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Ray Shooting on Triangles in 3-Space 1 

M. Pellegrini z 

Abstract. We present a uniform approach to problems involving lines in 3-space. This approach is 
based on mapping lines in R 3 into points and hyperplanes in five-dimensional projective space (Pliicker 
space). We obtain new results on the following problems: 

1. Preprocess n triangles so as to answer efficiently the query: "Given a ray, which is the first triangle 
hit?" (Ray-shooting problem). We discuss the ray-shooting problem for both disjoint and nondisjoint 
triangles. 

2. Construct the intersection of two nonconvex polyhedra in an output sensitive way with a 
subquadratic overhead term. 

3. Construct the arrangement of n intersecting triangles in 3-space in an output-sensitive way, with a 
subquadratic overhead term. 

4. Efficiently detect the first face hit by any ray in a set of axis-oriented polyhedra. 
5. Preprocess n lines (segments) so as to answer efficiently the query "Given two lines, is it possible 

to move one into the other without crossing any of the initial lines (segments)?" (Isotopy problem). 
If the movement is possible produce an explicit representation of it. 

Key Words. Computational geometry, Ray shooting on triangles, Arrangements of hyperplanes, 
3-Space, Pliicker coordinates, Isotopy classes. 

1. Introduction 

1.1. Ray Shooting in Graphics. Ray shooting (also called ray tracing) is a central 
problem in graphics. Given the internal representation of a polygonal three- 
dimensional scene and some light sources, a good image rendering requires that 
the amount of light received by every pixel is computed. If the scene comprises 
reflecting surfaces the problem is complicated by the effect of the reflected light. 
The basic geometric content of image-rendering is computing ray/surfaces intersec- 
tions. This is known to be an expensive computation and many methods are used 
in graphics to speed up the computation [G1], [SML], [AK]. 

A widely used approach is the substitution for complex objects of a hierarchy 
of objects forming a chain of inclusions [KK], [Ro]. The external object is very 
simple (a cube or a sphere) and checking the ray/object intersection takes 0(1) 
time. If the ray hits the external object the next object in the hierarchy is tested. 
This method gives a quick way to ignore many rays that do not hit the original 
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objects. The hierarchical approach is only heuristic and there is no gain in terms 
of worst-case asymptotic complexity. A main drawback of the hierarchy method 
is that those rays that are close to but do not hit any object in the scene are not 
filtered out quickly and discarded. 

A second approach exploits the coherence of rays. Rays are grouped into 
"beams"  and the behavior of the beams with respect to the surfaces is considered. 
Arvo and Kirk [AK] propose representing a ray as a point in a five-dimensional 
space (three parameters give the source point, two angles the direction) and a 
beam as a hypercube in such space. Most of the computations, though, are carried 
out in the original three-dimensional space since the scene itself is not mapped in 
the five-dimensional space. This is a sharp difference with respect to our Pliicker 
coordinate method (Section 2.1), since we map both the polygonal scene and the 
rays in a five-dimensional space, 

The approach to ray tracing that is relevant to this paper is the one that 
considers the objects as formed by many patches of plane surfaces and tries to 
minimize the number of patches to test against one ray. In graphics a second 
general approach [G1] is used: objects are modeled by few and complex analytic 
surfaces and the objective is to compute efficiently the intersection point of one 
ray with one such surface. Here we study the asymptotic complexity of the 
ray-shooting problem and our results have no claim of practicality. 

1.2. Summary of  Previous Work. In computat ional  geometry usually the ray- 
shooting problems are stated with some restrictions on the rays or on the 
polygonal scene. Also, it is important  to distinguish the on-line case from the 
off-line case, when all rays are known in advance, because of the speed-up we can 
get in the latter case. 

A terrain is a set of polygons in 3-space having a unique intersection point with 
any vertical line. When the polygonal scene is a terrain of complexity n, on-line 
ray queries can be answered in O(log z n) time with O(n 2 +~) preprocessing time and 
storage [CEGS].  

If we have a terrain and we force the source of the ray to lie on a given vertical 
line the method of Cole and Sharir [CS1] allows us to answer ondine queries in 
O(log 2 n) time after O(nZ2 ~") log n) preprocesslng, using 0(n22 ~")) storage, where 
:~(n) is a functional inverse of the Ackerman function and is constant for any 
practical purpose. 

When the source of the rays is on a given nonvertieal line but no restriction is 
placed on the polygonal scene, Bern et al. [BDEG]  build, in 

O((n z + k) log z n + p log n) 

time, a data structure of size O(n 2 + k) that answers ray queries in O(log 2 n) time, 
where k is the number of opaque topological changes of the scene along the 
flightpath, p is the number  of transparent topological changes, and, in general, 
0 <_ k <_ p <_ n3/3. In the case of a vertical line and a polygonal terrain Bern et ai. 
[BDEG]  improve the query time of the Cole and Sharir method to O(log n). 

When the rays have a unique source-point and they are known in advance, 
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Overmars and Sharir [OS1] solve the problem with O(n 4/3 log ~ n) time bound, for 
n triangles, n rays, and a small constant 7. This variation of the ray-shooting 
problem has a strong relation with the much-studied problem of hidden surface 
removal [OSl],  [RS], [Be], [PY], [OS2], which consists in removing from a 
polygonal scene all the surfaces and edges that are not visible from a (proper or 
improper) point. 

On-line single source ray-shooting queries can be solved in O(x/~ log n) time 
using O(n log n) space and O(n 3/z log ~ n) preprocessing by modifying the implicit 
planar point-location method of Agarwal [Agl], [Ag2]. 

Schmitt et al. [SML] consider the case when the objects are iso-oriented 
rectangles, they give several algorithms with different tradeoff between query 
time and space. In the off-line case they use O(m~176 log~ time and 
O(m log~ n) storage. On-line queries are solved in O(log 3 n) time with 
O(n 3 log~ preprocessing time and space. Their technique exploits heavily 
the orthogonal decomposability of the spatial problem involving iso-oriented 
rectangles. This method is clearly not extendible to general polygonal scenes. 

One of the applications of ray shooting presented in this paper is for computing 
the intersection of two polyhedra in 3-space. The intersection of two convex 
polyhedra in R 3 of total complexity n is computed in time O(n log n) by an 
algorithm of Muller and Preparata IMP]. Chazelle [Ch2] gives a worst-case 
optimal O(n) algorithm. The case when only one of the two polyhedra is convex 
is treated in [MS] and [Sh]. When the two polyhedra are terrains with the same 
vertical direction Chazelle et al. [CEGS-I give an O(n l"s +~ + k log 2 n)-time algo- 
rithm for computing the upper envelope of the two terrains, where k is the output 
size and n is the total input size, for any e > 0. 

