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Abstract. We define a simple variant of the Byzantine agreement (BA) 
problem, called the Failure Discovery (FD) problem, that roughly speaking, 
amounts to reaching BA provided that no failures are discovered. We show 
how a protocol for FD can be extended to one for BA, with no message 
overhead in the failure-free runs. We also show that, for so-called benion 
failures, if the FD protocol satisfies an additional property, the message- 
preserving extension to a BA protocol can be accomplished with minimal time 
overhead in the failure-free runs. Our results show that FD is a useful building 
block for BA; indeed, it has been used in this way in a companion paper 
(Hadzilacos and Halpern, 1993). 

1. Motivation and Overview 

Practical fault-tolerant protocols are sometimes composed of two subprotocols: 
one that ensures correct operation in the absence of failures, and another invoked 
only when failures do, in fact, occur. The main motivation for such a decomposi- 
tion is that the first subprotocol is much simpler and efficient than the second. It 
should be emphasized that the protocol that "works if there are no failures" does 
have some obligations to fulfill in case there are failures: it must be capable of 
detecting that failures have occurred and somehow ensuring that the failure- 
handling subprotocol is invoked. Arguably the best known protocols that are 
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structured in this manner are atomic commitment protocols (see Skeen, 1982; 
Bernstein et al., 1987). Another example is the missing writes protocol of Eager 
and Sevcik (1983) for managing replicated copies of data. Also, similar in spirit 
are the so-called blast protocols for data transfer (see Zwaenepoel, 1985). In all 
cases the common theme is cautious optimism: the protocols assume failure-free 
operation, but provide the mechanisms that can handle failures when these occur. 

In our work on the complexity of the Byzantine Agreement (BA) problem in 
the absence of failures (see Hadzilacos and Halpern, 1993), we also found it 
convenient to decompose the BA protocols in this fashion. This has led us to 
define the Failure Discovery (FD) problem, which is the formal statement of the 
problem that the first subprotocol must solve in this case. In the next section we 
given the precise specification of the FD problem, some simple protocols that solve 
it, and compare it with BA. We then show how an FD protocol can be extended 
to a full-fledged BA protocol without any message overhead and, for benign 
failures, with only a small time overhead. Furthermore, we show that, under 
certain additional assumptions, this small time overhead is necessary if we wish 
to maintain zero message overhead. These results are formulated and discussed 
in Section 3, while their proofs can be found in Section 4. 

Our results suggest that FD is, indeed, the right way to abstract the problem 
of "solving BA when there are no failures." They imply that if we wish to design 
BA protocols that are message-optimal in the absence of failures, it is enough to 
design FD protocols that are message-optimal--a conceptually simpler task. If 
the BA protocols must also be as time-efficient as possible (subject to being 
message-optimal), then our results also show that, at least for benign failures, it 
is enough to design a message-optimal FD protocol that is as time-efficient as 
possible. We use the results of this paper in precisely this manner in a companion 
paper where we investigate the complexity of BA in the absence of failures 
(Hadzilacos and Halpern, 1993), a problem which, in fact, motivated this work. 

We caution the reader that our Failure Discovery  problem is quite different 
from failure detection, a term that has been used with two related, but distinct, 
meanings in recent literature. As an algorithmic technique, failure detection refers 
to the identification and "isolation" of faulty processes in a distributed computa- 
tion. This technique has been used in the design of efficient protocols for BA (for 
example, Bar-Noy et al., 1987; Moses and Waarts, 1988) and other problems (for 
example, Dwork, 1990). Also, Chandra and Toueg (1991) and Ricciardi and Birman 
(1991) use the term "failure detector" to refer to a distributed oracle that provides 
the processes of an asynchronous system with hints about which processes are 
suspected to be faulty. 

2. The F D  Problem 

The BA problem (Pease et aL, 1980; Lamport et al., 1982; Fisher, 1983) concerns 
a network of n processes consisting of a distinguished process, the sender, and 
n - 1 receivers. The sender has an initial value which it wishes to broadcast to 
the receivers. The complication is that some of the processes (possibly including 
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the sender) may be faulty, i.e., may not exhibit the behavior specified by the 
algorithm they are supposed to execute. The exact number or identity of the faulty 
processes is not known a priori. The BA problem is to design a protocol, i.e., an 
algorithm for each process, which will ensure the following three conditions in the 
presence of up to t faulty processes, where t is a fixed parameter  between 1 and 
n - 2 :  

Termination. Every correct process eventually chooses a decision value. 

Agreement. No two correct processes choose different decision values. 

Validity. If the sender is correct, then no correct process chooses a value different 
from the sender's initial value. 

Regarding the restriction that t _< n -  2, we note that a BA protocol t h a t  
tolerates n - 2 failures, trivially tolerates n - 1 and n failures: the only additional 
runs we get if more than n - 2 processes fail are those in which at most one process 
is correct, in which case it can decide arbitrarily (or its initial value, if it is the 
sender) without endangering the satisfaction of the BA properties. In this sense, the 
problem is nontrivial for t ___ n - 2, and because many  results require a special 
formulation if t is n - 1 or n, we eschew these uninteresting cases and assume 
throughout that n > t + 2. 

Because it is not known which processes are faulty, designing a correct BA 
protocol is subtle. Most of the difficulty is due to having to worry about  the 
possibility of failures. Since, in many applications, failures are quite rare a recent 
trend has been to investigate the difficulty of BA and some of its variants in the 
special case when no failures occur (see Amdur et al., 1992; Attiya et al., 1990; 
Hadzilacos and Halpern, 1993). To facilitate such investigations, we introduce here 
a simpler variant of BA that we call Failure Discovery (FD). Roughly speaking, a 
protocol for F D  is one that solves BA provided that no failures are discovered. 

To proceed more formally we need to describe a model of computation and 
to establish some terminology. We use what has become the standard model of 
computat ion for the BA problem: The interconnection network is fully connected 
(so any two processes can exchange messages directly), a process knows the identity 
of the sender of each message it receives, and system computations proceed in 
successive synchronous rounds. In each round every process can send messages to 
other processes and receives all messages sent to it by other processes in that 
round. A run of a protocol is simply a sequence of rounds. The view o f  a process 
p in (round i of)  run r consists of the sequence of the sets of messages that p 
receives in each round of r (up to and including round t). In the case of the sender, 
the view also includes the initial value. We say t h a t p  cannot distinguish runs r and 
r' (in round i) if p has the same view in the two runs (in round i). Since the view 
of a process encapsulates all the information available to it, the process'  ac- 
t i o n s - t h e  messages it sends, whether to decide and whether to h a l t M e p e n d  
exclusively on its view. Thus, if p cannot distinguish two runs in round i, it will 
send the same messages in round i + 1 in both runs. Also, if it decides (or halts) 
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in round  i in one run, it will decide the same value (or halt) in round  i of  the other  
run. A run is called failure-free if no process is faulty in it. We say that  a process 
p discovers a failure in ( round i of) run r i f p  can distinguish r f rom all failure-free 
runs (in round  0.1 

More  formally, then, the F D  prob lem is to devise a protocol  that  will ensure 
the following propert ies  in the presence of up to t faulty processes: 

Weak  Termination.  Each correct process eventually either chooses a decision 
value or discovers a failure. 

Weak  Agreement.  If no correct process discovers a failure, then Agreement  holds. 

Weak  Validity. If  no correct  process discovers a failure, then Validity holds. 

The difficulty of solving the BA prob lem can be quite sensitive to the types 
of failures that  can occur. N o t  surprisingly, the F D  prob lem is similarly sensitive 
to the types of failures that  can occur. We focus on four failure types here: 

(a) Crash failures: A faulty process stops premature ly ;  once it has stopped,  
it sends no more  messages. The p remature  s topping can occur  at any 
point  during a round.  In part icular,  a process m a y  stop after having sent 
some but  not  all messages it is supposed to send in a round.  

(b) Sendin9 omission failures: A process m a y  fail to send one or more  
messages prescribed by its algori thm. 

(c) General omission failures: A process m a y  fail to send one or more  
messages prescribed by its a lgor i thm and/or  m a y  fail to receive one or 
more  messages sent to it. 

(d) Arbitrary failures: Faul ty  processes can act arbitrarily,  wi thout  any 
restriction to their possible behavior.  

It  is easy to see that  crash failures can be viewed as a special case of sending 
omission failures (where, f rom a certain point  on, a faulty process omits  to send 
all messages), sending omissions failures are a special case of  general omission 
failures, and general omission failures are a special case of  a rb i t ra ry  failures. We 
refer to crash, sending, and general omission failures collectively as benign failures. 

