)= 1, M is always induced from N 1 a kA o G-module where A o 
c A .  Now, if N 1 is induced from a kAoGo-module N2(GocG), we need to 
study the permutation representation of A 0 on the cosets of A oG o in A o G. 
Since G is solvable this essentially reduces to the study of the permutation 
structure of 1Fp A0-modules (p a prime, Pl I G:Go]). We prove (Theorem 2.2) that 
under our hypothesis if Wis a lFpAo-module then there is a vector v s W s u c h  
that Cao(v)=ker(W ) (we say that Ao/ker Whas a regular orbit on W). This ge- 
neralizes a result of Berger [8]. 

So we get to the situation where N z is a primitive faithful kA 1 Gl-module 
(A~ and G1 quotients of A o and G O respectively). At this point there is an ex- 

* This is essentially the author's doctoral dissertation at the University of Chicago 
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traspecial p-group P~G 1 P.<A1G x such that Z(P)~_Z(A 1 GI) and A~ acts 
faithfully on P/Z(P). If G1 is nilpotent we get information easily, so we may as- 
sume that there is a subgroup H.<Aa G~, P~_H~G~ such that [H,P]=P and 
H/C~(P/P') is elementary Abelian. Under these hypothesis we show (Theo- 
rem 3.4) that N2]al contains a regular direct summand (a copy of kA O. This ge- 
neralizes a result of Berger [8]. 

We need to have the subgroup H in order to apply Theorem 3.4, so we de- 
fine the subgroup suppa(G) of G (Definition 4.2) to be the appropriate part of 
F(G) (the Fitting subgroup of G). suppa(G) essentially behaves as the Fitting 
subgroup (see Proposition 4.3). We obtain Theorem 4.6 which easily implies the 
main result and would be false with F(G) in place of supp a (G). 

The work is divided into four sections. The last is the proof that Theo- 
rem 2.2 and Theorem 3.4 are sufficient to prove the conjecture in our case. The 
first three sections are a proof of Theorem 2.2 and Theorem 3.4. 

To prove Theorem 2.2 we consider two cases: either W is induced and we 
apply induction and Proposition 1.6; or it is not in which case the structure is 
very tight (Proposition 2.1) and we have necessary and sufficient conditions for 
the existence of regular orbits (Proposition 1.4). 

To prove Theorem 3.4 we consider PIP' as an A1 H-module. There are es- 
sentially two cases: either it is induced (then Nzl m is "tensor induced") and 
again we apply Proposition 1.6; or it is not induced in which case the structure 
is very tight (Proposition 3.1) and we describe Nz[am in great detail (Theo- 
rem 3.2). In my view Theorem 3.2 is likely to find applications in other prob- 
lems in finite solvable group theory. This is why, although only the non-mod- 
ular case is used, it is proved in slightly more general form. In any case, 
Theorem 3.2 allows us to apply (again) Proposition t.4 which now gives suf- 
ficient conditions for the existence of regular modules. 

In view of possible applications and to clarify the method, I have tried to 
work with slightly more general groups than supersolvable ones. We assume 
only some consequences of supersolvability as needed for the various argu- 
ments. We do need, however, A to be supersolvable in the final Theorem 4.7. 

1. Basic Definit ions and Results 

Definit ions and Notat ion 1.1. For p" a power of a prime p and e = -  i or a 
power of 2 such that ~[n define: 

F~(p")=IF*. (the multiplicative group of the field of p" elements) if c >0;  
IF* =subgroup of order p" + 1 of p2, if ~= - 1. 

Gal (1, p")= Gal0Fp, :IFp) (the Galois group of IF,.). 

Gal ( -  1, p") = O 2,(Gal 0Fp2, : IFp)). 

If e4:_+l Gal(e,p")=((p)xGal(-1, p ~"/2)) where q~ is the automorphism of 
F~(p"): x - ~ x -  e,-,o,. 

G(~, p") = Gal (e, p")~<F~(p") (the semi-direct product). 

o(x)=order of x. 
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If ~zeGal(e, p") and y~F~(p") we denote N~ the norm map i.e. 

N~(y)= 1-I z(Y)= Y'a(Y) '''a~~ l)(y)" 

Suppose that q is a prime and divides [Gal (e, p")]. Define 

GN(a, p", q) = A ~<N ~_ G(e, p") 

where A is the subgroup of Gal(a, p") or order q, and 

N = {xeF~(p"): ]~I a (x)= 1} 
o'EA 

the set of all elements of F~(p") of norm 1 under a non-trivial element of A. 

Proposition 1.2. For any e,p,n,q such that GN(e,p",q) is defined take N 
= GN(e, p", q) ~ F~(p"). We have the following: 

1) N is a cyclic normal subgroup of GN(e, p", q) of index q and every element 
of GN(e, p", q) not in N has order q. 

2) I f  q is odd or s > l ,  GN(2S, p",q)=GN(1,p",q). 
3) I f  e= + 1, IN[ =(pn--e)/(p(n/q)--e). 
4) I f  e=2=q,  lNl=p("/Z)--l. 
5) For any prime r dividing IN[, we have r> q and either r=q or r-= l(q). 
6) I f  GN(e, p", q) is nilpotent one of the following is satisfied: 
a) q =  3, p=2 ,  e =  - 1 ,  n=  3, GN(e., p", q) is elementary AbeIian of order 9 and 

F~(p') is a 3-group. 
b) q--2, p=3 ,  e=2,  n=2,  GN(e,p",q) is elementary Abelian of order 4 and 

F~(p") is a 2-group. 
c) q=2 ,  p is a Mersenne prime, e = l ,  n = 2  and GN(e,p",q) is non-Abelian 

dihedral of order 2(p + 1). 
d) q = 2, p is a Fermat prime greater than 3, e = 2, n = 2 or p = 3, e = 2, and n 

=4. In any case GN(e, p", q) is non-Abelian dihedral of order 2(p t"/z)- 1). 
7) I f  GN(e., p", q) is Abelian, then e+ 1 and ~(p") is a q-group. Any nilpotent 

non-Abelian GN(z, p", q) contains the dihedral group of order 8. 

Proof 1) Take cr~Gal(e, p")xeF~(p"), then (~x)~ So we have l). 
2) is clear from the definition. 
3) and 4) see Proposition 1.3 a). 
5) Clearly if x ~ N  and x~Z(GN(e,p",q)), then xq=l ,  so if rl IN[ and r:#q is 

a prime q f r -  1. 
6) Let GN(e, p", q) be nilpotent. This implies that N is a q-group. So assume 

that N is a q-group. 
Suppose first that q+2 .  We may assume then that e=  + 1 by 2). Now if 

p~-- e q2 p~--  e n 
p~"/q)-e = q we have a). So suppose that pT~Tq3-~-e Set -q = m and we have 

pn  __ ~ = pm(q - 1 ) q_ ~ p m ( q -  2) _~ ... Av eq- 1. 
p m _ _ ~  
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Clearly p"=-e+aq (q2) for some a ~ ,  so 

( m o d q  z) IN[=p~(q- *) + ep"(q- 2) + ... + eq- 

~(e + aq)(q- *) + e(e + aq)(q- 2) + ... + e~ - ~ 

=e~-i  + ( q _ l ) a q e q - 2  +eq- ,  +(q_2)aqeq-2  + ... +eq- 1 

= q ~ q - l + ~ a q ~ q - 2 - - q e q - 1  since q=~2. 

This is a contradict ion.  
So assume now that  q = 2 .  This means that GN(e,p~,q) is either Abelian or 

a dihedral 2-group. We also have e 4: - 1 .  If e = l, 

p " -  1 
tNI p(,/2)_ l =p("/21+ l 

so that  we get c). By 2), since n = 2, this excludes the possibility e > 2. If e = 2, 

[NI = p(,,/2)_ 1 

and we get b) and d). This completes the proof. 
7) This follows from 6). 
The first par t  of the next proposi t ion can be viewed as a general izat ion of 

Hilbert 's  Theorem 90. 

Proposition 1.3. a) Let o-~Gal (e, p") be of  order s and set 

N =  {x~F~(p"): N~(x) = 1}. 

Then we have that x ~ N  iff x = a ( y ) f o r  some y6F~(p"). Furthermore we have 
Y 

pn __ 

~= +1 ,  I N [ -  p(./~) _ ~ 

pn 1 
e >  1 e,~s, 

p("l~)- I 

p"-- 1 
e>le[s .  p(~/s) + 1 

b) Let A be a subgroup of G(e,p"). Set B=Ac~F~(p"). There exists a conjugate 
A 1 in G(v,p n) of A such that for any x e A \ B  of prime order q,, there is 
a~A ~ ~ Gal (e, p") a #: 1 such that ~r ~ = 1. 

Proof a) Clearly N~ (a(y)]  = 1, so that  f ( y )=a(y )  is a homomorph i sm  of  F~(p") 
into N. ~ Y  ! Y 

~'(y) 
If for some r, z -  we have 

Y 
a(a(r- 2)(y) a(r- Z)(y)... y) 

z= e(r_X)(y)a(r_2)(y). . .y,  
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so tha t  we m a y  replace a by a '  p rov ided  tha t  (r, s) = 1. So we m a y  suppose  

~(x)=x ~'~"~' x e F ~ ( p " )  

where e ~- - 1 if e > 1 and  ~]s, and  cr = 1 otherwise,  and fl = 2 if ~ = - 1, and  fl = 1 
otherwise.  

N~(x)  = x .  x~e~"/~ . . ,  x ~ - '> v~a"/~'" - '~ = x" 

where  v = l  + o ~ p ( ~ " m + . . . + o ~ - ~ ) p t ~ " / ' ) ~ - ~ ) = -  p r  So 
o~p ('~n/s) - -  1" 

[ / - -  1 I~(p")l). 
INI = ~o~p(~,,/~ ) _ 1 '  

N o w  f ( x )  = x ~p~"/~'- 1, so that  

Iker f l  = (cop (p"/~) - 1, IF~(p")I). 

I f  e #  - 1 ,  

[ p n - 1  pn__l ) p ' - i  
IN[ = \:~p{,/,) _ 1 '  . - Ic~p ('/~) - l l' 

]ker f l = (c~p ( " m -  1, p" - 1 )=  ]~pt,m _ 1 t- 

Hence  a) is satisfied in this case. 
If  e =  - 1 ,  then s is odd  and  

{/~ ) p"+t 
]NI = I,p (2n/s) - 1" p" + t _ = p(,,m + 1 '  

Iker f ]  = (p(2,,m _ 1, p" + 1) = p~,m + 1. 