1.3. Summary of  Results. For the most general version of the problem involving 
any polygonal scene and any set of rays only the trivial O(mn) bound was known 
before the results presented in this paper and appeared in preliminary form in 
[Pel] and [Pe3]. We give off-line ray-shooting algorithms with a substantially 
sublinear cost per ray, for any set of triangles and rays (Section 5). 

The size of the data structure used in this paper to answer ray-shooting queries 
in logarithmic time depends on the total complexity of all cells of a five- 
dimensional arrangement of hyperplanes cut by a second-degree algebraic surface 
17, called the Pliicker hypersurface. This set of cells is also called the zone of H in 
the arrangement of hyperplanes d(~gt') (denoted as Zn(Jg)). Since the zone of rl 
can have ~(n 4) cells in the worst case, this gives a lower bound for the method 
too. In rPel] the estimate for the complexity of Zn(g(Y ) is O(nS), later improved 
in [Pe2] to O(n4"669). Recently Aronov et al. JAMS] have found the bound O(n4"S). 
Finally, Aronov and Sharir [APS] have found an O(n 4 log n) upper bound. Since 
the logarithmic factor is dominated by other components of the method, this 
bound matches the lower bound for the algorithmic uses presented in this paper. 
For a set of n disjoint triangles, a data structure of size O(n 4+~) is given in Section 
3 to answer on-line ray-shooting queries in O(log n) time. In Section 4 we solve 
the off-line version of the ray-shooting problem for disjoint triangles. In Section 
5 the ray-shooting problem for intersecting triangles is considered. 
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The methods used to solve the ray-shooting problems are applicable to a wide 
range of three-dimensional problems. In Section 4 we give an output-sensitive 
method to compute the intersection of two nonconvex polyhedra in time 
O(n 8/5 +~ + K log K) where n is the number of vertices, edges, and facets of the two 
polyhedra and K is the size of their intersection, tn Section 5.1 we give an 
output-sensitive method for constructing an arrangemenl of triangles in 3-space 
in O(n 8/5 +~ + K log K) time, where K is the output size. The interest of these two 
results lies in the subquadratic overhead. To the author's knowledge no previous 
subquadratic overhead was know for these two problems. An O(n z) overhead is 
trivially achieved by comparing any pair of features. Also, we sketch an algorithm 
that, in O(n 8/5 +~) expected time, counts all pairs of intersecting lines. 

When the query line is mapped into a point and we locate this point in a special 
cell complex, we have the so-called primal approach. Ray-shooting problems can 
be cast also in a dual approach where the queries are mapped into hyperptanes, 
and we ask for the points in a point set that are above the query hyperplane (see 
[CSW] and [AS]). Using the dual approach Agarwal and Sharir [AS] obtain an 
algorithm to solve decision line-shooting queries that uses O(m) storage and 
answers the queries in time O(n16/15+~/m4/15), for any a > 0 and n 1+~ _< m _< n 4+~. 
As a lemma for their space/query tradeoff result, Agarwal and Sharir [AS] have 
a result similar to one presented in this paper for on-line ray-shooting on 
intersecting triangles. 

A special case of particular interest is when the polygonal scene is formed by 
axis-oriented polyhedra. In Section 7 we give an O(n 2+~) storage and O(logn) 
query-time method for this case. Independently, de Berg e~ al. [ d BH O * ]  have 
obtained a similar (but more complicated) result for ray shooting on axis-oriented 
boxes. They obtain a similar (but more complicated) result for ray shooting on 
intersecting triangles (Theorem 3). 

In Section 8 we discuss the isotopy problem: given n blue lines and two red lines 
decide whether the two red lines are in the same isotopy class li.e., we can 
continuously move one into the other without crossing any blue line). McKenna 
and O'Rourke in [MO]  give an O(n 4) storage and O(n) query-time method to solve 
this problem. Moreover, they use O(n 4) elementary moves to find the actual 
movement of the two lines. To the best of the author's knowledge no better results 
were known for this problem. Here we present a method that uses O(n 4~)  storage 
and answers queries in O(log n) time. We use at most O(n 2§ elementary moves 
to move one line into another, provided such movement is possible. These are 
sharp improvements over the bounds in [MO].  We also extend the isotopy query 
data structure to deal with isotopy classes generated by sets of segments and 
polyhedra. In this case we have O(n 4+e) storage and O(log n) query time, but the 
movement consists of O[n 4+~) elementary moves in the worst case. 

In Section 2 we give a survey of the geometric, combinatorial, and algorithmic 
facts which are used throughout this paper. 

2. Geometric Preliminaries. A finite set H of hyperplanes in R a defines a 
decomposition of R d into cells of various dimensions, which we call the arrange- 



Ray Shooting on Triangles in 3-Space 475 

ment d(H) of H [Ed]. If ]HI = n the maximum number of cells in d(H) is O(d) 
and the arrangement d(H) can be computed in optimal O(d) time [EOS]. One 
d-dimensional cell of d(H) is bounded by O(n Ld/2J) cells of any dimension led] .  

Given a random sample R of H, with I RI -- r _ n, let us consider the arrange- 
ment d(R).  A triangulation A d ( R )  is a subdivision of each cell of sC'(R) into 
simplices such that the vertices of each simplex are vertices of d(R). The number 
of simplices in A d ( R )  is O(d). The random sampling theory of Clarkson [Cll]  
states that with high probability the interior of each simplex s E/hal(R) does not 
meet more than O(n/r log r) hyperplanes of H. 

Given H we can build a data structure for locating the cell of d(H) which uses 
Cn a+" storage, for each e > 0, where the constant C depends on e, such that a 
query point is located in O(log n) time [Cll]. This data structure is built in time 
O(d +~) with high probability [Cll]. 

For d = 2 Matougek [Ma] gives a deterministic method that, for a parameter 
r < n, subdivides the plane into O(r) triangles in time O(nr) such that the interior 
of each triangle meets only n/r lines in H. The results of Clarkson and Matougek 
are the base of many divide-and-conquer solutions in computational geometry. 

Geometric duality [Ed], [EMP +] is a pair of functions, one mapping points to 
hyperplanes and one mapping hyperplanes to points in R d. Duality mappings 
preserve incidence and order relations. It is often convenient to transform a 
problem into its dual problem because this transformation preserves many 
important properties and for the dual problem it can be easier to find a solution. 

A polyhedron P in R 3 with n facets, edges, and vertices can be stored in a data 
structure D(P) devised by Dobkin and Kirkpatrick [DK]. D(P) uses O(n) storage 
and can be built in O(n log n) time. Using D(P), in O(log n) time it is possible to 
find the facets of P met by a query line. Intuitively, D(P) is a hierarchy of finer 
and finer approximations of P. The interaction of a query line is traced down the 
hierarchy at a constant cost for each level. 

