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Polynomial Interpolation and the Chinese 
Remainder Theorem for Algebraic Systems 

Kirby A. Baker and Alden F. Pixley 

w 1. Lattices and the Number 2 

There are several intriguing instances of theorems that apply to lattices and 
involve the integer 2. Here are their statements; their relationships and proofs 
will be considered in w 2. 

1.1. First Illustration: Bergman's Double-projection Theorem. Can a sublattice 
of a direct product Lt x ..- x L, of lattices be uniquely identified from its images 
in Lt ,  ..., L, under the projection maps on the factors Li? No, clearly: even in a 
product L x L, the diagonal and the full product have the same images when 
projected. The following fact is therefore striking: 

1.2. Theorem (Bergman Eli). A sublattice M of a direct product P = Lt x ... x L,  
of lattices can be uniquely determined from its images under the projections rc u of 
P onto all pairs of  factors L i x Lj,  (i<j). 

In other words, two sublattices with the same "2-fold projections on factors" 
must coincide. Bergman's theorem will be derived in w as a consequence of 
Theorem 2.1. 

As an example, let L1 . . . . .  L, =2,  the two element chain {0, 1}. Then P can 
be regarded as the Boolean lattice of all subsets of an n-element set S, with M 
as a sublattice. Bergman's theorem asserts that M Can be uniquely identified 
from its restrictions to the various two-element subsets of S. In contrast, Berg- 
man's property fails for abelian groups: Let 12 denote the group of integers 
modulo 2, and consider the product P' =2~ 2 x 2g 2 x 77. 2 and its subgroup M ' =  
{(0,0,0),(1, 1,0),(1,0, 1),(0, 1, 1)}. P' and M' are different subgroups of P', and 
yet have the same images under projections on pairs of factors. 

1.3. Second Illustration: The Pairwise Chinese Remainder Theorem. Recall 
the Chinese Remainder Theorem for integers: For any integer moduli ml, ..., m, 
and integers a 1 . . . .  ,a , ,  the congruences x=a~ (modm~) have a simultaneous 
solution x, provided only that the congruences are pairwise compatible, in the 
sense that a z - a j  (rood gcd(mi, m j)). An equivalent but formally stronger com- 
patibility condition is simply to require that any two congruences have a simul- 
taneous solution. In fact the following theorem is due to Wille: 

1.4. Theorem (Wille [19]). For any congruence relations 0~,. . . ,  O, on a lattice 
L and elements al, . . . ,  a, of L, if the congruences x =- ai (rood Oi) are solvable any 
two at a time, then they are simultaneously solvable. 
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Actually, Wille's theorem applies to a more general class of algebraic systems, 
and Huhn has generalized the theory still further [101. For further discussion 
of congruence relations and corresponding variants of the Chinese Remainder 
Theorem, see [5], [7, pp. 221, 264-265], [14]. For a ring-theoretic version see 
[-20, p. 2793. 

1.5. Third Illustration: A Sublattice-of-the-square Criterion for Polynomial 
Functions. Let L be a finite lattice, let n be a positive integer, and let f be an "n-ary 
function on L," i.e., a function f :  L"~ L.What is a necessary and sufficient condition 
for f to be a polynomial f u n c t i o n - a  function built by compositions using the 
lattice operations v and A ? As a first attempt, observe that each sublattice S 
of L must be closed under f in the sense that f(S")___ S; if n > 1, though, this neces- 
sary condition is not sufficient. 

In this paper, however, it will be shown that it is enough to consider sublattices 
of L x L, no matter how large n is: 

1.6. Theorem. For any finite lattice L and function f: 12 ~ L, f is a polynomial 
function if and only if every sublattice of L x L is closed under f 

This fact is a corollary of 1.8 below. 
Again, a sublattice S of L x L is said to be closed under f when S is closed 

under the n-ary operation on L x L obtained by coordinatewise application 
of f - t h e  usual method of extending an operation to a direct product. 

As an example, for any lattice L consider the particular sublattice S of L x L 
given by S =  {(x, y)6L x L: x <y}, the graph of the inequality relation. For any n, 
the n-ary functions f under which S is closed are simply those functions that are 
isotone. In effect, the closure condition for this particular S has produced a 
particular attribute of polynomial functions. Other choices of S correspond to 
the assertions that such an n-ary function preserves congruence relations on L 
or given isomorphisms between sublattices of L. 

