
Algorithmica (1993) 9:471-494 Algorithmica
�9 1993 Springer-Verlag New York Inc.

Ray Shooting on Triangles in 3-Space 1

M. Pellegrini z

Abstract. We present a uniform approach to problems involving lines in 3-space. This approach is
based on mapping lines in R 3 into points and hyperplanes in five-dimensional projective space (Pliicker
space). We obtain new results on the following problems:

1. Preprocess n triangles so as to answer efficiently the query: "Given a ray, which is the first triangle
hit?" (Ray-shooting problem). We discuss the ray-shooting problem for both disjoint and nondisjoint
triangles.

2. Construct the intersection of two nonconvex polyhedra in an output sensitive way with a
subquadratic overhead term.

3. Construct the arrangement of n intersecting triangles in 3-space in an output-sensitive way, with a
subquadratic overhead term.

4. Efficiently detect the first face hit by any ray in a set of axis-oriented polyhedra.
5. Preprocess n lines (segments) so as to answer efficiently the query "Given two lines, is it possible

to move one into the other without crossing any of the initial lines (segments)?" (Isotopy problem).
If the movement is possible produce an explicit representation of it.

Key Words. Computational geometry, Ray shooting on triangles, Arrangements of hyperplanes,
3-Space, Pliicker coordinates, Isotopy classes.

1. Introduction

1.1. Ray Shooting in Graphics. Ray shooting (also called ray tracing) is a central
problem in graphics. Given the internal representation of a polygonal three-
dimensional scene and some light sources, a good image rendering requires that
the amount of light received by every pixel is computed. If the scene comprises
reflecting surfaces the problem is complicated by the effect of the reflected light.
The basic geometric content of image-rendering is computing ray/surfaces intersec-
tions. This is known to be an expensive computation and many methods are used
in graphics to speed up the computation [G1], [SML], [AK].

A widely used approach is the substitution for complex objects of a hierarchy
of objects forming a chain of inclusions [KK], [Ro]. The external object is very
simple (a cube or a sphere) and checking the ray/object intersection takes 0(1)
time. If the ray hits the external object the next object in the hierarchy is tested.
This method gives a quick way to ignore many rays that do not hit the original

This research was supported by NSF Grant CCR-8901484, and by Eni and Enidata within the AXL
project. Results presented in this paper have appeared in preliminary form in [Pe l] and [Pe3].
2 Courant Institute, New York University, 251 Mercer Street, New York, NY 10012, USA. Pres-
ent address: Department of Computing, King's College, Strand, London WC2R 2LS, England.
m.pellegrini@ oak.cc.kcl.ac.uk.

Received December 5, 1990; revised August 23, 1991. Communicated by Leonidas J. Guibas.

472 M, Petlegrini

objects. The hierarchical approach is only heuristic and there is no gain in terms
of worst-case asymptotic complexity. A main drawback of the hierarchy method
is that those rays that are close to but do not hit any object in the scene are not
filtered out quickly and discarded.

A second approach exploits the coherence of rays. Rays are grouped into
"beams" and the behavior of the beams with respect to the surfaces is considered.
Arvo and Kirk [AK] propose representing a ray as a point in a five-dimensional
space (three parameters give the source point, two angles the direction) and a
beam as a hypercube in such space. Most of the computations, though, are carried
out in the original three-dimensional space since the scene itself is not mapped in
the five-dimensional space. This is a sharp difference with respect to our Pliicker
coordinate method (Section 2.1), since we map both the polygonal scene and the
rays in a five-dimensional space,

The approach to ray tracing that is relevant to this paper is the one that
considers the objects as formed by many patches of plane surfaces and tries to
minimize the number of patches to test against one ray. In graphics a second
general approach [G1] is used: objects are modeled by few and complex analytic
surfaces and the objective is to compute efficiently the intersection point of one
ray with one such surface. Here we study the asymptotic complexity of the
ray-shooting problem and our results have no claim of practicality.

1.2. Summary of Previous Work. In computat ional geometry usually the ray-
shooting problems are stated with some restrictions on the rays or on the
polygonal scene. Also, it is important to distinguish the on-line case from the
off-line case, when all rays are known in advance, because of the speed-up we can
get in the latter case.

A terrain is a set of polygons in 3-space having a unique intersection point with
any vertical line. When the polygonal scene is a terrain of complexity n, on-line
ray queries can be answered in O(log z n) time with O(n 2 +~) preprocessing time and
storage [CEGS].

If we have a terrain and we force the source of the ray to lie on a given vertical
line the method of Cole and Sharir [CS1] allows us to answer ondine queries in
O(log 2 n) time after O(nZ2 ~") log n) preprocesslng, using 0(n22 ~")) storage, where
:~(n) is a functional inverse of the Ackerman function and is constant for any
practical purpose.

When the source of the rays is on a given nonvertieal line but no restriction is
placed on the polygonal scene, Bern et al. [BDEG] build, in

O((n z + k) log z n + p log n)

time, a data structure of size O(n 2 + k) that answers ray queries in O(log 2 n) time,
where k is the number of opaque topological changes of the scene along the
flightpath, p is the number of transparent topological changes, and, in general,
0 <_ k <_ p <_ n3/3. In the case of a vertical line and a polygonal terrain Bern et ai.
[BDEG] improve the query time of the Cole and Sharir method to O(log n).

When the rays have a unique source-point and they are known in advance,

Ray Shooting on Triangles in 3-Space 473

Overmars and Sharir [OS1] solve the problem with O(n 4/3 log ~ n) time bound, for
n triangles, n rays, and a small constant 7. This variation of the ray-shooting
problem has a strong relation with the much-studied problem of hidden surface
removal [OSl], [RS], [Be], [PY], [OS2], which consists in removing from a
polygonal scene all the surfaces and edges that are not visible from a (proper or
improper) point.

On-line single source ray-shooting queries can be solved in O(x/~ log n) time
using O(n log n) space and O(n 3/z log ~ n) preprocessing by modifying the implicit
planar point-location method of Agarwal [Agl], [Ag2].

Schmitt et al. [SML] consider the case when the objects are iso-oriented
rectangles, they give several algorithms with different tradeoff between query
time and space. In the off-line case they use O(m~176 log~ time and
O(m log~ n) storage. On-line queries are solved in O(log 3 n) time with
O(n 3 log~ preprocessing time and space. Their technique exploits heavily
the orthogonal decomposability of the spatial problem involving iso-oriented
rectangles. This method is clearly not extendible to general polygonal scenes.