An apprecia t ion of how simple the F D  prob lem is can be gained by considering 
the following simple protocol ,  which achieves F D  in the case of  general omission 
failures (and, afortiori, in the case of  crash failures and sending omission failures): 
The sender sends its value to each receiver. In round  1 each receiver decides on 
the sender 's  value if it gets a message f rom the sender, otherwise it discovers a 
failure. The sender decides on its value. We leave it to the reader to check that  
this protocol  solves the F D  prob lem in the case of  general omission failures. For  
future reference, we call this protocol  D o . 

1 It is interesting to note that by this definition, a process discovers a failure iff it knows that 
some process is faulty, where we use the phrase "a process knows a fact" in the precise sense of 
knowledge theory in distributed systems (see Halpern and Moses, 1990). 
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This protocol does not solve the FD problem in the case of arbitrary failures, 
since, in this case, a faulty sender may send different values to different receivers. 
However, the following two-round protocol does the trick: In round 1, the sender 
sends its value to each receiver. In round 2 each receiver tells the other receivers 
what value it got from the sender. At the end of round 2, if a receiver got a value 
v from the sender, and was informed by each of the other receivers that they also 
got v from the sender, it decides on v; otherwise it discovers a failure. The sender 
decides on its value. We leave it to the reader to check that this protocol solves 
the FD problem in the case of arbitrary failures. For  future reference, we call this 
protocol D 1 . 

Protocols D O and D1 already show that the FD problem is qualitatively easier 
than BA. For  example, it is well known that BA cannot be solved in the case of 
arbitrary failures unless n > 3t, and that it requires t + 1 rounds even in the case 
of crash failures (see the survey by Fischer (1983) for details and further references). 
As shown by protocol D1, FD can be solved for arbitrary values of n and t even 
if we allow arbitrary failures. Protocol D O shows that FD in the case of general 
omission failures (and hence also crash failures) can be solved in one round; 
protocol D~ shows that it can be solved in the case of arbitrary failures in two 
rounds. (It is easy to see that it cannot be solved in one round in the case of 
arbitrary failures.) 

Another difference regarding the round complexity of FD and BA problems 
is revealed by the following. 

Proposition 1. Let D be an FD protocol so that all processes decide in M rounds 
in the failure-free runs. Then we can effectively transform D to an FD protocol D' 
that tolerates the same type o f  failures as D such that all correct processes halt in 
M rounds in all runs o f  D'. 

Proof  Consider the situation at the end of round M in a run r of D. If a correct 
process cannot distinguish r from a failure-free run of D where it decides v, then 
it must decide v by the end of round M in r (since all correct processes decide by 
the end of round M in failure-free runs of D). If a correct process p can 
distinguish r from all failure-free runs of D, then p knows that there has been a 
failure in r and, by definition, p discovers a failure in r. Thus, it follows that 
protocol D', where processes proceed just as D up to the end of round M, and 
then halt, achieves FD. []  

A result like this does not hold for BA protocols. For  example, the early-stopping 
protocol for crash failures of Lamport  and Fischer (1982) (see also Fischer, 1983) 
has the property that in the failure-free runs, all processes decide in the first round 
and halt in the second. Yet, as mentioned before, in any BA protocol for crash 
failures there must be at least one run that requires t + 1 rounds. 

Our main motivation for considering FD is to use message-optimal FD 
protocols to help us construct BA protocols that are message-optimal in the 
failure-free runs. The protocols D O and D1 described above are not message- 
optimal. We now present two message-optimal FD protocols that tolerate general 



108 V. Hadzilacos and J. Y. Halpern 

sender 

Fig. 1. 

Rv  B 

0 0 0 

Protocol GOFl- - fa i lu re - f ree  run with initial value v~ {0, 1}. 

omission failures designed for the special case where there are only two possible 
initial values, 0 and 1. These protocols, whose correctness and message optimality 
is proved in Hadzilacos and Halpern (1993), will be useful in our later discussion. 

In the first protocol, GOF1,  we partition the n - 1 receivers into three sets: 
B, R o, and R1, where B has size t. We arrange the processes in R v, v = 0, 1, in 
linear order, which we refer to as a chain. If the sender has  initial value v, in round 
1 it sends the message v only to the first process in Rv in the chain. That  message 
is passed along the chain of processes in R~. The last process in that chain 
broadcasts v to all the processes in B. At the end of round max([Rol, IR 1 l) + 1, a 
process in R~ decides v if it receives a message, and decides ~ if it receives no 
message; a process in B decides v if it receives a message containing v and discovers 
a failure if it receives no message. The sender decides its initial value. The protocol 
is illustrated in Figure 1. 

In the second protocol, GOF2v, we partition the set of receivers into two sets: 
B and R~, where IBI = t - 1. 2 The processes in each of these sets are arranged in 
a linear chain. The protocol is illustrated in Figure 2. If the sender has initial value 
v, it sends v through the B-chain; the message is then passed along the R~-chain and 
the last process in Rv broadcasts the message to all the processes in B for a second 
time, as well as to the sender. If the sender has initial value ~, no message is 
sent by any process! At the end of round IBI + IR~I + 1, processes decide as 
follows: A process in R v decides v if it has received a message and decides ~ if it 

sender 0 

B R v %1 
t-I 

Fig. 2. Protocol  GOF2~--failure-free run with initial value v. 

2 This is actually a special case of the protocol  G O F 2  v as defined in Hadzilacos and Halpern 
(1993), but  it is this part icular instance of the protocol  that is the most  interesting. 
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received no message. A process in B decides v if it received two messages containing 
v, decides ~ if it received no message, and discovers a failure if it received only 
one message containing v. As for the sender, if its initial value is ~, then it simply 
decides ~. If  its value is v, then it decides v if it received a message in round 
[BI + [Rvl + 1; if it received no such message it discovers a failure. 

We conclude this section by comparing the FD problem with the Crusader 
Agreement problem of Dolev (1982), which in some respects is similar to FD. 
Rather than requiring that the conditions of BA hold provided that no failures 
are discovered, as in FD, in Crusader Agreement the conditions of BA must hold 
provided that the failure of the sender is not discovered. More precisely, a protocol 
for Crusader Agreement must satisfy Termination, Validity, and the following 
weakening of Agreement. 

Agreement'. No two correct processes decide different values unless at least one 
of them discovers that the sender is faulty--i.e., can distinguish the run from all 
runs in which the sender is correct. 

It is immediate from the definition that a Crusader Agreement protocol is, a 
fortiori, an FD protocol. The converse is not always true. GOF1 and G O F 2  are 
examples of FD protocols that do not solve the Crusader Agreement problem. 
On the other hand, Do solves the Crusader problem for crash failures, since a 
process that discovers a failure in fact discovers the sender's failure! a Also, a 
modification of D 1 achieves Crusader Agreement for arbitrary failures, if n > 3t. 
(We leave this as an exercise.) However, for arbitrary failures, the requirement 
n > 3t is necessary for any protocol that solves Crusader Agreement--as  it is for 
any protocol that solves BA. In contrast, as D ,  shows, FD can be solved for any 
value of n. 

3. Extending an F D  Protocol to a BA Protocol 

We say that a protocol A is an extension of a protocol B, or that A extends B, if 
every run of A has a prefix in which precisely the same messages are sent and 
received as in a run of B, and, for every run r of B, there is a run of A that has 
a prefix in which precisely the same messages are sent and received as in r. We 
are interested in constructing BA protocols that extend FD protocols without 
sending any extra messages in the failure-free runs. This captures the intuition that 
to solve BA we start by running an FD protocol, and then use the BA protocol 
only in case a failure is discovered. 

An FD protocol is calledpure if it has the following property: a process decides 
under the protocol only in runs which it cannot distinguish from some failure-free 

3 Actually, to be perfectly accurate, to solve Crusader Agreement we must slightly modify D O 
since we are now required to satisfy the Termination property. Thus, a process that discovers the 
sender's failure chooses an arbitrary decision value. 
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run. In other words, if a process knows that a failure has occurred, it simply 
discovers a failure and does not decide. All FD protocols that we have described 
are pure. Given an FD protocol D that is not pure, we can construct a pure FD 
protocol D'  that tolerates the same type of failures as D without adding any 
messages or rounds merely by preventing a process from deciding in a run which 
it can distinguish from all failure-free runs. Since our results concern the extension 
of FD protocols to BA protocols with minimal message and round overhead, we 
can assume, without loss of generality, that we are dealing with pure FD protocols. 
This simplifies some technical definitions. 