2.1. Pliieker Coordinates of Lines. To solve ray shooting on triangles with any 
orientation we use the Plficker coordinates of lines. Algorithmic uses of Pliicker 
coordinates can be found in [CEGS], in [Pe2], and in [PS]; a classical treatment 
of Pliicker coordinates can be found in [So]. 

A point in real three-dimensional space has Cartesian coordinates (x, y, z) and 
homogeneous coordinates (Xo, xl, x2, x3). The relations between the two systems 
of coordinates are given by the following equations: x = xl/Xo, y = x2/xo and 
z = x J x  o. Two points x = (Xo, xl, x2, x3) , y = (Yo, Y~, Y2, Y3) in three-dimensional 
homogeneous coordinates define a line I in 3-space. The six quantities 

~; = xiy j - xjy i for ij = 01, 02, 03, 12, 23, 31 

are called Plficker coordinates of the line l (oriented from x to y). They correspond 
to the two-by-two minors of the two-by-four matrix formed by the coordinates 
of the point x (on the first row) and y (on the second row). 

The six parameters are not independent; they must satisfy the following equation 
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(whose solution set constitutes the Pliicker hypersurface or Klein quadric or 
Grassman manifold ~ 2  [St], [So]): 

(1) l-I: ~0t~23 -'~ ~02~31 -}- ~03~12 -~" 0. 

The incidence relation between two lines t and I' can be expressed using the 
Pliicker coordinates of I and I'. Let al, b 1 (resp. a2, b2) be two points on I (resp. 
I') oriented as 1 (resp. l'). The incidence between I and t' is expressed as the vanishing 
of the determinant of a four-by-four matrix whose rows are the coordinates of a~, 
bl, a2, b2 in this order from top to bottom: 

(2) 

alo a l l  a12 al~[ 
blo bll  blz bl~ 

a20 a21 a22 a23 
b20 b21 b22 b23 

=0 .  

If we expand the determinant according to the two-by-two minors of the 
submatrix formed by the coordinates of the points a t, bl and the minors of the 
submatrix formed by the points a2, b2, we obtain the following equation in which 
only PRicker coordinates are involved: 

(3) 

Let us introduce two mappings: n: 1 ~ n(/) maps a line in R 3 to a hyperplane in 
~5 (five-dimensional oriented projective space) whose plane coordinates are the 
Ptiicker coordinates of I appropriately reordered, p: l -~ p(l) maps a line in R 3 to 
a point in ~5 whose coordinates are the Plficker coordinates of the line. The 
incidence relation between the two lines l, l' (expressed by (3)) can be reformulated 
as an incidence relation between points and hyperplanes in ~s.  Equation (3) can 
be rewritten in the form n~(pv) = 0, which is equivalent to requiring point p(t') to 
belong to hyperplane n(/). Computations that are standard in real spaces can be 
done in oriented projective spaces using a method in [-St]. 

In this paper we use the notation D(a, b, c, d) for the determinant formed by the 
coordinates of the points a, b, c, d placed on the rows in this order from top to 
bottom. 

2.2. Characterization o f  Line-Triangle Hits Using Pliicker Coordinates. Let Tbe 
a set of n triangles. The set of lines spanning edges of the triangles is denoted by 
5@ J~r = {n(/)[l~ 2'r} is the set of hyperplanes in ~s  associated with T. N ( ~ r )  
is the arrangement formed by the hyperplanes in oug r, An arrangement of Plficker 
hyperplanes is called generically a PIficker arrangement. In this section we prove 
the following lemma. 

LEMMA 1. Given a set of  triangles T, and the arrangement d ( ~ T )  of the Plficker 
hyperplanes corresponding to lines spanning edges of  T, for each cell c of  d ( ~ T )  
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and any two lines 11 and 12, if p(ll) ~ c and p(12) ~ C, then l 1 and 12 intersect the same 
subset of triangles in T. 

PROOF. Given the point a and the triangle t in 3-space, we define as the cone 
~a,t the set of rays from a intersecting t (see Figure 1). Let P be a plane below 
triangle t, and let c~q,~ be the cone based on triangle t -- (Pl, /92, /93) with apex q ~ P. 
Any two vertices of t together with q define a plane; for each such plane, the 
half-space containing the third vertex of t is called positive. 

When q belongs to the plane spanned by t the cone degenerates in a two- 
dimensional object, but for simplicity of exposition we ignore degenerate cases. It 
is easy to check that the set of points in the rays belonging to the cone ~q,t is the 
intersection of the three positive half-spaces determined by q and t (see Figure 1). 
If t is parallel to the reference plane P, then a variable point Q in the cone cCq. t 
satisfies the following system of linear inequalities: 

D(q, Pl, P2, Q) >- 0, 

(4) D(q, /92, /93, Q) >- O, 
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If necessary relabel the vertices of ~ to ensure the inequalities all have the same sign. 
When t is not parallel to P we must consider the position of apex q with respect 

to the line I. which is the intersection of P with the spanning plane of t (we denote 
this plane with aft(t)), The cone is then defined by the two systems of linear 
inequalities (5) and (6), according to the position of q relative to l,: 

D(q, p~, P2, Q) >>- O, 

(5) D(q, pz, p3, Q) > O, 

D(q, pa, p,, Q) >_ O, 

o r  

D(q, p~, P2, Q) <- O, 

(6) D(q, P2, P3, (2) < O, 

D(q, P3, P~, Q) ~ O. 

% rl 
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% 

% 
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Fig. 2. Different cones based at q and q'. 
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Fig. 3. Stabbing line and triangle. 

We need two systems of inequalities because when the apex q crosses l t the three 
positive half-spaces switch with the nonpositive ones. In Figure 2 system (5) is 
valid for apex q and system (6) for apex q'. 

Using the row-exchange rule of determinants and changing the sign of the 
inequalities accordingly we can put all the determinants in systems (4), (5), and (6) 
in the form D(pl, P2, q, Q), D(p2, P3, q, Q), and D(p 3, Pl, q, Q). Then we expand 
those determinants according to minors of the first two rows and of the last two, 
and obtain a linear expression in terms of Plticker coordinates. Note that the final 
systems involve the Plticker coordinates of lines supporting edges of triangles in 
T and the (variable) line passing through q and Q (see Figure 3). 