Theorem 1.6 does not generalize to all infinite lattices (Example 5.3). However, 
it does generalize to some special classes of infinite lattices, such as infinite 
distributive lattices (Theorem 5.2). 

1.7. Fourth Illustration: Multivariate Lagrange Interpolation for lattices. The 
familiar Lagrange Interpolation Theorem asserts that for any m > 0, any distinct 
real numbers a0, ...,am, and any real numbers b 0 . . . . .  bm there exists a real 
polynomial function p of degree at most m such that p(a 0 =b~ (i = 0  . . . . .  m). The 
function p can be constructed explicitly; the theorem generalizes to arbitrary 
fields, and even to polynomials in several variables, although the question of 
degrees becomes more complicated. 

Observe that the pairs (ag, b~) constitute a function defined on a finite subset 
of the real field IR. More generally, by a j~nite partial junction in IR" to IR let us 
mean a function whose domain is a finite subset of IR". In this terminology, then, 
Lagrange's Interpolation Theorem for n real variables asserts that every finite 
partial function f in N" to IR has an interpolating p o l y n o m i a l - a  polynomial 
function p: IR" ~ IR of which J' is a restriction. 

Is there an analogous interpolation theorem for lattices? Clearly, there must 
be conditions imposed on the finite partial functions f considered: At the very 
least, they must be isotone, as lattice polynomials are. Moreover, "polynomials" 
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in the sense of lattices are more special than "polynomials" as used in Lagrange's 
Theorem: The latter involve real constants as coefficients and so are really 
"algebraic functions" in the terminology of universal algebra [-7, p. 45]. (Such 
functions will be considered in w 6.) 

Here, then, is such a lattice analogue of Lagrange's T h e o r e m - a n  analogue 
that is simultaneously a generalization of Theorem 1.6 and an additional instance 
of the appearance of the number 2: 

1.8. Theorem. For any lattice L and integer n > 1, a finite partial funct ionf  in 
12 to L has an interpolating polynomial f and only f all sublattices of L x L are 
closed under f 

The proof will be given in w 2. For such a partial function, to say that a 
sublattice S of L • L is closed under f means that if (q ,  dO . . . .  ,(c,, d,)~S, then 
( f (cl  . . . . .  c , ) , f (dl ,  ..., d,))~ S, provided only that both these values of f are 
defined. 

w 2. The Equivalence Theorem 

What is behind the theorems of w 1 ? Why is the number 2 associated with 
lattices ? 

A clue is given by a result of Wille [19] (see also Huhn [10, Theorem 3.3]): 
For any variety (equational class, primitive class) V of algebras, the "pairwise 
Chinese Remainder Theorem" is valid in all algebras of V if and only if V has a 
"majority polynomial" in three variables, i.e., a polynomial expression m(x, y, z) 
such that all algebras of V obey the identities m(x, x, y)= x, m(x, y, x)= x, 
re(y, x, x)=x.  For lattices, such a polynomial is the "median polynomial" 

m (x, y, z) = (x v y)/x (x v z)/x (y v z). 

In this and subsequent sections, then, the first, second, and fourth theorems of 
w I will be proved by showing that the truth of each for a variety V (in place of 
the variety of lattices) is equivalent to the existence of such a majority polynomial. 
The third theorem, Theorem 1.6, was already observed to be an immediate 
corollary Of the fourth. 

Moreover, at no extra cost, the integer 2 of w 1 can be generalized to an 
arbitrary dimension-like integer d>2 ,  as Huhn does in his theory of d-distrib- 
utivity [-10]. Huhn's generalized re(x, y, z) is a (d+ 1)-variable polynomial expres- 
sion obeying the "near unanimity" identities 

re(x, . . . ,x ,  y ,x,  . . . , x )=x ,  

for any position of the "lone dissenter' y. 

The full theorem of equivalence is as follows. (An extra condition, (4), has 
been included for later convenience.) 

2.1. Theorem. For a variety V and integer d> 2, the following conditions are 
equivalent: 

(1) V has a (d + D-variable polynomial expression m(xo, ..., xa) satisfying the 
"near unanimity" identities in each algebra of V. 