Our first theorem states that an FD protocol can be extended to a BA protocol 
with no message overhead in the failure-free runs, regardless of the type of failures. 
We call a BA protocol A special if, in all runs of A where the sender sends no 
messages and  all other processes are correct, no messages are sent at all. Special 
BA protocols are known for all types of failures (see Srikanth and Toueg (1987) 
for arbitrary failures, and Hadzilacos (1984) for benign failures). We say that a 
protocol halts in M rounds if all correct processes halt by the end of round M in 
all its runs. (In the case of FD protocols, by Proposition 1, we may assume that 
this is the same as the number of rounds for processes to decide in the failure-free 
runs.) 

Theorem 1. Let D be an FD protocol that tolerates some failure type in whose 
failure-free runs processes halt within M rounds, and let A be a special BA protocol 
that tolerates the same failure type in whose runs (not only the failure-free ones!) 
correct processes halt within N rounds. Then there is an effective way of combining 
D and A to construct a BA protocol B that extends D and tolerates the same failure 
type. Moreover, in each failure-free run o f  B there are no messages sent other than 
those sent by D, and all processes halt by round M + N. 

We defer the proof  (and the proof of all other theorems in this section) to the next 
section. The significance of this theorem lies in that it reduces the task of devising 
a BA protocol which is message efficient in the failure-free runs to the (simpler) 
task of devising an FD protocol which is efficient in the same way. 

The transformation from an FD to a BA protocol in Theorem 1, although 
message-preserving in the failure-free runs, is far from being round-preserving. 
Since, as we mentioned above, there is no BA protocol that terminates in less than 
t + 1 rounds even in the case of crash failures, this transformation will add at 
least t + 1 rounds to the FD protocol, even in the failure-free runs. 

Obviously, this round overhead is not always necessary when we extend an 
FD protocol to a BA protocol. For  example, if the FD protocol D already happens 
to be a BA protocol it can be "extended" to a BA protocol with zero message 
and round overhead! Less trivial examples also exist. For  instance, the early- 
stopping BA protocol of Lamport  and Fischer (1982) (see also Fisher, 1983) extends 
D o so that in failure-free runs processes decide in round 1 and halt in round 2. 
However, such efficient extensions are ad hoc. What we would like is a general way 
of transforming an FD protocol to a BA protocol which preserves the number of 
messages but introduces only minimal round overhead in the failure-free runs. It  
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turns out that in the case of benign failures we can do this, provided our FD 
protocol satisfies an extra property. In order to understand this property, we must 
consider the Uniform Byzantine Agreement (UBA) problem, as defined by Neiger 
and Toueg (1990). A protocol for UBA must satisfy Termination and Validity, 
and the following strengthening of Agreement: 

Uniform Agreement. No two processes (whether correct or faulty) choose different 
decision values. 

Uniform Agreement is a property of considerable interest. It has been singled 
out as a key difference between BA and the Atomic Commitment  problem 
(Hadzilacos, 1986). Neiger and Toueg (1990) provide UBA protocols for all types 
of benign failures and show that, in the case of 9eneral omission failures, UBA 
can be achieved only if n > 2t. In the case of arbitrary failures, the behavior of 
faulty processes is completely unconstrained and thus we cannot hope to satisfy 
Uniform Agreement. 

Here we consider Uniform FD (UFD), which bears the same relationship to 
UBA as FD does to BA. Thus, a protocol for U F D  satisfies Weak Termination, 
Weak Validity, and 

Weak Uniform Agreement. If no correct process discovers a failure, then no two 
processes (whether correct or faulty) choose different decision values. 

Weak Uniform Agreement cannot be achieved if we allow arbitrary failures 
(with or without authentication). This is so because in this case a process can 
behave correctly as far as the messages it sends are concerned, but then can choose 
an arbitrary decision value, quite inconsistent with the messages it sent! Thus, we 
only study U F D  for benign failures. In this case U F D  can be achieved. Indeed, 
all the message-optimal FD protocols for benign failures given in Hadzilacos and 
Halpern (1993), including GOF1 and GOF2v,  satisfy this property, as does Do. 
This shows that, unlike UBA, we do not require that n > 2t in order to achieve 
U F D  in the case of general omission failures. 

As we now show, U F D  protocols can be extended to BA protocols with zero 
message overhead and an overhead of at most  two rounds in the failure-free runs. 
The exact amount  of round overhead for processes to decide and halt depends on 
the failure type we consider, and whether the protocol satisfies one of two more 
technical properties. 

We say that a U F D  protocol D is safe if there is no run of D in which Validity 
or Uniform Agreement is violated. (This does not mean that the protocol is a 
UBA protocol, since Termination may still be violated!) For  example, protocol 
D o is safe, as in GOF1 in the special case n = t + 2. On the other hand, GOF1 
is not safe if n > t + 2, and GOF2v is not safe for all values of n, We say that the 
sender cannot discover a failure in D if there is no run of D in which the sender 
discovers a failure. For example, the sender cannot discover a failure in D o or 
GOF1,  but it can discover a failure in G O F 2  v. 
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Table 1. The protocols of Theorem 2. 

Round of Round of 
BA protocol Type of failure Conditions on decision (in termination (in 
constructed tolerated UFD protocol D failure-free runs) failure-free runs) 

B 1 Any benign Safe M M + 1 
B 2 ~ Crash -[N~ M + 1 M + 1 

t Any omission ~ Sender cannot 
I~ discover failure 

B 3 Sending omission None M + 1 M + 2 
B 4 General omission n > 2t M + 2 M + 2 

Because the distinction between deciding and halting features prominent ly  in 
Theorem 2, it is impor tant  to clarify this issue. When we measure the round 
complexity of  a BA protocol,  we m a y  be interested in the number  of  rounds  needed 
for correct processes to decide or to halt. The Terminat ion proper ty  implies that 
a correct process cannot  halt unless it has decided, since by definition, a process 
cannot  do anything after it has halted! However,  a process cannot  necessarily halt 
as soon as it decides, for its subsequent participation may be required to ensure 
that other  correct processes reach the same decision. 

Theorem 2 is somewhat  awkward to state. To facilitate its comprehension we 
have summarized it in Table 1. 

Theorem 2. Let D be a UFD protocol that tolerates some type o f  benign failure 
and halts in M rounds. Then there is an effective way to construct protocols B1, Bz, 
B 3, and B 4, each o f  which is an extension o f  D, such that in each failure-free run 
of  B 1, B2, B3, and B4, there are no messages other than those sent by D. In addition: 

(a) In the failure-free runs of  B1, all processes decide in M rounds and halts in 
M + 1 rounds; i f  D is safe, then B 1 is a BA protocol that tolerates the 
same type o f failures as D. 

(b) In the failure-free runs ofBz,  all processes decide and halt in M + 1 rounds. 
Moreover, i f  D tolerates crash failures, then B 2 is a BA protocol that 
tolerates crash failures; i f  D tolerates sending (resp. general) omission 
failures and the sender cannot discover a failure in D, then B 2 is a BA 
protocol tolerating sending (resp. general) omission failures. 

(c) In the failure-free runs o f  B3, all processes decide in M + 1 rounds and halt in 
M + 2 rounds. I f  D tolerates sending omission failures, then B 3 is a BA 
protocol tolerating sending omission failures (even i f  the sender can discover 
a failure in D). 

(d) In the failure-free runs ofB,~, all processes decide and halt in M + 2 rounds. 
I f  n > 2t and D tolerates general omission failures, then B 4 is a BA protocol 
tolerating general omission failures (even i f  the sender can discover a failure 
in D). 

It is natural  to ask whether the conditions we require of  D are necessary for 
achieving the round  overhead in each part  of Theorem 2. For  example, in part  
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(a), if the given U F D  protocol is not safe, must processes delay their decision until 
round M + 1 in any extension of the U F D  protocol that solves BA, or could they 
still decide in round M? Similar questions arise regarding the other parts. In 
Theorem 3 we give a partial affirmative answer to these questions. For  example, 
there is a subclass of nonsafe FD protocols, called "nondecisive," for which we 
can show that, in any BA protocol that extends a nondecisive protocol, processes 
cannot decide before round M + I in the failure-free runs. Analogous results show 
that the round overhead in the other parts of Theorem 2 is necessary, at least 
when the FD protocols we wish to extend to BA protocols satisfy certain 
properties, to which we now turn our attention. 

In protocol B1, processes defer their decision for one round after the termina- 
tion of D. We now define a subclass of nonsafe FD protocols for which this delay 
is provably necessary. Recall that an F D  protocol is not safe if Uniform Agreement 
or Validity is violated in some run. An FD protocol is nondeeisive if Agreement 
or Validity is violated in some run. It  is immediate that a nondecisive protocol is 
not safe. 