One of the applications of ray shooting presented in this paper is for computing
the intersection of two polyhedra in 3-space. The intersection of two convex
polyhedra in R 3 of total complexity n is computed in time O(n log n) by an
algorithm of Muller and Preparata IMP]. Chazelle [Ch2] gives a worst-case
optimal O(n) algorithm. The case when only one of the two polyhedra is convex
is treated in [MS] and [Sh]. When the two polyhedra are terrains with the same
vertical direction Chazelle et al. [CEGS-I give an O(n l"s +~ + k log 2 n)-time algo-
rithm for computing the upper envelope of the two terrains, where k is the output
size and n is the total input size, for any e > 0.

1.3. Summary of Results. For the most general version of the problem involving
any polygonal scene and any set of rays only the trivial O(mn) bound was known
before the results presented in this paper and appeared in preliminary form in
[Pel] and [Pe3]. We give off-line ray-shooting algorithms with a substantially
sublinear cost per ray, for any set of triangles and rays (Section 5).

The size of the data structure used in this paper to answer ray-shooting queries
in logarithmic time depends on the total complexity of all cells of a five-
dimensional arrangement of hyperplanes cut by a second-degree algebraic surface
17, called the Pliicker hypersurface. This set of cells is also called the zone of H in
the arrangement of hyperplanes d(~gt') (denoted as Zn(Jg)). Since the zone of rl
can have ~(n 4) cells in the worst case, this gives a lower bound for the method
too. In rPel] the estimate for the complexity of Zn(g(Y) is O(nS), later improved
in [Pe2] to O(n4"669). Recently Aronov et al. JAMS] have found the bound O(n4"S).
Finally, Aronov and Sharir [APS] have found an O(n 4 log n) upper bound. Since
the logarithmic factor is dominated by other components of the method, this
bound matches the lower bound for the algorithmic uses presented in this paper.
For a set of n disjoint triangles, a data structure of size O(n 4+~) is given in Section
3 to answer on-line ray-shooting queries in O(log n) time. In Section 4 we solve
the off-line version of the ray-shooting problem for disjoint triangles. In Section
5 the ray-shooting problem for intersecting triangles is considered.

474 M. PeJlegrini

The methods used to solve the ray-shooting problems are applicable to a wide
range of three-dimensional problems. In Section 4 we give an output-sensitive
method to compute the intersection of two nonconvex polyhedra in time
O(n 8/5 +~ + K log K) where n is the number of vertices, edges, and facets of the two
polyhedra and K is the size of their intersection, tn Section 5.1 we give an
output-sensitive method for constructing an arrangemenl of triangles in 3-space
in O(n 8/5 +~ + K log K) time, where K is the output size. The interest of these two
results lies in the subquadratic overhead. To the author's knowledge no previous
subquadratic overhead was know for these two problems. An O(n z) overhead is
trivially achieved by comparing any pair of features. Also, we sketch an algorithm
that, in O(n 8/5 +~) expected time, counts all pairs of intersecting lines.

When the query line is mapped into a point and we locate this point in a special
cell complex, we have the so-called primal approach. Ray-shooting problems can
be cast also in a dual approach where the queries are mapped into hyperptanes,
and we ask for the points in a point set that are above the query hyperplane (see
[CSW] and [AS]). Using the dual approach Agarwal and Sharir [AS] obtain an
algorithm to solve decision line-shooting queries that uses O(m) storage and
answers the queries in time O(n16/15+~/m4/15), for any a > 0 and n 1+~ _< m _< n 4+~.
As a lemma for their space/query tradeoff result, Agarwal and Sharir [AS] have
a result similar to one presented in this paper for on-line ray-shooting on
intersecting triangles.

A special case of particular interest is when the polygonal scene is formed by
axis-oriented polyhedra. In Section 7 we give an O(n 2+~) storage and O(logn)
query-time method for this case. Independently, de Berg e~ al. [d BH O *] have
obtained a similar (but more complicated) result for ray shooting on axis-oriented
boxes. They obtain a similar (but more complicated) result for ray shooting on
intersecting triangles (Theorem 3).

In Section 8 we discuss the isotopy problem: given n blue lines and two red lines
decide whether the two red lines are in the same isotopy class li.e., we can
continuously move one into the other without crossing any blue line). McKenna
and O'Rourke in [MO] give an O(n 4) storage and O(n) query-time method to solve
this problem. Moreover, they use O(n 4) elementary moves to find the actual
movement of the two lines. To the best of the author's knowledge no better results
were known for this problem. Here we present a method that uses O(n 4~) storage
and answers queries in O(log n) time. We use at most O(n 2§ elementary moves
to move one line into another, provided such movement is possible. These are
sharp improvements over the bounds in [MO]. We also extend the isotopy query
data structure to deal with isotopy classes generated by sets of segments and
polyhedra. In this case we have O(n 4+e) storage and O(log n) query time, but the
movement consists of O[n 4+~) elementary moves in the worst case.

In Section 2 we give a survey of the geometric, combinatorial, and algorithmic
facts which are used throughout this paper.

2. Geometric Preliminaries. A finite set H of hyperplanes in R a defines a
decomposition of R d into cells of various dimensions, which we call the arrange-

Ray Shooting on Triangles in 3-Space 475

ment d(H) of H [Ed]. If]HI = n the maximum number of cells in d(H) is O(d)
and the arrangement d(H) can be computed in optimal O(d) time [EOS]. One
d-dimensional cell of d(H) is bounded by O(n Ld/2J) cells of any dimension led] .

Given a random sample R of H, with I RI -- r _ n, let us consider the arrange-
ment d(R). A triangulation A d (R) is a subdivision of each cell of sC'(R) into
simplices such that the vertices of each simplex are vertices of d(R). The number
of simplices in A d (R) is O(d). The random sampling theory of Clarkson [Cll]
states that with high probability the interior of each simplex s E/hal(R) does not
meet more than O(n/r log r) hyperplanes of H.

Given H we can build a data structure for locating the cell of d(H) which uses
Cn a+" storage, for each e > 0, where the constant C depends on e, such that a
query point is located in O(log n) time [Cll]. This data structure is built in time
O(d +~) with high probability [Cll].