(2) In V, if A is a subalgebra of a direct product P =  Cj x ... x C~ (r>d), then A 
can be uniquely determined from a knowledge of its d-fold coordinate projections - its 
images under the projections of P on all products Cm ) x ... x C,e), i(1)<.-.  <i(d). 



168 K.A. Baker and A.F. Pixley 

(3) In any algebra A~V,  if r congruences x - a i m o d O i ,  l<i<_r, r>=d, are 
solvable d at a time, then they are solvable simultaneously. 

(4) For any algebra A~ V, integer n>= 1, and finite partial function f in A" to A, 
if the restriction o f f  to each subset of its domain with d or fewer elements has an 
interpolating polynomial, then so does f itself. 

(5) For any algebra A~ V, integer n>= 1, and finite partial function f i n  A" to A, 
f has an interpolating polynomial if and only if all subalgebras of A d are closed 
under f (where defined). 

The proof will be given in w 4. 
2.2. Notes. (i) As remarked above, this theorem has as corollaries all four 

lattice theorems of w 1. 
(ii) It is a simple observation (e.g. [14]) that for any algebra A, a function 

f :  A " ~  A (n> 1) is a polynomial function if all subalgebras of A A" are closed 
under f In contrast, if the equivalent conditions of the theorem do hold for A, 
then according to condition (5) the test requires only subalgebras of A a, rather 
than A A"-a  substantial simplification. 

(iii) Condition (5) of the theorem applies in particular to the case where f is 
defined on F " ~  A for some finite subset F of A. In this case, (5) can be rephrased 
as (5'): I f f  takes Sc~F e to S for each subalgebra S of A a, then f coincides on F a 
with some polynomial p. 

(iv) The near unanimity identities of (1) constitude a (strong) Mal'cev-type 
characterization ([8, 15]) of the equivalent conditions (2)-(5). For the case d=2,  
the near unanimity identities coincide with the case n = 2  of J6nsson's A, charac- 
terizing congruence-distributivity [11]. 

w 3. Characterization of Closure 
In condition (5) of Theorem 2.1, the "closure" of subalgebras of A d under f 

has the meaning noted above: If S is a subalgebra of A d and n d-tuples from S 
are given, then the coordinatewise application of f to these d-tuples yields a 
d-tuple in S, provided that the application of f is defined for each coordinate. 

The condition is most easily visualized by forming a matrix with the given 
d-tuples as rows. In these terms, the subalgebra S is closed under f when, for 
any n x d matrix M whose rows are d-tuples in S and whose columns are n-tuples 
in the domain of f, S contains the row vector " f (M)"  of length d obtained by 
applying f to each column of M. 

This test suggests examining the case where M is a given n x d matrix over 
A and S is the subalgebra of A a generated by the rows of M. For convenience, let 
us call this subalgebra the "~ row space of M". 

The following lemma clarifies the relationship between closure, the row space 
of M, and interpolation. (Because the parameter d has a specific role in the pre- 
ceding theorem, the letter k will be substituted, for future flexibility.) 

3.1. Lemma. For an algebra A, positive integers n and k, and partial function 
f in A" to A, the following conditions are equivalent: 

(a) All subalgebras of A k are closed under f; 
(b) for any n x k matrix M with entries in A and columns in the domain o f f  the 

row vector f ( M )  is in the row space of M; 
(c) f restricted to any k or fewer elements of its domain, can be interpolated. 
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Proof, cyclically. (a) ~ (b): As remarked above, (b) is an instance of (a). 
(b) ~ (c): Let M be an n x k matrix whose columns are k (or fewer) given elements 
of the domain of f (if fewer than k, then with repeated columns). By (b), f ( M )  
is in the row space of M. But the elements of a generated subalgebra are polynomial 
expressions in the generators. Thus f ( M ) = p ( M )  for some n-ary polynomial 
p: A" ~ A. In other words, p and f agree on the k given domain elements of f 
(c) ~ (a): Let S be a subalgebra ofA k being tested for closure under f and let any n 
elements of S be given, in the form of rows of an n x k matrix M. Then either (i) 
not all columns are in the domain o f f  in which case the test is vacuously met, or 
else (ii) the columns are in the domain off ,  in which case f coincides with a poly- 
nomial p on these columns. Since all subalgebras are closed under polynomials, 
the test is then met. 

w 4. Proof of  the Equivalence Theorem 

Although a proof of Theorem 2.1 by cyclic implications is possible, it is more 
instructive to verify the pairwise equivalences (2) <=~ (3) <=~ (1) <=~ (4) <=> (5). 