For any line I the set of triangles in T stabbed by I is determined by the relative 
position of p(1) with respect to hyperplanes in ~T" [] 

3. Ray Shooting on Disjoint Triangles 

T H E O R E M  1. Given any set T of n disjoint triangles in three-dimensional space, there 
is a data structure D(T) that uses  O(n 4+e) storage and reports the first triangle hit 
by any ray p in O ( l o g  n) time. D( T) can be built in O(n 4+~) randomized expected time. 
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PROOF. We consider a ray p as composed of two elementary objects: the source 
point pp and the line l o spanning the ray. The general strategy we use to solve 
ray-shooting on-line queries is to find an implicit representation of the ordered 
list of triangles intersected by lo, and to perform a binary search over this list of 
the source point Po" 

Given the set T, we consider the set s of lines spanning edges in T and the 
corresponding set ~ r  of Pliicker hyperplanes. We take a random sample R of J4~ 
of size r and we create the zone of II in d(R).  This can be done, for example, by 
constructing the whole arrangement d ( R )  with the method of Edelsbrunner et al. 
[EOS], lEd] in O(r 5) time and space. Within the same time bound we can check 
which cells of d (R)  intersect the Pliicker surface H and we record one Pliicker 
point in each useful cell. From lAPS] we know that the zone of 1-I has complexity 
O(r* log r) and it is decomposable into O(r* log r) simplices. As follows from the 
random sampling theory of [Cll] ,  by repeated sampling, we can make sure that 
only O(n/r log r) of the original hyperplanes intersect any simplex. Thus, for all 
triangles none of whose three corresponding hyperplanes cut the simplex s, we 
can detect the unique subset stabbed by all Pliicker points in s. For  O(n/r log rl 
triangles having at least one hyperplane cutting through s, we repeat the same 
construction recursively in the simplex s. 

The main difficulty in obtaining a reporting ray-shooting algorithm at this poin| 
is the fact that a single cell in the zone of gl could contain Plficker points with 
different stabbing orders (see the Appendix). Therefore, we do not have yet the 
linear order needed for a binary search of the source of the ray. 

We get around this obstacle with the following observation. If we divide each 
cell of Zn(R ) into simplices, for each simplex s0 s n H has a constant number of 
components. In constant time we compute the components of II c~ s using the 
general approach for computing topological properties of real algebraic manifolds 
of Schwartz and Sharir [SS]. Additional computational details are given in [CS2] 
and [Chl] .  Furthermore, we can perform point location in the resulting data 
structure [SS]. 

Since the zone Zn(R) has complexity O(r 4 log r) we have at most O(r 4 log r) 
components of H c~ Zn(R ) to deal with. Assuming that the triangles in T are 
pairwise disjoint, each component corresponds to a umque stabbing order. 

For  each simplex we compute the components of s c~ H and the associated lists; 
then we recursively proceed in each simplex. The storage required satisfies this 
recurrence: 

S(n) <_ cr* log rS((n/r) log r) + O(nr* log r). 

For r constant, we obtain S(n) = O(n4+~), but the query time is O(log 2 n). Next 
we show how to improve the query time to O(log n) while maintaining the same 
asymptotic bound on the storage. 

Setting r = n ~' we obtain an O(n*+9 bound for S(n), and the depth of the resulting 
search tree is constant. We use an auxiliary point-location date structure on the 
sampled hyperplanes in order to locate the simplex s where the query point ties. 
The cell of ~'(R) where the query point lies is found, using standard point-location 
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method, in [Cll]  at the expense of O(r 5+~) additional storage. In order to locate 
the simplex within a cell we extend each facet of a simplex into an full hyperplane 
and obtain a point-location problem in a set of O(r 2) hyperplanes in Ns, which, 
using [Cll],  requires O(r 1~ +") additional storage for each cell. This is a brute-force 
method, but, for the purpose of proving the bound, any polynomial preprocessing 
and logarithmic query-time algorithm will do. The additional storage is dominated 
by the n ~ factor in the final bound. 

To summarize, it is possible to spend time logarithmic in r to find the simplex 
s where the query point lies, at the expense of polynomial extra storage. 

After locating the simplex we perform a binary search in each list associated 
with components of I7 c~ s. In O(log n) time we select one triangle in each list. In 
constant time we determine the closest triangle and compare it with the answer 
to the recursive data structure associated with the simplex. The first triangle can 
be determined in overall O(log n) time. [] 

4. Off-Line Ray Shooting. In this section we apply a general method of [GOS] 
and we transform an on-line query data structure into an algorithm to answer 
efficiently off-line queries. We describe the algorithm first, then its time analysis. 

4.1. The Algorithm. The general strategy is the following. When the number of 
rays is large compared with the number of triangles we use the on-line algorithm 
of Section 3. If there are many triangles compared with the number of rays we 
map, in a suitable way, the lines spanning triangles and the lines spanning the 
rays in Pliicker space as Pliicker points and Plficker hyperplanes. We have to test 
(implicitly) every point with every hyperplane. In order to do so we subdivide 
Pliicker space into regions. In each region we have Plficker points completely 
contained in it, Pliicker hyperplanes which cut through the region, and Pliicker 
hyperplanes which do not cut through the region. The algorithm efficiently 
compares the points within the region with the Pliicker hyperplanes which are 
outside the region. We use a recursive call to make comparisons of points and 
hyperplanes within a region. During this process the relative number of triangles 
decreases with respect to the number of rays and we reach the base case of the 
algorithm. The application of this schema is complicated by the presence of the 
nonlinear Plficker surface H. 

Given m rays and n triangles, if m >_ n 4+~  w e  build the on-line ray-shooting data 
structure of Section 3 and we obtain an O(m log n) overall method. If m _< n 4+~ 
we dualize the problem. The lines spanning edges of a triangle are mapped into 
three Plticker points and the line lp, spanning a query ray p, is mapped into a 
Pliicker hyperplane. We select a random sample of r Plficker hyperplanes and we 
form its canonical trianoulation [C12]. We make sure during the process that we 
produce simplices having at least one vertex. We obtain M = O(r 4 log r) simplices 
covering the zone of H. Each simplex is cut by O((n/r) log r) hyperplanes [Cll I. 
Now we consider every triple of simplices in turn. The number of triples is O(M3), 
which is constant since r with be chosen constant. 

Let ~r = (~h, ~2, ~3) be a triple of simplices, let N~ be the set of triangles whose 
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corresponding Pliicker points are in o, and let n~ be the cardinality of Nr We 
take all hyperplanes missing cr and we consider only those hyperplanes above 
and those below o-. These two classes represent lines stabbing N~, as follows easily 
from the discussion in Section 2.2. We repeat the following argument for each 
such class of hyperplanes. Let M o be a class of hyperplanes (without loss of 
generality the class of hyperplanes above ~r), and let m~ be its cardinality (with M* 
we denote the corresponding set of dual points). We want to compare the m~. rays 
against the n~ triangles in time O((m~ + n~) log n~). 