Hence  we have  a) in all cases. 
b) Write  [Gal (e, p")[ = q ]  1. ~ . . . . . . .  �9 . qs q~+ 1 .-. qr a p roduc t  of  pr imes such that  A \ B  

has e lements  of  order  q~ i = 1  . . . .  ,s  but  not  of  order  q~+l, . . - ,qr.  Assume also 
tha t  q~ < q z  < ... <q~. 

T a k e  A* a conjugate  of  A which contains  elements  a l , . . . ,  a~_~eGal(e ,p")  
of  order  ql ,  . . . ,  q~_ ~ respectively, with i as large as possible. Assume  i < s .  

Take  x e A * \ B  of  order  q~. We  may  write x=a~o~ with o-~sGal(e,p") of  order  
qi and ~eF~(p"). We have 1 =(o ' i~ )q i -=Nei (c t  ). 

Since a j ~ A *  for j = l  . . . . .  i - 1  we have  [aj ,  x ] e A *  and [a i ,  x ] = [ a 2 ,  aic~ ] 

= a i l c t - l a 7 1 a j c r  ic~= [a~, ~]. On the other  hand  aj normal izes  <e) ,  and since 
Nr 1, any  pr ime dividing ]<~)l is at least as large as q~ (Propos i t ion  1.2, 5). 
Therefore  qjgl<~>] and 

<~> = c < ~ > ( ~ )  x [~, <~>]. 

Since [ ~ i , < ~ > ] = < [ ~ r j , , ] > _ c A *  and a i r , A *  , there is y~C<~>(a~) such that  
a i Y E A * .  
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This process actually gives ysC<,>(a~ . . . . .  a~_~) such that a~ysA* and (of 
course) N~,(y) = 1. 

Now if i=1,  or i>  1 and 0-1 is a field automorphism, y~F~(p "/(q'''q~-'~') and 
~7 ~ (z) 

by a) there is z~F~(p "/~q~'''g~-~)) such that y =  . If i>  1 and al is not a field 
automorphism then q~ =2,  e = 2  and z 

CF~:/~. . .~ ,-  ~(~1) = F ~ (p" / (~* -  '~), 

~(~(z) 
so that by a) in any case there is zeCF~(:)(a ~ . . . .  , a~_ 1) such that y -  

Z 

Take A *~. Then, since ze CF~(p,)(a 1 . . . . .  ai-1), a f t  A*~ for j =  1 . . . .  , i - 1 .  

a i = a~ a 7 ! (z- 1) yz  = z-  1 ai yzeA,Z,  

a contradiction. So we have b). 

Propositon 1.4. G(e, p") acts on the left in a natural way on F~(p"), with F~(p") act- 
ing by multiplication and Gal(e,p") in its natural way. Let A~_G(e,p") and B 
= A ~F,(p"). Then the following are equivalent: 

A) A has a regular orbit on F~(p"). 
B) For any prime q, GN(e, p", q) is not conjugate in G(e, p") to a subgroup of 

A. 
C) For any prime q such that A \ B  has an element of order q, O: we take 

aq~Gal(e,p") of order q and Nq= {x~F~(p"): N~,(x)= 1}. Then Nq~=B. 

Proof Set F=FAp" ) and ~={q  a prime: A \ B  has an element of order q}. By 
Proposition 1.3 b), we may assume that, for any qerc, aq~Gal(e,p")~A is an 
element of order q. Now B) and C) are equivalent. 

In this proposition C e denotes the fixed points in F under the action de- 
scribed in the statement of the proposition. We get ,~Ja. Cv(a)= ~ Cv(a) where 

a runs through the elements of prime order of A \ B .  So 

But U C F ( b ' a q ) = { x ~ F : a J ~ e B }  is a subgrOup Of F and is prOper iff 

by Proposition 1.3, a). Since F is cyclic, 

F = ~  ~ CF(ba q) iff ~ CF(b.aq)=F 
q ~  b~B b~B 

for some q~n, or equivalently Nqc_B for some q~n. This shows Proposition 1.4. 

Definition 1.5. We shall say that a maximal subgroup A of G is relevant iff 
there is an Abelian normal subgroup N ~  G with a subgroup N I ~ N such that 
NG(N,)~-A. 

Proposition 1.6. Let G be a solvable group that does not contain any section of 
the form 77,%71 s (r and s possible equal; ~r%Zs being the wreath product) and 
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such that for every chief factor N / M  of G, G/C6(N/M ) has a regular orbit on the 
elements of N/M. Suppose A is a maximal subgroup of G and K is a normal sub- 
group of A such that 0 KX = 1 and A /K  operates on the left by permutations on 

x~G 
some given set Y2 with a regular orbit and at least one other orbit. 

Then G permutes ~ 2 G = l | 1 7 4  x x , _ l |  where x denotes car- 
tesian product and x o = l  , x l , . . . , x , _  1 is a system of representatives of 
{xA: xeG}. Moreover G has at least three orbits on ( f i  and if any of the follow- 
ing is satisfied, then G has a regular orbit on (ft. 

1) 2~ IG:A] ,  and, if2] IKI, G has a normal Sylow 2-subgroup; 
or 2) 2)(IG : A1, A /K  is a cyclic 2-group of order at least 4, and if St IGt, G is 
supersolvable; 
or 3) A/K has more than two orbits on (2; 
or 4) A is relevant; 
or 5) A<~G; 
or 6) K = 1. 

Proof Let M be max ima l  with respect  to the proper t ies  M_~ A and M <  G. Let  
N / M  be a chief factor  of  G. Then  N ~ A < A N = G .  But M~_Nc~A~_A and 
therefore M = N c~ A. 

(*) Also C A ( N / M ) < A N = G  and CA(N/M)=M. 

Let  x o = 1 and  x 1 . . . .  , x,,_ 1 be representat ives  of  the classes N/M.  We label 
x 1 a representat ive  of  a class in a regular  orbi t  under  G/CG(N/M ) on N/M. We 
have  n = IN/M]. Then  xi i =  0, 1 . . . . .  n -  1 is a system of  representat ives  of  the 
classes xA in G since if x i A = xj  A, then x f l x ~ A  c~ N = M and i =  L and  if g ~ G  
= N - A ,  g=n.a ,  n~N, aeA, and n~x~M for some  i so tha t  g~x~MA=xiA .  

Set B = A / K .  We have  the Frobenius  h o m o m o r p h i s m  G ~ S , % B  defined by 
g~(s(g),b(g)), where s(g) is the p e r m u t a t i o n  x ~ A ~ g x i A  t aken  to be of  
{0, 1 . . . .  , n -  1} and 

b(g): {0, 1 . . . . .  n - 1 } ~ B ,  

b (g) (i) = Xs(g)(i)  g x i K .  

- I  x ~ o g x ~ K e B .  This gives a h o m o m o r -  Since gxi@Xs(g)(i)A, xs(g)t 0 g x i e A  and 
ph i sm since by definit ion of  S, %B, 

( ~ , L )  (~2,f9  = ( ~  ~ ~2, (L  ~ ~2) fg ,  

and  we have for g, g '~G,  

(s (g), b (g)) (s (g'), b (g')) = (s (g g'), b (g g')), 

since of course s(gg')=s(g)o s(g') and 

[(b(g) o s(g')), b(g')] ( / )= b(8) [s(g ' ) ( i ) ] -b(g ' ) ( i )  
_ _  - 1  -1 
--X,s(g)(s(g,)( i)  ) �9 g "  Xs(g, ) ( i )"  Xs(g,)( i)  �9 g ' "  X i �9 K 

- 1  
= xs(~g,)~i) - g.  g ' -  x i �9 K. 
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It  is clear that  the kernel  of  this h o m o m o r p h i s m  is conta ined  in K and is 
therefore 1. F r o m  now on we consider  G conta ined  in S,, %B. 

S,%B has a natura l  act ion on 1 | O x x~ |  x ... x x ,_  1 |  defined by 

(rt, f )  ((x i | 2i)) = (x~i) | f (i) "~i) 

and the ac t ion  of G on Qo is the restr ict ion to G of this action. 
We denote  the elements  of  f2 G as n-tuples of  e lements  of  f2. No te  that  if 

meM then s ( m ) = l .  I f  gaG, then g a A  iff s (g) (0) - '  0. I f  aaA then axiA 
=axia- lA  and therefore s(a) corresponds  to the act ion x M - , a x a - l M  of  A 
on N/M. I f  g a G  and s (g ) (0 )=0  and s ( g ) ( 1 ) = l  then gaA, and since x iM gen- 
erates a regular  orbi t  of  G/CG(N/M), by (.), g a  CA(N/M ) =M and s (g)=  L 

Take  co to be a representat ive of  a regular  orbi t  of  A/K o n / 2  and v a repre-  
sentative of  ano ther  orbi t  of  A/K on O. It  is clear that  at least (co, co,.. . ,  co), 
(v, v, . . . ,  v) and  (v, co, . . . ,  co) belong to different G-orbits,  so that  G has at least 
three orbits  on Oa. Hence  we suppose  that  G has no regular  orbi t  on 0 a. 

Then  we have  (it is possible tha t  n = 2  and some of the final letters do not  
actually appear) :  

a) 14=CG((co, co . . . . .  co)) and l+ataSnc~G; 
b) 1 4= C~((v, oo, ... ,  co)) and  1 =1= (0-2, (2o, 1 . . . .  , 1 ) )aG with ~r2(0 ) = 0 ;  
c) 1 4= Co((co, v, co, ..., co)) and  1 4=(0-3, (1, 2, ,  1 . . . . .  1))aG with fig(l)= 1; 
d) 1 4= Ca((v, v, co,.. . ,  co)) and  1 ee(z, ('~2, 2 >  1, .. . ,  1)) = taG where either r = 1, 

or  ~(0)=1 and z (1)=0 .  
I f  A<G then A=M and 0.2=1 and 14:(2o,1 . . . .  ,1)aG.  But in this case 

0.1(0)=t=0 and (0.1, (20, 1, . . . ,  1)) has a section i somorphic  to  7/r%:g s. I f  K =  1 
Ca((co, v, . . . ,  v)) = 1. Hence  one of  1)-4) is satisfied. 