Of these, (3)<=>(1) is due to Huhn [10, Theorem 3.3], and (4)<=~(5) is an 
immediate consequence of Lemma 3.1 with k = d. 

4.1. Balance of  the Proof. (2 )~ (3 ) :  Let ~: A-->A/Ol x . . .  x A / O  , be the 
composition of the diagonal inclusion A ~ A x ... x A = A' and the product map 
A x ... x A ~ A/O 1 x ... x A/O, of the individual natural projections ~zi: A -~ A/Oi. 
]For the r congruences x---ai mod 0~, an element a e A  is a simultaneous solution 
when ~(a)=  <21 . . . . .  2,), where ai is the congruence class of al in A/Oi. Thus we 
must show @1, .--, 2,)eq5 (A). Since the r congruences are assumed to be solvable 
d at a time, we know, at least, that any d-fold projection of (a l ,  .--, 2,)  is in the 
corresponding d-fold projection of 0(A). But then (21, ..., fi,) is in 4(A), for 
otherwise, the subalgebra generated by ( f i l , . . . ,  fi,) and 0(A) together would be 
distinct from ~b(A) and so by condition (2) would have at least one distinct d-fold 
projection. 

(3) ~(2) :  Suppose that A and B are subalgebras of C a x ... x C, with the 
same d-fold projections. It is enough to prove that A _  B, as the opposite inclusion 
follows by a symmetrical argument. Let a e A  be given. We can choose for each 
i some b ieB  with ~(b~)=~i(a), since the d-fold-projection hypothesis implies 
that A and B certainly have the same projections on individual factors. Consider 
the r congruences x - b i m o d k e r ~  in B. Under any d-fold projection, the d 
corresponding b~ merge into a "d-fold image" of a, which by hypothesis equals 
the "d-fold image" of an element of B. This element of B solves the d corresponding 
congruences. Thus the congruences x = b~ mod ker ~ are solvable d at a time in B. 
By (3), these congruences have a simultaneous solution b. Then Tq(b)= 7ci(bi)=~i(a) 
for each i. In other words, b=a,  so that aeB ,  as desired. 

(1) ~ (4): The proof is by induction on I dom f [, the cardinality of the domain 
o f f  The cases I d o m f l - - 0 , . . . , d  are trivial. Suppose the assertion holds for 
I dom f [ < r (r > d), and consider the case I dora f I = r. By the inductive hypothesis, 
for each i = 1, ..., r there exists an n-ary polynomial pl that agrees with f on the 
(r - 1) domain elements other than the i-th one (in some previously chosen enumera- 
tion). Let p=m(pa ,  ...,Pe+I), a composition of the near unanimity polynomial 

12 Math. Z. Bd. 143 
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and the first few of the Pi. By the near unanimity property of m, p must agree with f 
on every domain element, as desired. (The polynomials pe ~ 1, -.-, Pr are not needed.) 

(4) ~ ( I ) :  Let A be the free algebra on two generators x ,y  in Vand let f be 
the partial (d+l ) -ary  function whose only defined values are f ( y , x ,  . . . , x )=x ,  
f ( x ,  y, x , . . . ,  x ) = x  . . . . .  f ( x  . . . .  , x, y)=x,  so that f has (d+ 1) domain elements 
in all. A claim: f can be interpolated on any d domain elements. By symmetry 
we can, without loss of generality, consider the restriction of f to just the first d 
domain elements. But these d elements all have x as their last coordinate, so that 
on these domain elements f can be interpolated simply by the (d + 1)-ary function 
"projection on the last coordinate", which is indeed a polynomial. Thus the 
claim is valid. By (4), f agrees with some polynomial m on all (d + 1) domain 
elements. For this m, the near unanimity identities hold, because any relation on 
the generators of a free algebra in V yields a corresponding identity on all 
algebras in V. 

4.2. Remarks. (i) The above proof can be short-circuited into a cyclic proof 
by verifying (2) =~ (5). To do so, one can consider the row spaces of the n x d 
submatrices of a given n x r matrix. 