A correct way to proceed, but too expensive, is the following: we dualize back 
again, returning to the primal space. We have n~ Pli~cker hyperplanes and mo 
Pliicker points. Since we already know that all PRicker points represent lines 
stabbing N~ and have all the same relative position we can intersect the half-spaces 
supported by the hyperplanes and containing the Plticker points. We obtain a 
polytope Q~ of size O(n~). We can triangulate Q, and apply the query technique 
explained in Section 3. The problem' with this approach is that Q~ is too big an 
object to get a good time complexity. 

A better solution is the following. We dualize back to the primal space the 
vertices of the three simplices in a (which are not necessarily Pliicker points), 
obtaining a constant number of hyperplanes. These hyperplanes have the same 
relative position with respect to the Plticker points M*, therefore we can intersect 
the corresponding half-spaces obtaining the polytope Q'~. 

LEMMA 2. M* c Q; c Q~, and every component of  Q'~ ~ II  maps to one componem 
of Q~ ~ rI. 

PROOF. M* c Q'~ is given by the fact that in the dual the hyperplanes M~ were 
in the same relative position with the three simptices and in defining Q'~ we have 
consistently chosen the one of the two half-spaces supported by a hyperplane dual 
to a vertex of o-. 

Suppose now that there exists a point p s Q'~, p ~ Q~. In primal space this point 
corresponds to hyperplane (not a Pliicker hyperplane, though) that separates 
points in N~ but it does not separates vertices of the simplices enclosing N~. This 
is obviously absurd. 

Since Q~, c Q~ every point of H c~ Q'~ is in 1-I c~ Q~. The only possible way we 
can violate the second part of the lemma is by merging in Q~ two components of 
Q, c~ I1. This is possible only if we have Pliicker points in Q', that are not in Q,, 
which is absurd. [] 

Since Q'~ has constant complexity, we can apply the procedure for searching the 
source of the ray outlined in the Section 3. Lemma 2 ensures the correctness of 
the procedure. The total time used to compute the comparisons of rays in M~ and 
lines in N~ is O((m~ + n~) log n~). This is an essential ingredient for applying the 
technique in [GOS]. We repeat the computation sketched above for each triple 
cr and we are able to compute implicitly many comparisons. Then we recurse the 
method in each simplex, 
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4.2. Time Analysis. The time complexity T(m, n) for solving m batched ray, 
shooting queries over n disjoint triangles satisfies the following recurrence: 

(7) 
faMm log n for 

T(m,n) <_ ~ ~=, TOn. n,)+ cM3mlogn + cM3nlogn for 

m ~ ~4+e,  

m < n 4+e. 

The additional constraints are: 

(8) 

M 
n i _< 3n, 

i=1 

m~ <_ c'm log r/r for some constant c'. 

The following theorem states the time complexity we are aiming for. 

THEOREM 2. The ray-shooting problem for m rays and n disjoint trianoles can be 
solved in 

[Dm4/5-6n 4/5+4~+~' log 2 n + Am log 2 n + Bn log n log m] 

randomized expected time, for any ~ > 0 and e' > 0, where the coefficients A, B, and 
D depend on 6 and e'. The storage is bounded by O(m + n). 

PROOF. AS for the storage, O(n + m) space is used in one level of the algorithm 
and from one level to the next we need to store only one candidate triangle for 
each ray. The time bound follows from solving (7), this solution follows a schema 
in [EGS]. 

Fix 6 and choose r = r(6) to be sufficiently large (how large will be determined 
later in the proof). If m >_ n *+~, then T(m, n)<_ am logZn satisfies the bound 
assuming A >_>_ a. Suppose m _< n 4+~. In this case 

(9) m = m 4 / 5 - ~ m 1 / 5 + 6  < rn4/5- f in  4/5+4~+e' ,  

First notice that at each level of the recursion the third term in (7) contributes 
O(n log n) and there are at most O(log m) levels. The overall contribution of this 
term is O(n log n log m). It is sufficient to drop this term from the recursion (7) 
and prove the modified inequality satisfies the bound 

T(m, n) <_ Dm4/5-'~n4/5+46+e" log 2 n + Am log 2 n. 

By induction hypothesis we have 

M 

T(m, n) <_ 
i=1 

[Dm4/5-~n4/5+4~+~' + Am i] log 2 n i + cM3m log n. 
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However, ~ i=  nM ml log z n i <_ [Mc' log r/r]m log 2 n, therefore we can sum up two 
terms in m, put d = AMc' log r/r + cM 3, and use inequality (9), obtaining 

T(m, n) <_ I D i=1 ~ m~/5-On~/5+4o+"' + dm4/5-On4/5+40§ lOg2 n" 

Now we eliminate the summation using first the bound on m i and then the 
H61der-Minkowsky inequality [Mi]: 

M M 

Z m4/5-~n4/S+4a+~'<i - [(c'l~ 4/5"~ 2 n~/5+'~+~' 
i = 1  i = 1  

_< [c' log r/r] 4/5 -am4/S-~M 1Is - 4'~-~'n'*/5 + 4'~+ ~'. 

Then we obtain, for some constant c", 

(10) T(m, n) <_ [Dc" log 4/5-~ r/r 15'~+4~" -t- d]m4/5-'~n4/5+4~'+E' log2 n. 

If we choose r sufficiently large so that the constant in the (10) is less than 
[D/2 + d], and we choose D = 2d, we obtain 

T(m, n) < Dm 4/5-'~n 4/5 +44+~, log2 n, 

which proves the asserted inequality. D 

Using this result, when m = n we can answer the line-shooting queries at a 
randomized expected cost O(n 3/5 +") per ray. When m = n 2 the time cost is O(n 2/5 +~) 
per ray. We easily have these three corollaries: 

COROLLARY 1, Given two nonconvex polynedra Of total complexity n there is a 
randomized algorithm that in expected time O(n 8Is+ ~) decides whether they intersect. 

PROOF. Given two nonconvex polyhedra A and B, their intersection is not empty 
when either A _ B or B _c A, or when an edge in one polyhedron intersects a face 
in the second one. Once we have an answer for the third case, it is easy, in linear 
time, to test the first two. This third case dominates the time to test disjointness 
We modify the method for batched ray shooting into a method for batched 
segment shooting in the following way. When we have retrieved, for each line 
spanning a segment, the list of stabbed triangles we perform a binary search with 
both segment endpoints, checking if any triangle separates them. Having this 
batched segment-shooting method, we set in turn the faces of one polyhedron as 
the triangles and the edges of the second one as the query segments. The time 
bound follows easily from Theorem 2. D 

The intersection of two nonconvex polyhedra of total complexity n can have 
complexity f~(n2)i Therefore the naive algorithm that compares every edge of one 
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polyhedron with every face of the second one to detect the new vertices is 
worst-case optimal. The more sophisticated approach of the next corollary gives 
an output-sensitive algorithm with a subquadratic overhead. 

