
Math. Systems Theory 26, 103-129 (1993) Mathematical
Systems Theory
�9 1993 Springer-Verlag New York Inc.

The Failure Discovery Problem*

Vassos Hadzilacos 1 and Joseph Y. Halpern 2

tComputer Systems Research Institute, University of Toronto,
6 King's College Road, Toronto, Ontario M5S 1A1, Canada
vassos@csri.toronto.edu

2IBM Almaden Research Center, Department K53/802,
650 Harry Road, San Jose, CA 95120-6099, USA
halpern @almaden.ibm.corn

Abstract. We define a simple variant of the Byzantine agreement (BA)
problem, called the Failure Discovery (FD) problem, that roughly speaking,
amounts to reaching BA provided that no failures are discovered. We show
how a protocol for FD can be extended to one for BA, with no message
overhead in the failure-free runs. We also show that, for so-called benion
failures, if the FD protocol satisfies an additional property, the message-
preserving extension to a BA protocol can be accomplished with minimal time
overhead in the failure-free runs. Our results show that FD is a useful building
block for BA; indeed, it has been used in this way in a companion paper
(Hadzilacos and Halpern, 1993).

1. Motivation and Overview

Practical fault-tolerant protocols are sometimes composed of two subprotocols:
one that ensures correct operation in the absence of failures, and another invoked
only when failures do, in fact, occur. The main motivation for such a decomposi-
tion is that the first subprotocol is much simpler and efficient than the second. It
should be emphasized that the protocol that "works if there are no failures" does
have some obligations to fulfill in case there are failures: it must be capable of
detecting that failures have occurred and somehow ensuring that the failure-
handling subprotocol is invoked. Arguably the best known protocols that are

* The work of V. Hadzilacos was supported, in part, by a grant from the Natural Sciences and
En~,ineerin~ Research Council of Canada.

104 v. Hadzilacos and J. Y. Halpern

structured in this manner are atomic commitment protocols (see Skeen, 1982;
Bernstein et al., 1987). Another example is the missing writes protocol of Eager
and Sevcik (1983) for managing replicated copies of data. Also, similar in spirit
are the so-called blast protocols for data transfer (see Zwaenepoel, 1985). In all
cases the common theme is cautious optimism: the protocols assume failure-free
operation, but provide the mechanisms that can handle failures when these occur.

In our work on the complexity of the Byzantine Agreement (BA) problem in
the absence of failures (see Hadzilacos and Halpern, 1993), we also found it
convenient to decompose the BA protocols in this fashion. This has led us to
define the Failure Discovery (FD) problem, which is the formal statement of the
problem that the first subprotocol must solve in this case. In the next section we
given the precise specification of the FD problem, some simple protocols that solve
it, and compare it with BA. We then show how an FD protocol can be extended
to a full-fledged BA protocol without any message overhead and, for benign
failures, with only a small time overhead. Furthermore, we show that, under
certain additional assumptions, this small time overhead is necessary if we wish
to maintain zero message overhead. These results are formulated and discussed
in Section 3, while their proofs can be found in Section 4.

Our results suggest that FD is, indeed, the right way to abstract the problem
of "solving BA when there are no failures." They imply that if we wish to design
BA protocols that are message-optimal in the absence of failures, it is enough to
design FD protocols that are message-optimal--a conceptually simpler task. If
the BA protocols must also be as time-efficient as possible (subject to being
message-optimal), then our results also show that, at least for benign failures, it
is enough to design a message-optimal FD protocol that is as time-efficient as
possible. We use the results of this paper in precisely this manner in a companion
paper where we investigate the complexity of BA in the absence of failures
(Hadzilacos and Halpern, 1993), a problem which, in fact, motivated this work.

We caution the reader that our Failure Discovery problem is quite different
from failure detection, a term that has been used with two related, but distinct,
meanings in recent literature. As an algorithmic technique, failure detection refers
to the identification and "isolation" of faulty processes in a distributed computa-
tion. This technique has been used in the design of efficient protocols for BA (for
example, Bar-Noy et al., 1987; Moses and Waarts, 1988) and other problems (for
example, Dwork, 1990). Also, Chandra and Toueg (1991) and Ricciardi and Birman
(1991) use the term "failure detector" to refer to a distributed oracle that provides
the processes of an asynchronous system with hints about which processes are
suspected to be faulty.

2. The F D Problem

The BA problem (Pease et aL, 1980; Lamport et al., 1982; Fisher, 1983) concerns
a network of n processes consisting of a distinguished process, the sender, and
n - 1 receivers. The sender has an initial value which it wishes to broadcast to
the receivers. The complication is that some of the processes (possibly including

The Failure Discovery Problem 105

the sender) may be faulty, i.e., may not exhibit the behavior specified by the
algorithm they are supposed to execute. The exact number or identity of the faulty
processes is not known a priori. The BA problem is to design a protocol, i.e., an
algorithm for each process, which will ensure the following three conditions in the
presence of up to t faulty processes, where t is a fixed parameter between 1 and
n - 2 :

Termination. Every correct process eventually chooses a decision value.

Agreement. No two correct processes choose different decision values.

Validity. If the sender is correct, then no correct process chooses a value different
from the sender's initial value.

Regarding the restriction that t _< n - 2, we note that a BA protocol t h a t
tolerates n - 2 failures, trivially tolerates n - 1 and n failures: the only additional
runs we get if more than n - 2 processes fail are those in which at most one process
is correct, in which case it can decide arbitrarily (or its initial value, if it is the
sender) without endangering the satisfaction of the BA properties. In this sense, the
problem is nontrivial for t ___ n - 2, and because many results require a special
formulation if t is n - 1 or n, we eschew these uninteresting cases and assume
throughout that n > t + 2.

Because it is not known which processes are faulty, designing a correct BA
protocol is subtle. Most of the difficulty is due to having to worry about the
possibility of failures. Since, in many applications, failures are quite rare a recent
trend has been to investigate the difficulty of BA and some of its variants in the
special case when no failures occur (see Amdur et al., 1992; Attiya et al., 1990;
Hadzilacos and Halpern, 1993). To facilitate such investigations, we introduce here
a simpler variant of BA that we call Failure Discovery (FD). Roughly speaking, a
protocol for F D is one that solves BA provided that no failures are discovered.

To proceed more formally we need to describe a model of computation and
to establish some terminology. We use what has become the standard model of
computat ion for the BA problem: The interconnection network is fully connected
(so any two processes can exchange messages directly), a process knows the identity
of the sender of each message it receives, and system computations proceed in
successive synchronous rounds. In each round every process can send messages to
other processes and receives all messages sent to it by other processes in that
round. A run of a protocol is simply a sequence of rounds. The view o f a process
p in (round i of) run r consists of the sequence of the sets of messages that p
receives in each round of r (up to and including round t). In the case of the sender,
the view also includes the initial value. We say t h a t p cannot distinguish runs r and
r' (in round i) if p has the same view in the two runs (in round i). Since the view
of a process encapsulates all the information available to it, the process' ac-
t i o n s - t h e messages it sends, whether to decide and whether to h a l t M e p e n d
exclusively on its view. Thus, if p cannot distinguish two runs in round i, it will
send the same messages in round i + 1 in both runs. Also, if it decides (or halts)

106 V. Hadzilacos and J, Y. Halpern

in round i in one run, it will decide the same value (or halt) in round i of the other
run. A run is called failure-free if no process is faulty in it. We say that a process
p discovers a failure in (round i of) run r i f p can distinguish r f rom all failure-free
runs (in round 0.1

More formally, then, the F D prob lem is to devise a protocol that will ensure
the following propert ies in the presence of up to t faulty processes:

Weak Termination. Each correct process eventually either chooses a decision
value or discovers a failure.

Weak Agreement. If no correct process discovers a failure, then Agreement holds.

Weak Validity. If no correct process discovers a failure, then Validity holds.

The difficulty of solving the BA prob lem can be quite sensitive to the types
of failures that can occur. N o t surprisingly, the F D prob lem is similarly sensitive
to the types of failures that can occur. We focus on four failure types here:

(a) Crash failures: A faulty process stops premature ly ; once it has stopped,
it sends no more messages. The p remature s topping can occur at any
point during a round. In part icular, a process m a y stop after having sent
some but not all messages it is supposed to send in a round.

(b) Sendin9 omission failures: A process m a y fail to send one or more
messages prescribed by its algori thm.

(c) General omission failures: A process m a y fail to send one or more
messages prescribed by its a lgor i thm and/or m a y fail to receive one or
more messages sent to it.

(d) Arbitrary failures: Faul ty processes can act arbitrarily, wi thout any
restriction to their possible behavior.

It is easy to see that crash failures can be viewed as a special case of sending
omission failures (where, f rom a certain point on, a faulty process omits to send
all messages), sending omissions failures are a special case of general omission
failures, and general omission failures are a special case of a rb i t ra ry failures. We
refer to crash, sending, and general omission failures collectively as benign failures.