For d = 2 Matougek [Ma] gives a deterministic method that, for a parameter
r < n, subdivides the plane into O(r) triangles in time O(nr) such that the interior
of each triangle meets only n/r lines in H. The results of Clarkson and Matougek
are the base of many divide-and-conquer solutions in computational geometry.

Geometric duality [Ed], [EMP +] is a pair of functions, one mapping points to
hyperplanes and one mapping hyperplanes to points in R d. Duality mappings
preserve incidence and order relations. It is often convenient to transform a
problem into its dual problem because this transformation preserves many
important properties and for the dual problem it can be easier to find a solution.

A polyhedron P in R 3 with n facets, edges, and vertices can be stored in a data
structure D(P) devised by Dobkin and Kirkpatrick [DK]. D(P) uses O(n) storage
and can be built in O(n log n) time. Using D(P), in O(log n) time it is possible to
find the facets of P met by a query line. Intuitively, D(P) is a hierarchy of finer
and finer approximations of P. The interaction of a query line is traced down the
hierarchy at a constant cost for each level.

2.1. Pliieker Coordinates of Lines. To solve ray shooting on triangles with any
orientation we use the Plficker coordinates of lines. Algorithmic uses of Pliicker
coordinates can be found in [CEGS], in [Pe2], and in [PS]; a classical treatment
of Pliicker coordinates can be found in [So].

A point in real three-dimensional space has Cartesian coordinates (x, y, z) and
homogeneous coordinates (Xo, xl, x2, x3). The relations between the two systems
of coordinates are given by the following equations: x = xl/Xo, y = x2/xo and
z = x J x o. Two points x = (Xo, xl, x2, x3) , y = (Yo, Y~, Y2, Y3) in three-dimensional
homogeneous coordinates define a line I in 3-space. The six quantities

~; = xiy j - xjy i for ij = 01, 02, 03, 12, 23, 31

are called Plficker coordinates of the line l (oriented from x to y). They correspond
to the two-by-two minors of the two-by-four matrix formed by the coordinates
of the point x (on the first row) and y (on the second row).

The six parameters are not independent; they must satisfy the following equation

476 M. Pellegrini

(whose solution set constitutes the Pliicker hypersurface or Klein quadric or
Grassman manifold ~ 2 [St], [So]):

(1) l-I: ~0t~23 -'~ ~02~31 -}- ~03~12 -~" 0.

The incidence relation between two lines t and I' can be expressed using the
Pliicker coordinates of I and I'. Let al, b 1 (resp. a2, b2) be two points on I (resp.
I') oriented as 1 (resp. l'). The incidence between I and t' is expressed as the vanishing
of the determinant of a four-by-four matrix whose rows are the coordinates of a~,
bl, a2, b2 in this order from top to bottom:

(2)

alo a l l a12 al~[
blo bll blz bl~

a20 a21 a22 a23
b20 b21 b22 b23

=0 .

If we expand the determinant according to the two-by-two minors of the
submatrix formed by the coordinates of the points a t, bl and the minors of the
submatrix formed by the points a2, b2, we obtain the following equation in which
only PRicker coordinates are involved:

(3)

Let us introduce two mappings: n: 1 ~ n(/) maps a line in R 3 to a hyperplane in
~5 (five-dimensional oriented projective space) whose plane coordinates are the
Ptiicker coordinates of I appropriately reordered, p: l -~ p(l) maps a line in R 3 to
a point in ~5 whose coordinates are the Plficker coordinates of the line. The
incidence relation between the two lines l, l' (expressed by (3)) can be reformulated
as an incidence relation between points and hyperplanes in ~s. Equation (3) can
be rewritten in the form n~(pv) = 0, which is equivalent to requiring point p(t') to
belong to hyperplane n(/). Computations that are standard in real spaces can be
done in oriented projective spaces using a method in [-St].

In this paper we use the notation D(a, b, c, d) for the determinant formed by the
coordinates of the points a, b, c, d placed on the rows in this order from top to
bottom.

2.2. Characterization o f Line-Triangle Hits Using Pliicker Coordinates. Let Tbe
a set of n triangles. The set of lines spanning edges of the triangles is denoted by
5@ J~r = {n(/)[l~ 2'r} is the set of hyperplanes in ~s associated with T. N (~ r)
is the arrangement formed by the hyperplanes in oug r, An arrangement of Plficker
hyperplanes is called generically a PIficker arrangement. In this section we prove
the following lemma.

LEMMA 1. Given a set of triangles T, and the arrangement d (~ T) of the Plficker
hyperplanes corresponding to lines spanning edges of T, for each cell c of d (~ T)

Ray Shooting on Triangles in 3-Space 477

/

/ �9 ~ I I #l
�9 J gO J

�9 a s s
�9 r jS

i J S gl

�9 r
. S

Fig , 1. C o n e w i t h apex a b a s e d o n t.

m . . ~ y

I
~S

and any two lines 11 and 12, if p(ll) ~ c and p(12) ~ C, then l 1 and 12 intersect the same
subset of triangles in T.

PROOF. Given the point a and the triangle t in 3-space, we define as the cone
~a,t the set of rays from a intersecting t (see Figure 1). Let P be a plane below
triangle t, and let c~q,~ be the cone based on triangle t -- (Pl, /92, /93) with apex q ~ P.
Any two vertices of t together with q define a plane; for each such plane, the
half-space containing the third vertex of t is called positive.

When q belongs to the plane spanned by t the cone degenerates in a two-
dimensional object, but for simplicity of exposition we ignore degenerate cases. It
is easy to check that the set of points in the rays belonging to the cone ~q,t is the
intersection of the three positive half-spaces determined by q and t (see Figure 1).
If t is parallel to the reference plane P, then a variable point Q in the cone cCq. t
satisfies the following system of linear inequalities:

D(q, Pl, P2, Q) >- 0,

(4) D(q, /92, /93, Q) >- O,

478 M. PelJegrini

If necessary relabel the vertices of ~ to ensure the inequalities all have the same sign.
When t is not parallel to P we must consider the position of apex q with respect

to the line I. which is the intersection of P with the spanning plane of t (we denote
this plane with aft(t)), The cone is then defined by the two systems of linear
inequalities (5) and (6), according to the position of q relative to l,:

D(q, p~, P2, Q) >>- O,

(5) D(q, pz, p3, Q) > O,

D(q, pa, p,, Q) >_ O,

o r

D(q, p~, P2, Q) <- O,

(6) D(q, P2, P3, (2) < O,

D(q, P3, P~, Q) ~ O.