For  example, GOF1 is nondecisive (and therefore not safe) if n > t + 3. For, 
in that case there are at least two processes, s a y p  and q, in Ro w R1. Let v~{0, 1) 
be such that p ~ Rv. If q is also in R v suppose, without loss of generality, that p 
precedes q in the Rv-chain. Consider the run in which the sender has initial value 
v and the only faulty process is p, which omits to pass the message containing v 
on to the next process in the chain. Thus in this run q will decide ~, in violation 
of Validity. If q ~ R~, consider the run in which the sender has initial value v and 
the predecessor p '  o f p  is the only faulty process and omits to pass the message v 
on to p. Since neither p nor q receive a message in this run, they will decide ~ and 
v, respectively, so we have a violation of Agreement. 

Next, we define three related and increasingly restricted subclasses of FD 
protocols in which the sender can discover a failure, for which we can show that 
the round overhead for deciding and halting exhibited by B 3 and B4, as well as 
the requirement n > 2t for the latter, are necessary. We say that an FD protocol 
D is weakly sender-dependent if there exist two runs r and r' of D with the following 
properties, where v is any decision value: 

SD1. In r the sender is correct, has initial value v, and discovers a failure; no 
other correct process discovers a failure; and Validity is violated (i.e., 
some correct process decides v' # v). 

SD2. In r '  the sender is faulty, has initial value v and discovers a failure; all 
other processes are correct and do not discover a failure. 

SD3. No process except possibly those that are faulty in r can distinguish r 
and r'. 

An FD protocol is sender-dependent if it satisfies SD1, SD2, and a stronger version 
of SD3, where all processes (including those that are faulty in r) cannot distinguish 
r and r'; i.e. it satisfies 

SD3'. No process can distinguish r and r'. 
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Finally, an FD protocol is strongly sender-dependent if it is sender-dependent 
and, in addition, SD1 is strengthened to 

SDI' .  SD1 holds and the number of faulty processes in r is at most t - 1. 

For  example, G O F 2  v is weakly sender-dependent. To see this, let p be the 
process to which the sender sends its initial value when that value is v. Let r be 
the run in which the sender has initial value v, and the only faulty process is p, 
which does not pass on the sender's message, and let r' be the run in which the 
sender has initial value v but omits to send the message to p. It is straightforward 
to verify that these two runs satisfy SD1-SD3. Furthermore, in the case of general 
omission failures, GOF2  v is actually sender-dependent (not just weakly so). To see 
this, slightly modify the run r described previously, so that p omits to receive the 
message sent to it by the sender (rather than omitting to send a message to the 
next process in the chain). Note that now not even p can tell the difference between 
r and r' (whereas in the scenario described before it could, as in r it receives a 
message from the sender while in r' it does not). In fact, if t > 1, then the scenario 
we just described actually shows that GOF2v is strongly sender-dependent, since 
r has only one faulty process, p. If t = 1, then no protocol can be strongly 
sender-dependent as, in that case, the definition would require the existence of a 
run r with at most t - 1 = 0 faulty processes in which the sender discovers a 
failure, which is impossible! 

Theorem 3. Suppose D is an FD protocol that tolerates some type of  benign failure 
and halts in M rounds, and B is an extension of  D that achieves BA and tolerates 
the same type of  failures, such that the only messaoes sent in the failure-free runs 
o f  B are those sent by D. Then: 

(a) I f D  is nondecisive, then some process does not decide before round M + 1 
in some failure-free run o f  B. 

(b) I f  D is weakly sender-dependent, and D and B tolerate sendin9 omission 
failures, then some process does not halt before round M + 2 in some 
failure-free run of  B. 

(c) I f  D is sender-dependent, and D and B tolerate 9eneral omission failures, 
then some process does not decide before round M + 2 in some failure-free 
run of  B. 

(d) I f  D is strongly sender-dependent, D and B tolerate 9eneral omission 
failures, all processes decide by round M + 2 in all failure-free runs o f  B, 
and n > 4, then we must have n > 2t. 

Notice that in part  (d) of the theorem, the assumption that the correct processes 
decide in M + 2 is necessary. If we do not put constraints on when the correct 
processes decide, then it follows from Theorem 1 that we do not need to assume 
n >  2t. 

Theorem 3 is useful, despite the seemingly esoteric nature of the properties 
for which we were able to show that the round overhead of the constructions in 
Theorem 2 is necessary. In Hadzilaeos and Halpern (1993) we present lower 
bounds on the number of rounds required by message-optimal FD protocols. Our 
proofs yield enough information about the structure of minimal-round message- 
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optimal protocols that we can actually show that such protocols must have the 
properties mentioned in Theorem 3. Thus, we can use this theorem to establish 
that the constructions of Theorem 2, if applied to our minimal-round message- 
optimal FD protocols, yields BA protocols that are message-optimal and have 
minimal round complexity in the failure-free runs. 

We conclude this section with an interesting aside, concerning the extension 
of UF D protocols to protocols that solve Weak Byzantine Agreement (WBA), a 
variation of BA defined by Lamport  (1983). A protocol that solves the WBA 
problem must satisfy Termination, Agreement, and the following weakening of 
Validity. 

Weak Validity'. If there are no failures, then Validity holds. 

It turns out that all the intricacies of extending a UFD protocol to a BA protocol 
exhibited in Theorem 2 are really due to the need to ensure the Validity property. 
If instead of BA we are interested in WBA we have 

Theorem 4. Let D be a UFD protocol that tolerates any type of  benign failure and 
halts in M rounds. Then there is an effective way to extend D to a WBA protocol 
B that tolerates the same type o f  failures so that, in each failure-free run o f  B, there 
are no messages other than those sent by D, and all processes decide in round M 
and halt in round M + 1. 

Note that there are no restrictions on D beyond the fact that it is a U F D  protocol: 
it need not be safe, and the sender may discover failures. 

4. Proofs of Theorems 

The following simple lemma is useful in the proofs of Theorems 1 and 2. 

l_emma 1. Let D be an FD (resp. UFD) protocol that tolerates at least crash 
failures, and let r be a run o f  D in which at most t processes are faulty or discover 
a failure. Then Agreement (resp. Uniform Agreement) is not violated in r. Further- 
more, i f  the sender does not discover a failure, Validity is not violated (resp. no 
process decides a value other than the sender's initial value) in r. 

Proof. Suppose, by way of contradiction, that Agreement (resp. Uniform Agree- 
ment) is violated in r. Consider the run r' which is just like r except that in the 
last round all processes that discover a failure in r crash after sending their 
messages (if any). Because D is a (pure) FD (or UFD) protocol, any process that 
is correct and decides in r is also correct and decides (indeed, on the same value) 
in r'. Thus, r' is a run of D with at most t faulty processes, in which no correct 
process discovers a failure, yet Agreement (resp. Uniform Agreement) is violated, 
contradicting that D is an FD (resp. UFD) protocol. Now suppose that the sender 
does not discover a failure. This means that the sender decides its initial value, 
say v. Suppose, by way of contradiction, that Validity is violated. This means that 
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the sender is correct but some correct receiver p decides v' :~ v, which is a violation 
of Agreement, which we just proved is impossible. (In case of Uniformity, suppose, 
by way of contradiction, that some process decides v' ~ v. This violates Uniform 
Agreement, which we just proved is impossible.) [] 

Proof of Theorem 1. The basic idea of this construction is very simple: The FD 
protocol D is used first and the BA protocol A is used as a backup mechanism only 
if necessary--i.e., if some process discovers a failure. For this to work properly, 
however, there must be agreement among the (correct) processes whether A should 
be used as a backup mechanism. We can achieve such agreement by using A! 
This, of course, seems circular: Use A to determine if A should be used. As we 
shall see shortly, special protocols allow us to avoid this circularity. 

We now explain how to construct B using D and A. Without loss of generality, 
let 0 be the decision value of correct processes in the run of A in which the sender 
sends no messages and all other receivers are correct. Note that because A is 
special, no messages are sent in this run. In B there is a designated sender with 
an initial value it wishes to broadcast to n -  1 receivers. Each process p works 
as follows in B: 

In rounds 1 through M, p proceeds just as it does in D, playing the role of 
the sender with initial value v if and only if it is the sender in B with initial value v. 