An apprecia t ion of how simple the F D prob lem is can be gained by considering
the following simple protocol , which achieves F D in the case of general omission
failures (and, afortiori, in the case of crash failures and sending omission failures):
The sender sends its value to each receiver. In round 1 each receiver decides on
the sender 's value if it gets a message f rom the sender, otherwise it discovers a
failure. The sender decides on its value. We leave it to the reader to check that
this protocol solves the F D prob lem in the case of general omission failures. For
future reference, we call this protocol D o .

1 It is interesting to note that by this definition, a process discovers a failure iff it knows that
some process is faulty, where we use the phrase "a process knows a fact" in the precise sense of
knowledge theory in distributed systems (see Halpern and Moses, 1990).

The Failure Discovery Problem 107

This protocol does not solve the FD problem in the case of arbitrary failures,
since, in this case, a faulty sender may send different values to different receivers.
However, the following two-round protocol does the trick: In round 1, the sender
sends its value to each receiver. In round 2 each receiver tells the other receivers
what value it got from the sender. At the end of round 2, if a receiver got a value
v from the sender, and was informed by each of the other receivers that they also
got v from the sender, it decides on v; otherwise it discovers a failure. The sender
decides on its value. We leave it to the reader to check that this protocol solves
the FD problem in the case of arbitrary failures. For future reference, we call this
protocol D 1 .

Protocols D O and D1 already show that the FD problem is qualitatively easier
than BA. For example, it is well known that BA cannot be solved in the case of
arbitrary failures unless n > 3t, and that it requires t + 1 rounds even in the case
of crash failures (see the survey by Fischer (1983) for details and further references).
As shown by protocol D1, FD can be solved for arbitrary values of n and t even
if we allow arbitrary failures. Protocol D O shows that FD in the case of general
omission failures (and hence also crash failures) can be solved in one round;
protocol D~ shows that it can be solved in the case of arbitrary failures in two
rounds. (It is easy to see that it cannot be solved in one round in the case of
arbitrary failures.)

Another difference regarding the round complexity of FD and BA problems
is revealed by the following.

Proposition 1. Let D be an FD protocol so that all processes decide in M rounds
in the failure-free runs. Then we can effectively transform D to an FD protocol D'
that tolerates the same type o f failures as D such that all correct processes halt in
M rounds in all runs o f D'.

Proof Consider the situation at the end of round M in a run r of D. If a correct
process cannot distinguish r from a failure-free run of D where it decides v, then
it must decide v by the end of round M in r (since all correct processes decide by
the end of round M in failure-free runs of D). If a correct process p can
distinguish r from all failure-free runs of D, then p knows that there has been a
failure in r and, by definition, p discovers a failure in r. Thus, it follows that
protocol D', where processes proceed just as D up to the end of round M, and
then halt, achieves FD. []

A result like this does not hold for BA protocols. For example, the early-stopping
protocol for crash failures of Lamport and Fischer (1982) (see also Fischer, 1983)
has the property that in the failure-free runs, all processes decide in the first round
and halt in the second. Yet, as mentioned before, in any BA protocol for crash
failures there must be at least one run that requires t + 1 rounds.

Our main motivation for considering FD is to use message-optimal FD
protocols to help us construct BA protocols that are message-optimal in the
failure-free runs. The protocols D O and D1 described above are not message-
optimal. We now present two message-optimal FD protocols that tolerate general

108 V. Hadzilacos and J. Y. Halpern

sender

Fig. 1.

Rv B

0 0 0

Protocol GOFl- - fa i lu re - f ree run with initial value v~ {0, 1}.

omission failures designed for the special case where there are only two possible
initial values, 0 and 1. These protocols, whose correctness and message optimality
is proved in Hadzilacos and Halpern (1993), will be useful in our later discussion.

In the first protocol, GOF1, we partition the n - 1 receivers into three sets:
B, R o, and R1, where B has size t. We arrange the processes in R v, v = 0, 1, in
linear order, which we refer to as a chain. If the sender has initial value v, in round
1 it sends the message v only to the first process in Rv in the chain. That message
is passed along the chain of processes in R~. The last process in that chain
broadcasts v to all the processes in B. At the end of round max([Rol, IR 1 l) + 1, a
process in R~ decides v if it receives a message, and decides ~ if it receives no
message; a process in B decides v if it receives a message containing v and discovers
a failure if it receives no message. The sender decides its initial value. The protocol
is illustrated in Figure 1.

In the second protocol, GOF2v, we partition the set of receivers into two sets:
B and R~, where IBI = t - 1. 2 The processes in each of these sets are arranged in
a linear chain. The protocol is illustrated in Figure 2. If the sender has initial value
v, it sends v through the B-chain; the message is then passed along the R~-chain and
the last process in Rv broadcasts the message to all the processes in B for a second
time, as well as to the sender. If the sender has initial value ~, no message is
sent by any process! At the end of round IBI + IR~I + 1, processes decide as
follows: A process in R v decides v if it has received a message and decides ~ if it

sender 0

B R v %1
t-I

Fig. 2. Protocol GOF2~--failure-free run with initial value v.

2 This is actually a special case of the protocol G O F 2 v as defined in Hadzilacos and Halpern
(1993), but it is this part icular instance of the protocol that is the most interesting.

The Failure Discovery Problem 109

received no message. A process in B decides v if it received two messages containing
v, decides ~ if it received no message, and discovers a failure if it received only
one message containing v. As for the sender, if its initial value is ~, then it simply
decides ~. If its value is v, then it decides v if it received a message in round
[BI + [Rvl + 1; if it received no such message it discovers a failure.

We conclude this section by comparing the FD problem with the Crusader
Agreement problem of Dolev (1982), which in some respects is similar to FD.
Rather than requiring that the conditions of BA hold provided that no failures
are discovered, as in FD, in Crusader Agreement the conditions of BA must hold
provided that the failure of the sender is not discovered. More precisely, a protocol
for Crusader Agreement must satisfy Termination, Validity, and the following
weakening of Agreement.

Agreement'. No two correct processes decide different values unless at least one
of them discovers that the sender is faulty--i.e., can distinguish the run from all
runs in which the sender is correct.

It is immediate from the definition that a Crusader Agreement protocol is, a
fortiori, an FD protocol. The converse is not always true. GOF1 and G O F 2 are
examples of FD protocols that do not solve the Crusader Agreement problem.
On the other hand, Do solves the Crusader problem for crash failures, since a
process that discovers a failure in fact discovers the sender's failure! a Also, a
modification of D 1 achieves Crusader Agreement for arbitrary failures, if n > 3t.
(We leave this as an exercise.) However, for arbitrary failures, the requirement
n > 3t is necessary for any protocol that solves Crusader Agreement--as it is for
any protocol that solves BA. In contrast, as D , shows, FD can be solved for any
value of n.

3. Extending an F D Protocol to a BA Protocol

We say that a protocol A is an extension of a protocol B, or that A extends B, if
every run of A has a prefix in which precisely the same messages are sent and
received as in a run of B, and, for every run r of B, there is a run of A that has
a prefix in which precisely the same messages are sent and received as in r. We
are interested in constructing BA protocols that extend FD protocols without
sending any extra messages in the failure-free runs. This captures the intuition that
to solve BA we start by running an FD protocol, and then use the BA protocol
only in case a failure is discovered.

An FD protocol is calledpure if it has the following property: a process decides
under the protocol only in runs which it cannot distinguish from some failure-free

3 Actually, to be perfectly accurate, to solve Crusader Agreement we must slightly modify D O
since we are now required to satisfy the Termination property. Thus, a process that discovers the
sender's failure chooses an arbitrary decision value.

110 V. Hadzilacos and J. Y. Halpern

run. In other words, if a process knows that a failure has occurred, it simply
discovers a failure and does not decide. All FD protocols that we have described
are pure. Given an FD protocol D that is not pure, we can construct a pure FD
protocol D' that tolerates the same type of failures as D without adding any
messages or rounds merely by preventing a process from deciding in a run which
it can distinguish from all failure-free runs. Since our results concern the extension
of FD protocols to BA protocols with minimal message and round overhead, we
can assume, without loss of generality, that we are dealing with pure FD protocols.
This simplifies some technical definitions.

Our first theorem states that an FD protocol can be extended to a BA protocol
with no message overhead in the failure-free runs, regardless of the type of failures.
We call a BA protocol A special if, in all runs of A where the sender sends no
messages and all other processes are correct, no messages are sent at all. Special
BA protocols are known for all types of failures (see Srikanth and Toueg (1987)
for arbitrary failures, and Hadzilacos (1984) for benign failures). We say that a
protocol halts in M rounds if all correct processes halt by the end of round M in
all its runs. (In the case of FD protocols, by Proposition 1, we may assume that
this is the same as the number of rounds for processes to decide in the failure-free
runs.)