% rl

%%

%

%

/ r 3

'i , ' ! 4
I

~ p k I , " i

%

"~ 1 7 1 %11�9

i . !

4 I ! %

/ q ! ..'" q, , /

Fig. 2. Different cones based at q and q'.

Ray Shooting on Triangles in 3-Space 479

z

4
/ l * r

/
/

r
/

, , - . - / . ; ,

, / / /"
/ i /

," o Q 123 /'" "" /
I / /o /

�9 . I s _ /

D Y

--I//] / (~ - i, 1 12 / p2
, " ~ / 7 ' . ;

1 3 1 , / / �9149149149
/ i �9 �9

t /
(~1 q /"

ii I i i I

/ /
L . I " . i

i
/

/
I

i
i

Fig. 3. Stabbing line and triangle.

We need two systems of inequalities because when the apex q crosses l t the three
positive half-spaces switch with the nonpositive ones. In Figure 2 system (5) is
valid for apex q and system (6) for apex q'.

Using the row-exchange rule of determinants and changing the sign of the
inequalities accordingly we can put all the determinants in systems (4), (5), and (6)
in the form D(pl, P2, q, Q), D(p2, P3, q, Q), and D(p 3, Pl, q, Q). Then we expand
those determinants according to minors of the first two rows and of the last two,
and obtain a linear expression in terms of Plticker coordinates. Note that the final
systems involve the Plticker coordinates of lines supporting edges of triangles in
T and the (variable) line passing through q and Q (see Figure 3).

For any line I the set of triangles in T stabbed by I is determined by the relative
position of p(1) with respect to hyperplanes in ~T" []

3. Ray Shooting on Disjoint Triangles

T H E O R E M 1. Given any set T of n disjoint triangles in three-dimensional space, there
is a data structure D(T) that uses O(n 4+e) storage and reports the first triangle hit
by any ray p in O (l o g n) time. D(T) can be built in O(n 4+~) randomized expected time.

480 M. Pellegrini

PROOF. We consider a ray p as composed of two elementary objects: the source
point pp and the line l o spanning the ray. The general strategy we use to solve
ray-shooting on-line queries is to find an implicit representation of the ordered
list of triangles intersected by lo, and to perform a binary search over this list of
the source point Po"

Given the set T, we consider the set s of lines spanning edges in T and the
corresponding set ~ r of Pliicker hyperplanes. We take a random sample R of J4~
of size r and we create the zone of II in d(R). This can be done, for example, by
constructing the whole arrangement d (R) with the method of Edelsbrunner et al.
[EOS], lEd] in O(r 5) time and space. Within the same time bound we can check
which cells of d (R) intersect the Pliicker surface H and we record one Pliicker
point in each useful cell. From lAPS] we know that the zone of 1-I has complexity
O(r* log r) and it is decomposable into O(r* log r) simplices. As follows from the
random sampling theory of [Cll] , by repeated sampling, we can make sure that
only O(n/r log r) of the original hyperplanes intersect any simplex. Thus, for all
triangles none of whose three corresponding hyperplanes cut the simplex s, we
can detect the unique subset stabbed by all Pliicker points in s. For O(n/r log rl
triangles having at least one hyperplane cutting through s, we repeat the same
construction recursively in the simplex s.

The main difficulty in obtaining a reporting ray-shooting algorithm at this poin|
is the fact that a single cell in the zone of gl could contain Plficker points with
different stabbing orders (see the Appendix). Therefore, we do not have yet the
linear order needed for a binary search of the source of the ray.

We get around this obstacle with the following observation. If we divide each
cell of Zn(R) into simplices, for each simplex s0 s n H has a constant number of
components. In constant time we compute the components of II c~ s using the
general approach for computing topological properties of real algebraic manifolds
of Schwartz and Sharir [SS]. Additional computational details are given in [CS2]
and [Chl] . Furthermore, we can perform point location in the resulting data
structure [SS].

Since the zone Zn(R) has complexity O(r 4 log r) we have at most O(r 4 log r)
components of H c~ Zn(R) to deal with. Assuming that the triangles in T are
pairwise disjoint, each component corresponds to a umque stabbing order.

For each simplex we compute the components of s c~ H and the associated lists;
then we recursively proceed in each simplex. The storage required satisfies this
recurrence:

S(n) <_ cr* log rS((n/r) log r) + O(nr* log r).

For r constant, we obtain S(n) = O(n4+~), but the query time is O(log 2 n). Next
we show how to improve the query time to O(log n) while maintaining the same
asymptotic bound on the storage.

Setting r = n ~' we obtain an O(n*+9 bound for S(n), and the depth of the resulting
search tree is constant. We use an auxiliary point-location date structure on the
sampled hyperplanes in order to locate the simplex s where the query point ties.
The cell of ~'(R) where the query point lies is found, using standard point-location

Ray Shooting on Triangles in 3-Space 481

method, in [Cll] at the expense of O(r 5+~) additional storage. In order to locate
the simplex within a cell we extend each facet of a simplex into an full hyperplane
and obtain a point-location problem in a set of O(r 2) hyperplanes in Ns, which,
using [Cll], requires O(r 1~ +") additional storage for each cell. This is a brute-force
method, but, for the purpose of proving the bound, any polynomial preprocessing
and logarithmic query-time algorithm will do. The additional storage is dominated
by the n ~ factor in the final bound.

To summarize, it is possible to spend time logarithmic in r to find the simplex
s where the query point lies, at the expense of polynomial extra storage.

After locating the simplex we perform a binary search in each list associated
with components of I7 c~ s. In O(log n) time we select one triangle in each list. In
constant time we determine the closest triangle and compare it with the answer
to the recursive data structure associated with the simplex. The first triangle can
be determined in overall O(log n) time. []

4. Off-Line Ray Shooting. In this section we apply a general method of [GOS]
and we transform an on-line query data structure into an algorithm to answer
efficiently off-line queries. We describe the algorithm first, then its time analysis.