COROLLARY 2. Given two nonconvex polyhedra A and B of total complexity n, the 
intersection A ~ B can be computed in time 0(n8/5+~ + K log K), where K is the 
size of the intersection. 

PROOF. Using the algorithm of Theorem 2, modified for segment shooting as in 
Corollary 1, we can detect every vertex of A c~ B generated by an edge of A and 
a face of B and vice versa in time O(n 8/5 +~ + k), where k is the number of detected 
intersections. Each such intersection is a vertex of A c~ B and the total complexity 
K of A ~ B is O(k + n). We construct the intersection using a straightforward 
tracing procedure (see [MS] and [Shl). We need to be careful about the representa- 
tion of the polyhedra. Let us suppose having A (resp. B) as an incidence graph 
whose nodes are vertices, edges, and facets ofA (resp. B). We look for an equivalent 
representation of A ~ B~ Once we have all vertices of A ~ B, which are not vertices 
of A or B, it is easy to find all the new edges formed by intersecting a face of A 
with a face of B or an edge of A with two faces of B or an edge of B and two 
faces of A. By ordering the new vertices along each edge of A and B we can 
construct the subgraph of A n B incident to any new vertex. We traverse the 
graphs of A and B to complete the construction. It is easy to see that after ordering 
the new vertices of A c~ B, each search operation takes O(log K) time using suitable 
data structures. [] 

COROLLARY 3. Given a set T of n triangles we can test their pairwise disjointness 
in time O(n 8/5 +~). 

PROOF. Parition T into two sets of equal size and test them separately. If they 
are both pairwise disjoint, use the batched ray-shooting method to detect intersec- 
tions across the two sets using the edges of one set as queries on the other set. 
Repeat, exchanging the roles of the two sets. D 

5. Ray Shooting on Intersecting Triangles. Let us consider again the data struc- 
ture of Theorem 1. In every cell a of the Pliicker arrangement we have an 
associated set of triangles T~ such that every line dual to a Pliicker point in a meet 
every triangle of T,. It follows that extending the triangles of T, into full planes 
does not introduce new intersections. We construct the three-dimensional arrange- 
ment of planes spanning T,, we process it for point location and each cell of the 
arrangement for fast polyhedral intersection [DK].  The total cost is O(n 3 +~) time 
and space. It is now easy to locate the source of the ray in the three-dimensional 
arrangement and to find the first plane hit along the query ray. The space and 
time function satisfies the following equation: 

S(n) <2 cl r4 log rS((n/r) log r) + O(n3+~r 4 log r). 
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The solution is S(n)= O(n4+~), setting r = n ~', where e'< e. Using the same 
arguments as in the proof of Theorem 1, the query time is O(log n). 

THEOREM 3. Given any set of n (in general nondisjoint) triangles T in three- 
dimensional space, there is a data structure D(T) that uses O(n r storage and 
reports the first triangle hit by any ray p in O(log n) time. D(T) can be built in 
O(n *+") expected time. 

5.1. Off-Line Ray Shootin9 on [ntersectin 9 Triangles. The batching technique of 
[GOS] and [EGS-I allows us to divide recursively the problem into subproblems 
in which every line in the set of lines M~, of size m~, intersect all the triangles in 
the set N~ of size n~. We solve the ray-shooting problem restricted to N~ and M~ 
according to the following strategy: 

4 - + e  1. If m# _> n~ , using the method of Theorem 3 we solve the problem in time 
O(m~ log n~). 

2. If n~ +~ _< m~ < n~ , we consider, for each triangle in N~, its spanning plane. 
We build the arrangement of all planes spanning triangles in N~, and we process 
this arrangement for point location and ray shooting [DK]. The total time 
spent for this preprocessing is O(n3+~). The total time used for answering the 
ray-shooting queries is Otm~ log n~). 

3 - r e  3. If m~ _< n~ , we solve the problem by dualizing in 3-space the rays into double 
wedges and the planes into points. A double wedge is bounded by the plane 
dual to the source of the ray and by the plane dual to the direction of the ray 
(an improper point). When we locate the points in the arrangement of the 
wedges we are implicitly detecting the planes hit by the ray. Just for the planes 
intersecting a se~ of rays we generate the upper and lower cell of their 
arrangement and compute the first triangle hit by any ray in time 

y t O(n'~ log n; ~ m~ log n~), 

where n', is the number of planes intersected by m'o rays. 
Coming back to the original subproblem, the standard batching technique 

[GOS], lEGS] gives us a solution 

T'(m, n) 3/4-~ 3/:.+3~i+g = O(m.  n .  log 2 n. + n~ log n~ log m~ + m. tog 2 n~). 

The partitioning technique of [GOS] and lEGS] at the external level of our 
construction gives us the following recursive relation: 

I 0 for m = 0, 

T(m, n) < m log n for m ~ n 4 + ~, 

~ T(ml, n3+M3T'(m,n) for m_<n *+~. 

~ i =  l , M  
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Finally, solving the recurrence similarly to the solution in Section 4, we have the 
following theorem: 

THEOREM 4. Given n triangles in 3-space, which may intersect, and m rays we can 
find the first triangle hit by any ray in randomized expected time: 

[Dm4/5-on 4/5+4"5+~' log 2 n q- Am log 2 n + Bn log n log m] 

for any 6 > O, where the coefficients A, B, and D depend on ~ and e'. The storage 
is bounded by O(m + n). 

Theorem 4 can be easily modified to report all intersections of rays or segments 
with the triangles. With this modification we can built an output-sensitive 
algorithm to construct arrangements of triangles in 3-space. A trivial method to 
compute this arrangement would use O(n 2 + K log K) time, we improve on the 
overhead term. 

Given n triangles in R 3 we use them as the triangles in our method and their 
edges as segments we shoot: In time O(n 8/5 +~ + k) we find all the intersections of 
edges with triangles. Note that k intersections reported will be part of the final 
output. We use the segments cut on each triangle as input to a planar segment- 
intersection reporting problem. If ki is the number of segments on triangle ti in 
O(k i log k i + K~) time we can find all the intersections using the algorithm in ICE], 
where K~ is the size of the contribution of t~ to the arrangement. Using the same 
approach as in Corollary 2 we complete the construction of the arrangement. 
Summing up over all triangles we obtain the time complexity claimed in the 
f01!0wing~ theor_em: 

THEOREM 5. Given a set T of n triangles in R 3 we can build the three-dimensional 
arrangement d ( T )  in time 0(n8/5+~+ K logK), where K is the size of the 
arrangement. 