Theorem 1. Let D be an FD protocol that tolerates some failure type in whose
failure-free runs processes halt within M rounds, and let A be a special BA protocol
that tolerates the same failure type in whose runs (not only the failure-free ones!)
correct processes halt within N rounds. Then there is an effective way of combining
D and A to construct a BA protocol B that extends D and tolerates the same failure
type. Moreover, in each failure-free run o f B there are no messages sent other than
those sent by D, and all processes halt by round M + N.

We defer the proof (and the proof of all other theorems in this section) to the next
section. The significance of this theorem lies in that it reduces the task of devising
a BA protocol which is message efficient in the failure-free runs to the (simpler)
task of devising an FD protocol which is efficient in the same way.

The transformation from an FD to a BA protocol in Theorem 1, although
message-preserving in the failure-free runs, is far from being round-preserving.
Since, as we mentioned above, there is no BA protocol that terminates in less than
t + 1 rounds even in the case of crash failures, this transformation will add at
least t + 1 rounds to the FD protocol, even in the failure-free runs.

Obviously, this round overhead is not always necessary when we extend an
FD protocol to a BA protocol. For example, if the FD protocol D already happens
to be a BA protocol it can be "extended" to a BA protocol with zero message
and round overhead! Less trivial examples also exist. For instance, the early-
stopping BA protocol of Lamport and Fischer (1982) (see also Fisher, 1983) extends
D o so that in failure-free runs processes decide in round 1 and halt in round 2.
However, such efficient extensions are ad hoc. What we would like is a general way
of transforming an FD protocol to a BA protocol which preserves the number of
messages but introduces only minimal round overhead in the failure-free runs. It

The Failure Discovery Problem 111

turns out that in the case of benign failures we can do this, provided our FD
protocol satisfies an extra property. In order to understand this property, we must
consider the Uniform Byzantine Agreement (UBA) problem, as defined by Neiger
and Toueg (1990). A protocol for UBA must satisfy Termination and Validity,
and the following strengthening of Agreement:

Uniform Agreement. No two processes (whether correct or faulty) choose different
decision values.

Uniform Agreement is a property of considerable interest. It has been singled
out as a key difference between BA and the Atomic Commitment problem
(Hadzilacos, 1986). Neiger and Toueg (1990) provide UBA protocols for all types
of benign failures and show that, in the case of 9eneral omission failures, UBA
can be achieved only if n > 2t. In the case of arbitrary failures, the behavior of
faulty processes is completely unconstrained and thus we cannot hope to satisfy
Uniform Agreement.

Here we consider Uniform FD (UFD), which bears the same relationship to
UBA as FD does to BA. Thus, a protocol for U F D satisfies Weak Termination,
Weak Validity, and

Weak Uniform Agreement. If no correct process discovers a failure, then no two
processes (whether correct or faulty) choose different decision values.

Weak Uniform Agreement cannot be achieved if we allow arbitrary failures
(with or without authentication). This is so because in this case a process can
behave correctly as far as the messages it sends are concerned, but then can choose
an arbitrary decision value, quite inconsistent with the messages it sent! Thus, we
only study U F D for benign failures. In this case U F D can be achieved. Indeed,
all the message-optimal FD protocols for benign failures given in Hadzilacos and
Halpern (1993), including GOF1 and GOF2v, satisfy this property, as does Do.
This shows that, unlike UBA, we do not require that n > 2t in order to achieve
U F D in the case of general omission failures.

As we now show, U F D protocols can be extended to BA protocols with zero
message overhead and an overhead of at most two rounds in the failure-free runs.
The exact amount of round overhead for processes to decide and halt depends on
the failure type we consider, and whether the protocol satisfies one of two more
technical properties.

We say that a U F D protocol D is safe if there is no run of D in which Validity
or Uniform Agreement is violated. (This does not mean that the protocol is a
UBA protocol, since Termination may still be violated!) For example, protocol
D o is safe, as in GOF1 in the special case n = t + 2. On the other hand, GOF1
is not safe if n > t + 2, and GOF2v is not safe for all values of n, We say that the
sender cannot discover a failure in D if there is no run of D in which the sender
discovers a failure. For example, the sender cannot discover a failure in D o or
GOF1, but it can discover a failure in G O F 2 v.

112 V. Hadzilacos and J. Y. Halpern

Table 1. The protocols of Theorem 2.

Round of Round of
BA protocol Type of failure Conditions on decision (in termination (in
constructed tolerated UFD protocol D failure-free runs) failure-free runs)

B 1 Any benign Safe M M + 1
B 2 ~ Crash -[N~ M + 1 M + 1

t Any omission ~ Sender cannot
I~ discover failure

B 3 Sending omission None M + 1 M + 2
B 4 General omission n > 2t M + 2 M + 2

Because the distinction between deciding and halting features prominent ly in
Theorem 2, it is impor tant to clarify this issue. When we measure the round
complexity of a BA protocol, we m a y be interested in the number of rounds needed
for correct processes to decide or to halt. The Terminat ion proper ty implies that
a correct process cannot halt unless it has decided, since by definition, a process
cannot do anything after it has halted! However, a process cannot necessarily halt
as soon as it decides, for its subsequent participation may be required to ensure
that other correct processes reach the same decision.

Theorem 2 is somewhat awkward to state. To facilitate its comprehension we
have summarized it in Table 1.

Theorem 2. Let D be a UFD protocol that tolerates some type o f benign failure
and halts in M rounds. Then there is an effective way to construct protocols B1, Bz,
B 3, and B 4, each o f which is an extension o f D, such that in each failure-free run
of B 1, B2, B3, and B4, there are no messages other than those sent by D. In addition:

(a) In the failure-free runs of B1, all processes decide in M rounds and halts in
M + 1 rounds; i f D is safe, then B 1 is a BA protocol that tolerates the
same type o f failures as D.

(b) In the failure-free runs ofBz, all processes decide and halt in M + 1 rounds.
Moreover, i f D tolerates crash failures, then B 2 is a BA protocol that
tolerates crash failures; i f D tolerates sending (resp. general) omission
failures and the sender cannot discover a failure in D, then B 2 is a BA
protocol tolerating sending (resp. general) omission failures.

(c) In the failure-free runs o f B3, all processes decide in M + 1 rounds and halt in
M + 2 rounds. I f D tolerates sending omission failures, then B 3 is a BA
protocol tolerating sending omission failures (even i f the sender can discover
a failure in D).

(d) In the failure-free runs ofB,~, all processes decide and halt in M + 2 rounds.
I f n > 2t and D tolerates general omission failures, then B 4 is a BA protocol
tolerating general omission failures (even i f the sender can discover a failure
in D).

It is natural to ask whether the conditions we require of D are necessary for
achieving the round overhead in each part of Theorem 2. For example, in part

The Failure Discovery Problem 113

(a), if the given U F D protocol is not safe, must processes delay their decision until
round M + 1 in any extension of the U F D protocol that solves BA, or could they
still decide in round M? Similar questions arise regarding the other parts. In
Theorem 3 we give a partial affirmative answer to these questions. For example,
there is a subclass of nonsafe FD protocols, called "nondecisive," for which we
can show that, in any BA protocol that extends a nondecisive protocol, processes
cannot decide before round M + I in the failure-free runs. Analogous results show
that the round overhead in the other parts of Theorem 2 is necessary, at least
when the FD protocols we wish to extend to BA protocols satisfy certain
properties, to which we now turn our attention.

In protocol B1, processes defer their decision for one round after the termina-
tion of D. We now define a subclass of nonsafe FD protocols for which this delay
is provably necessary. Recall that an F D protocol is not safe if Uniform Agreement
or Validity is violated in some run. An FD protocol is nondeeisive if Agreement
or Validity is violated in some run. It is immediate that a nondecisive protocol is
not safe.

For example, GOF1 is nondecisive (and therefore not safe) if n > t + 3. For,
in that case there are at least two processes, s a y p and q, in Ro w R1. Let v~{0, 1)
be such that p ~ Rv. If q is also in R v suppose, without loss of generality, that p
precedes q in the Rv-chain. Consider the run in which the sender has initial value
v and the only faulty process is p, which omits to pass the message containing v
on to the next process in the chain. Thus in this run q will decide ~, in violation
of Validity. If q ~ R~, consider the run in which the sender has initial value v and
the predecessor p ' o f p is the only faulty process and omits to pass the message v
on to p. Since neither p nor q receive a message in this run, they will decide ~ and
v, respectively, so we have a violation of Agreement.

Next, we define three related and increasingly restricted subclasses of FD
protocols in which the sender can discover a failure, for which we can show that
the round overhead for deciding and halting exhibited by B 3 and B4, as well as
the requirement n > 2t for the latter, are necessary. We say that an FD protocol
D is weakly sender-dependent if there exist two runs r and r' of D with the following
properties, where v is any decision value:

SD1. In r the sender is correct, has initial value v, and discovers a failure; no
other correct process discovers a failure; and Validity is violated (i.e.,
some correct process decides v' # v).