During rounds M + 1 through M + N, p is involved in n simultaneous 
invocations of A, acting as the sender in exactly one of these invocations as 
follows: 

If, by the end of protocol D (i.e., by round M), p has discovered a failure, 
then in round M + 1 it invokes A to broadcast this fact. It does this by 
using 1 as its initial value. On the other hand, i fp  has reached a decision 
at the end of D, then it does nothing in the invocation of A in which it 
is the sender. By Termination and Agreement of A, by round M + N all 
correct processes will agree on whether p discovered a failure or not. 
Furthermore, by Termination and Validity of A, if p is correct and 
discovered a failure, then all correct processes will agree that it did. 

Thus, by the end of round M + N, process p will find itself with n decisions 
for the equally many invocations of A in which it participated. There are two cases. 

(1) If all of these decisions are 0, then no correct process discovered a failure 
at the end of protocol D. In this case p will simply adopt its decision at 
the end of D as its final decision for B. (Note that in this case, by Weak 
Termination of D, and Termination and Validity ofA, p must have reached 
a decision at the end of D.) 

(2) If, on the other hand, any one of the decisions is not 0, then p will 
participate in yet another invocation of A. However, in this case p will 
play the role of the sender iff it is the sender in B and, in that case, it will 
use as its initial value in this invocation of A the initial value that it wishes 
to broadcast in B (and which it used in D). By the end of round M + 2N, p 
will adopt its decision in this invocation of A as its final decision for B. 
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To show that the constructed protocol B is a correct BA protocol we consider 
two cases. 

Case 1. Some process p that is correct in the entire execution of B decides a 
value other than 0 in at least one of the n invocations of A in which it participated 
in rounds M + 1 through M + N. By Agreement for A, all correct processes will 
decide a value other than 0 in that invocation of A. Thus, by (2), all correct 
processes will participate in the final invocation of A (in rounds M + N + 1 
through M + 2N) and because A is a correct BA protocol they will choose the 
same decision value. If the sender is correct and has initial value v, they will all 
decide v. So B satisfies the BA properties in this case. 

Case 2. Every process p that is correct in the entire execution of B decides 0 in 
all n invocations of A in which it participated in rounds M + 1 through M + N. 
Thus, at the end of round M + N all correct processes adopt their decision under 
D as their final decision Under B and halt. It suffices to show that the decisions 
reached under D at the end of round M satisfy Agreement and, if the sender is 
correct throughout B, then they also satisfy Validity. At most t processes are faulty 
or discover a failure in the execution of D in the first M rounds. (Otherwise, there 
would be some process that discovers a failure in D which remains correct 
throughout B. Such a process would invoke A with initial value 1 in round M + 1. 
By Termination and Validity of A, all correct processes would then decide 1 in at 
least that invocation of A, contradicting the hypothesis of Case 2.) By Lemma 1, 
the decisions reached under D satisfy Agreement. Now suppose that the sender is 
correct thrOughout B. By Lemma 1 again, either the decisions reached under D 
satisfy Validity--in which case we are done - -o r  the sender discovers a failure in 
D. In the latter case, the sender invokes A with initial value 1 in round M + 1 
and, because we assume that it is correct throughout B, by Termination and 
Validity of A all correct processes will decide 1 in that invocation, contrary to the 
hypothesis of Case 2. 

Finally, we show that in each failure-free run of B, there are no messages sent 
other than those sent by D, and all processes halt by round M + N. Consider 
any failure-free run of B. Since the run is failure-free, no process can discover a 
failure. By the Weak Termination property of D, at the end of round M, all 
processes will have reached a decision. Thus, none of them will send any messages 
in the invocation of A in rounds M + I through M + N in which it acts as the 
sender. Since, by assumption, A is special, these invocations wilt therefore generate 
no messages and will all result in decision 0. Hence, in any failure-free run of B, 
all processes will reach their final decision in round M + N without any messages 
other than those used by protocol D. []  

Proof of Theorem 2. The basic idea in all the constructions is that processes 
which discovered a failure at the end of D broadcast that fact to inform others 
that Agreement and Validity may be violated. A process that receives a "failure 
discovered" message and did reach a decision under D must then disseminate its 
decision to all processes. 
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(a) In protocol B~, each process p executes the following algorithm: 

In rounds 1 throu#h M. p executes protocol D; if it reaches a decision v in protocol 
D, it adopts v as its decision under protocol Bt. 

In round M + 1. If p discovered a failure under D, it broadcasts the message 
"failure discovered." 
I fp  does not receive a "failure discovered" message in round M + 1, it halts. 

Any process that halts in round M + 1 does not, of course, participate in 
subsequent rounds. The remaining part of the protocol is referred to as the relay 
protocol. It runs for t + 1 rounds, starting in round M + 2: 

In round M + 2. I fp  is the sender and has initial value v, it broadcasts (S, v). 
If p is a receiver and reached a decision v in round M under D, it broadcasts 
(g, v). 

In rounds M + 3 throuoh M + t + 2. I fp  received (tan, v) (where ta# is either S 
or R) in the previous round and had not received this message before, it broadcasts 
(tay, v). 

At  the end o f  round M + t + 2. Let Xp be the set of pairs received b y p  during the 
relay protocol. We say that Xp contains a value v if it contains (tao, v) for some tag. 
Process p chooses its decision value depending on the set Xp according to the 
following rule: 

Decision rule for B~. IfXp contains a single value v, thenp decides v; ifXp contains 
(R, v) and does not contain (R, v') for v' ~ v, thenp decides v (even if Xp contains 
(S, v')); otherwise p chooses a default value as its decision. 

It may seem somewhat counterintuitive (and, indeed, may seem to contradict 
Validity) that the sender's value is discarded when there is a conflict with a 
receiver's value, but as we shall see, this can only happen if the sender is 
faulty. 

It is clear from the construction that in each failure-free run of BL, precisely 
the same number of messages are sent as in the corresponding run of D, 
and that correct processes decide in round M and halt in round M + 1. It remains 
to show that B1 is a BA protocol provided that D is safe. In order to prove this, we 
first make some observations on the properties of the relay protocol, which also 
apply in our later protocols. In the claims below, we talk about round l of the 
relay protocol, which is actually round M + 1 + l of protocol B t. A straightfor- 
ward induction on 1 shows that 

Claim 1. I f  a process p that participates in the relay protocol receives a message 
(tag, v) in some round l of  the relay protocol, 1 < l < t + 1, then there is a sequence 
PiP2 . . . . .  Pz+ l = P of  distinct processes such that (tag, v) was sent by Pi and 
received by p~ + 1 in round i of  the relay protocol, for all 1 <_ i <_ L Furthermore, v is 
either the decision reached by pl  under D, or the sender's initial value (in which case 
Pl is the sender). 



The Failure Discovery Problem 119 

Next we show that the relay protocol ensures that, for any message (tag, v), 
either all or none of the correct processes that participate receive that message. 
To see this, consider the earliest round l, 1 < l < t + 1, in which a correct process, 
say p, receives (tag, v). The choice of l, the fact that in Claim 1 the processes 
involved in the chain that propagates (tag, v) are distinct, and the fact that there 
are at most t faulty processes, imply that l < t + 1, so round l + 1 exists. Since p 
is correct it will broadcast (tag, v) in round l + 1 and therefore all correct 
processes will also receive that message. Hence we have that 

Claim 2. The set of correct processes that participate in the relay protocol receive 
exactly the same set of (tag, v) pairs. 

We are now ready to prove that B 1 is a BA protocol i fD  is a safe FD protocol. 
Consider a run r of B 1. Obviously Termination holds since all processes decide 
by round M + t + 2. Now we prove that Agreement and Validity hold as well. 
Since D is safe, the decisions reached by correct processes under D do not violate 
(Uniform) Agreement or Validity. Thus, all correct processes that decide in round 
M will choose the same decision value, say v, and if the sender is correct, then v 
is the sender's initial value. Also, by Claim 2, all correct processes that decide in 
round M + t + 2 will choose the same decision value. It remains to show that if 

(i) the sender is correct and has initial value v, or 
(ii) some correct process p decides v in round M + 1, 

then no correct process q decides v' # v in round M + t + 2. Suppose, by way of 
contradiction, that (i) or (ii) holds, yet a correct process q decides v' # v in round 
M + t + 2. Since q did not reach a decision in round M, it will send a "failure 
discovered" message in round M + 1. The sender or p, according to whether (i) 
or (ii) holds, will receive that message, and in round M + 2 will broadcast (tag, v), 
which q will receive in the same round. Given the decision rule, the only way that 
q can decide v' is if it also receives (R, u), for some u # v (possibly u --- v'), during 
the relay protocol. By Claim 1, this means that some receiver sends this message 
in round M + 2, and therefore that receiver had decided u in round M under D. 
Since (i) or (ii) holds, this means that Validity or Uniform Agreement is violated 
by D, which contradicts the assumption that D is safe. 