6. A Counting problem 

THEOREM 6. Given n lines in 3-space it is possible to count the number of pairs of 
intersecting lines in expected time O(nS/5+~), for any ~ > O, where the constants 
depend an ~. 

PROOF SKETCH. We partition the set of lines L.W = 5~ 1 w ~2 into two sets of 
roughly equal size and we solve recursively the problem in each set. Moreover, 
we locate the Plticker points of lines in 5r in the arrangement of the Plficker 
hyperplanes of lines in Lf 2. We use the batching technique to perform this step in 
O(n 8/5§ expected time. In order to handle the Pliicker points which are on the 
sampled Pliicker hyperplanes we also solve the problem recursively in the 
dimension of the space containing the query points. We repeat, exchanging the 
roles of "~1 and 5r 2. [] 
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7. Ray Shooting on Axis-Oriented Polyhedra. In this section we give a solution 
to a simpler case of ray shooting where the input objects are axis-oriented 
polyhedra (also called axis-oriented boxes). This case is relevant for the bounding- 
boxes method mentioned in the Introduction. 

THEOREM 7. Given n axis-oriented boxes in 3-space there exists a data structure 
o f  size O(n 2+~) Eo answer ray-shooting report queries in O(log nt tinw. The data 
structure can be built in O(n 2 +q time. 

PROOF. Ray-shooting problems are easily decomposable. If ~ = "~1 k5 J /~2 IS the 
sel of rectangles bounding the boxes, the answer for N~ and the answer for ~z  
can be combined in O(1) time to give the answer for ~ .  We partition the facets of 
the boxes into three sets of axis-parallel parallel rectangles, and we solve the 
problem on each set separately, 

Given an axis-oriented rectangle R parallel to the xy-plane, a line I intersects 
R if and only if the projections of the line 1 and of the rectangle R on the xz-plane 
intersect, and the same holds for projections on the yz-plane. The general strategy 
is to build a two-level data structure where each level is a data structure to answer 
queries about the line stabbing of segments on the plane. Given n segments on 
the plane, we use standard duality in [ E M P * ]  obtaining n double wedges. Each 
double wedge is the region bounded by the lines dual to the segment endpoints 
and not containing a vertical line. We use Matou~ek's technique [Ma]  over the 
lines bounding the wedges to partitions the plane into O(r 2) triangles. Each triangle 
cr is covered by O(n) of the original wedges and crossed by O(n/r) of the wedges, 
as follows from [Ma].  A query line on the plane dualizes on the dual plane into 
a point, which belongs to a region or. The list of wedges covering the region 
corresponds to segments stabbed by the query line on the plane. We keep this list 
sorted in stabbing order. This order is welt defined since the rectangles are parallel. 
We store these lists of wedges in space S(n), which satisfies the recurrence 
S(n) < r2S(cn/r) ~ r~n. The solution is S(n) = O(n 2.~1 for r = n 1/~. and the depth 
of the recursion is constant. We use the above data structure as a primary tree to 
store information about projections on the xz-plane. At each node we take the 
list of covering wedges and consider the associate rectangles and their projections 
on the yz-plane as an input to a similar secondary data structure. The total space 
used to build the secondary and the main data structures is 

Sln} <_ r2 S{cn/r} _a_ rZn2 + ~ 

The solution is S(n) - O(n2+q for r - n ~, with e' < e. The depth of the secondary 
tree is constant (depending on e'). 

The query time on the secondary data structure satisfies this recurrence: 
Q'(n) <_ Q'(n/r)+ log n. which solves in Q ' ( n ) -  O(log n) time because we chose 
r = n ~. Similarly the query time on the primary tree is Q(n)<_ Qln/rt + 
Q'(n) <_ Q(n/r) + O(log n), which again gives an O(log nl total query time. 

Since we choose r nonconstant, we must build planar point-location structures 
on the dual plane to locate the cell containing the query point. These additional 



Ray Shooting on Triangles in 3-Space 489 

structures do not asymptotically modify the space or the time needed to construct 
the two-level tree. []  

Using the above data structure and using the batching technique it is possible 
to solve the batched ray-shooting problem of n rays and n axis-oriented boxes in 
time O(n 4/3 +~). 

With techniques in [CSW] and [AS] it is possible to trade off space and query 

time. Using O(m) storage for n 1 +~ < m < n 2+~, we obtain query time O(n t +~/,,fm). 

8. Querying Isotopy Classes. In this section we adapt the techniques used in the 
Section 3 in order to solve the following problem: Given n blue lines in R 3, 
determine~ for a pair of red lines, whether they belong to the same isotopy class. 
Two red lines are in the same isotopy class if we can move one into the other 
without c{ossing or become parallel to any blue line. 

For  this problem we give an O(n 2 log n)-time algorithm. If the problem is asked 
in repetitive mode after O(n 4+~) preprocessing we can answer in O(log n) time. 

We check in O(n) time that the Plticker points of the two red lines have the 
same sign with respect to any of the blue Pliicker hyperplanes. If this is not the 
case we answer negatively. Otherwise, we construct the cell C containing the two 
red Pliicker points in the arrangement of the blue Pliicker hyperplanes. From the 
Upper Bound Theorem [Ed] we have an O(n 2) bound on the complexity of C. 
Using Seidel's algorithm [Se] we construct C in deterministic time O(n 2 log n) 
(using a recent algorithm of Chazelle [Ch3] C can be computed in O(n z) 
deterministic time). We subdivide C into O(n 2) simplices and we compute the 
components of s c~ II for each simplex s. For  any pair of adjacent simplices s and 
s', if a component of H c~ s and a component of r l  c~ s' have a common boundary 
point we identify those two components in the same class. Using a union-find data 
structure we can describe any connected components of II ~ C in C as the union 
of connected components of II c~ s, over all simplices s. A connected component 
of 1-I c~ C represents an isotopy class of lines. The second phase consists in locating 
the components of II containing the two red points, and retrieving the associated 
isotopy class. The union-find procedure takes O(nZ~(n)) time [Ta] because we have 
only O(n 2) pairs of adjacent facets in the triangulation of the cell, and therefore 
only O(n 2) union operations. 

THEOREM 8. Given a set Lf of n lines in R 3, we can determine if any two given 
lines, not necessarily in ~ ,  are in the same isotopy class using O(n 2 log n) time and 
O(n 2) storage. 