SD2. In r ' the sender is faulty, has initial value v and discovers a failure; all
other processes are correct and do not discover a failure.

SD3. No process except possibly those that are faulty in r can distinguish r
and r'.

An FD protocol is sender-dependent if it satisfies SD1, SD2, and a stronger version
of SD3, where all processes (including those that are faulty in r) cannot distinguish
r and r'; i.e. it satisfies

SD3'. No process can distinguish r and r'.

114 v. Hadzilacos and J. Y. Halpern

Finally, an FD protocol is strongly sender-dependent if it is sender-dependent
and, in addition, SD1 is strengthened to

SDI' . SD1 holds and the number of faulty processes in r is at most t - 1.

For example, G O F 2 v is weakly sender-dependent. To see this, let p be the
process to which the sender sends its initial value when that value is v. Let r be
the run in which the sender has initial value v, and the only faulty process is p,
which does not pass on the sender's message, and let r' be the run in which the
sender has initial value v but omits to send the message to p. It is straightforward
to verify that these two runs satisfy SD1-SD3. Furthermore, in the case of general
omission failures, GOF2 v is actually sender-dependent (not just weakly so). To see
this, slightly modify the run r described previously, so that p omits to receive the
message sent to it by the sender (rather than omitting to send a message to the
next process in the chain). Note that now not even p can tell the difference between
r and r' (whereas in the scenario described before it could, as in r it receives a
message from the sender while in r' it does not). In fact, if t > 1, then the scenario
we just described actually shows that GOF2v is strongly sender-dependent, since
r has only one faulty process, p. If t = 1, then no protocol can be strongly
sender-dependent as, in that case, the definition would require the existence of a
run r with at most t - 1 = 0 faulty processes in which the sender discovers a
failure, which is impossible!

Theorem 3. Suppose D is an FD protocol that tolerates some type of benign failure
and halts in M rounds, and B is an extension of D that achieves BA and tolerates
the same type of failures, such that the only messaoes sent in the failure-free runs
o f B are those sent by D. Then:

(a) I f D is nondecisive, then some process does not decide before round M + 1
in some failure-free run o f B.

(b) I f D is weakly sender-dependent, and D and B tolerate sendin9 omission
failures, then some process does not halt before round M + 2 in some
failure-free run of B.

(c) I f D is sender-dependent, and D and B tolerate 9eneral omission failures,
then some process does not decide before round M + 2 in some failure-free
run of B.

(d) I f D is strongly sender-dependent, D and B tolerate 9eneral omission
failures, all processes decide by round M + 2 in all failure-free runs o f B,
and n > 4, then we must have n > 2t.

Notice that in part (d) of the theorem, the assumption that the correct processes
decide in M + 2 is necessary. If we do not put constraints on when the correct
processes decide, then it follows from Theorem 1 that we do not need to assume
n > 2t.

Theorem 3 is useful, despite the seemingly esoteric nature of the properties
for which we were able to show that the round overhead of the constructions in
Theorem 2 is necessary. In Hadzilaeos and Halpern (1993) we present lower
bounds on the number of rounds required by message-optimal FD protocols. Our
proofs yield enough information about the structure of minimal-round message-

The Failure Discovery Problem 115

optimal protocols that we can actually show that such protocols must have the
properties mentioned in Theorem 3. Thus, we can use this theorem to establish
that the constructions of Theorem 2, if applied to our minimal-round message-
optimal FD protocols, yields BA protocols that are message-optimal and have
minimal round complexity in the failure-free runs.

We conclude this section with an interesting aside, concerning the extension
of UF D protocols to protocols that solve Weak Byzantine Agreement (WBA), a
variation of BA defined by Lamport (1983). A protocol that solves the WBA
problem must satisfy Termination, Agreement, and the following weakening of
Validity.

Weak Validity'. If there are no failures, then Validity holds.

It turns out that all the intricacies of extending a UFD protocol to a BA protocol
exhibited in Theorem 2 are really due to the need to ensure the Validity property.
If instead of BA we are interested in WBA we have

Theorem 4. Let D be a UFD protocol that tolerates any type of benign failure and
halts in M rounds. Then there is an effective way to extend D to a WBA protocol
B that tolerates the same type o f failures so that, in each failure-free run o f B, there
are no messages other than those sent by D, and all processes decide in round M
and halt in round M + 1.

Note that there are no restrictions on D beyond the fact that it is a U F D protocol:
it need not be safe, and the sender may discover failures.

4. Proofs of Theorems

The following simple lemma is useful in the proofs of Theorems 1 and 2.

l_emma 1. Let D be an FD (resp. UFD) protocol that tolerates at least crash
failures, and let r be a run o f D in which at most t processes are faulty or discover
a failure. Then Agreement (resp. Uniform Agreement) is not violated in r. Further-
more, i f the sender does not discover a failure, Validity is not violated (resp. no
process decides a value other than the sender's initial value) in r.

Proof. Suppose, by way of contradiction, that Agreement (resp. Uniform Agree-
ment) is violated in r. Consider the run r' which is just like r except that in the
last round all processes that discover a failure in r crash after sending their
messages (if any). Because D is a (pure) FD (or UFD) protocol, any process that
is correct and decides in r is also correct and decides (indeed, on the same value)
in r'. Thus, r' is a run of D with at most t faulty processes, in which no correct
process discovers a failure, yet Agreement (resp. Uniform Agreement) is violated,
contradicting that D is an FD (resp. UFD) protocol. Now suppose that the sender
does not discover a failure. This means that the sender decides its initial value,
say v. Suppose, by way of contradiction, that Validity is violated. This means that

116 V. Hadzilacos and J. Y. Halpern

the sender is correct but some correct receiver p decides v' :~ v, which is a violation
of Agreement, which we just proved is impossible. (In case of Uniformity, suppose,
by way of contradiction, that some process decides v' ~ v. This violates Uniform
Agreement, which we just proved is impossible.) []

Proof of Theorem 1. The basic idea of this construction is very simple: The FD
protocol D is used first and the BA protocol A is used as a backup mechanism only
if necessary--i.e., if some process discovers a failure. For this to work properly,
however, there must be agreement among the (correct) processes whether A should
be used as a backup mechanism. We can achieve such agreement by using A!
This, of course, seems circular: Use A to determine if A should be used. As we
shall see shortly, special protocols allow us to avoid this circularity.

We now explain how to construct B using D and A. Without loss of generality,
let 0 be the decision value of correct processes in the run of A in which the sender
sends no messages and all other receivers are correct. Note that because A is
special, no messages are sent in this run. In B there is a designated sender with
an initial value it wishes to broadcast to n - 1 receivers. Each process p works
as follows in B:

In rounds 1 through M, p proceeds just as it does in D, playing the role of
the sender with initial value v if and only if it is the sender in B with initial value v.

During rounds M + 1 through M + N, p is involved in n simultaneous
invocations of A, acting as the sender in exactly one of these invocations as
follows:

If, by the end of protocol D (i.e., by round M), p has discovered a failure,
then in round M + 1 it invokes A to broadcast this fact. It does this by
using 1 as its initial value. On the other hand, i fp has reached a decision
at the end of D, then it does nothing in the invocation of A in which it
is the sender. By Termination and Agreement of A, by round M + N all
correct processes will agree on whether p discovered a failure or not.
Furthermore, by Termination and Validity of A, if p is correct and
discovered a failure, then all correct processes will agree that it did.

Thus, by the end of round M + N, process p will find itself with n decisions
for the equally many invocations of A in which it participated. There are two cases.

(1) If all of these decisions are 0, then no correct process discovered a failure
at the end of protocol D. In this case p will simply adopt its decision at
the end of D as its final decision for B. (Note that in this case, by Weak
Termination of D, and Termination and Validity ofA, p must have reached
a decision at the end of D.)

(2) If, on the other hand, any one of the decisions is not 0, then p will
participate in yet another invocation of A. However, in this case p will
play the role of the sender iff it is the sender in B and, in that case, it will
use as its initial value in this invocation of A the initial value that it wishes
to broadcast in B (and which it used in D). By the end of round M + 2N, p
will adopt its decision in this invocation of A as its final decision for B.

The Failure Discovery Problem 117

To show that the constructed protocol B is a correct BA protocol we consider
two cases.

Case 1. Some process p that is correct in the entire execution of B decides a
value other than 0 in at least one of the n invocations of A in which it participated
in rounds M + 1 through M + N. By Agreement for A, all correct processes will
decide a value other than 0 in that invocation of A. Thus, by (2), all correct
processes will participate in the final invocation of A (in rounds M + N + 1
through M + 2N) and because A is a correct BA protocol they will choose the
same decision value. If the sender is correct and has initial value v, they will all
decide v. So B satisfies the BA properties in this case.