(ii) For almost any pair of conditions (1),...,(5), it is interesting to try to 
find a direct proof of their equivalence. 

(iii) The critical part of the interpolation process is given in the proof of 
(1) ~ (4). The final interpolating polynomial is a composition whose innermost 
polynomials are interpolating polynomials for d out of the r domain elements at 
a time, encased in ( r - d )  layers of the (d+ 1)-ary polynomial m. A count shows 
[(d + 1) r d_  1]/d uses of m in producing the final interpolation. 

w 5. Finite Algebras and Locally Finite Varieties 

Theorem 2.1 yields immediately: 

5.1. Corollary. Let A be a finite algebra with a polynomial m(x l , . . . , xa  1) 
that satisfies the "near unanimity" identities. Then, for any positive integer n, 
a function f :  A n ~ A is a polynomial function if and only if every subalgebra of A d 
is closed under f 

Indeed, it suffices merely to regard f as a finite partial function. 
It is interesting to note the potential complexity of f as a polynomial. For 

example, let L be a 10-element lattice, and let f be a ternary function on L. Then 
1dora f [  = 1000, and by Remark 4.2-(iii), the construction 4.1: (1) ~ (4) represents 
f as a 998-layered composition involving (3998- 1)/2 USeS of the majority poly- 
nomial for lattices. 

Does the criterion of Corollary 5.1 for expressibility as a polynomial extend 
to infinite algebras? From the analogous case of Lagrange's Theorem for real 
numbers, one would suspect that the answer is certainly " no", and that is in fact 
correct: A counterexample is given below for the case of infinite lattices (5.3). 
However, the answer is yes for the variety of distributive lattices and for some 
other interesting varieties, as shown by the next theorem, 5.2. 

An algebra is said to be locally finite if it is a directed union of finite sub- 
algebras, or equivalently, if every finitely generated subalgebra is finite [4, p. 101]. 
A variety is said to be locally finite if all its members are. A criterion is that 
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all finitely generated free algebras in the variety be finite. Examples include the 
variety of distributive lattices, the variety of tournaments [6], the variety of 
pseudo-complemented distributive lattices [9], and any variety generated by a 
single finite algebra. 

5.2. Theorem. Let V be a locally finite variety with a polynomial expression 
re(x1, ..., xe+ ~) that satisfies the "near unanimity" identities, and let A e V. Then, 
for any positive integer n, a function f :  A n ~ A is a polynomial function if and only 
if every subalgebra of A d is closed under f 

Proof If f is a polynomial, closure of subalgebras is automatic. Suppose, 
conversely, that all subalgebras of A d are closed under f By Theorem 2.1, for 
any finite subset F of A, the restriction of f to F" has an interpolating n-ary 
polynomial PF. Since the free algebra on n generators in V is finite, there are 
only finitely many n-ary polynomials on A in all. Partition the collection ~ of all 
finite subsets of A into pieces, one for each n-ary polynomial p on A, by letting 
the class corresponding to a given p consist of all F with PF =P- ~ is directed under 
inclusion, and it is a well-known simple lemma that if a directed set is partitioned 
into finitely many classes, then one class, at least, must be cofinal. The union of 
the members of such a cofinal class is all of A. If p is the n-ary polynomial corres- 
ponding to that class, then f and p therefore agree on all of A. 

5.3. Example of an infinite lattice L and ternary function f :  L 3 ~ L ,  such 
that f is not a lattice polynomial and yet (i) on each finite subset of its domain, 
f does agree with a polynomial, and (ii) each sublattice of L x L is closed under f 

First, observe that (i) implies (ii): If (ii) is tested in matrix notation as in 
Lemma 3.1 (b), each computation of f ( M )  involves only the two columns of the 
3 x 2 matrix M, for which f agrees with a polynomial, by (i). 