Suppose  (c~, fi, 1 . . . .  , 1 ) a G  with ~ 1. Then  if 0.3(0)4=0 we have a section of 

((c~, fl, 1 . . . . .  1), (0"3, (1, 21, 1 . . . .  ,1))} (1 x B x 1 x . . .  x 1)/(1 x B x 1 x . . .  x 1) 

i somorphic  to ~ % Z , .  Therefore  0.3=1 and 1 4 : ( 1 , 2 1 , 1 , . . . , 1 ) a G .  If  
(~', fi', 1, . . . ,  1)aG with fl'4: 1, in the same way we get 1 4:(20, 1, ..., 1)aG. Hence  
if 1=#(2~ ,2~ ,1 , . . . , 1 )aG,  we get 14:()~o,1 . . . . .  1)aG and 1+(1 ,  21,1, . . . , 1 )eG.  
But 0.t does not fix bo th  0 and  1 and  so a section of G is :g~%Z~. Hence  we 
have 

(**) ()@ 2~, 1, .. . ,  l ) e G  implies )~ = ; ~  = 1. 

N o w  we get z 4 : l  and  t2=l since ~2=1.  If  1) is satisfied 2XIG:AI, so t is 
conjugate  in G to an e lement  of  A. This e lement  will act trivially on co, so that  
211KI. On the other  hand  t acts non-tr ivial ly on N/M so that  either g 2 % Z z  is 
involved in G or G does not  have a no rma l  Sylow 2-subgroup.  Hence  1) is not  
satisfied. 

I f  2) is satisfied again  we get 2[ IKI and G is supersolvable.  N o w  n = IN/MJ 
is an odd pr ime and IA/MI I n -  1. Since B is a cyclic 2-group, if P is a Sylow n- 
subgroup  I P l = n  and  p c_G' since A acts non-tr ivial ly on N/M. Because G is 
supersolvable,  P centralizes any G-chief factor  of  M, and hence P centralizes 
M. Since B is Abelian,  this means  that  if (#o . . . .  ,/~, 1)aM we have ~o =#1  = ..- 
= # , - 1 .  So M is cyclic and  Mc_Z(G). Since A/M is cyclic we get that  A is 
Abelian. 
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Consider all elements of the form F: 

(/)' #1  c o , # 2  (D' " " '  # n -  1 co) 

with #ieB. There are [B] "-1 of them. For  each ql =2 ,  q2, " " ,  q~ the distinct pri- 
mes dividing [A/M[, take a coset F/in A/M of order qi i =  1 . . . . .  ~. Now 

cG( (v ,  ~ co, . . . ,  ~ , _  ~ co))__ (A\M)  u {1}, 

so that for some i=  1,. . . ,  T, 

if/("5 CG((V, p I (D . . . .  , .//n- 1 co)) 4=,~2f, 

i.e. contains an element of order q~. 
Now there are at most 2 elements of order 2 in F~ and at most 1 element of 

order qj in Fj for j=2,  ..., ~, because A is Abelian and M is a cyclic 2-group. 
On the other hand each element of prime order in F~ fixes the first coordinate 
and acts with orbits of length q~ on the others. It can be conjugated by an ele- 
ment  of B x ... x B to an element of S n, so it centralizes [B[ (n- 1)/q, elements of 
the form F. Therefore we get [B["- 1 < 2lBl~n- 1)/2 + . . .  + [B[(,- 1)/q,. The right hand 
side has at most  n - 2  summands and we get [B["-~<(n-2)2[B[ ("-1~/2. There- 
fore we get IBI (n- 1)/z < 2 ( n - 2 )  and [BI > 4  n >  3, which is a contradiction. Hence 
2) is not satisfied. 

If  3) is satisfied, let v~ be a representative of a third orbit  of B on f2. We get 
1 4= CG((v , Vl, co,..., co)) and 1 4(2~, 23, 1 . . . .  ,1)E6, which contradicts (**). Hence 
3) is not satisfied. 

Hence 4) is satisfied, i.e. A is relevant. There is V<  G Abelian and V1 ~ V 
such that tCN~(V1). Let v E V  1 be such that vtq~V1. Then (v, vt, t ) / (v )c~(v  t) is 
isomorphic to 2~2%;g ~ for some r. This contradiction completes the proof  of 
Proposit ion 1.6. 

2. The Regular Orbit Theorem 

Proposition 2.1. Let A be a finite group and C<oA be a cyclic group such that 
CA(C)= C. Suppose that M is an irreducible faithful IFpA-module such that Mlc 
is homogeneous. Then we may identify M with 1Fp + (n=dimF,(M)) and A 
_~G(1,p") with Ac~Fl(pn)=C and the action of A on M is given by the natural 
action of G(1, p") on IF p +. Mlc is irreducible. 

Proof. Let k___lF, be a splitting field for A and C. Then k |  is a direct 
sum of faithful irreducible modules all distinct and conjugate under the Galois 
group Ga l (k : lF , )  (since chark4=0 the Schur index is trivial, see for example 
[12] Theorem 9.21). But each is induced from a faithful irreducible kC-module  
and therefore k| is a sum of non-isomorphic kC-modules. Since M]c is 
homogeneous as a IFp C-module, this means that M is irreducible as a lFp C- 
module. Let e be the primitive idempotent  of ]FpC such that eM4=O. Then 
pX[C[ and, by Schur's lemma, elf  v C is a field, say eIFp C=F'~IFv.. 
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Let vEM v:#O, then define: 

m: F ~ M ,  

m ( f ) = f v .  

This is an isomorphism as IFp C-modules. 
Every element a~A centralizes e and so normalizes F. f--*f"- '  is an auto- 

morphism of F, let us denote it by a(a). Define O(a)eF* by a.v=tp(a)"-~.v. 
Then if a, beA, 

a .b  . v=a .  ~b(b) b-~ v=~b (b)b-'"- ~av 

=O(b)b-',-~O(a),-~ v 
and 

~b(a. b)= [r b ,a 'O(a)a-']a.b 

= O(b) ~k(a) b = O(b). a(b-  1)(r 

so that a--,(a(a), t~(a)) is an injective homomorphism of A into G(1, p") and the 
action of A on lFp + is the natural one: 

a. 2 = a(a)(Ip (a). ,~). 

Theorem 2.2. Let G be a finite group and W an IF p G-module (p a prime) which 
is the direct sum of irreducible IF p G-modules. Assume for all sections G* of G we 
have: 

1) 2~r%7/, ~ is not isomorphic to G*; 
2) GN(1, pq~, q) (q a prime, c~ > 1) is not isomorphic to G*; 
3) I f  all Abelian normal subgroups of G* are cyclic then G* has a cyclic self- 

centralizing normal subgroup; 
4) I f  N / M  is a chief-factor of G* then G*/CG.(N/M ) has a regular orbit on 

N/M. 
Then G has a regular orbit on W. 

Note. Conditions 3) and 4) are always satisfied if G is supersolvable. In view of 
Proposition 1.2, 7), if G is nilpotent, Condition 1) implies Condition 2). 

Proof of Theorem. Assume false and choose a counter-example which minimizes 
IGI + dimr.(W). Then if W= W 1 • W2 a direct sum of IFp G-modules, if we set 
K i = k e r  W/(i=1,2),  by the choice of G and Wthere are vi~W~ such that C~(vi) 
= K i. Then CG(v 1 + v2) = 1, a contradiction. So Wis irreducible. 

Suppose A < G  is Abelian. If A is not cyclic WIA is not homogeneous. Let 
C be a homogeneous component of W[A. Consider G 1 a maximal subgroup of 
G such that G 1 ~N~(CA(C))~_NG(C ). Then there is a IFpG~-module Vsuch that 
W =  V ~. 

Now set K = k e r  V. We have that G~/K has a regular orbit and the orbit {0} 
on V. By Proposition 1.6, 4), since G~ is relevant, G has a regular orbit on W, a 
contradiction. So A is cyclic. 

So by Condition 3), G has a self-centralizing cyclic normal subgroup C. 
Consider W]c. If W[c is not homogeneous, let V 1 be a homogeneous com- 
ponent of W[c, then we may set GI~_NG(V~) a maximal subgroup, W~ a IFpG~- 
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module such that W = W ~  and Kl=ker(W1). We see that K I ~ C = I  and 
therefore [-K1, C ] = I  and so K I = I .  So G1 has a regular orbit on W1 and 
Proposition 1.6, 6) gives that G has a regular orbit on W. So W[c is homo- 
geneous. 

Hence we may apply Proposition 2.1 and G~G(1,p  ~) and the non-zero ele- 
ments of W can be identified with Fl(p" ). Now if G contains GN(1, p", q) it also 
contains GN(1, pq~, q) where q" is the q-part of n. So Proposition 1.4 shows that 
G has a regular orbit. This concludes the proof of the theorem. 

3. The Regular Module Theorem 

Proposition 3.1. Let A be a finite group and C ~ A  a cyclic subgroup such that 
CA(C)= C. Let M be an irreducible faithful IF e A-module of dimension 2n with an 
A-invariant non-singular symplectic form ( , ) .  Then 

1) I f  M]c is homogeneous, we may identify A with a subgroup of G(1, p2n) and M 
with IFv+~,, and the form is given by (x,y)=Tr(#(x~p(y)-(p(x)y))  where Tr: 
IFp.--+IFp is the trace, ~o is the field automorphism of IFv~., of order 2, #~IFp*2., 
#+(p(#)=0 and for any ~ G a l ( - 1 ,  p") a(/0=#. 

Further C ~_ F I(P"), G ( -  1, p') fixes ( , )  and for any subgroup N ~_ C, if ei- 
ther INI >2 or IA : C] is odd, we have C A(N)~_ G(-- 1, p"). 

In addition if p=2  and M is endowed with an A-invariant quadratic form 
Q:M-~IF 2 such that Q(v+w)=Q(v)+@,w)+Q(w)  for all v, w6M, then after 
the previous identification, Q(x)=Tr(x(p(x)) for every x e M  and Q is invariant 
under G ( -  l, p"). 