4.1. The Algorithm. The general strategy is the following. When the number of
rays is large compared with the number of triangles we use the on-line algorithm
of Section 3. If there are many triangles compared with the number of rays we
map, in a suitable way, the lines spanning triangles and the lines spanning the
rays in Pliicker space as Pliicker points and Plficker hyperplanes. We have to test
(implicitly) every point with every hyperplane. In order to do so we subdivide
Pliicker space into regions. In each region we have Plficker points completely
contained in it, Pliicker hyperplanes which cut through the region, and Pliicker
hyperplanes which do not cut through the region. The algorithm efficiently
compares the points within the region with the Pliicker hyperplanes which are
outside the region. We use a recursive call to make comparisons of points and
hyperplanes within a region. During this process the relative number of triangles
decreases with respect to the number of rays and we reach the base case of the
algorithm. The application of this schema is complicated by the presence of the
nonlinear Plficker surface H.

Given m rays and n triangles, if m >_ n 4+~ w e build the on-line ray-shooting data
structure of Section 3 and we obtain an O(m log n) overall method. If m _< n 4+~
we dualize the problem. The lines spanning edges of a triangle are mapped into
three Plticker points and the line lp, spanning a query ray p, is mapped into a
Pliicker hyperplane. We select a random sample of r Plficker hyperplanes and we
form its canonical trianoulation [C12]. We make sure during the process that we
produce simplices having at least one vertex. We obtain M = O(r 4 log r) simplices
covering the zone of H. Each simplex is cut by O((n/r) log r) hyperplanes [Cll I.
Now we consider every triple of simplices in turn. The number of triples is O(M3),
which is constant since r with be chosen constant.

Let ~r = (~h, ~2, ~3) be a triple of simplices, let N~ be the set of triangles whose

482 M. PelJegrini

corresponding Pliicker points are in o, and let n~ be the cardinality of Nr We
take all hyperplanes missing cr and we consider only those hyperplanes above
and those below o-. These two classes represent lines stabbing N~, as follows easily
from the discussion in Section 2.2. We repeat the following argument for each
such class of hyperplanes. Let M o be a class of hyperplanes (without loss of
generality the class of hyperplanes above ~r), and let m~ be its cardinality (with M*
we denote the corresponding set of dual points). We want to compare the m~. rays
against the n~ triangles in time O((m~ + n~) log n~).

A correct way to proceed, but too expensive, is the following: we dualize back
again, returning to the primal space. We have n~ Pli~cker hyperplanes and mo
Pliicker points. Since we already know that all PRicker points represent lines
stabbing N~ and have all the same relative position we can intersect the half-spaces
supported by the hyperplanes and containing the Plticker points. We obtain a
polytope Q~ of size O(n~). We can triangulate Q, and apply the query technique
explained in Section 3. The problem' with this approach is that Q~ is too big an
object to get a good time complexity.

A better solution is the following. We dualize back to the primal space the
vertices of the three simplices in a (which are not necessarily Pliicker points),
obtaining a constant number of hyperplanes. These hyperplanes have the same
relative position with respect to the Plticker points M*, therefore we can intersect
the corresponding half-spaces obtaining the polytope Q'~.

LEMMA 2. M* c Q; c Q~, and every component of Q'~ ~ II maps to one componem
of Q~ ~ rI.

PROOF. M* c Q'~ is given by the fact that in the dual the hyperplanes M~ were
in the same relative position with the three simptices and in defining Q'~ we have
consistently chosen the one of the two half-spaces supported by a hyperplane dual
to a vertex of o-.

Suppose now that there exists a point p s Q'~, p ~ Q~. In primal space this point
corresponds to hyperplane (not a Pliicker hyperplane, though) that separates
points in N~ but it does not separates vertices of the simplices enclosing N~. This
is obviously absurd.

Since Q~, c Q~ every point of H c~ Q'~ is in 1-I c~ Q~. The only possible way we
can violate the second part of the lemma is by merging in Q~ two components of
Q, c~ I1. This is possible only if we have Pliicker points in Q', that are not in Q,,
which is absurd. []

Since Q'~ has constant complexity, we can apply the procedure for searching the
source of the ray outlined in the Section 3. Lemma 2 ensures the correctness of
the procedure. The total time used to compute the comparisons of rays in M~ and
lines in N~ is O((m~ + n~) log n~). This is an essential ingredient for applying the
technique in [GOS]. We repeat the computation sketched above for each triple
cr and we are able to compute implicitly many comparisons. Then we recurse the
method in each simplex,

Ray Shooting on Triangles in 3-Space 483

4.2. Time Analysis. The time complexity T(m, n) for solving m batched ray,
shooting queries over n disjoint triangles satisfies the following recurrence:

(7)
faMm log n for

T(m,n) <_ ~ ~=, TOn. n,)+ cM3mlogn + cM3nlogn for

m ~ ~4+e,

m < n 4+e.

The additional constraints are:

(8)

M
n i _< 3n,

i=1

m~ <_ c'm log r/r for some constant c'.

The following theorem states the time complexity we are aiming for.

THEOREM 2. The ray-shooting problem for m rays and n disjoint trianoles can be
solved in

[Dm4/5-6n 4/5+4~+~' log 2 n + Am log 2 n + Bn log n log m]

randomized expected time, for any ~ > 0 and e' > 0, where the coefficients A, B, and
D depend on 6 and e'. The storage is bounded by O(m + n).

PROOF. AS for the storage, O(n + m) space is used in one level of the algorithm
and from one level to the next we need to store only one candidate triangle for
each ray. The time bound follows from solving (7), this solution follows a schema
in [EGS].

Fix 6 and choose r = r(6) to be sufficiently large (how large will be determined
later in the proof). If m >_ n *+~, then T(m, n)<_ am logZn satisfies the bound
assuming A >_>_ a. Suppose m _< n 4+~. In this case

(9) m = m 4 / 5 - ~ m 1 / 5 + 6 < rn4/5- f in 4/5+4~+e' ,

First notice that at each level of the recursion the third term in (7) contributes
O(n log n) and there are at most O(log m) levels. The overall contribution of this
term is O(n log n log m). It is sufficient to drop this term from the recursion (7)
and prove the modified inequality satisfies the bound

T(m, n) <_ Dm4/5-'~n4/5+46+e" log 2 n + Am log 2 n.