(b) Protocol B 2 is quite similar to B 1. One difference is that a process p that 
does not discover a failure under D does not decide in round M. Instead, it waits 
until round M + 1: If it does not receive a "failure discovered" message in round 
M + 1, p then adopts the decision it reached under D as its decision under B 
and halts. Otherwise, p participates in the relay protocol, as in B 1 . (As Theorem 
3(b) shows, the delay of the decision by one round is necessary in general.) The 
other difference is that in round M + t + 2, p decides using a slightly different 
decision rule than B1 (recall that X v is the set of pairs received by p during the 
relay protocol): 

Decision rule for B2. If Xp contains a single value v, then p decides v; if Xp contains 
(S, v), then p decides v; otherwise p chooses a default value as its decision. 
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In other words, if Xp contains a value broadcast by the sender and a different 
value broadcast by a receiver, the sender's decision value is given priority. (This 
is in contrast to the decision rule of B 1 which gives preference to the receiver's 
value.) 

It is straightforward to check that in the failure-free runs of B 2 there are no 
messages other than those used in D, and that processes decide and halt in round 
M + 1. We now show that if D tolerates crash failures, then B 2 is a BA protocol 
tolerating crash failures, while if D tolerates sending (resp. general) omission 
failures, and the sender cannot discover a failure in D, then B2 is a BA protocol 
tolerating sending (resp. general) omission failures. B2 certainly guarantees Termi- 
nation since every process reaches a decision by round M + t + 2. To show that 
Agreement and Validity are also satisfied, we consider two cases. Let r be any run 
of B2. 

Case 1. Some process, say p, that is correct in r, discovered a failure under D 
(i.e., by round M of r). In this case p broadcasts "failure discovered" in round 
M + 1. Therefore no correct process will decide in round M + 1 and all will 
participate in the relay protocol. By Claim 2, at the end of round M + t + 2 they 
will all have received the same set of pairs, so they will all choose the same decision, 
proving Agreement. Regarding Validity, assume that the sender is correct and has 
initial value v. The sender will broadcast (S, v) in round M + 2 and all correct 
processes will receive it. The decision rule for B z guarantees that all correct 
processes will decide v. 

Case 2. No process that is correct in r discovered a failure during the execution 
of protocol D. There are at most t processes that are faulty or discovered a failure 
in D. (Otherwise, some process that discovered a failure in D would remain correct 
throughout r, contrary to the hypothesis of Case 2). Thus, by Lemma 1, 

The decisions reached under D in round M satisfy Uniform Agree- 
ment and, if the sender does not discover a failure, they are equal to the (.) 
sender's initial value. 

From (,) we conclude that all processes that decide in round M + 1, reach 
the same decision and, furthermore, if the sender is correct in r, then that decision 
will be the sender's initial value. (Regarding the second conclusion, note that by 
the hypothesis of Case 2, since the sender is correct in r it cannot have discovered 
a failure in D.) By Claim 2, all correct processes that decide in round M + t + 2 will 
have received the same set of pairs in the relay protocol and will therefore decide 
on the same value. It remains to show that if 

(i) the sender is correct and has initial value v, or 
(ii) some correct process p decides v in round M + 1, 

then any correct process that decides in round M + t + 2 must also decide v. 
Assume, by way of contradiction, that (i) or (ii) holds, yet some correct process q 
decides v' vav in round M + t + 2. Thus, q must have decided under D in round 
M (by the hypothesis of Case 2) but received a "failure discovered" message in 
round M + 1. Since (i) or (ii) holds, by (*), the value that q decided under D must 
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have been v. (In case (i), recall that the sender cannot discover a failure, by 
hypothesis of Case 2.) Thus, q will broadcast and receive (tag, v) in round M + 2. 
Given the decision rule, the only way for q to decide v' in round M + t + 2 is if 
it also receives (S, v ' )  or (R, u)  for some u r v (possibly u = v') during the relay 
protocol. By Claim 1, this means that such a message is broadcast in round M + 2. 
We show that this leads to a contradiction. If a receiver sent (R, u)  in round 
M + 2, it must have decided u under D in round M. Given that (i) or (ii) holds 
this contradicts (,). Now, if the sender sends (S, v ')  in round M + 2, (i) cannot 
hold. It remains to derive a contradiction if case (ii) holds and the sender sends 
such a message. First we argue that, in this case, the sender did not discover a 
failure in D. This is true by hypothesis if we are dealing with sending or general 
omission failures. For  crash failures we reason as follows: Since the sender sent 
(S, v ')  in round M + 2, it must have successfully sent all messages in previous 
rounds. If the sender had discovered a failure in D, it would have sent "failure 
discovered" in round M + 1 which would have been received by p (because p is 
correct), a n d p  would not have decided in round M + 1, contrary to assumption (ii). 
Thus, the sender did not discover a failure in D and, by (*), the decision reached 
by any process in D is the same as the sender's initial value. By (ii), p decided v 
in D and so the sender's initial value must have been v, which contradicts the 
assumption that the sender sent (S, v') in round M + 2. Since neither (R, u), for 
u r v, nor (S, v ' )  can be sent in round M + 2, q cannot decide v' in rounds 
M + t + 2, as wanted. 

(c) The structure of protocol B 3 is quite similar to that of the previous two 
protocols. The main difference is that there are now two rounds between the end 
of D and the relay protocol. The rule used to decide at the end of the relay protocol 
is that used in B1, not B 2. More specifically, for each process p: 

In rounds 1 through M. p executes protocol D. 

In round M + 1. If p discovered a failure under D, it broadcasts the message 
"failure discovered." 
I fp  receives a "failure discovered" message in round M + 1, it discards its decision 
under D, if any. Otherwise, p adopts its decision under D as its decision under B 3. 

In round M + 2. I f p  did not reach a decision in round M + 1, it broadcasts the 
message "no decision." 
If p decided in round M + 1 and does not receive a "no decision" message in 
round M + 2, it halts. 

Again, in rounds M + 3 to M + t + 3, processes that have not halted take part  
in a relay protocol. (Note that the relay protocol is now "shifted" later by one 
round.) It is important  to emphasize that processes which discarded their decision 
under D in round M + 1 will not broadcast a message in the first round of the 
relay protocol (round M + 3). Processes decide in round M + t + 3 using the 
decision rule of B 1. 

It is clear from the construction that in the failure-free runs of B 3, precisely 
the same number of messages are sent as in the corresponding run of D, and 
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correct processes decide in round M + 1 and halt in round M + 2. Also, B 3 satisfies 
Termination since correct processes decide in all runs by round M + t + 3. To 
show that B 3 satisfies Agreement and Validity consider the same two cases as in 
the proof of correctness of B 2. Let r be any run of B3. 

Case 1. Some process, say p, that is correct in r, discovered a failure under D 
(i.e., by round M of r). The argument that Agreement holds is identical to the 
corresponding case of the previous protocol. Regarding Validity, assume that the 
sender is correct and has initial value v. The sender will broadcast (S, v) in round 
M + 3 and all correct processes will receive it. Furthermore,  any process (whether 
correct or faulty) that participate in the relay protocol will have received the 
"failure discovered" message sent by p (this is where we use the fact that we are 
dealing with sending omissions only) and will discard its decision under D, if any. 
Thus the only message broadcast in the relay protocol is (S, v), so all correct 
processes will decide v, the sender's initial value, as required for Validity. 

Case 2. No process that is correct in r discovered a failure during the execution 
of protocol D. The proof  is quite similar to the corresponding case of protocol 
B 2 except for the step proving that if 

(i) the sender is correct and has initial value v, or 
(it) some correct process p decides v in round M + 1, 

then any correct process that decides in round M + t + 3 must also decide v. To see 
why this holds now, assume, by way of contradicition, that (i) or (it) holds, yet 
some correct process q decides v' ~ v in round M + t + 3. Thus, q must have 
received a "failure discovered" message in round M + 1. Since q is correct, it must 
have sent a "no decision" message in round M + 2 that was received by all correct 
processes. Thus, the sender or p (depending on whether (i) or (it) holds) will 
broadcast (tag, v) in round M + 3 and this message will be received by q (because 
the sender of the message as well as q are correct). Thus, given the decision rule 
for B3, the only way that q could decide v' in round M + t + 3 is if it also received 
(R, u), for some u ~ v (possibly u = v'). By Claim 1, such a message must have been 
sent in round M + 3. However, if (i) or (it) holds no such message could have 
been sent because, by (*), the decision values reached under D (which are the 
only values that can be broadcast by receivers in round M + 3) cannot be different 
from v. Thus, if (i) or (it) holds, no correct process decides v ' r  v in round 
M + t + 3, as wanted. 