We define as an elementary path a path on rI connecting two points on one 
component of II c~ s, where s is any simplex. It is easy to see that we can compute 
the movement that takes one red line into the other as the concatenation of at 
most O(n 2) elementary paths. 

Given two points on any component of H c~ s it is possible to compute an arc 
completely contained in the component and connecting the two points [SS]. This 
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means that we can effectively compute the elementary steps required by Theorems 
8, 9, and 10. 

For the repetitive case we adopt the random sampling approach and we build 
a search-tree structure of size O(n #+~) in the first phase. The second phase consists 
in forming the equivalence classes starting from the bottom of the search tree and  
identifying components sharing boundary points. 

During a query 

(i) we locate the two query points in the Pliicker arrangement, at the bottom o f  
the decomposition tree, 

(ii) we determine the component of FI c~ s, where s is a simplex stored at a leaf, 
to which they belong, 

(iii) using the auxiliary union-find structure we determine the isotopy class. 

THEOREM 9. Given a set ~ of n lines we can preprocess it into a data structure 
D(5~) of  size O(n4+~), so that, for any given pair of  lines 11 and 12, in O(log n) time, 
it is possible to decide whether l 1 and l z belong to the same isotopy class. D(Sf) can 
be constructed in O(n ~+~) expected time. The path connecting the two lines, if it 
exists, comprises O(n 2 +~) elementary paths. 

Let us consider a segment e in R 3. Let /e be the line spanning e. Define 
Se = {p(/)ll~ e r ~} .  We observe that S~ is a connected semialgebraic set of 
Pliicker points. From this fact it is easy to show that, given a simplex s on the 
Pliicker hyperplane ~(/~), s r~ Se has a constant number of connected components. 

In order to decide whether two lines Ii and 12 are in the same isotopy class with 
respect to a set E of edges we build the same data structure of the previous section 
for the set L~(E) of lines spanning E. During the second phase of the algorithm, 
though, we modify the rule for identifying components of II. Given two compo- 
nents ~1 and cg 2 we identify them only if they have a common point on their 
boundary not in I v ~  S~. Clearly, if two components are separated by the 
hyperplane rc(l,) we need to check only Se. The asymptotic complexity of each 
check is the same as before, that is constant for each union-find operation. We 
summarize the above discussion with this theorem: 

THEOREM 10. Given a set E of  n segments in R 3 we can preprocess it into a data 
structure D(E) q[size O(n4+~), so that, for any given pair of  lines l I and 12, in O(log n) 
time, it is possible to decide whether l 1 and 12 belong to the same isotopy c/ass. D(Et 
can be constructed in O(n ~ +~) expected time. The path connecting two lines is the 
concatenation of  O(n 4 +~) elementary paths. 

A construction in [MO] can be easily modified to exhibit a set of n disjoint 
segments in R 3 with f~(n #) isotopy classes of lines. This is an indication that the 
result of Theorem 10 is almost space optimal if a label for each isotopy class has 
to be stored explicitly. Theorem 10 does not exploit any special property of the 
set of edges E. I t  is conceivable that, by imposing a fixed bound on the length of 
each segment and on the minimum distance between two segments, the result of 
Theorem 10 could be improved. 
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9. Conclusions. This paper gives algorithms for on-line and off-line ray-shooting 
problems on triangles in 3-space. The off-line ray-shooting algorithms have 
applications in computing intersections of nonconvex polyhedra and arrangements 
of triangles with an output-sensitive time bound. Also, we give the first fast isotopy 
test for lines among polyhedral obstacles. 

The main ideas behind these results are the following: 

1. Complex objects are determined by a collection of algebraically simpler objects. 
For example, a ray is formed by a point and a line; a triangle is formed by 
three lines and a plane. 

2. Incidence properties of complex objects are converted into boolean combina- 
tions of incidence and ordering conditions among simple objects. 

3. Relations among simple objects are studied and computed in a characteristic 
space, which depends on the nature of the objects involved. For example, lines 
versus lines problems are studied in Pliicker space. Point versus planes are 
studied in 3-space. 

4. Using standard techniques (random sampling, construction of arrangements, 
duality, batched queries, multilevel data structures) we are able to compute 
efficiently relations among many simple objects. 

It is our belief that the approach of Pliicker coordinates has a potential for 
applications to problems involving lines, segments, and polyhedra in three- 
dimensional space, which stretches beyond the algorithms presented in this paper. 

Acknowledgments. Thanks to Richard Pollack, Micha Sharir, Janos Pach, Boris 
Aronov, Pankaj K. Agarwal, and Peter Shor for useful discussions. 

Appendix. Different Geometric Permutations in the Same Pliicker Cell. Figure 
4 shows two lines l' and l" which have two different stabbing orders (also called 
geometric permutat ions)  with respect to two intersecting segments on the plane. 
Lifting this two-dimensional construction into a three-dimensional one we obtain 
two lines realizing two different geometric permutations, whose Pliicker points are 
in the same cell of the Pliicker arrangement. 

Recalling the terminology of Section 2.1, lines l' and I" intersect the base line P 
in the same region of the partition induced on P by the lines spanning the segments 
t 1 and t2, therefore, by results in Section 2.2, we conclude that the two Pliicker 
points of l' and 1" belong to the same cell of the Pliicker arrangement. 

We take the same two segments on the plane, we extend them in 3-space, and 
we transform them into thin triangles in space to obtain, on the base plane, a map 
corresponding to the partition of the line P. Now we move tl and t2 slightly apart 
so that they become disjoint, keeping all other features of the picture the same. 
Two stabbing lines with different stabbing orders, which on the plane must 
intersect, can be twisted so that they are disjoint and still stabbing the two triangles. 

The next lemma shows which geometric feature of the set T affects the presence 
of different stabbing orders in the same cell. Given two triangles tl and t 2, let 
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Fig. 4. Two segments with the different stabbing orders from the same cell. 

aft(tO and aft(t2) be the two spanning planes and let/12 = aft(t1) c~ aft(@ be their 
intersection. 

LEMMA 3. A necessary condition for two triangles q and t 2 to have stabbing lines 
belonfin9 to the same cell of  d(J~T) with different stabbin 9 orders is that both t 1 
and t 2 intersect 112. 

PROOF. Let us consider the set of triangles T = {ti, t2} and the planar map ~ '  
generated on the reference plane P below T, by aft(t1) and aff(t2). A line t that 
intersects region ~ of Jg and intersects T in the order (t 1, t2), necessarily hits the 
plane aft(t1) before the plane aft(t2). This fact is equivalent to the fact that l is 
above (or below) the line 112. Two lines l' and l" realizing two different stabbing 
orders hit points belonging to the triangles above and below the line t12, therefore, 
for convexity, both triangles intersect the line I12. D 
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