Next, let Po, Pl, .-. be the sequence of lattice polynomials in three variables x, y, z 
defined recursively by Po(X, y, z) =x, Pk ~-I(X, y, Z) =(((((Pk/X y) V Z)/X X) V y)/X Z) V X. 
AS elements of the free lattice on generators x, y, z, they satisfy Po <Pl <Pz < "", 
as observed by Birkhoff [2] and used by Whitman [18, w 4]; the weaker inequalities 
p k < p k ~ ,  at least, are evident by induction from the obvious relation po<p~ 
and the monotonicity of the expression (((((t/x y) v z)/x x) v y) A z) v x as a function 
of t. In contrast to the free lattice, a finite lattice with n elements satisfies the lattice 
identities P,-1 =P,=P,  ~1 . . . .  . Indeed, for any elements a, b, c of the lattice, the 
absence of an (n+l)-element  chain forces pi(a,b,c)=Pi+l(a,b,c) for some i 
among 0, 1 . . . .  , n -  1, and so for all higher i by an induction using the definition 
of the Pk- 

Finally, let L be a locally finite lattice that satisfies no nontrivial lattice identities, 
for example, a linear sum (vertical sum, ordinal sum [3, p. 198]) of all finite lattices, 
or rather, of one finite lattice of each isomorphism type. Because L is locally 
finite, each sequence of values po(a, b, c), pl(a, b, c), p2(a, b, c) . . . .  is contained in 
a finite sublattice and so is eventually constant, for any fixed a, b, ceL.  Therefore, 
it makes sense to define f :  L 3 ~ L by f (a ,  b, c) = lira p,(a, b, c). On any finite 

n ~ a o  

subset of L 3, the domain o f f  we can choose n large enough that p, agrees with f 
at all triples in the subset simultaneously. Thus (i) holds. As already noted, 
(ii) follows. However, f is not itself a polynomial, because f has the property 
12" 
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(V x, y, z ) f  = (((((f/x y) v z)/x x) v y)/x z) v x, which would be a nontrivial polynomial 
identity in L i f f  were a polynomial [18, proof of Lemma 4.3]. 

w 6. Algebraic Functions 
Theorem 2.1 can also be applied to o b t a i n - i n  certain circumstances-an 

interesting characterization of algebraic functions, that is, functions which are 
obtained from polynomials by inserting constants in certain of their argument 
places [7]. 

By a diagonal subalgebra of A d we mean any subalgebra S of A d which contains 
the subalgebra {(a, ..., a): a~A} of A a. Note that any n-ary algebraic function 
on A extends to an n-ary algebraic function on any diagonal subalgebra of A u. 

Using this terminology Corollary 5.1 gives the following result: 

6.1. Theorem. Let A be any finite algebra having a (d + 1)-variable algebraic 
function m(xo, ...,xa) satisfying the near unanimity identities. For any function 
f :  A" ~ A, f is an algebraic function if and only if every diagonal subalgebra of A ~ 
is closed under f. 

Proof Obviously every diagonal subalgebra of A d is closed under each 
algebraic function. To prove the converse let A* be the algebra obtained from A 
by adjoining all elements of A as new nullary operations. Then f is an algebraic 
function of A if and only i f f  is a polynomial of A*. Also m(x o . . . . .  xd) becomes 
a polynomial of A* so, by Corollary 5.1, f is a polynomial of A* if and only if 
all subalgebras of A *d are closed under f Since the subuniverses of A *a are 
exactly the universes of the diagonal subalgebras of A d, we have the desired 
conclusion. 

Again, in the special case of lattices, where the median polynomial is certainly 
algebraic, we have the following companion to Theorem 1.6. 

6.Z Corollary. For any finite lattice L and function f :  12 ~ L , f  is an algebraic 
function if and only if every diagonal sublattice of" L x L is closed under f 

6.3. Remark. The device of adding algebra elements as new opperations can 
be applied to only one algebra at a time, and not to a variety. Thus, there is no 
evident analogue of the full Theorem 2.1 for algebraic functions. However the 
implications (1) ~ (3) and (1) =~ (5) of Theorem 2.1 and the assertion of Theorem 5.2 
do have analogues similar to the Theorem and Corollary of this section. 

w 7. Functional Completeness and Affine Completeness 
Let us say that an algebra A satisfies the subalgebra-of-the-square condition 

(or, more briefly, the square condition) if the polynomials of A are just those 
functions on A which preserve all subalgebras of A x A (i.e.: those functions f 
for which all subalgebras of A x A are closed under f).  Further, we will say that A 
satisfies the diagonal-subalgebra-of-the-square condition (or, briefly, the diagonal 
condition) if the algebraic functions of A are exactly those functions which preserve 
all diagonal subalgebras of A x A. Theorem t.6 and Corollary 6.2 assert that 
finite lattices satisfy each of these conditions. 