Case 2. Every process p that is correct in the entire execution of B decides 0 in
all n invocations of A in which it participated in rounds M + 1 through M + N.
Thus, at the end of round M + N all correct processes adopt their decision under
D as their final decision Under B and halt. It suffices to show that the decisions
reached under D at the end of round M satisfy Agreement and, if the sender is
correct throughout B, then they also satisfy Validity. At most t processes are faulty
or discover a failure in the execution of D in the first M rounds. (Otherwise, there
would be some process that discovers a failure in D which remains correct
throughout B. Such a process would invoke A with initial value 1 in round M + 1.
By Termination and Validity of A, all correct processes would then decide 1 in at
least that invocation of A, contradicting the hypothesis of Case 2.) By Lemma 1,
the decisions reached under D satisfy Agreement. Now suppose that the sender is
correct thrOughout B. By Lemma 1 again, either the decisions reached under D
satisfy Validity--in which case we are done - -o r the sender discovers a failure in
D. In the latter case, the sender invokes A with initial value 1 in round M + 1
and, because we assume that it is correct throughout B, by Termination and
Validity of A all correct processes will decide 1 in that invocation, contrary to the
hypothesis of Case 2.

Finally, we show that in each failure-free run of B, there are no messages sent
other than those sent by D, and all processes halt by round M + N. Consider
any failure-free run of B. Since the run is failure-free, no process can discover a
failure. By the Weak Termination property of D, at the end of round M, all
processes will have reached a decision. Thus, none of them will send any messages
in the invocation of A in rounds M + I through M + N in which it acts as the
sender. Since, by assumption, A is special, these invocations wilt therefore generate
no messages and will all result in decision 0. Hence, in any failure-free run of B,
all processes will reach their final decision in round M + N without any messages
other than those used by protocol D. []

Proof of Theorem 2. The basic idea in all the constructions is that processes
which discovered a failure at the end of D broadcast that fact to inform others
that Agreement and Validity may be violated. A process that receives a "failure
discovered" message and did reach a decision under D must then disseminate its
decision to all processes.

118 v. Hadzilacos and J. Y. Halpern

(a) In protocol B~, each process p executes the following algorithm:

In rounds 1 throu#h M. p executes protocol D; if it reaches a decision v in protocol
D, it adopts v as its decision under protocol Bt.

In round M + 1. If p discovered a failure under D, it broadcasts the message
"failure discovered."
I fp does not receive a "failure discovered" message in round M + 1, it halts.

Any process that halts in round M + 1 does not, of course, participate in
subsequent rounds. The remaining part of the protocol is referred to as the relay
protocol. It runs for t + 1 rounds, starting in round M + 2:

In round M + 2. I fp is the sender and has initial value v, it broadcasts (S, v).
If p is a receiver and reached a decision v in round M under D, it broadcasts
(g, v).

In rounds M + 3 throuoh M + t + 2. I fp received (tan, v) (where ta# is either S
or R) in the previous round and had not received this message before, it broadcasts
(tay, v).

At the end o f round M + t + 2. Let Xp be the set of pairs received b y p during the
relay protocol. We say that Xp contains a value v if it contains (tao, v) for some tag.
Process p chooses its decision value depending on the set Xp according to the
following rule:

Decision rule for B~. IfXp contains a single value v, thenp decides v; ifXp contains
(R, v) and does not contain (R, v') for v' ~ v, thenp decides v (even if Xp contains
(S, v')); otherwise p chooses a default value as its decision.

It may seem somewhat counterintuitive (and, indeed, may seem to contradict
Validity) that the sender's value is discarded when there is a conflict with a
receiver's value, but as we shall see, this can only happen if the sender is
faulty.

It is clear from the construction that in each failure-free run of BL, precisely
the same number of messages are sent as in the corresponding run of D,
and that correct processes decide in round M and halt in round M + 1. It remains
to show that B1 is a BA protocol provided that D is safe. In order to prove this, we
first make some observations on the properties of the relay protocol, which also
apply in our later protocols. In the claims below, we talk about round l of the
relay protocol, which is actually round M + 1 + l of protocol B t. A straightfor-
ward induction on 1 shows that

Claim 1. I f a process p that participates in the relay protocol receives a message
(tag, v) in some round l of the relay protocol, 1 < l < t + 1, then there is a sequence
PiP2 Pz+ l = P of distinct processes such that (tag, v) was sent by Pi and
received by p~ + 1 in round i of the relay protocol, for all 1 <_ i <_ L Furthermore, v is
either the decision reached by pl under D, or the sender's initial value (in which case
Pl is the sender).

The Failure Discovery Problem 119

Next we show that the relay protocol ensures that, for any message (tag, v),
either all or none of the correct processes that participate receive that message.
To see this, consider the earliest round l, 1 < l < t + 1, in which a correct process,
say p, receives (tag, v). The choice of l, the fact that in Claim 1 the processes
involved in the chain that propagates (tag, v) are distinct, and the fact that there
are at most t faulty processes, imply that l < t + 1, so round l + 1 exists. Since p
is correct it will broadcast (tag, v) in round l + 1 and therefore all correct
processes will also receive that message. Hence we have that

Claim 2. The set of correct processes that participate in the relay protocol receive
exactly the same set of (tag, v) pairs.

We are now ready to prove that B 1 is a BA protocol i fD is a safe FD protocol.
Consider a run r of B 1. Obviously Termination holds since all processes decide
by round M + t + 2. Now we prove that Agreement and Validity hold as well.
Since D is safe, the decisions reached by correct processes under D do not violate
(Uniform) Agreement or Validity. Thus, all correct processes that decide in round
M will choose the same decision value, say v, and if the sender is correct, then v
is the sender's initial value. Also, by Claim 2, all correct processes that decide in
round M + t + 2 will choose the same decision value. It remains to show that if

(i) the sender is correct and has initial value v, or
(ii) some correct process p decides v in round M + 1,

then no correct process q decides v' # v in round M + t + 2. Suppose, by way of
contradiction, that (i) or (ii) holds, yet a correct process q decides v' # v in round
M + t + 2. Since q did not reach a decision in round M, it will send a "failure
discovered" message in round M + 1. The sender or p, according to whether (i)
or (ii) holds, will receive that message, and in round M + 2 will broadcast (tag, v),
which q will receive in the same round. Given the decision rule, the only way that
q can decide v' is if it also receives (R, u), for some u # v (possibly u --- v'), during
the relay protocol. By Claim 1, this means that some receiver sends this message
in round M + 2, and therefore that receiver had decided u in round M under D.
Since (i) or (ii) holds, this means that Validity or Uniform Agreement is violated
by D, which contradicts the assumption that D is safe.

(b) Protocol B 2 is quite similar to B 1. One difference is that a process p that
does not discover a failure under D does not decide in round M. Instead, it waits
until round M + 1: If it does not receive a "failure discovered" message in round
M + 1, p then adopts the decision it reached under D as its decision under B
and halts. Otherwise, p participates in the relay protocol, as in B 1 . (As Theorem
3(b) shows, the delay of the decision by one round is necessary in general.) The
other difference is that in round M + t + 2, p decides using a slightly different
decision rule than B1 (recall that X v is the set of pairs received by p during the
relay protocol):

Decision rule for B2. If Xp contains a single value v, then p decides v; if Xp contains
(S, v), then p decides v; otherwise p chooses a default value as its decision.

120 v. Hadzilacos and J. Y. Halpern

In other words, if Xp contains a value broadcast by the sender and a different
value broadcast by a receiver, the sender's decision value is given priority. (This
is in contrast to the decision rule of B 1 which gives preference to the receiver's
value.)

It is straightforward to check that in the failure-free runs of B 2 there are no
messages other than those used in D, and that processes decide and halt in round
M + 1. We now show that if D tolerates crash failures, then B 2 is a BA protocol
tolerating crash failures, while if D tolerates sending (resp. general) omission
failures, and the sender cannot discover a failure in D, then B2 is a BA protocol
tolerating sending (resp. general) omission failures. B2 certainly guarantees Termi-
nation since every process reaches a decision by round M + t + 2. To show that
Agreement and Validity are also satisfied, we consider two cases. Let r be any run
of B2.

Case 1. Some process, say p, that is correct in r, discovered a failure under D
(i.e., by round M of r). In this case p broadcasts "failure discovered" in round
M + 1. Therefore no correct process will decide in round M + 1 and all will
participate in the relay protocol. By Claim 2, at the end of round M + t + 2 they
will all have received the same set of pairs, so they will all choose the same decision,
proving Agreement. Regarding Validity, assume that the sender is correct and has
initial value v. The sender will broadcast (S, v) in round M + 2 and all correct
processes will receive it. The decision rule for B z guarantees that all correct
processes will decide v.

Case 2. No process that is correct in r discovered a failure during the execution
of protocol D. There are at most t processes that are faulty or discovered a failure
in D. (Otherwise, some process that discovered a failure in D would remain correct
throughout r, contrary to the hypothesis of Case 2). Thus, by Lemma 1,

The decisions reached under D in round M satisfy Uniform Agree-
ment and, if the sender does not discover a failure, they are equal to the (.)
sender's initial value.