2) I f  MIc is the sum of two distinct totally isotropic homogeneous components, 
set G=G(1, p"), V=IF;. and let z act on G by centralizing Gal(1,p") and invert- 
ing FI( p ) and let z 2 = -  leFl(p"). We may identify A with a subgroup of ( z )  G 
and M with V@ V* (where V* is the dual of V) with form 

<(v,f), (v', f ')> = i f (v ) - f (v ' )  

and the action of G is the natural one and 

"c(v, f )  = ( - t -  ' (f), t(v)) 
where 

t: V-~ V* 

is the isomorphism 

t(2): lFp,-~lFp t(2)(x)=Tr(2x) xMFp~, 

and Tr: IFpn~IFp the trace map. ( z )  G fixes ( , ) .  
Also /f 2S[n with s>0, we take (eGal ( i ,p  n) of order 2~.n2, (n 2, the odd part 

~(~) 
of n) and c~ElFp, such that - 1. Then we identify G(2~,p ") with 

O~ 

(z(c~) ~ F  1 (p") ~_ ( z )  G. The set G(2 ~, p") ~_ ( z )  G is independent of ~ and ~. 
Finally Cc_F~(p ~) and, if N~_C is a subgroup and IN[>2, then CA(N ) 

~_ G(e, p~) for some e[n a power of 2. 
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Proof 1) Since Mlc is homogeneous we may identify IF + M ~  p2. and A~_G(1, p 2") 
with C _  F 1 (p2,) by Proposition 2.I. 

Consider the automorphism of C :x~x -1, it extends to an automorphism 
q~ of lFp C. If e is the unique primitive idempotent of IFp C such that eM+O, 
then since 04~(eM, M)=(M,q~(e)M) we have q)(e)=e. So ~o gives an auto- 
morphism of lFp2.=eiFpC of order 2 (since ICl>2). IFp~. has a unique auto-. 
morphism of order 2. Now for all v, weM, (v ,w)=(v. l ,w)=(1,  q)(v)w)= 
-(~o(v)w, 1 )=-(1 ,  q~(w)v). First we show: (.) There is #EIF~. such that 
#(v~o(w)-~o(v)w)dFp., #+q)(#)=0 and (v,w)=Tr(#'(vq)(w)-q~(v)w)) for all 
V, wEM.  

If p=2 ,  there is #~IF*2. such that (1, x ) = t r ( # x )  for all xEM, where 
tr:IFp~,--.lFp is the trace map (different from Tr). But (1,(p(v)w)=(1,vq~(w)) 
for all v, weM, and tr(#x)=tr(#~o(x))=tr(~o~).x) for all xEM, so that (p(#)=# 
and #+q~(#)=0 and (v,w)=tr(#.~o(v)w)=Tr(#(cp(v)w+v~o(w))): Hence we 
have (*) in this case. 

If p .  2 (v, w) = (�89 q~ (w) - rp (v) w), 1) for any v, wsM. Let #1 ~lFp*,, such that 
#I+q)(#1)=0. Then there is #2~IF*, such that Tr(~2x)=( �89 !)  for all 
xEIFp.. But now (v,w)=Tr(#2#~(vcp(w)-cp(v)w)), since #1(vq~(w) 
-(p(v)w)MFp.. Setting # = g l  g2 we get (.). 

If we choose 2~1F'2, and set 0(v)=2-~v for all veM, we get a new identifi- 
p 

cation of A with a subgroup of G(1, p2,) and M with IF~-~, with form given by 

(v, w) = Tr (#(2v~0 (2w) - qo(2v) 2w)) 

= r r  (#2~0 (2) (vcp (w) - q) (v) w)), 

i.e. we may choose # to be any element of IF*2~ provided #+(p(#)=0. In partic- 
ular we may choose # so that for any c reGal ( -1 ,p  ") we have cr(#)=# and, if p 
--2, #=1.  

The subset of elements of F 1(p2") which leave ( , )  invariant is F_ I(P") and, 
from ~(#)=# above, we get that G ( - 1 ,  p") leaves ( , )  invariant. Since C 
_c F 1 (p2,) and fixes ( , ) ,  we have C ~ F_ ~ (p"). If N _  C and Igl > 2, we get that 
IrA(N): CI is odd, since q~ inverts F ~(p"); so CA(N)c_G(-1,p"). 

Finally assume that p = 2  and Q is a quadratic form as in the last sentence 
of 1). Then clearly if c~C we have Q(c)=Q(c -~) since Q is A-invariant. Let 
a, b~M and suppose Q(a)=Q.(q~(a)) and Q(b)=Q(~o(b)). Then 

Q (a + b) = Q (a) + Q (b) + (a, b ) = Q (~o (a)) + Q (q) (b)) + ( (p (b), q~ (a)) = Q (~o (a + b)) 

(the middle equality follows from (a,b)=(1,~o(a)b)=((p(b),(p(a)), C being 
Abelian). Hence Q(a)=Q(o(a)) for any a~M, because C linearly spans M. Now 
if 2~M, Q(2+cp(2))=(2, q~(2))=Tr((2+q~(2)) ~) (#=1 in this case). So e(1) 
=Tr(lq~(1))=Q(c)=Tr(ccp(c)) for any ceC, since Q is A-invariant and cq~(c) 
=1. Notice that Tr((a+b)cp(a+b))=Tr(aq)(a))+Tr(bcp(b))+(a,b); but then 
since Q(c)=Tr(c~o(c)) for ceC and C linearly spans M we get O_(v)=Tr(vq)(v)) 
for all veM. From this, one gets 1). 

2) Suppose now that M]c is the sum of two distinct totally isotropic homo- 
geneous components. Let Vbe one of them. Let B=NA(V) be its inertia group. 
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By Clifford's Theorem V is an irreducible B-module. We may apply Proposi- 
tion 2.1 to B and Vand  we may assume Bc_G(1,p"), Cc_Fl(p" ) and V=IFp+,. 
We also know that Vis totally isotropic. 

Let W be  the other homogeneous component  of Mlc so that MIc= V| W. 
Let V* be the dual of V. For  each f eV* there is a unique wEW such that 
(v,w) = f ( v )  for all veV(there  is one because ( , )  is non-singular and if (v, w) 
=(v,w') for all veV, then w-w'eVc~W=O). Therefore we may identify W 
= V* and B acts on V* by the dual action to that on V(hence for beB, f~V* 
we have (bf)(v)=f(b-lv) for ve V). Furthermore we have ((v, f), (v',f'))=if(v) 
- f(v ')  for v,v'eV, f f ' eV* .  Set S to be the subgroup of the linear group of 
VO V* which fixes the form. Let G___S be the representation of G on V| V* 
and set for the representation of any subgroup of G. G normalizes (7 and 

~_Ns(C)C~Ns(V ). Since Cs(C)=FI(p n) (because C is irreducible on V), 
Ns(C)C~Ns(V ) has a normal cyclic self-centralizing subgroup and acts faithfully 
on Vso that Proposition 2.1 shows that [Ns(C)C~Ns(V)I<IG(1,pn)[=IG]. So we 
have d= Ns( C)ca Ns(V ). 

Define z as acting on V| V* as in the statement of the proposition. For  
any v,v eV, f f  eV we have 

t t - 1  ('C(v, f ) ,  "C(V , f )) = ( (-- t ( f) ,  t(V)), (-- t -  1 (f,), t(v')) ) 

= t(v') ( -  t- 1 (f))_ t(v) ( -  t- t(f,)) 
= - Tr (v'. t-1 (f)) + Tr  (v- t -1 (f ')) 

= -f(v ' )  +if(v)= ((v,f), (v',f ')}. 

So reS. It is clear that ~2 is multiplication by - 1  on M and that if 
2eFI(p") 2t(v)=t(2-1v) for all veV, and if aeGal(1, p")a.t(v)=t(a(v)). There- 

fore ~ normalizes C, inverts Fl(p" ) and centralizes Gal (1, p"), and interchanges 
Vand V*. Now since G=Ns(C)C~Ns(V ) has index at most 2 in Ns(C ) we have 
(z}G=Ns(C) .  It is clear that the representat ion/I_~S of A normalizes C so 

If 2Sin with s>0 ,  we take ~eGal(1, p ") of order 2S-nz ,. Clearly N r  1 so 
that by Proposition 1.3 a), there is aeFl(p ~) with ~ - l ~ ( e ) = - 1 .  Now (z~c~) 2 
-- z(~(c~ = ~2 ~z ~- 1 (~ 1) c~ = ~2, so that o (~c  0 = o(~) = 2 ~- nz, and (z(c~) acts by 
conjugation on F~(p ~) as Gal(2~,p"), so we may identify (~(e)~<Fl(p ~) with 
G(U,p"). Clearly the set G(2~,p")___(z)G does not depend on e~Fl(p ~) and con- 
tains z( '  for any ~'~Gal (1, p") of order 2~.nz.. So G(2~,p")~_(~)G is indepen- 
dent of ~. 

Finally we know that C_~FI(p"). Let N be a subgroup of C and assume 
INI>2. Denote by F 0 the subfield of IFv~ generated by N. Clearly 
Gal(IFv,:Fo)F~(p")= Co(N ). If C<~>o(N)~_G=G(1,p ~) we take e = l  and we are 
done. So assume there is ~eC<~>~(N) a 2-element with ~eGal(1,p") and set 
o( 'G)=2L Now s > 0  and ( r~ )z=~z( -1 )eCo(N) .  Since IN[>2, ~ is non-trivial on 
F o so that (~ generates a Sylow 2-subgroup of Gal(IFv, :Fo) and 2Sin. Take ~o a 
generator of a Hall 2'-subgroup of Gal0Fv, 'Fo)  , then (r~o)FI(p")=C<~>a(N) 
_~ G(2 ~, p"), as we wanted to show. This completes the proof of the proposition. 
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Theorem 3.2. Let p and q be distinct primes n > 0 a natural number. Let 

A = Oip, q},(C~al(~.,,)(Oq(F~(p"))))~<F~(p" ) 

(for some e) act on an extraspecial p-group P with the actions and the symplectic 
form on PIP' given by Proposition 3.1, 1)for e = -  1, and Proposition 3.1, 2)for 
~>0. Let k be an algebraically closed field of characteristic q. 7-hen any faithful 
irreducible kP-module M can be extended to a kAP-module in such a way that 
there is a one-to-one function 

v: F~(p")-~ M 

with the following properties: 
a) I f  x.  2 (x~A, 26F~(p")) denotes the action of  A on F~(p") where F~(p") acts 

by multiplication, then x(v(2))= v(x. 2)for any xEA, 2~F~(p"). 
b) Either v(F~(p")) is linearly independent, or ~ = -  1 and every proper subset 

of v(F,(p")) is linearly independent. 