By induction hypothesis we have

M

T(m, n) <_
i=1

[Dm4/5-~n4/5+4~+~' + Am i] log 2 n i + cM3m log n.

484 M. Peilegrini

However, ~ i= nM ml log z n i <_ [Mc' log r/r]m log 2 n, therefore we can sum up two
terms in m, put d = AMc' log r/r + cM 3, and use inequality (9), obtaining

T(m, n) <_ I D i=1 ~ m~/5-On~/5+4o+"' + dm4/5-On4/5+40§ lOg2 n"

Now we eliminate the summation using first the bound on m i and then the
H61der-Minkowsky inequality [Mi]:

M M

Z m4/5-~n4/S+4a+~'<i - [(c'l~ 4/5"~ 2 n~/5+'~+~'
i = 1 i = 1

_< [c' log r/r] 4/5 -am4/S-~M 1Is - 4'~-~'n'*/5 + 4'~+ ~'.

Then we obtain, for some constant c",

(10) T(m, n) <_ [Dc" log 4/5-~ r/r 15'~+4~" -t- d]m4/5-'~n4/5+4~'+E' log2 n.

If we choose r sufficiently large so that the constant in the (10) is less than
[D/2 + d], and we choose D = 2d, we obtain

T(m, n) < Dm 4/5-'~n 4/5 +44+~, log2 n,

which proves the asserted inequality. D

Using this result, when m = n we can answer the line-shooting queries at a
randomized expected cost O(n 3/5 +") per ray. When m = n 2 the time cost is O(n 2/5 +~)
per ray. We easily have these three corollaries:

COROLLARY 1, Given two nonconvex polynedra Of total complexity n there is a
randomized algorithm that in expected time O(n 8Is+ ~) decides whether they intersect.

PROOF. Given two nonconvex polyhedra A and B, their intersection is not empty
when either A _ B or B _c A, or when an edge in one polyhedron intersects a face
in the second one. Once we have an answer for the third case, it is easy, in linear
time, to test the first two. This third case dominates the time to test disjointness
We modify the method for batched ray shooting into a method for batched
segment shooting in the following way. When we have retrieved, for each line
spanning a segment, the list of stabbed triangles we perform a binary search with
both segment endpoints, checking if any triangle separates them. Having this
batched segment-shooting method, we set in turn the faces of one polyhedron as
the triangles and the edges of the second one as the query segments. The time
bound follows easily from Theorem 2. D

The intersection of two nonconvex polyhedra of total complexity n can have
complexity f~(n2)i Therefore the naive algorithm that compares every edge of one

Ray Shooting on Triangles in 3-Space 485

polyhedron with every face of the second one to detect the new vertices is
worst-case optimal. The more sophisticated approach of the next corollary gives
an output-sensitive algorithm with a subquadratic overhead.

COROLLARY 2. Given two nonconvex polyhedra A and B of total complexity n, the
intersection A ~ B can be computed in time 0(n8/5+~ + K log K), where K is the
size of the intersection.

PROOF. Using the algorithm of Theorem 2, modified for segment shooting as in
Corollary 1, we can detect every vertex of A c~ B generated by an edge of A and
a face of B and vice versa in time O(n 8/5 +~ + k), where k is the number of detected
intersections. Each such intersection is a vertex of A c~ B and the total complexity
K of A ~ B is O(k + n). We construct the intersection using a straightforward
tracing procedure (see [MS] and [Shl). We need to be careful about the representa-
tion of the polyhedra. Let us suppose having A (resp. B) as an incidence graph
whose nodes are vertices, edges, and facets ofA (resp. B). We look for an equivalent
representation of A ~ B~ Once we have all vertices of A ~ B, which are not vertices
of A or B, it is easy to find all the new edges formed by intersecting a face of A
with a face of B or an edge of A with two faces of B or an edge of B and two
faces of A. By ordering the new vertices along each edge of A and B we can
construct the subgraph of A n B incident to any new vertex. We traverse the
graphs of A and B to complete the construction. It is easy to see that after ordering
the new vertices of A c~ B, each search operation takes O(log K) time using suitable
data structures. []

COROLLARY 3. Given a set T of n triangles we can test their pairwise disjointness
in time O(n 8/5 +~).

PROOF. Parition T into two sets of equal size and test them separately. If they
are both pairwise disjoint, use the batched ray-shooting method to detect intersec-
tions across the two sets using the edges of one set as queries on the other set.
Repeat, exchanging the roles of the two sets. D

5. Ray Shooting on Intersecting Triangles. Let us consider again the data struc-
ture of Theorem 1. In every cell a of the Pliicker arrangement we have an
associated set of triangles T~ such that every line dual to a Pliicker point in a meet
every triangle of T,. It follows that extending the triangles of T, into full planes
does not introduce new intersections. We construct the three-dimensional arrange-
ment of planes spanning T,, we process it for point location and each cell of the
arrangement for fast polyhedral intersection [DK]. The total cost is O(n 3 +~) time
and space. It is now easy to locate the source of the ray in the three-dimensional
arrangement and to find the first plane hit along the query ray. The space and
time function satisfies the following equation:

S(n) <2 cl r4 log rS((n/r) log r) + O(n3+~r 4 log r).

486 M. Pellegrini

The solution is S(n)= O(n4+~), setting r = n ~', where e'< e. Using the same
arguments as in the proof of Theorem 1, the query time is O(log n).

THEOREM 3. Given any set of n (in general nondisjoint) triangles T in three-
dimensional space, there is a data structure D(T) that uses O(n r storage and
reports the first triangle hit by any ray p in O(log n) time. D(T) can be built in
O(n *+") expected time.

5.1. Off-Line Ray Shootin9 on [ntersectin 9 Triangles. The batching technique of
[GOS] and [EGS-I allows us to divide recursively the problem into subproblems
in which every line in the set of lines M~, of size m~, intersect all the triangles in
the set N~ of size n~. We solve the ray-shooting problem restricted to N~ and M~
according to the following strategy:

4 - + e 1. If m# _> n~ , using the method of Theorem 3 we solve the problem in time
O(m~ log n~).

2. If n~ +~ _< m~ < n~ , we consider, for each triangle in N~, its spanning plane.
We build the arrangement of all planes spanning triangles in N~, and we process
this arrangement for point location and ray shooting [DK]. The total time
spent for this preprocessing is O(n3+~). The total time used for answering the
ray-shooting queries is Otm~ log n~).