From (,) we conclude that all processes that decide in round M + 1, reach
the same decision and, furthermore, if the sender is correct in r, then that decision
will be the sender's initial value. (Regarding the second conclusion, note that by
the hypothesis of Case 2, since the sender is correct in r it cannot have discovered
a failure in D.) By Claim 2, all correct processes that decide in round M + t + 2 will
have received the same set of pairs in the relay protocol and will therefore decide
on the same value. It remains to show that if

(i) the sender is correct and has initial value v, or
(ii) some correct process p decides v in round M + 1,

then any correct process that decides in round M + t + 2 must also decide v.
Assume, by way of contradiction, that (i) or (ii) holds, yet some correct process q
decides v' vav in round M + t + 2. Thus, q must have decided under D in round
M (by the hypothesis of Case 2) but received a "failure discovered" message in
round M + 1. Since (i) or (ii) holds, by (*), the value that q decided under D must

The Failure Discovery Problem 121

have been v. (In case (i), recall that the sender cannot discover a failure, by
hypothesis of Case 2.) Thus, q will broadcast and receive (tag, v) in round M + 2.
Given the decision rule, the only way for q to decide v' in round M + t + 2 is if
it also receives (S, v ') or (R, u) for some u r v (possibly u = v') during the relay
protocol. By Claim 1, this means that such a message is broadcast in round M + 2.
We show that this leads to a contradiction. If a receiver sent (R, u) in round
M + 2, it must have decided u under D in round M. Given that (i) or (ii) holds
this contradicts (,). Now, if the sender sends (S, v ') in round M + 2, (i) cannot
hold. It remains to derive a contradiction if case (ii) holds and the sender sends
such a message. First we argue that, in this case, the sender did not discover a
failure in D. This is true by hypothesis if we are dealing with sending or general
omission failures. For crash failures we reason as follows: Since the sender sent
(S, v ') in round M + 2, it must have successfully sent all messages in previous
rounds. If the sender had discovered a failure in D, it would have sent "failure
discovered" in round M + 1 which would have been received by p (because p is
correct), a n d p would not have decided in round M + 1, contrary to assumption (ii).
Thus, the sender did not discover a failure in D and, by (*), the decision reached
by any process in D is the same as the sender's initial value. By (ii), p decided v
in D and so the sender's initial value must have been v, which contradicts the
assumption that the sender sent (S, v') in round M + 2. Since neither (R, u), for
u r v, nor (S, v ') can be sent in round M + 2, q cannot decide v' in rounds
M + t + 2, as wanted.

(c) The structure of protocol B 3 is quite similar to that of the previous two
protocols. The main difference is that there are now two rounds between the end
of D and the relay protocol. The rule used to decide at the end of the relay protocol
is that used in B1, not B 2. More specifically, for each process p:

In rounds 1 through M. p executes protocol D.

In round M + 1. If p discovered a failure under D, it broadcasts the message
"failure discovered."
I fp receives a "failure discovered" message in round M + 1, it discards its decision
under D, if any. Otherwise, p adopts its decision under D as its decision under B 3.

In round M + 2. I f p did not reach a decision in round M + 1, it broadcasts the
message "no decision."
If p decided in round M + 1 and does not receive a "no decision" message in
round M + 2, it halts.

Again, in rounds M + 3 to M + t + 3, processes that have not halted take part
in a relay protocol. (Note that the relay protocol is now "shifted" later by one
round.) It is important to emphasize that processes which discarded their decision
under D in round M + 1 will not broadcast a message in the first round of the
relay protocol (round M + 3). Processes decide in round M + t + 3 using the
decision rule of B 1.

It is clear from the construction that in the failure-free runs of B 3, precisely
the same number of messages are sent as in the corresponding run of D, and

122 v. Hadzilacos and J. Y. Halpern

correct processes decide in round M + 1 and halt in round M + 2. Also, B 3 satisfies
Termination since correct processes decide in all runs by round M + t + 3. To
show that B 3 satisfies Agreement and Validity consider the same two cases as in
the proof of correctness of B 2. Let r be any run of B3.

Case 1. Some process, say p, that is correct in r, discovered a failure under D
(i.e., by round M of r). The argument that Agreement holds is identical to the
corresponding case of the previous protocol. Regarding Validity, assume that the
sender is correct and has initial value v. The sender will broadcast (S, v) in round
M + 3 and all correct processes will receive it. Furthermore, any process (whether
correct or faulty) that participate in the relay protocol will have received the
"failure discovered" message sent by p (this is where we use the fact that we are
dealing with sending omissions only) and will discard its decision under D, if any.
Thus the only message broadcast in the relay protocol is (S, v), so all correct
processes will decide v, the sender's initial value, as required for Validity.

Case 2. No process that is correct in r discovered a failure during the execution
of protocol D. The proof is quite similar to the corresponding case of protocol
B 2 except for the step proving that if

(i) the sender is correct and has initial value v, or
(it) some correct process p decides v in round M + 1,

then any correct process that decides in round M + t + 3 must also decide v. To see
why this holds now, assume, by way of contradicition, that (i) or (it) holds, yet
some correct process q decides v' ~ v in round M + t + 3. Thus, q must have
received a "failure discovered" message in round M + 1. Since q is correct, it must
have sent a "no decision" message in round M + 2 that was received by all correct
processes. Thus, the sender or p (depending on whether (i) or (it) holds) will
broadcast (tag, v) in round M + 3 and this message will be received by q (because
the sender of the message as well as q are correct). Thus, given the decision rule
for B3, the only way that q could decide v' in round M + t + 3 is if it also received
(R, u), for some u ~ v (possibly u = v'). By Claim 1, such a message must have been
sent in round M + 3. However, if (i) or (it) holds no such message could have
been sent because, by (*), the decision values reached under D (which are the
only values that can be broadcast by receivers in round M + 3) cannot be different
from v. Thus, if (i) or (it) holds, no correct process decides v ' r v in round
M + t + 3, as wanted.

(d) Finally, we describe B 4. This protocol is identical to B3, except for three
differences: Firstly, processes do not decide in round M + 1; rather, they delay
their decision until round M + 2, making one only if they do not receive a "no
decision" message. (As Theorem 3(d) shows, such a delay is necessary in general.)
Secondly, if the sender sends a "failure discovered" message in round M + 1 and
does not receive at least t + 1 "no decision" messages in round M + 2, it
halts in round M + 2 (since it knows it must be faulty) and does not participate
in the relay protocol. Finally, we use the decision rule of B2, not that of B 1.

The proof of correctness proceeds along the same lines as those of B2 and B 3.

The Failure Discovery Problem 123

Termination is obvious. For Agreement and Validity we consider our familiar two
cases. Case 1 is similar to the corresponding case in the previous two protocols,
except for the proof that Validity holds. (We urge the reader to determine why
the proof of Validity in the corresponding case of B 3 does not work now, as this
reveals the subtle difference between the two protocols.) Here is why Validity holds
now: Suppose that the sender is correct and has initial value v. Since in Case 1
some correct process p discovered a failure in D, in round M + 1 p will send a
"failure discovered" message that will be received by all correct processes. Since
n > 2t, at least t + 1 processes are correct and will send a "no decision" message
in round M + 2 (this is the only place where we need the assumption n > 20.
The sender, being correct, will receive all these and will therefore have the required
number of "no decision" messages to broadcast (S, v) in round M + 3. All correct
processes will receive that message and, because we are now using the decision
rule of B 2, they will all decide v, as wanted.

The p roof of Case 2 is similar to the corresponding case of the previous two
protocols except for the step proving that if

(i) the sender is correct and has initial value v, or
(ii) some correct process p decides v in round M + 2,

then any correct process that decides in round M + t + 3 must also decide v. To
show this now, assume, by way of contradiction, that (i) or (ii) holds, yet some
correct process q decides v' r v in round M + t + 3. Thus, q must have received
a "failure discovered" message in round M + 1. Since q is correct, it will send a "no
decision" message in round M + 2 that will be received by all correct processes.
Thus, the sender o r p (depending on whether (i) or (ii) holds) wilt broadcast (tag, v)
in round M + 3 and this message will be received by q (because the sender of the
message as well as q are correct). Given the decision rule for B , (the same as for
B2), the only way that q could decide v' in round M + t + 3 is if it also received
(S, v') or (R, u), for some u # v (possibly u = v'). By Claim 1, such a message
must have been sent in round M + 3. We show that this leads to a contradiction.
If a receiver sent ~R, u), for some u -r v, in round M + 3 it must have decided
u r v in round M under D. Given that (i) or (ii) holds, this contradicts (,). (If case
(i) holds, recall that the sender cannot discover a failure, by the hypothesis of Case
2.) If the sender sent (S, v') in round M + 3, then clearly (i) cannot hold. The fact
that the sender broadcasts such a message means that in round M + 2 it received a
"no decision" message from at least t + 1 processes. One of these must have been
correct. Thus all correct processes, in particular p, will receive such a "no decision"
message in round M + 2 which will prevent them from deciding in that round,
contrary to (ii). Thus if (i) or (ii) holds no correct process q can decide v' :~ v in
round M + t + 3. []

We interject the proof of Theorem 4, because it is closely related to the proof of
part (a) of Theorem 2.