Note. If q~JG(r then A=Op.(G(e,p")). 

Proof of Theorem. Fix the data of the proposition. Since ([AI, ]P[) = 1, we may 
extend M to a kAP-module in such a way that detM(a)~ { + 1, --1} for any a~A 
(see [12] (6.28) for this result of Gallagher). 

Let R be the full ring of algebraic integers in C and take 1 a maximal ideal 
of R such that q~I. If we identify R/I with a subfield of k we can define con- 
sistently Brauer characters (see for example [12] Chapt. 15 for a brief descrip- 
tion of Brauer characters). Denote by B the Brauer character of AP on M. 

It follows from results of Glauberman ([12] Chap. 13), or more explicitly 
Isaacs [13] or Berger [7], that we have: 

A) For every q-regular a~A, B(a)~2~, and B(a) 2 is the number of fixed points 
in PIP' under a. Choose y a generator of Gal(e,p")c~A and we choose M 
such that: 

B) If 72 is the 2-part of 7, B(y2)~0. 

Set F=F~(p"). The next result follows from Hall-Higman [11] and Shult 
[14]. For a uniform proof in the case p + 2  see Berger [6]. 

C) M[F~-kF/S if e=  - 1 ,  and 

~_kF@S if e>0,  

where S is a 1-dimensional sub-kF-module of kF generated by ~ #xx where 
x e F  

#~{1,  -1}  for x e F  and ~(~" #~x)= ~ #~x for every automorphism ~ of F. 
x ~ F  x E F  

Set H=Oq.(F) and Q=Oq(F). Take M ] ~ = N o O N 1 0 . . . |  ~ the sum of the 
distinct homogeneous components, with N o the component of S]u (note: 
dimkNo>0 and dimkN~>Oi=l .... ,r). (7)  permutes the sets N o . . . . .  N~ fixing 
N 0. Set )~ the irreducible H-character corresponding to N~, for i = 0  . . . . .  s. Then 

"~(x) x~H~ ~ ( x )  } if ~e(75, ~NI=N~ iff ker)~i~_~ ~ - :  ) = ( ~ - :  x e F  , since ~ centralizes Q. 
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By Proposition l.3a) we know the order of { ~ :  xeF}. Let d(~)=dimk~ N 

where i runs through ie{0,1, ...,r} such that ~Ni=N i. Then by the above and 
C) we have: 

D) d(~) = p,/O~,) + 2 if e > 1 and elo(~.), and 
= pn/O(~) otherwise. 

If e > l ,  let v,t,~ and e be as in Proposition 3.1, 2). Then (z~e)2=~2, so the 
number of fixed points of ~e (7 )  on P/U is known except if e>  1 and e]o(~). In 
this case ~=z~c~ for some odd s. Let ~o=~ ~, we have ~ z = ~ .  If ~(x,f) 
=(x , f )eV|  V*, we get ~2(x)=x and f =  t(~o(eX)). Conversely, if ~g(x)=x and f 
= t(~o(C~ x)), we have f =  ~o e -  1 t(x) (see proof of Proposition 3.1, 2)) and therefore 
- t -  1(~ o e - f )  = - t -  1(~2 ~o l(e) ~-  i.  t(x))= ~oZ(x) =x,  because ~ l(e) e -  1 = _ 1 
since s is odd. Hence ~ fixes exactly p2,/o(~) elements of VO V*. Furthermore in 
this case both p and q are odd. Take go a generator of H. We get 21p"/~ 
and N~(g0)=(~go)~ by Proposition 1.3, a). Hence ~go fixes exactly one 
element of VG V*. We obtain by A) and Proposition 1.3, a): 

E) For any e and ~ ( 7 )  we have B(~)= +_p,/O(~); if e > l  and glo(~ ) then 

} B ( ~ g o ) = _ + l a n d g o r  x "x~F . 

Suppose x a q-regular element acts on a k-vector space N. Denote by BN(x ) 
the Brauer character of x on N. Suppose ~ ( 7 )  and ~ = ~ .  Assume, if possi- 
ble, that Bu~(~)=-d im~N i for all i such that ~Ni=N i. Then Bu,(~l) is an in- 
teger multiple of 1 / - 1  for each i such that ~iNi=N~. B(~l)=~Bu,(~l) where i 

runs through those with ~N~=Ni, so that B(~a) is also a multiple of 1 / - 1  
which contradicts E). Now B(~)=~Bu~(~ ) w h e r e / r u n s  through those with ~N i 
= N  i and B(~)=_+d(~) by D) and E). So we get, since Bu,(~ ) is the sum of 
dim~ Ni roots of unity, 

F) If ~ is a square in (7),  Bu,(~)=dim~N~ for every ~-invariant N i. 

Suppose e>  1 and e[o(~). Recall that 72 is the 2-part of 7. Then d(7~)=p "/~ 
+ 2  and B(Tz)=p n/~ by D), E) and B). Let L z and L 1 be the - 1  and +1 
respectively eigenspaces of 72 on the sum of the 72-invariant N~'s. By F) we get 
dim~ L i = 1 and dim~ L~ =p,/O(~)+ 1. Since L ~ ~ N  i for some i, let ~0 =)~- By 
E) we have -+l=2Bu~(Tzg0) where N~ runs through the 72-invariant Ni's. So, 
using C), _+l=)~o(go)-2Oo(go)+~[QITJgo).  Now ~)~(go)=0 since by E) 

1[~2(x) "1 

t" ~ 2 we get ((go) go r  xeV By C) Zo(go)= __+1, so from Oo(go)= Z~176 1 

= H )  Oo=)~0 . Define L 0 = L l +  ~ N i. We have, using F), 
i=1 

G) If e > l  and elo(7), Lol~ is isomorphic to IQ[ copies of the regular H-re- 
presentations and for any ~e (7 )  and N~ such that ~Ni=N~, ~ acts trivially on 
L0nN,.. 

Now since Q centralizes ( ~ ) H ,  it stabilizes L ~ and NF~L o (of dimension 
[QI) for i = 0  .... ,r. On the other hand by C), Mle is the direct sum of free kQ- 
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modules (each indecomposable) and a linear kQ-module. Hence Nf~L o is a 
free kQ-module for each i=  0, . . . ,  s. This shows 

H) If e > l  and elo(y), Lo[ r is a free kF-module. 

If e=  1 or eXo(y) we define L o to be the sum of a kF-direct factor of N o free 

for Q (which exists by C)) and ~ N~. Clearly L o is isomorphic to kF as kF- 
i = 1  

modules. If e =  - 1  take Lo=M, Lo~_kF/S then. In either case by D), E) and B) 
we have that if Y2N~=N~ then BN,(y2)=dimkN ~. Hence we obtain from F) and 
G) 

I) For  any e and ~ ( 7 ) ,  if ~Ni=N ~ then ~ acts trivially on N / ~ L  o. 
Take /2 to be kF/S if e = - 1  and kF if e 4 : - 1 .  ( 7 ) F  acts naturally on /2 

with F by multiplication and 7 naturally. We have Lolv~-/2lv. From I) one sees 
that in fact E~_L o as (y)F-modules .  So now the proposition follows from the 
definition of/2 and the fact that S = k  ~ #xx with # x +0  for all xeF. 

x ~ F  

Proposition 3.3. Let G = A N  be a finite solvable group with N 4= 1 a cyclic r- 
group for some prime r, N <  AN A ~ 1 and (IAI, ]NI)= 1. Let k be an algebraically 
closed field such that char(k)~/lCA(N)N[ and M be a kG-module. Suppose that M 
contains the image of the kCA(N)N-module kCA(N)N under the kCa(N)N- 
map q~ with kernel of k-dimension at most 1. Then MJA has a submodule kA- 
isomorphic to kA. 

Furthermore if [ ] denotes the image in the corresponding Grothendieck ring, 
and [ M I A ] - [ k A ]  has A-composition length at most 1, then r is odd, ]N[=r, 
[A/CA(N)I=r-1, CA(N ) is either elementary Abelian or 1, [Mlc~(N)N ] 
- [ kCA(N)N]  has no non-trivial representative module, and A acts transitively 
on the non-trivial irreducible characters of Ca(N ) . 

Proof Clearly we may assume that [kCA(N)N]-[q~(kCA(N)N)] is G-in- 
variant. If char(k)s A has at most two irreducible characters only if [A[ = 2. 
So if CA(N)= A we get the result, since (IN], IA[)= 1 in this case. So we assume 
A :t = CA(N ). So r is odd. 

Let 0 be a CA(N ) irreducible character and co a non-trivial irreducible 
character of N. Since r174 is not G-invariant, M[c~(mN contains the direct 
sum of ~9(1) copies of O| Now r174 is G-irreducible and projective and 
therefore MIA contains the direct sum of ~(1) modules isomorphic to S A, where 

is a k CA(N)-module with character 0. So kA is isomorphic to a kA-module 
of MIA. 

Suppose [MIA]--[kA] has A-composition length at most 1. The above can 
be repeated for each non-trivial irreducible character of N, so A/CA(N ) has 
only one regular orbit on N and [NI = r, r is odd and [A/CA(N)[ = r - 1 .  Let M o 
be the G-submodule sum of all trivial kN-submodules of M. Then M o = 0  or is 
irreducible under A. So all classes of CA(N)-irreducibles of M o are conjugate 
under A. Hence either CA(N)=1, or CA(N ) is elementary Abelian and 
[Mlca(mu-1- [k CA(N)N ] has no representative module. If CA(N)= 1, A is cyclic 
and every irreducible A-module is one dimensional so l > d i m k M - l A I  
=dimkM--( lN I --1). We get ]NI >dimkM. Hence we have the result. 
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Theorem 3.4. Let AG be a finite group with G~AG,  (]A],[G[)=I and 
P ~_ G P<~ AG an extraspecial p-group (for some prime p) such that Z(P) ~_ Z(AG) 
and A is faithful on P/Z(P). Let M be a kAG-module, where k is an algebraically 
closed field with char(k)X[A] p, such that Z(P) is not trivial on M. 

Suppose R ~_ G is an A-invariant r-group for some prime r and R/CR(P/Z(P) ) 
is elementary Abelian. Assume further: 

1) R acts non-trivially on every non-identity R-invariant section of P/Z(P). 
2) I f  S is a section of AR/CR(P/Z(P)) where all AbeIian normal subgroups are ~ 

cyclic, then S has a self-centralizing cyclic normal subgroup. 
3) No section of A is isomorphic to Z~%g~, or to GN(e, pn, q) whenever e= 

- I  or a power of 2, n is a positive integer, q is a prime dividing ([A[, [Gal(e,p')[), 
and/ f  ~ + 1, r[ [F~(p")l. 