3 - r e 3. If m~ _< n~ , we solve the problem by dualizing in 3-space the rays into double
wedges and the planes into points. A double wedge is bounded by the plane
dual to the source of the ray and by the plane dual to the direction of the ray
(an improper point). When we locate the points in the arrangement of the
wedges we are implicitly detecting the planes hit by the ray. Just for the planes
intersecting a se~ of rays we generate the upper and lower cell of their
arrangement and compute the first triangle hit by any ray in time

y t O(n'~ log n; ~ m~ log n~),

where n', is the number of planes intersected by m'o rays.
Coming back to the original subproblem, the standard batching technique

[GOS], lEGS] gives us a solution

T'(m, n) 3/4-~ 3/:.+3~i+g = O(m. n . log 2 n. + n~ log n~ log m~ + m. tog 2 n~).

The partitioning technique of [GOS] and lEGS] at the external level of our
construction gives us the following recursive relation:

I 0 for m = 0,

T(m, n) < m log n for m ~ n 4 + ~,

~ T(ml, n3+M3T'(m,n) for m_<n *+~.

~ i = l , M

Ray Shooting on Triangles in 3-Space 487

Finally, solving the recurrence similarly to the solution in Section 4, we have the
following theorem:

THEOREM 4. Given n triangles in 3-space, which may intersect, and m rays we can
find the first triangle hit by any ray in randomized expected time:

[Dm4/5-on 4/5+4"5+~' log 2 n q- Am log 2 n + Bn log n log m]

for any 6 > O, where the coefficients A, B, and D depend on ~ and e'. The storage
is bounded by O(m + n).

Theorem 4 can be easily modified to report all intersections of rays or segments
with the triangles. With this modification we can built an output-sensitive
algorithm to construct arrangements of triangles in 3-space. A trivial method to
compute this arrangement would use O(n 2 + K log K) time, we improve on the
overhead term.

Given n triangles in R 3 we use them as the triangles in our method and their
edges as segments we shoot: In time O(n 8/5 +~ + k) we find all the intersections of
edges with triangles. Note that k intersections reported will be part of the final
output. We use the segments cut on each triangle as input to a planar segment-
intersection reporting problem. If ki is the number of segments on triangle ti in
O(k i log k i + K~) time we can find all the intersections using the algorithm in ICE],
where K~ is the size of the contribution of t~ to the arrangement. Using the same
approach as in Corollary 2 we complete the construction of the arrangement.
Summing up over all triangles we obtain the time complexity claimed in the
f01!0wing~ theor_em:

THEOREM 5. Given a set T of n triangles in R 3 we can build the three-dimensional
arrangement d (T) in time 0(n8/5+~+ K logK), where K is the size of the
arrangement.

6. A Counting problem

THEOREM 6. Given n lines in 3-space it is possible to count the number of pairs of
intersecting lines in expected time O(nS/5+~), for any ~ > O, where the constants
depend an ~.

PROOF SKETCH. We partition the set of lines L.W = 5~ 1 w ~2 into two sets of
roughly equal size and we solve recursively the problem in each set. Moreover,
we locate the Plticker points of lines in 5r in the arrangement of the Plficker
hyperplanes of lines in Lf 2. We use the batching technique to perform this step in
O(n 8/5§ expected time. In order to handle the Pliicker points which are on the
sampled Pliicker hyperplanes we also solve the problem recursively in the
dimension of the space containing the query points. We repeat, exchanging the
roles of "~1 and 5r 2. []

488 M. Peiiegrini

7. Ray Shooting on Axis-Oriented Polyhedra. In this section we give a solution
to a simpler case of ray shooting where the input objects are axis-oriented
polyhedra (also called axis-oriented boxes). This case is relevant for the bounding-
boxes method mentioned in the Introduction.

THEOREM 7. Given n axis-oriented boxes in 3-space there exists a data structure
o f size O(n 2+~) Eo answer ray-shooting report queries in O(log nt tinw. The data
structure can be built in O(n 2 +q time.

PROOF. Ray-shooting problems are easily decomposable. If ~ = "~1 k5 J /~2 IS the
sel of rectangles bounding the boxes, the answer for N~ and the answer for ~z
can be combined in O(1) time to give the answer for ~ . We partition the facets of
the boxes into three sets of axis-parallel parallel rectangles, and we solve the
problem on each set separately,

Given an axis-oriented rectangle R parallel to the xy-plane, a line I intersects
R if and only if the projections of the line 1 and of the rectangle R on the xz-plane
intersect, and the same holds for projections on the yz-plane. The general strategy
is to build a two-level data structure where each level is a data structure to answer
queries about the line stabbing of segments on the plane. Given n segments on
the plane, we use standard duality in [E M P *] obtaining n double wedges. Each
double wedge is the region bounded by the lines dual to the segment endpoints
and not containing a vertical line. We use Matou~ek's technique [Ma] over the
lines bounding the wedges to partitions the plane into O(r 2) triangles. Each triangle
cr is covered by O(n) of the original wedges and crossed by O(n/r) of the wedges,
as follows from [Ma]. A query line on the plane dualizes on the dual plane into
a point, which belongs to a region or. The list of wedges covering the region
corresponds to segments stabbed by the query line on the plane. We keep this list
sorted in stabbing order. This order is welt defined since the rectangles are parallel.
We store these lists of wedges in space S(n), which satisfies the recurrence
S(n) < r2S(cn/r) ~ r~n. The solution is S(n) = O(n 2.~1 for r = n 1/~. and the depth
of the recursion is constant. We use the above data structure as a primary tree to
store information about projections on the xz-plane. At each node we take the
list of covering wedges and consider the associate rectangles and their projections
on the yz-plane as an input to a similar secondary data structure. The total space
used to build the secondary and the main data structures is

Sln} <_ r2 S{cn/r} _a_ rZn2 + ~

The solution is S(n) - O(n2+q for r - n ~, with e' < e. The depth of the secondary
tree is constant (depending on e').

The query time on the secondary data structure satisfies this recurrence:
Q'(n) <_ Q'(n/r)+ log n. which solves in Q ' (n) - O(log n) time because we chose
r = n ~. Similarly the query time on the primary tree is Q(n)<_ Qln/rt +
Q'(n) <_ Q(n/r) + O(log n), which again gives an O(log nl total query time.