Proof of Theorem 4. The WBA protocol B that extends the given U F D protocol
D is, in fact, a simplification of protocol B 1 . All that is required is to prevent the

124 V. Hadzilacos and J. Y. Halpern

sender from sending its initial value in the relay protocol if it discovers a failure
under D. That is, in the description of what happens in round M + 2 of B1, we
now omit the statement " I f p is the sender and has initial value v, it broadcasts
(S, v)." (Since all the messages that will be sent have a tag of R, we can thus omit
the tag.) The decision rule is the same as that for BI. The resulting protocol does
not necessarily satisfy Validity, because a correct sender that discovered a failure
is prevented from sending its initial value. This may result in processes deciding
on some other value, even though the sender is correct. However, this can only
happen if some failure occurred--otherwise the sender would not have dis-
covered one - - and therefore in WBA there is no obligation to fulfill Validity in
this case. The details of the proof that this in fact achieves WBA are left as an
exercise. []

Proof of Theorem 3. (a) Let D be a nondecisive FD protocol that halts in M
rounds. Suppose, by way of contradiction, that B is a BA protocol extending D
in which processes decide by the end of round M in failure-free runs. Since D is
nondecisive there exists a run r of D in which Agreement or Validity is violated. Let
r , be the run of B extending r in which no process fails after round M. In case
Agreement is violated in r, let p and p ' be correct processes that decide v and v',
respectively, in r, for some v # v'. Since D is a (pure) FD protocol, the fact that
p (resp. p') decides v (resp. v') in r, implies that p (resp. p') cannot distinguish r

v t~ ' from the failure-free run where the sender's value is v (resp. v'). Let r , and r ,
be the failure-free runs of B which extend the failure-free runs of D with initial
values v and v', respectively. At the end of round M, p cannot distinguish r , from

~' Since, by assumption, processes r,, while p ' cannot distinguish r , from r ,
decide in round M in failure-free runs of B, p must decide v and p ' must decide
v' in r, . Since both p and p ' are correct in r, they are also correct in r , and
thus r , violates Agreement, which contradicts the assumption that B is a BA
protocol. In case Validity is violated in r, a similar argument shows that if a correct
process p decides v at the end of round M and its decision differs from the correct
sender's initial value v', we get a contradiction to Validity in the run r , of B.
Thus, it is not the case that all processes can decide by the end of round M in all
failure-free runs of a BA protocol extending D.

(b) Let D be a weakly sender-dependent FD protocol that halts in M rounds,
and let B be a BA protocol extending D, where both B and D tolerate sending
omission failures. Suppose, by way of contradiction, that all processes halt by the
end of round M + 1 in the failure-free runs of B. By hypothesis, there are no
messages beyond those used in D in the failure-free runs of B. From this we obtain
the following useful fact:

If at the end of round M a process p cannot distinguish a run r from a
failure-free run and p does not receive any message in some round j, (**)
M < j < i, then p does not send a message in round i of r.

Let r and r' be the runs of D satisfying SD1-SD3 guaranteed to exist by the
definition of weakly sender-dependent. Pick a receiver p as follows: If there are

The Failure Discovery Problem 125

fewer than t faulty processes in r, let p be any correct receiver in r'. If there are t
faulty processes in r, let p be any one of them which is not faulty in r', (Such a
receiver must exist because in r' the sender is faulty and so at most t - 1 receivers
can be faulty. Since the sender is not faulty in r, if there are t faulty processes in
r, they must all be receivers, so there is at least one faulty receiver in r which is
correct in r',) Now consider runs r . and r , of B defined as follows:

r , is the extension of r in which the only deviation from correct behavior
after round M is that all processes that are faulty in r as well as p (whether
or not it is faulty in r), omit to send any messages after round M. (By the
choice of p, the number of faulty processes in r . does not exceed t.)

r . is the extension of r' in which the only deviations from correct
behavior after round M are: (i) the sender omits to send a message to p
in round M + 1, and (ii) all processes that are faulty in r other t hanp omit
to send all messages after round M. (Again, the choice o f p ensures that
the number of faulty processes in r , does not exceed t.)

Since the sender is correct and has initial value v in r . , all correct processes
must decide v in that run. We show that p halts and decides v' in round
M + 1 in r',. To see this, first observe that no process sends a message to
p in round M + 1. (This is so by the definition of r , for the sender and
the receivers that are faulty in r. For the remaining receivers, SD1 states that none
of them discovered a failure in r. Thus, these processes cannot distinguish r from
some failure-free run, and, by SD3, they cannot distinguish r' from some failure-free
run. Hence, by (**), these processes do not send any message at all in round M + 1
of r,.) By SD2, p cannot distinguish r' from some failure-free run of D and,
therefore, at the end of round M it cannot distinguish r . from some failure-free
run of B. Since no process sends a message to p in round M + 1 of r . , at the end
of that round, p cannot distinguish r . from some failure-free run of B (because
in such runs there are no messages after round M). Therefore, p must decide and
halt by the end of round M + t in r . . I t remains to show that p actually decides
v'. By SD1, some receiver q, which is correct in r, decides v' ~ v. By SD3, q decides
v' in r ' as well. Furthermore, by SD2, q is correct in r ' and no correct process
discovers a failure. Therefore, Agreement must hold in r'. This means that all
correct processes in r', and in particular p, decide v'. Hence, the failure-free run
which p cannot distinguish from r . is that in which the sender's initial value is v'.
This implies that p decides v' at the end of round M + 1 of r , , as wanted.

Next we show that all processes except p and those that are faulty in
r cannot distinguish r . and r . in any round. This is obvious, by SD3, for
rounds 1 through M. By SD3, (**), and the definition of r . and r . , only
the sender sends messages in round M + 1 in r . and r~,. Indeed, with the
exception of the message it sends to p, the sender sends the same messages
in round M + 1 in both runs. Thus, all receivers other than p and those
that are faulty in r cannot distinguish r . and r . in round M q-1. As we
have seen, p halts at the end of round M + 1 in r . and so does not send
messages after that round. Thus, recalling that, by definition, p does not send any

126 v. Hadzilacos and J. Y. Halpern

messages after round M in r . and that the processes that are faulty in r do not
send any messages after round M in r . and r . , the only processes that send
messages after round M + 1 in the two runs are those that cannot distinguish
them at the end of that round. A straightforward induction now shows that these
processes will continue being unable to distinguish the two runs in all subsequent
rounds. We conclude that all processes except p and those that are faulty in r
cannot distinguish between r . and r . in any round, as wanted.

Let q be a process other than p which is correct in r (such a process
exists, since we are assuming n > t + 2). We have shown that all correct processes
decide v in r . . Since, as we just saw, q cannot distinguish r . from r, , it must decide
v in r , as well, and, since it is correct in r and is different from p, q is correct in
r. . On the other hand, we have also shown that p, which is correct in r , , decides
v' in that run. Thus r . violates Agreement, which contradicts the assumption that
B is a BA protocol. Therefore, it is not possible that all processes halt by round
M + 1 in failure-free runs of B, as wanted.

(c) Let D be a sender-dependent FD protocol that halts in M rounds,
and B be a BA protocol extending D, where both B and D tolerate general
omission failures. Suppose, by way of contradiction, that all processes decide by
the end of round M + 1 in the failure-free runs of B. The proof is analogous to
that in case (b), except that the runs r . and r , are defined in a slightly different way:

r . is the extension of r in which the only deviation from correct behavior
after round M is that p omits to receive a message from the sender in
round M + 1.

r , is the extension of r' in which the only deviation from correct behavior
after round M is that the sender omits to send a message to p in round
M + I .

Note that, unlike the previous case, p and the processes that are faulty in r are
not prevented from sending messages after round M in r , and r. . However,
since now all processes are unable to distinguish r and r' (and not merely the
processes that are correct in r--recal l that therein lies the difference between
weakly sender-dependent and sender-dependent protocols), all processes will
continue being unable to distinguish r . and r . in all rounds after round M.
The rest of the proof proceeds as in the previous case,

(d) Now suppose that D is a strongly sender-dependent FD protocol that
halts in M rounds, B is a BA protocol extending D, so that processes decide by
round M + 2 in the failure-free runs of B, and that both protocols tolerate general
omission failures. We have to show that if n > 4, then n > 2t. Since D is strongly
sender-dependent, t > 1.