4) For any section S of A and any chief factor X of S,S/Cs(X ) has a 
regular orbit on X. 

5) I f  rp=15 any chief 2-factor of A is cyclic and, if further 8[ [A[, then either 
A is supersolvable or has a normal Sylow 2-subgroup. 

Then M]a has a proper A-regular direct summand and if the A-composition 
length of[Mla]--[kA] is 1 and A+ 1, A is a cyclic group of order 4 or 8 and rp 
=15. 

Note. If A is supersolvable conditions 2), 4) and 5) are always satisfied. If A is 
nilpotent and ;g~%2g~ free for all primes s, in view of Proposition 1.2, 7), 
conditions 2) to 5) are always satisfied. 

Proof of Theorem. Assume false. Let (AG, M) be a counterexample with lAG] 
+ dim~ M minimal. We split the proof into a series of steps. 

Step I. A ~= 1, G= RP, r+ p, M[p is kP-irreducible and R is elementary Abelian 
and faithful on P/P'. 

Proof Clearly ARP and M satisfy the hypothesis of the theorem but not its 
conclusion. Hence G =RP. Since R is not trivial on an irreducible R-invariant 
section of P/P', r+-p. Take Mi/Mi+ 1 a kAG-chief factor of M such that Z(P) 
acts non-trivially on MJMi+ 1. Such a factor exists since p+char(k). If 
dimk(MjM~+ 0<dimkM,  then (MiMe+ 1)[A properly contains the regular repre- 
sentation, so that M is kAG-irreducible. 

Since Z(P)c_Z(AG), now M[p is homogeneous. Take N an irreducible kP- 
module isomorphic to a submodule of Mlp. Since ([AR[,p)=I, N can be ex- 
tended to an ARP-modute N in a unique way subject to the condition that if 
x e A R  then detu(x)=l .  We know that there exists a kARP/P-module L such 
that M ~ - N |  (see [12] (6.17) for this result of Gallagher). Now if 
]ARP/ker N] + dimkN < lAG[ + dim k M, N]A properly contains a regular A-repre- 
sentation and so the theorem is satisfied for M[A, a contradiction. So k e r N =  1 
and d imkN=dimkM.  So, M[e is irreducible and since kerN=CAR(P ), R is 
faithful on P/P' and therefore by hypothesis elementary Abelian. 

Step 2. AR is irreducible on PIP'. 

Proof Set f i=P/P'  and f :  P x P--*P'f(x, y)= Ix, y ] , f  is a non-singular symplectic 
form. Suppose first that there is/~ ~/5 a non-trivial AR-submodule of/5 where 
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f is non-singular. We set/52 =/~• the orthogonal complement. Then P = P1 q)/52. 
Set P~_P'  such that ' - P~/P = Pi and P=P1 x P2 the direct product of P1 and P2 
considered as abstract groups. Then Pi is an extraspecial group and we take N~ 
to be an irreducible kP~-module such that Nilp,@Mle, is homogeneous. Now 
AR acts in a natural way on P =  P1 • P2 so we can form the semidirect product 
ARP. We view N i as a/~/Pj module for i4j. So N~ can be extended to an ARP 
module N i such that debc,(x)= I for xeAR, Define 

r AR~(P~ • P2)~ ARP 

~(x ,  (~, 8))) = x  ~. 8. 

This is a homomorphism onto ARP and kerq~___ker(Nl| Therefore we 
view N 1 |  2 as a ARP-module and M~-N I|174 for some linear ARP/P- 
module L. We get MIA~--N1]A|174 A. Now since detN,(x)=l for any 
x~AR, CAR(fi 3 acts trivially on Ni(i= 1,2). By induction, therefore, NilA/CA~p,) 
properly contains k[A/CA(P~) ]. Since CA(/5~)C~CA(/52)=l, MIA contains kA and 
the A-composition length of [MIA]--[kA] is at least 2, a contradiction. So f is 
singular on every non-trivial proper AR-submodule of/5. 

Assume/~ is an irreducible proper AR-submodule of P. B is totally isotro- 
pic by the above. Let C be an irreducible AR-submodule of /5 such that 
C~/~  • Then Cc~BZ=O so that f is non-singular on /~+C,  hence B+C=P 
and (7 is "dual"  to/~. Therefore AR is faithful on bo th /3  and C. Let B~_P' be 
such that B/P'=B. Now B is Abelian, B<~ARP and B=[R,B] x CB(R)=[R,B ] 
x P'. Take 0 to be the character of B which extends the irreducible character 

of MIp, by being trivial on [R,B]. It is well known that 0 is the character of a 
B-submodule of MIB. Now let I(O) be the inertia group of 0 in ARP. Clearly 
I(O)=ARB. By Clifford's theorem, there is an ARB-module N such that 
M"~N ARP. By Mackey MIA=S'N~I(A~m,~al A, where x runs through a set of re- 
presentatives of the double cosets ARBxA of AG. Clearly the set of represen- 
tatives can be chosen inside P and then they are representatives for the orbits 
of A on P/B. We know that A is faithful on P/B, so by Theorem 2.2 we may 
take xosP to generate an A-regular orbit in P/B. Suppose a~(ARB)~~ then 
[a, Xo~]ePc~ARB=B so that a = l .  Hence (ARB)~~ and MIA properly 
contains the regular A-representation. Hence we get tAI+I=[P/BI. But 
[P/B[- 1 (r) and this is impossible. This completes step 2. 

Step 3. Take B<aAR Abelian. Then (P/P')tB is either homogeneous or the direct 
sum of two totally isotropic homogeneous components. 

Proof. Let B~ be t h e / - H a l l  subgroup B. Then [B~,R]~_Btc~R=I, so that B1R 
is Abelian and contains B. Hence we assume that R ~_ B and step 3 is not satis- 
fied for (P/P')Iw 

Take I ~_ P/P' B-irreducible. If I is isomorphic to its dual, we set V the sum 
of all B-submodules of PIP' isomorphic to I. Clearly f is non-singular on V. If 
I is not isomorphic to its dual take V o the sum of all B-submodules of PIP' 
isomorphic to I. Clearly V o is totally isotropic. If we now take V~ to be the 
sum of all B-submodules of P/P' isomorphic to the dual of I, 1/1 is totally iso- 
tropic and we set V=VoOV ~. f is non-singular on V In all cases we have 
04= V4=P/P' and V is a non-singular B-module. 
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Take A t a maximal subgroup of A such that A 1 _~Na(V ). Step 2 and Clif- 
ford theory give that there is an AiR-irreducible submodule X of P/P' such 
that P/P '~ -X  An as AR-modules. Furthermore f is non-singular on X. Let P1 be 
the preimage of X in P. Take x 1 = l , x  z . . . . .  x ,~A  cosets representatives for x A t  
in A, and set C = A  t R/ker X. We have a Frobenius map 

F: AR~S,t><(C • ... • C ) = S , %  C 

where n=lA  :A~], see Proposition 1.6. Since AR is faithful on P/P' by step 1, F 
is injective and we may assume that AR c_ S. % C. Now set 

d = ( S , %  C)t:,<(P 1 x ... x P1) 

where there are n copies of P~ and C x ... x C acts by components on P1 x ... 
x P t and S, permutes the components. Let N be an AiRPt -module  such that 

N[p~ is irreducible, detN(x)=l for x e A t  R and NlztpI)GMIztp~ is homogeneous. 
Take 

I~ - I=N|174  (n times) 

and let (~ act on .h4 with (C x ... x C)t,<(P 1 x ... x P1) by components and S. 
permuting the components of the elementary tensors (if seS,  and 
v t | 1 7 4 1 7 4 1 7 4  we have 

s(vt |174174174 

Now )~ is a ~-module (tensor induced from N) such that Mle . . . . . .  e, is irre- 
ducible. Define 

~o: AR(P~ x ... x P~)~ARP 

r r(y 1, .., y,)) = a r y~ rl ~;' 
. . . .  Y n  " 

~o is a homomorphism onto A R P  and kerq~_~ker(h4rlame . . . . . .  e~)). So we may 
consider M as an ARP-module  and f41e~Mle.  By Gallagher's theorem there is 
L a linear ARP/P-module  such that 

M~-- Jf/ItARe| L. 

Set K =  CA~(P O. By induction, N[A ~ contains a proper  At-direct summand 
which contains an A~/K-regular orbit of linearly independent vectors f2 t. 
Choose A 1-irreducible submodules N~ of N so that N = k O 1 ~ N  1 O. . .  @/Vs. We 
know s > l .  Set O=f21u{N~,.. . ,N~}. A t acts naturally on I2 with one regular 
A~/K-orbit and s other (trivial) orbits. Consider the action of A on. f2 a as in 
Proposition 1.6. We now show that A has a regular orbit on f2 a and at least two 
other orbits. If s >  1, this follows from Proposition 1.6, 3). I fs  = 1 and A~ - K ,  then 
I/'11--8 and 2Ylhl so the result follows from Prop. 1.6, 1). If s = l  and AI+-K , 
then rp=  15 and A~/K is cyclic of order 4 or 8, so by 5) any chief 2-factor of A 
is cyclic. So if 21 ]A:All we have IA: A t l = 2  and At<~A and by Proposition 1.6, 
5), we get the result. Finally if 2XIA :A~I we may apply either Proposition 1.6, 
1) or 1.6, 2) to get the claim in all cases. 
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Define a function f :  f2~N,  with f (v)=v for v s~  1 and O#:f(Ni)eN i (i 
=1 .. . .  ,s). Suppose  (v I . . . .  ,v,) generates a regular orbit in QA, then 

f (vO|174 generates an orbit of linearly independent vectors in ~r under 
A, and different orbits generate linearly independent A-submodules of Ar 
Hence -~[A properly contains the regular A-module and the A-composition length 
of [32IlA]-[kA ] is at least 2. The same is true for MIA~--)VIIA| This con- 
tradiction completes step 3. 

Step 4. We have the proposition. 