In this section we note some easy connections between these conditions and 
the concepts of functional and affine completeness. The relevant definitions are 
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as follows ([14, 16]): An algebra A is affine complete if each function f :  A"---,A 
which preserves all congruences of A is an algebraic function. A is said to be 
functionally complete if all functions f :  A " ~  A are algebraic, or equivalently, 
if A is affine complete and simple. 

Now the subalgebras of A • A are just those binary relations on A which 
have the substitution property for all operations of A. In particular, each con- 
gruence relation of A is a diagonal subalgebra of A x A. Hence if A is affine 
complete it necessarily satisfies the diagonal condition. Furthermore, Werner 
[17] has shown that a variety V is congruence permutable (i.e.: for all pairs 
01, 02 of congruences of any algebra A~V,  0102=0201) if and only if for each 
A~ V the diagonal subalgebras of A x A .are exactly the congruence relations 
if A. From this observation we have 

7.1. Theorem. I f  A is an algebra in a eongruence-permutable variety then A is 
affine complete f and only f A satisfies the diagonal-subalgebra-of-the-square 
condition. I f  A is simple then A is functionally complete if and only if A satisfies 
the diagonal-subalgebra-of-the-square condition. 

In problem 6 of [7] Gr~itzer asks for a description of all affine complete 
algebras. Theorem 7.1 gives an answer for algebras in congruence permutable 
varieties. 

An algebra A is quasi-primal [14] if each function A which preserves all 
subalgebras of A and all internal isomorphisms (that is, all isomorphisms among 
subalgebras) of A is a polynomial of A. Finite quasi-primal algebras are rather 
natural universal-algebra counterparts of finite fields; indeed a finite ring is 
quasi-primal just in case it is a field. A quasi-primal algebra is necessarily simple 
and generates a congruence-permutable variety. Finite (but not all infinite) quasi- 
primal algebras are also functionally complete. (See [12, 14] for these facts.) 

Suppose A is quasi-primal, and suppose f is an n-ary function on A which 
preserves all subalgebras of A x A. Then f clearly preserves all subalgebras of A. 
Moreover, if S is a subalgebra of A and q5 is an internal isomorphism then the 
set $1 of pairs (s, (a(s)), seS,  is a subalgebra ofA x A. Since f preserves $1, we have, 
for si~S, that ( f ( s l ,  ..., s,),f((a(sO, ..., O(s,)))~S,, which means (o[f(s~, . . . ,s,)] 
=f(~b(s 0,...,q~(s.)). Thus f preserves ~b, so that by quasi-primality f is a 
polynomial of A. Hence each quasi-primal algebra satisfies the square condition. 
Similar considerations show that all other variants of primality [14] are special 
cases of algebras satisfying the square condition. For quasi-primal algebras, 
parallel to Theorem 7.1 we even have the following characterization: 

7.2. Theorem. I f  the algebra A is in a congruence-permutable variety and all 
subalgebras of A are simple, then A is quasi-primal if and only if A satisfies the 
subalgebra-of-the-square condition. 

Proof We have just shown that each quasi-primal algebra satisfies the square 
condition. Now suppose A is in a congruence permutable variety, has only simple 
subalgebras, and satisfies the square condition. Each subalgebra S of A x A is a 
subdirect product of subalgebras S~, $2 of A. However, it is well known that if 
an algebra is congruence-permutable and is a subdirect product of finitely many 
simple algebras, then it is isomorphic to the direct product of some subset of the 
subdirect factors. In the present context this means that a subalgebra S of A x A 



174 K.A. Baker and A.F. Pixley 

has one of the following two forms" 

S = $1 x $2, 
or  

S= {(s, ~(s): s~Sl}, 

where q5 is an isomorphism of $1 onto S:. Hence if f is a function on A which 
preserves all subalgebras and internal isomorphisms of A, it evidently preserves 
subalgebras of A x A of the above types, and hence all subalgebras of A x A. 
Since A satisfies the square condition f is a polynomial. Thus A is quasi-primal. 

The work of the first author was supported in part by a National Science Foundation grant. 
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