(d) Finally, we describe B 4. This protocol is identical to B3, except for three 
differences: Firstly, processes do not decide in round M + 1; rather, they delay 
their decision until round M + 2, making one only if they do not receive a "no 
decision" message. (As Theorem 3(d) shows, such a delay is necessary in general.) 
Secondly, if the sender sends a "failure discovered" message in round M + 1 and 
does not receive at least t + 1 "no decision" messages in round M + 2, it 
halts in round M + 2 (since it knows it must be faulty) and does not participate 
in the relay protocol. Finally, we use the decision rule of B2, not that of B 1. 

The proof  of correctness proceeds along the same lines as those of B2 and B 3. 
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Termination is obvious. For  Agreement and Validity we consider our familiar two 
cases. Case 1 is similar to the corresponding case in the previous two protocols, 
except for the proof  that Validity holds. (We urge the reader to determine why 
the proof  of Validity in the corresponding case of B 3 does not work now, as this 
reveals the subtle difference between the two protocols.) Here is why Validity holds 
now: Suppose that the sender is correct and has initial value v. Since in Case 1 
some correct process p discovered a failure in D, in round M + 1 p will send a 
"failure discovered" message that will be received by all correct processes. Since 
n > 2t, at least t + 1 processes are correct and will send a "no decision" message 
in round M + 2 (this is the only place where we need the assumption n > 20. 
The sender, being correct, will receive all these and will therefore have the required 
number of "no decision" messages to broadcast (S, v) in round M + 3. All correct 
processes will receive that message and, because we are now using the decision 
rule of B 2, they will all decide v, as wanted. 

The p roof  of Case 2 is similar to the corresponding case of the previous two 
protocols except for the step proving that if 

(i) the sender is correct and has initial value v, or 
(ii) some correct process p decides v in round M + 2, 

then any correct process that decides in round M + t + 3 must also decide v. To 
show this now, assume, by way of contradiction, that (i) or (ii) holds, yet some 
correct process q decides v' r v in round M + t + 3. Thus, q must have received 
a "failure discovered" message in round M + 1. Since q is correct, it will send a "no 
decision" message in round M + 2 that will be received by all correct processes. 
Thus, the sender o r p  (depending on whether (i) or (ii) holds) wilt broadcast (tag, v) 
in round M + 3 and this message will be received by q (because the sender of the 
message as well as q are correct). Given the decision rule for B ,  (the same as for 
B2), the only way that q could decide v' in round M + t + 3 is if it also received 
(S, v') or (R, u), for some u # v (possibly u = v'). By Claim 1, such a message 
must have been sent in round M + 3. We show that this leads to a contradiction. 
If a receiver sent ~R, u), for some u -r v, in round M + 3 it must have decided 
u r v in round M under D. Given that (i) or (ii) holds, this contradicts (,). (If case 
(i) holds, recall that the sender cannot discover a failure, by the hypothesis of Case 
2.) If the sender sent (S, v') in round M + 3, then clearly (i) cannot hold. The fact 
that the sender broadcasts such a message means that in round M + 2 it received a 
"no decision" message from at least t + 1 processes. One of these must have been 
correct. Thus all correct processes, in particular p, will receive such a "no  decision" 
message in round M + 2 which will prevent them from deciding in that round, 
contrary to (ii). Thus if (i) or (ii) holds no correct process q can decide v' :~ v in 
round M + t + 3. [] 

We interject the proof  of Theorem 4, because it is closely related to the proof of 
part  (a) of Theorem 2. 

Proof of  Theorem 4. The WBA protocol B that extends the given U F D  protocol 
D is, in fact, a simplification of protocol B 1 . All that is required is to prevent the 
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sender from sending its initial value in the relay protocol if it discovers a failure 
under D. That  is, in the description of what happens in round M + 2 of B1, we 
now omit the statement " I f p  is the sender and has initial value v, it broadcasts 
(S, v)." (Since all the messages that will be sent have a tag of R, we can thus omit 
the tag.) The decision rule is the same as that for BI. The resulting protocol does 
not necessarily satisfy Validity, because a correct sender that discovered a failure 
is prevented from sending its initial value. This may result in processes deciding 
on some other value, even though the sender is correct. However, this can only 
happen if some failure occurred--otherwise the sender would not have dis- 
covered one - - and  therefore in WBA there is no obligation to fulfill Validity in 
this case. The details of the proof  that this in fact achieves WBA are left as an 
exercise. [] 

Proof of Theorem 3. (a) Let D be a nondecisive FD protocol that halts in M 
rounds. Suppose, by way of contradiction, that B is a BA protocol extending D 
in which processes decide by the end of round M in failure-free runs. Since D is 
nondecisive there exists a run r of D in which Agreement or Validity is violated. Let 
r ,  be the run of B extending r in which no process fails after round M. In case 
Agreement is violated in r, let p and p '  be correct processes that decide v and v', 
respectively, in r, for some v # v'. Since D is a (pure) FD protocol, the fact that 
p (resp. p') decides v (resp. v') in r, implies that p (resp. p') cannot distinguish r 

v t~ ' from the failure-free run where the sender's value is v (resp. v'). Let r ,  and r ,  
be the failure-free runs of B which extend the failure-free runs of D with initial 
values v and v', respectively. At the end of round M, p cannot distinguish r ,  from 

~' Since, by assumption, processes r,, while p '  cannot distinguish r ,  from r ,  
decide in round M in failure-free runs of B, p must decide v and p '  must decide 
v' in r, .  Since both p and p '  are correct in r, they are also correct in r ,  and 
thus r ,  violates Agreement, which contradicts the assumption that B is a BA 
protocol. In case Validity is violated in r, a similar argument shows that if a correct 
process p decides v at the end of round M and its decision differs from the correct 
sender's initial value v', we get a contradiction to Validity in the run r ,  of B. 
Thus, it is not the case that all processes can decide by the end of round M in all 
failure-free runs of a BA protocol extending D. 

(b) Let D be a weakly sender-dependent FD protocol that halts in M rounds, 
and let B be a BA protocol extending D, where both B and D tolerate sending 
omission failures. Suppose, by way of contradiction, that all processes halt by the 
end of round M + 1 in the failure-free runs of B. By hypothesis, there are no 
messages beyond those used in D in the failure-free runs of B. From this we obtain 
the following useful fact: 

If at the end of round M a process p cannot distinguish a run r from a 
failure-free run and p does not receive any message in some round j, (**) 
M < j < i, then p does not send a message in round i of r. 

Let r and r' be the runs of D satisfying SD1-SD3 guaranteed to exist by the 
definition of weakly sender-dependent. Pick a receiver p as follows: If there are 
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fewer than t faulty processes in r, let p be any correct receiver in r'. If  there are t 
faulty processes in r, let p be any one of them which is not faulty in r', (Such a 
receiver must exist because in r' the sender is faulty and so at most t - 1 receivers 
can be faulty. Since the sender is not faulty in r, if there are t faulty processes in 
r, they must all be receivers, so there is at least one faulty receiver in r which is 
correct in r',) Now consider runs r .  and r ,  of B defined as follows: 

r ,  is the extension of r in which the only deviation from correct behavior 
after round M is that all processes that are faulty in r as well as p (whether 
or not it is faulty in r), omit to send any messages after round M. (By the 
choice of p, the number of faulty processes in r .  does not exceed t.) 

r .  is the extension of r' in which the only deviations from correct 
behavior after round M are: (i) the sender omits to send a message to p 
in round M + 1, and (ii) all processes that are faulty in r other t hanp  omit 
to send all messages after round M. (Again, the choice o f p  ensures that 
the number of faulty processes in r ,  does not exceed t.) 

Since the sender is correct and has initial value v in r . ,  all correct processes 
must decide v in that run. We show that p halts and decides v' in round 
M + 1 in r',. To see this, first observe that no process sends a message to 
p in round M +  1. (This is so by the definition of r ,  for the sender and 
the receivers that are faulty in r. For  the remaining receivers, SD1 states that none 
of them discovered a failure in r. Thus, these processes cannot distinguish r from 
some failure-free run, and, by SD3, they cannot distinguish r' from some failure-free 
run. Hence, by (**), these processes do not send any message at all in round M + 1 
of r,.) By SD2, p cannot distinguish r' from some failure-free run of D and, 
therefore, at the end of round M it cannot distinguish r .  from some failure-free 
run of B. Since no process sends a message to p in round M + 1 of r . ,  at the end 
of that round, p cannot distinguish r .  from some failure-free run of B (because 
in such runs there are no messages after round M). Therefore, p must decide and 
halt by the end of round M + t in r . .  I t  remains to show that p actually decides 
v'. By SD1, some receiver q, which is correct in r, decides v' ~ v. By SD3, q decides 
v' in r '  as well. Furthermore, by SD2, q is correct in r '  and no correct process 
discovers a failure. Therefore, Agreement must hold in r'. This means that all 
correct processes in r', and in particular p, decide v'. Hence, the failure-free run 
which p cannot distinguish from r .  is that in which the sender's initial value is v'. 
This implies that p decides v' at the end of round M + 1 of r , ,  as wanted. 