Proof From step 1 and step 3 we get that every Abelian normal subgroup of 
AR is cyclic, so by 2) AR contains a self-centralizing cyclic normal subgroup. 
So again step 3 gives that we may apply Proposition 3.1, and for some e and n we have 

CAR(R) ~_ Op.(G(~ , p")). 

By Proposition 3.1 we may assume that Op,(G(e,p")) acts on P. By the Fong- 
Swan theorem we may assume that char(k),~plG(e,p")l. By Theorem 3.2 there is 
a linear Or L and a function v: F~(p")--*M| satisfying 
properties a) and b) of that theorem. Now r[ [F,(p")[, so by 3) GN(e, p",q) is not 
conjugate to a subgroup of CA(R ) for any q a prime dividing IGal(e,p")l. On 
the other hand if ~CAR(R)\F~(p" ) is of prime order, ~ C A ( R  ) and Hx ~' 
= x ~  if x~R and x :# l .  So no conjugate of a GN(e,p",q) in G(e,p") lies in 
CAR(R ). NOW by Proposition 1.4 we get that M]CAR(R ) | L[CAR(R ) contains the CAR( R )- 
homomorphic image of the regular CAR(R)-module under a CAR(R)-ma p with 
kernel of dimension at most 1. The same is true of M[c~R(R ). 

By Proposition 3.3 MIA has an A-submodule isomorphic to kA. Hence the 
A-composition length of [M[A ] -- EkA] is at most 1. We use Proposition 3.3 in what 
follows. We get that [MtcA(R)R]- [kCA(R)R ] has no non-trivial representative 
module, so by condition b) of Theorem 3.2 we get that ~ = - 1  and ICA(R)R [ 
= p " +  1. We also know that r is odd and [A/CA(R)[=r-1 is even. It is easy to 
see that if xeG(1,pZ")\Fl(p ") and x2=l then x does not fix the form o f  
Proposition 3.1, 1). So we have 2[ ]Ac~F 1(/)")[. We know that A is transitive on the 
n0n-trivial irreducible character of CA(R), SO CA(R )___ F_ I(P") and [CA(R) [ = 2. 
We have [A/CA(R)[I2n, so if we set p l=p  2"/('-1), since p is odd, Pl is an odd 
integer and p]*- 1)/2 + 1 = 2r (the last equation follows from [CA(R ) RI = p" + 1). 
Since r is odd we deduce that either p=3 ,  r = 5  and [A/CA(R)I=4 and A is cyc- 
lic of order 8, or p = 5, r =  3 and [A/CA(R)[ = 2 and A is cyclic of order 4. This 
concludes the w o o f  of step 4 of the theorem. 

4. An Application 

Proposition 4.1. Suppose AG is a finite group with G<AG and (1At, IGI) = 1. Let V 
be a kAG-module with char(k),t'lAI such that Cv(A)=O and Cv(Ao)@O for every 
Ao<aA , Ao=#A. Let G I ~_G be A-invariant and W 1 be a kAGl-module such that 
V = W  Aa. Set G o= ~ G~. Assume 

x E A G  
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1) G/Go is solvable; 
2) For any elementary Abelian A-invariant section X of GiG o irreducible un- 

der A, A/CA(X) has a regular orbit on X. 
Then G = G o CG(A). 

Proof. Assume false. Choose a counterexample such that lAG[ is minimal. 
Clearly [G: GII > 1. Take M_~ G 1 a maximal A-invariant proper subgroup of G. 
Take K~_M, K<~AG maximal with these properties. Take H~_G such that 
H/K is an AG-chief factor. Then, since K~_Go, H/K is Abelian and H A M  
<~MHA=AG, so that H(~M=K and HM=G. 

Choose x 0 = l  . . . .  ,x~ representatives for xK  in  H such that CA(xi) 
= CA(XIK): = {aeA: [a, xi]eK }, which is possible because (]At, [G[)= 1. Set num- 
bering so that x l K  is a generator for a regular A/CA(H/K ) orbit on H/K, and 
xo, ..., x s are coset representatives for A M x A  in AG. 

We show that for i=0,  .... 1 we have (AM)X'~A=CA(xi). Clearly 
CA(Xi)~_(AM)X'(~A. Suppose ae(AM)~'nA, then aeA and a=(ao.mo) ~' with 
aoeA and moeM. Since ([A[,pM[)=I there is meM aleA such that aomo---a" ;. 

_ mxl and Now a - a  1 

[a, xi] = a- 1 x~- t a x i = (a 11),~x, x[- 1 a x i = x i- t m- l a; 1 m a xie(AM) ~'. 

So [a, xi]s(AM)X'nH=(AM~H)~'=K. By the choice of x~ in x~K we have 
a~ CA(xi) and so CA(Xi)=(AM)~'nA, as desired. 

Now set W= I/V~ AM. We have V= W A~ and by Mackey 

vIA = wA~IA = ~ x? 1 | WlcA(x,)l A. 
i=0 

Set N=CA(H/K)=CA(X1). Clearly Nm_CA(xi) for i = 0  . . . .  ,s, and N-~A. If VIN 
contains the trivial representation, for some io,O<=io<=S, we have that 
x[ol| WICA(~)IAIN contains the trivial representation and by Mackey, for some 
a~A, a - X | 1 7 4  contains the trivial representation. Since N<~A, 
Xg~| and since x~CG(N ) ( i=0, . . . , s ) ,  Xg~| and therefore 
V[A~ 1A, a contradiction. So VINZ~IN, and hence by hypothesis since N<~A, N 
=A. So CA(H/K)=A and G=MH=MC~(A).  

Now VIA=(I+I)(WIA), SO we may apply the proposition to A,M, W,G~ and 
W~: we get a fortiori M=G1.CM(A) and hence G=G1.C~(A ). Now 
[G,A]~G 1 and [G, AJ~AG,  so Go=~G~=_[G,A j and so G=Go. Ca(A ). This 
completes the proof  of the proposition. 

Definition 4.2. Let G be a solvable group and A act on G. A subgroup G is cal- 
led a generating A-support subgroup of G if: 

1) P.~AG, P ~ G  and P is a p-group for some prime p. 
2) There are AG-invariant subgroups P~ and H such that 

A) P 1 _~ Z(P), P/P~ is elementary Abelian and AG-completely reducible, 
B) H ~ Co(PO, 
C) H/HA C6(P/P1) is elementary Abelian for some prime r, 
D) H acts non-trivially on each H-chief factor of P/P1. 
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We call the A-support of G (denoted suppa(G)) the subgroup generated by 
all subgroups S~G such that S<aAG and either S is Abelian or a generating 
A-support subgroup of G. 

Note. This is related but not equivalent to Berger's notion of L-support. 

Proposition 4.3. Let G be a solvable group and A act on G. Then we have the fol- 
lowing: 

1) (']CG(X)~F(G) (where X runs through the AG-chief factors of suppA(G)). 
In particular Co(supp A (G)) c F(G). 

2) If  N ~_ G and N<a AG, suppa(G ) N/N c supp a (G/N). 
3) If  B ~ A and ([AI, [G[) = 1, suppB(G) _ suppa(G). 
4) CA(suppA(G))___ CA(G/F(G)). 

Proof 1) Suppose false. Then if Y= (-] C~(X), then Y~G so that F(Y)~_F(G) 
and there is xe  Y an r-element acting non-trivially on Or(G ) for r and p distinct 
primes. Take P<aAG, P~_Op(G) minimal such that x acts non-trivially on P. 
Now P is not Abelian; let P1 c P  be such that PI<~AG. We have xeCG(PI) and 
hence[Co(P1),P]c_P and x is not trivial on [CG(P1),P]<~AG. So ECG(PO, P] 
=Pc_ CG(P1) and P1 ~_Z(P). So we have that P/Z(P) is elementary Abelian and 
AG-irreducible. 

We also have 
= 

so we may take H<~ AG, 

Co(Z(P) )_=  H = 

minimal with these properties. Now since G is solvable H/(C~(Z(P)) 
cTC6(P/Z(P)) ) is elementary Abelian. Consider (P/Z(P))IH. By Clifford's Theo- 
rem it is the direct sum of H-irreducibles none trivial. So P is a generating A- 
support subgroup, and x acts non-trivially on the AG-chief factor P/Z(P), a 
contradiction. 

2) is clear from the definition. 
3) If P is a generating A-support subgroup of G, (P/POIG is totally reducible 

and hence, since (]G], [AL)= 1, (P/P1)IBG is also. The rest is clear. 
4) Set S=suppa(G ) and Ao=CA(S ). We have [S, Ao,G]=I and [G,S, Ao] 

= 1, so that [Ao, G] ___ Ca(S)c_F(G) by 1). This shows 4). 

Definition 4.4. Let A be a finite group and n a set of primes. We say that A is 
n-regular if: 

1) n(A)c~n=~; 
2) For any p ~  and any elementary Abelian p-group H on which A acts 

and any section S of AH, if all Abelian normal subgroups of S are cyclic, S has 
a self-centralizing cyclic normal subgroup; 

3) For any section S of A and any chief-factor X of S, S/Cs(X) has a re- 
gular orbit on X; 

4) If {3, 5} ~_~z, any chief 2-factor of A is cyclic and if further 8l [A], either A 
is supersolvable or it has a normal Sylow 2-subgroup; 
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5) No section of A is isomorphic to 2gr%Z s (any r , s > l )  or to GN(e,p",q) 
where peu, n>l  is an integer, qllGal(e,p")[ is a prime and if e + l  u(F~(p")) 
nu:t:  ~. 

Note. Conditions 2), 3) and 4) are always satisfied if A is supersolvable. If A is 
nilpotent, satisfies 1) and is 2gp%TZJree for all p, in view of Prop. 1.2, 7), A is 
u-regular. 

Proposition 4.5. Let AG be a finite group where G<~AG is solvable and V a 
kAG-module. Assume the following: 

1) k is a splitting field for all subgroups of AG; 
2) VIG is homogeneous and faithful (i.e. it is the direct sum of isomorphic 

faithful irreducible k G-modules) ; 
3) Cv(A)=O; 
4) A is {char(k)}uu(G)-regular. 

Then 
Cv(CA(supp A (G))) = 0. 

Proof Assume false. Take a counterexample with lAG[ + dimkV minimal. Set S 
= suppA(G ). 

Step 1. V is irreducible and for each A 1 c A  we have Cv(A1)@O. 