Suppose, by way of contradiction, that n < 2t, and let r and r' be the runs
satisfying SDI' , SD2, and SD3' guaranteed to exist by the definition of strongly
sender-dependent. Let p be a correct process that decides v' in r (such a process
exists by SD1). Partition the set of n - 2 receivers other than p into two sets X
and Y, of size L(n - 2)/2J and [-(n - 2)/2], respectively, so that all faulty processes

The Failure Discovery Problem 127

in r to a maximum of] Y] are in Y and the remaining, if any, are in X. Since n _> 4,
both X a n d Yare nonempty, and since we are assuming that n _< 2t, each has size at
most t - 1. Now consider three runs of B, defined as follows:

r , is an extension of r in which the faulty processes are all the processes
in Y, p, and, of course, those processes in X that were already faulty in r
(if any). The only deviations from correct behavior in r , after round M
are that p and the processes in Y omit to receive any messages from the
sender in round M + 1, and that p omits to receive any message from
the sender or the processes in X in round M + 2. Given the way we
partitioned the processes into X and Y and recalling that each of these
has size at most t - 1, the number of faulty processes in r , does not
exceed t.

r , is an extension of r' in which the only faulty processes are the sender
(which i s the only faulty process in r') and the processes in X. The only
deviations from correct behavior after round M are that the sender omits
to send messages to p and to the processes in Y in round M + 1, and
that the sender and the processes in X omit to send messages to p in
round M + 2. Since I Xl _< t - 1, the number of faulty processes in r ,
does not exceed t.

r , is the extension of r' in which the only faulty processes are the sender
and p and in which the only deviations from correct behavior are that
the sender omits to send messages to p and to the processes in Y in round
M + 1, and that p omits to receive any message from the sender or the
processes in X in round M + 2. Since t > 1, the number of faulty

t ! processes in r , does not exceed t.

It is not difficult to see that no process can distinguish between any two of
t t r , , r , , and r , in any round. This is immediate from SD3' for rounds 1 through

M; for subsequent rounds it follows by a straightforward induction and the
definitions of the three runs.

Now, in r , all correct processes must decide v, since the sender is correct and
has initial value v. There is at least one process in X that is correct in r, . (This is
so because the only processes in X that are faulty in r , are those that are already
faulty in r. By SDI ' there are at most t - 1 faulty receivers in r, and given the
way in which we partition them into X and IT, X contains at least one correct
process.) Therefore, some correct process in X decides v in r, .

Next we show that some (correct) process in Y decides v' in r , . To prove this,
first we show that in r , (as in the other two runs)p does not receive any messages
in rounds M + 1 and M + 2. To see this note that, by SD2, only the sender can
distinguish r' from a failure-free run; therefore the same is true regarding r , at the
end of round M. Since processes do not send messages after round M in runs
which they cannot distinguish from failure-free runs, the only process that can
send messages in round M + 1 is the sender. However, by definition of r , , the
sender does not send any such messages to p or to processes in Y in that round.
Hence, the only processes that can distinguish r , from a failure-free run at the

128 v. Hadzilacos and J. Y. Halpern

end of round M + 1 are the sender and the processes in X. Thus, processes in Y
do no t send any messages in round M + 2 and, by const ruct ion, the sender
and processes in X do not send a n y messages to p in r o u n d M + 2. Therefore, p
receives no messages in rounds M + 1 and M + 2. By choice of p, tha t process
decides v' in r. Since D is a (pure) F D protocol , p does no t dis t inguish r from the
failure-free run in which the sender 's init ial value is v'. Then, by SD3', p does not
dis t inguish r ' f rom tha t same failure-free run. Since p does not receive any messages
in rounds M + 1 and M + 2 of r , (which extends r') and since there are no
messages beyond those a l ready sent in D in the failure-free runs of B, p cannot
dis t inguish r , f rom the failure-free run of B in which the sender has ini t ial value v',
However , processes mus t decide by the end of r o u n d M + 2 in failure-free
runs of B, so tha t p decides v' at the end of round M + 2 in r , . Since p
and all processes in Y are correct in r , , by Agreement all processes in Y

t must decide v' in r , .
t ! t However , as we have seen processes canno t d is t inguish r , f rom r , and r , in

any round. Thus, the correct process in X which decides v in r , will decide v in
r,;" and the processes in Y t h a t decide v' in r , will decide v' m" r,,"" but the processes

t t p! in bo th X and Y are correct in r , , so tha t r , violates Agreement , con t rad ic t ing
tha t B is a BA protocol . Therefore it is not poss ible to have n < 2t in this case.

[]

Acknowledgments

We thank Ken Birman and Robbert Van Renesse for useful discussions. We are grateful to the
anonymous referees for their helpful comments and suggestions.

References

Amdur, E. S., S. M. Weber, and V. Hadzilacos. On the Message Complexity of Binary Byzantine
Agreement Under Crash Failures. Distributed Computing, 5: 175-186, 1992.

Attiya, H., N. A. Lynch, and N. Shavit. Are Wait-Free Algorithms Fast? In Proc. 31st Syrup.
on Foundations o f Computer Science, pp. 55-64, October 1990.

Bar-Noy, A., D. Dolev, C. Dwork, and H. R. Strong. Shifting Gears: Changing Algorithms on
the Fly To Expedite Byzantine Agreement. In Proc. 6th ACM Syrup. on Principles of Distributed
Computing, pp. 42-51, August 1987.

Bernstein, P. A., V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley, Reading, MA, 1987.

Chandra, T. D., and S. Toueg. Unreliable Failure Detectors for Asynchronous Systems. In Proc.
lOth ACM Syrup. on Principles of Distributed Computing, pp. 325-340, August 1991.

Dolev, D. The Byzantine Generals Strike Again. Journal o f Algorithms, 3(1): 14-30, January 1982.
Dwork, C. Strong Verifiable Secret Sharing. In Proc. 4th Internat. Workshop on Distributed Algorithms,

pp. 213-227. Lecture Notes in Computer Science, Vol. 486. Springer-Verlag, Berlin, 1990.
Eager, D. L., and K. C. Sevcik. Achieving Robustness in Distributed Database Systems. ACM

Transactions on Database Systems, 8(3):354-381, September 1983.
Fischer, M. J. The Consensus Problem in Unreliable Distributed Systems. Research Report RR-273,

Department of Computer Science, Yale University, June 1983.
Hadzilacos, V. Issues of Fault-Tolerance in Concurrent Computations. Ph.D. dissertation, Aiken

Computation Laboratory, Harvard University, June 1984.

The Failure Discovery Problem 129

Hadzilaeos, V. On the Relationship Between the Atomic Commitment and Consensus Problems.
Workshop on Fault Tolerant Distributed Computing, March 17-19, 1986, Pacific Grove,
CA. (Proceedings published as Lecture Notes in Computer Science, Vol. 448 (B. Simons
and A. Spector, eds.), Springer-Verlag, Berlin 1990.)

Hadzilacos, V., and J. Y. Halpern. Message-Optimal Protocols for Byzantine Agreement. Mathematical
Systems Theory, this issue, pp. 41-102, 1993.

Halpern, J. Y., and Y. Moses. Knowledge and Common Knowledge in a Distributed Environ-
ment. Journal of the ACM, 37(3):549-587, 1990. (Preliminary version in Proc. 3rd ACM
Symp. on Principles of Distributed Computing, pp. 50-61, August 1984.)

Lamport, L. The Weak Generals Problem. Journal of the ACM, 30(3):668-676, July 1983.
Lamport, L., and M. J. Fischer. Byzantine Generals and Transaction Commit Protocols. Technical

Report Op. 62, SRI International, April 1982.
Lamport, L., R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM Transactions

on Programming Languages and Systems, 4(3):382-401, July 1982.
Moses, Y., and O. Waarts. Coordinate Traversal: (t + D-Round Byzantine Agreement in Polynomial

Time. In Proc. 29th Symp. on Foundations of Computer Science, pp. 246-255, October 1988.
Neiger, G., and S. Toueg. Automatically Increasing the Fault-Tolerance of Distributed Algorithms.

Journal of Algorithms, 11(3):374-419, September 1990.
Pease, M., R. Shostak, and L. Lamport. Reaching Agreement in the Presence of Faults. Journal

of the ACM, 27(2):228-234, April 1980.
Ricciardi, A. M., and K. P. Birman. Using Process Groups To Implement Failure Detection in

Asynchronous Environments. In Proc. lOth A CM Symp. on Principles of Distributed Computing,
pp. 341-351, August 1991.

Skeen, M. D. Crash Recovery in a Distributed Database System. Ph.D. dissertation, Department
of Electrical Engineering and Computer Science, University of California at Berkeley, 1982.

Srikanth, T. K., and S. Toueg. Simulating Authenticated Broadcasts To Derive Simple Fault-Tolerant
Algorithms. Distributed Computing, 2:80-94, 1987.

Zwaenepoel, W. Protocols for Large Data Transfers over Local Area Networks. In Proc. 9th
Data Communications Symposium, pp. 22-32, Sept. 1985.

Received June 17, 1991, and in revised form February 21, 1992.