Next we show that all processes except p and those that are faulty in 
r cannot distinguish r .  and r .  in any round. This is obvious, by SD3, for 
rounds 1 through M. By SD3, (**), and the definition of r .  and r . ,  only 
the sender sends messages in round M + 1 in r .  and r~,. Indeed, with the 
exception of the message it sends to p, the sender sends the same messages 
in round M +  1 in both runs. Thus, all receivers other than p and those 
that are faulty in r cannot distinguish r .  and r .  in round M q-1. As we 
have seen, p halts at the end of round M +  1 in r .  and so does not send 
messages after that round. Thus, recalling that, by definition, p does not send any 
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messages after round M in r .  and that the processes that are faulty in r do not 
send any messages after round M in r .  and r . ,  the only processes that send 
messages after round M + 1 in the two runs are those that cannot distinguish 
them at the end of that round. A straightforward induction now shows that these 
processes will continue being unable to distinguish the two runs in all subsequent 
rounds. We conclude that all processes except p and those that are faulty in r 
cannot distinguish between r .  and r .  in any round, as wanted. 

Let q be a process other than p which is correct in r (such a process 
exists, since we are assuming n > t + 2). We have shown that all correct processes 
decide v in r . .  Since, as we just saw, q cannot distinguish r .  from r, ,  it must decide 
v in r ,  as well, and, since it is correct in r and is different from p, q is correct in 
r. .  On the other hand, we have also shown that p, which is correct in r , ,  decides 
v' in that run. Thus r .  violates Agreement, which contradicts the assumption that 
B is a BA protocol. Therefore, it is not possible that all processes halt by round 
M + 1 in failure-free runs of B, as wanted. 

(c) Let D be a sender-dependent FD protocol that halts in M rounds, 
and B be a BA protocol extending D, where both B and D tolerate general 
omission failures. Suppose, by way of contradiction, that all processes decide by 
the end of round M + 1 in the failure-free runs of B. The proof  is analogous to 
that in case (b), except that the runs r .  and r ,  are defined in a slightly different way: 

r .  is the extension of r in which the only deviation from correct behavior 
after round M is that p omits to receive a message from the sender in 
round M + 1. 

r ,  is the extension of r' in which the only deviation from correct behavior 
after round M is that the sender omits to send a message to p in round 
M + I .  

Note that, unlike the previous case, p and the processes that are faulty in r are 
not prevented from sending messages after round M in r ,  and r. .  However, 
since now all processes are unable to distinguish r and r' (and not merely the 
processes that are correct in r--recal l  that therein lies the difference between 
weakly sender-dependent and sender-dependent protocols), all processes will 
continue being unable to distinguish r .  and r .  in all rounds after round M. 
The rest of the proof  proceeds as in the previous case, 

(d) Now suppose that D is a strongly sender-dependent FD protocol that 
halts in M rounds, B is a BA protocol extending D, so that processes decide by 
round M + 2 in the failure-free runs of B, and that both protocols tolerate general 
omission failures. We have to show that if n > 4, then n > 2t. Since D is strongly 
sender-dependent, t > 1. 

Suppose, by way of contradiction, that n < 2t, and let r and r'  be the runs 
satisfying SDI' ,  SD2, and SD3' guaranteed to exist by the definition of strongly 
sender-dependent. Let p be a correct process that decides v' in r (such a process 
exists by SD1). Partition the set of n - 2 receivers other than p into two sets X 
and Y, of size L(n - 2)/2J and [-(n - 2)/2], respectively, so that all faulty processes 
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in r to a maximum of ] Y] are in Y and the remaining, if any, are in X. Since n _> 4, 
both X a n d  Yare nonempty, and since we are assuming that n _< 2t, each has size at 
most t - 1. Now consider three runs of B, defined as follows: 

r ,  is an extension of r in which the faulty processes are all the processes 
in Y, p, and, of course, those processes in X that were already faulty in r 
(if any). The only deviations from correct behavior in r ,  after round M 
are that p and the processes in Y omit to receive any messages from the 
sender in round M + 1, and that p omits to receive any message from 
the sender or the processes in X in round M + 2. Given the way we 
partitioned the processes into X and Y and recalling that each of these 
has size at most t - 1, the number of faulty processes in r ,  does not 
exceed t. 

r ,  is an extension of r' in which the only faulty processes are the sender 
(which i s  the only faulty process in r') and the processes in X. The only 
deviations from correct behavior after round M are that the sender omits 
to send messages to p and to the processes in Y in round M + 1, and 
that the sender and the processes in X omit to send messages to p in 
round M + 2. Since I Xl _< t - 1, the number of faulty processes in r ,  
does not exceed t. 

r ,  is the extension of r' in which the only faulty processes are the sender 
and p and in which the only deviations from correct behavior are that 
the sender omits to send messages to p and to the processes in Y in round 
M + 1, and that p omits to receive any message from the sender or the 
processes in X in round M +  2. Since t > 1, the number of faulty 

t !  processes in r ,  does not exceed t. 

It  is not difficult to see that no process can distinguish between any two of 
t t  r , ,  r , ,  and r ,  in any round. This is immediate from SD3' for rounds 1 through 

M; for subsequent rounds it follows by a straightforward induction and the 
definitions of the three runs. 

Now, in r ,  all correct processes must decide v, since the sender is correct and 
has initial value v. There is at least one process in X that is correct in r, .  (This is 
so because the only processes in X that are faulty in r ,  are those that are already 
faulty in r. By SDI '  there are at most t -  1 faulty receivers in r, and given the 
way in which we partition them into X and IT, X contains at least one correct 
process.) Therefore, some correct process in X decides v in r, .  

Next we show that some (correct) process in Y decides v' in r , .  To prove this, 
first we show that in r ,  (as in the other two runs)p does not receive any messages 
in rounds M + 1 and M + 2. To see this note that, by SD2, only the sender can 
distinguish r'  from a failure-free run; therefore the same is true regarding r ,  at the 
end of round M. Since processes do not send messages after round M in runs 
which they cannot distinguish from failure-free runs, the only process that can 
send messages in round M + 1 is the sender. However, by definition of r , ,  the 
sender does not send any such messages to p or to processes in Y in that round. 
Hence, the only processes that can distinguish r ,  from a failure-free run at the 
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end of  round  M + 1 are the sender and the processes in X. Thus,  processes in Y 
do no t  send any messages in round  M + 2 and,  by  const ruct ion,  the sender  
and  processes in X do  not  send a n y  messages to p in r o u n d  M + 2. Therefore,  p 
receives no messages in rounds  M + 1 and  M + 2. By choice of  p,  tha t  process  
decides v' in r. Since D is a (pure) F D  protocol ,  p does no t  dis t inguish r from the 
failure-free run in which the sender 's  init ial  value is v'. Then,  by SD3',  p does not  
dis t inguish r '  f rom tha t  same failure-free run. Since p does  not  receive any messages 
in rounds  M + 1 and  M + 2 of  r ,  (which extends r') and  since there are no 
messages beyond  those  a l ready  sent in D in the failure-free runs of  B, p cannot  
dis t inguish r ,  f rom the failure-free run of  B in which the sender  has  ini t ial  value v', 
However ,  processes mus t  decide by the end of  r o u n d  M + 2 in failure-free 
runs of  B, so tha t  p decides v' at  the end of round  M +  2 in r , .  Since p 
and  all processes in Y are correct  in r , ,  by  Agreement  all processes in Y 

t must  decide v' in r , .  
t !  t However ,  as we have seen processes canno t  d is t inguish r ,  f rom r ,  and  r ,  in 

any  round.  Thus,  the correct  process  in X which decides v in r ,  will decide v in 
r,;" and  the processes in Y t h a t  decide v' in r ,  will decide v' m" r,,"" but  the processes 

t t  p! in bo th  X and  Y are  correct  in r , ,  so tha t  r ,  violates Agreement ,  con t rad ic t ing  
tha t  B is a BA protocol .  Therefore  it is not  poss ible  to have n < 2t in this case. 

[ ]  
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