Proof If V is not irreducible, take V* any kAG-chief factor of E Since 
char(k)~/lA], we may replace V by V* and still have the hypothesis of the theo- 
rem and, since dim k V*<dimkV, we have Cv(CA(S))=O , a contradiction. So V 
is irreducible. 

If A 1 c A is such that Cv(A 1)= 0, we have by induction and Proposition 4.3, 3) 

0 = Cv(Cal (suppA, (G))) ___ Cv(Ca(suppa(G))), 

which is a contradiction. 

Step 2. For any Abelian subgroup Cc_G such that C-~AG we have [A, C] =1. 

Proof Since V[~ is homogeneous and ([AI, [G[)= 1, by a well known lemma of 
Glauberman ([12], (13.9)), there is a homogeneous component V 1 __. VIc such 
that N~(V1)~_A. Set GI=NG(V), we have NAa(VI)=AG1. Now since k is a 
splitting field, A centralizes the action of C on I11. By Theorem 2.2, Proposi- 
tion 4.1 and Clifford's Theorem we have 

V=~,xFI|  with xi~CG(A ). 
i 

Hence 
[A, C] = [A, C x'] = [A, C]~' ~ (ker 1/1) x', 

and so [A, C] = 1, as desired. 
Now A does not centralize all generating A-support subgroups of G. Let P 

be a generating A-support subgroup of G not centralized by A, minimal with 
these properties. Choose p, P1, r and H according to the definition. It is clear 
that A centralizes every proper AG-invariant subgroup of P. 
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so, s ince  ("] 
yeCG(A) 

Step 3. P is extraspecial, Z(P)_c Z(AG) and P/Z(P) is AG-irreducible. 

Proof We know that A~_ CAa(Z(P)). Set G~ = Ca(P1) and assume G 1 , G .  We 
have CAa(P1)=AG 1. Now AGI<AG and so [A,G] ~_G i and G=G 1 �9 Ca(A ). 

Choose W a homogeneous component of Vial such that NAa(W)~_A. Set K 
= kera,(W ). By induction we have 

Cw( C a(suppa(G a/g))) = O. 

But V = ~  y~-a| Wwith yi~Ca(A) and we get 
i 

(1) Cv(Ca(suppA(G ffK)) )--0. 

If we set Al={xsA:  [x,P]~_K} we have by Proposition 4.3, 2) and the fact 
that P ~ supp a (G1), 

(2) al  ~_ CA(suppa(G ffK)). 

For any ye Ca(A ) we have 

[ax, P] = [A1, py] = [Aa, P]Y ___ KY, 

KY=I, we have [A1,P-I=I and 

(3) A 1 ~ CA(P ). 

Now (1) (2) and (3) give Cv(CA(P))=O , s o  by step 1, CA(P)=A. This contradic- 
tion shows that P1 ~_Z(AG). 

Since V is irreducible this gives that P1 is cyclic. Since P/Z(P) has exponent 
p and P'~P~ we get [P'l=p. Suppose P'+P~. Let C be a cyclic subgroup of P 
containing P1 maximal with those properties. Then there is K___ P such that K 
c~C=P' and (K, C)=P. Now if x~K we have xP~Kc~C=P ' so x~=z p for 
some zeP 1. Hence xz-l~Ql(P) and P=~21(P)C. If p+2, A acts non-trivially 
on Ol(P ) and, if p=2,P/Ol(P ) is cyclic and A acts trivially on it, so in any 
case P = O I ( P  ). Let h~Cu(P/P1) and xeP with x p = 1. Then xh=x �9 Z, z~P~, with 
(x.z)P=zP=I. So z~P' and CH(P/PO=Cu(P/P'). P=[H,P]Px, so A acts non- 
trivially on [H,P] and [H,P]=P. Now pXIH/Cu(P/P')[ so Pi ~ Cp(H)~P', a 
contradiction. Hence P~ = P'. 

Now since PIP' is AG-completely reducible PIP' is AG-irreducible and Z(P) 
= P' and P is extraspecial as desired. This completes step 3. 

Step 4. We have the proposition. 

Proof By step 3 V]j, is homogeneous. Let U be the irreducible P-module of 
V]v. Since AG is irreducible on P/P', detv(x)= 1 for any xeP. Extend U to an 
AP-module such that detv(x)=l  for xeAP. Further extend U to a projective 
AG-representation with detv(X)= 1 for xeAG. This shows that there is a finite 
central extension A(~ of AG by a p-group such that U is an ordinary AG-mod- 
ule. Hence r~(d)=rc(G). Let R be an A-invariant Sylow r-subgroup of the cor- 
responding extension of H. Since A is rc(G)w {char(k)}-regular, setting Ao=A 
c~ker (U)= CA(PIP'), we have, by Theorem 3.4, 

(*) UJ A contains an A/A o regular direct summand. 
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On the other hand V= U | M where M is an irreducible AG-module. So 

V[A=U[A@M[A, 

and since A o c A ,  we have by step 1, 

lAo-- VIAo= U[Ao @ MIA o. 

Ao<~A and A0_~ker U, so there is some A-irreducible module I in MIA such 
that I[Ao is the sum of irreducible conjugate modules containing the trivial mod- 
ule, i.e. Ao__kerI. Take I* the dual module of I. I*~_U[A by (*), and there- 
fore I* | I G VIA, i.e. Cv(A ) 4: O. This contradiction completes the proof of the 
proposition. 

Theorem 4.6. Let AG be a finite group with G<~ AG solvable and ([A], IG[)=I. Let 
M be an irreducible kAG-module with k af ield and set u=z~(G)u{char(k)}. As- 
sume 

1) M is faithful for G; 
2) B 1 ~ B  2 are normal subgroups of A with [B1/Ba] a prime; 
3) Cu(B1)=0  and CM(B2)4=O; 
4) Either A) or B): 
A) There is 1=t= C~_G, C<~AG Abelian, Cc(A)=I  and for any A 1 c A ,  A 1 is 

re-regular; 
B) B 1 is re-regular. 
Then if we set S=suppA(G), we have 

Cs(B1)= Cs(B2) and C6/F(a)(B1)= C~/r(~)(B2). 

Proof There is no loss in assuming that k is a splitting field for all subgroups 
of" AG, so we do. Take a counterexample with [AG[ minimum. 

Step I. MIG is homogeneous. 

Proof Suppose not. Let A 1 ~ A  and N be an irreducible A 1 G-module such that 
M = N  AG. Let K=kerG(N ). Clearly ~ K a = l .  Write G=G/K and use the barr 

a~A 
convention. For i = 1, 2, by Mackey, we choose aif iA with 

M [~, = NAGIB ' = ~. N a's [A,;~c~BI n*-- ~. N '~s [(A, c~B,)",~ [B,, 
J J 

since B~<aA. So by Frobenius reciprocity CM(BI)=0 iff CN(Alc~Bi)=O. This 
shows that A~ c~B 1 ~ B  2 and that we may apply induction, which together with 
Proposition 4.3, 2) gives: 

(*) CSK/K(B 1 n A 1) = CSK/K(B2 ~ A 1) and 

Ca/F(a) (B 1 ~ A 1) = Ca/r(c) (B2 c~ A 1). 

Now 

I ts(B2) , B1] = [Cs(B2) , (A 1 c~ Bi)B2] _ [ Cs(B 2 ~ At)  , A 1 c~ B1] c K. 
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Since [Cs(B2) , B1] is A-stable, we have Cs(B2)= Cs(BI). Next take F/K=F(ff~). 

[ Co/F(a)(Bz), B1] = [Co/v(G)(B2), (B 1 n A l)BE] 

~_ [C6/F(6)(B 2 ~ A1) , B 1 c~A1] c_F/F(G). 

~0AF ~ is a nilpotent normal subgroup of G (since ~ K " = l )  and therefore 
aeA 

(~F~=F(G).  Since [Ca/v(m(B2),B1] is A-stable, we have CG/v(c,)(B2) 
a6A 

= CG/F(a)(B~). A contradiction. This shows step 1. 

Step 2. We have the proposition. 

Proof. If 4) A) holds, the fact that (tA[, IGI) = 1 and MIo is homogeneous gives 
that A centralizes a non-trivial quotient of C = [A, C], a contradiction. So 4) B) 
holds. By step 1 we may apply Proposition 4.5 to get 

CM(CB, (suppB~ (G))) = 0, 

or afortiori,  by Proposition 4.3, 3), 

c~(c,,(s))=o. 

Since Cu(B2) =I: O, this means B 1 = B 2 CB~ (S). 

[ Cs(B2), B1] = [ Cs(B2), 8 2 CB,(S)] = 1, 

SO Cs(B1)= Cs(B2). 
By Proposition 4.3, 4), if we set H=G/F(G)  we have CBI(S)~_ CBI(H ). We 

get 

[CH(B2) , B1]  : [On(B:), B 2 CR: (H)] = 1, 

so Cn(B2)= C•(B1). This concludes the proof of the theorem. 

Theorem4.7. Let AG be a group where G < A G  is solvable, ([A[,[GD=I and 
C~(A)=I.  Assume that A is supersolvable and every proper subgroup B o A  is 
n(G)-regular (Definition 4.4). Let A o = 1 c A~ c . . .  ~ A, = A  be a chief series of  A. 
Set h the Fitting height o f  G. Then h < n. 

Proof. By Proposition4.3, 1) and the fact that if G#=I then suppa(G)#l ,  if 
h > 0  we may choose an AG chief factor of F 1 of suppa(G ) such that G/CG(F1) 
has Fitting height h - 1 .  If h - l > 0 ,  we may choose F 2 a chief factor of 
suppA(G/C~(Fl) ) such that G/C~(F2) has Fitting height h - 2 .  Continuing this 
process we get AG chief factors of G 
(.) F1, F: . . . . .  F h such that, for i, j =  l, ..., h and j >  i, either F~ is a factor of 
supp A (G/CG(Fi)) or Fj is a factor of (G/Co(Gi))/F(G/Co(Fi)). 

Since Cr,(A)= 1, we may define a map 

f :  {1 . . . .  , h}--*{1 . . . . .  n} 

f( i )=smallest  k such that Cv,(Ak)= 1. 
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If k=f( i )=f ( j )  and, say, j>i, we have Ak/Ak_ 1 of prime order (since A is 
supersolvable) and therefore Theorem 4.6, the fact that ([a[, ]G[) = 1 and (.) give 

C1%(Ak) = CFj(Ak- 1), 

a contradiction. So f is one-to-one and h < n as required. 
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