Since we choose r nonconstant, we must build planar point-location structures
on the dual plane to locate the cell containing the query point. These additional

Ray Shooting on Triangles in 3-Space 489

structures do not asymptotically modify the space or the time needed to construct
the two-level tree. []

Using the above data structure and using the batching technique it is possible
to solve the batched ray-shooting problem of n rays and n axis-oriented boxes in
time O(n 4/3 +~).

With techniques in [CSW] and [AS] it is possible to trade off space and query

time. Using O(m) storage for n 1 +~ < m < n 2+~, we obtain query time O(n t +~/,,fm).

8. Querying Isotopy Classes. In this section we adapt the techniques used in the
Section 3 in order to solve the following problem: Given n blue lines in R 3,
determine~ for a pair of red lines, whether they belong to the same isotopy class.
Two red lines are in the same isotopy class if we can move one into the other
without c{ossing or become parallel to any blue line.

For this problem we give an O(n 2 log n)-time algorithm. If the problem is asked
in repetitive mode after O(n 4+~) preprocessing we can answer in O(log n) time.

We check in O(n) time that the Plticker points of the two red lines have the
same sign with respect to any of the blue Pliicker hyperplanes. If this is not the
case we answer negatively. Otherwise, we construct the cell C containing the two
red Pliicker points in the arrangement of the blue Pliicker hyperplanes. From the
Upper Bound Theorem [Ed] we have an O(n 2) bound on the complexity of C.
Using Seidel's algorithm [Se] we construct C in deterministic time O(n 2 log n)
(using a recent algorithm of Chazelle [Ch3] C can be computed in O(n z)
deterministic time). We subdivide C into O(n 2) simplices and we compute the
components of s c~ II for each simplex s. For any pair of adjacent simplices s and
s', if a component of H c~ s and a component of r l c~ s' have a common boundary
point we identify those two components in the same class. Using a union-find data
structure we can describe any connected components of II ~ C in C as the union
of connected components of II c~ s, over all simplices s. A connected component
of 1-I c~ C represents an isotopy class of lines. The second phase consists in locating
the components of II containing the two red points, and retrieving the associated
isotopy class. The union-find procedure takes O(nZ~(n)) time [Ta] because we have
only O(n 2) pairs of adjacent facets in the triangulation of the cell, and therefore
only O(n 2) union operations.

THEOREM 8. Given a set Lf of n lines in R 3, we can determine if any two given
lines, not necessarily in ~ , are in the same isotopy class using O(n 2 log n) time and
O(n 2) storage.

We define as an elementary path a path on rI connecting two points on one
component of II c~ s, where s is any simplex. It is easy to see that we can compute
the movement that takes one red line into the other as the concatenation of at
most O(n 2) elementary paths.

Given two points on any component of H c~ s it is possible to compute an arc
completely contained in the component and connecting the two points [SS]. This

490 M. Petlegrini

means that we can effectively compute the elementary steps required by Theorems
8, 9, and 10.

For the repetitive case we adopt the random sampling approach and we build
a search-tree structure of size O(n #+~) in the first phase. The second phase consists
in forming the equivalence classes starting from the bottom of the search tree and
identifying components sharing boundary points.

During a query

(i) we locate the two query points in the Pliicker arrangement, at the bottom o f
the decomposition tree,

(ii) we determine the component of FI c~ s, where s is a simplex stored at a leaf,
to which they belong,

(iii) using the auxiliary union-find structure we determine the isotopy class.

THEOREM 9. Given a set ~ of n lines we can preprocess it into a data structure
D(5~) of size O(n4+~), so that, for any given pair of lines 11 and 12, in O(log n) time,
it is possible to decide whether l 1 and l z belong to the same isotopy class. D(Sf) can
be constructed in O(n ~+~) expected time. The path connecting the two lines, if it
exists, comprises O(n 2 +~) elementary paths.

Let us consider a segment e in R 3. Let /e be the line spanning e. Define
Se = {p(/)ll~ e r ~} . We observe that S~ is a connected semialgebraic set of
Pliicker points. From this fact it is easy to show that, given a simplex s on the
Pliicker hyperplane ~(/~), s r~ Se has a constant number of connected components.

In order to decide whether two lines Ii and 12 are in the same isotopy class with
respect to a set E of edges we build the same data structure of the previous section
for the set L~(E) of lines spanning E. During the second phase of the algorithm,
though, we modify the rule for identifying components of II. Given two compo-
nents ~1 and cg 2 we identify them only if they have a common point on their
boundary not in I v ~ S~. Clearly, if two components are separated by the
hyperplane rc(l,) we need to check only Se. The asymptotic complexity of each
check is the same as before, that is constant for each union-find operation. We
summarize the above discussion with this theorem:

THEOREM 10. Given a set E of n segments in R 3 we can preprocess it into a data
structure D(E) q[size O(n4+~), so that, for any given pair of lines l I and 12, in O(log n)
time, it is possible to decide whether l 1 and 12 belong to the same isotopy c/ass. D(Et
can be constructed in O(n ~ +~) expected time. The path connecting two lines is the
concatenation of O(n 4 +~) elementary paths.

A construction in [MO] can be easily modified to exhibit a set of n disjoint
segments in R 3 with f~(n #) isotopy classes of lines. This is an indication that the
result of Theorem 10 is almost space optimal if a label for each isotopy class has
to be stored explicitly. Theorem 10 does not exploit any special property of the
set of edges E. I t is conceivable that, by imposing a fixed bound on the length of
each segment and on the minimum distance between two segments, the result of
Theorem 10 could be improved.

Ray Shooting on Triangles in 3-Space 491

9. Conclusions. This paper gives algorithms for on-line and off-line ray-shooting
problems on triangles in 3-space. The off-line ray-shooting algorithms have
applications in computing intersections of nonconvex polyhedra and arrangements
of triangles with an output-sensitive time bound. Also, we give the first fast isotopy
test for lines among polyhedral obstacles.

The main ideas behind these results are the following:

1. Complex objects are determined by a collection of algebraically simpler objects.
For example, a ray is formed by a point and a line; a triangle is formed by
three lines and a plane.

2. Incidence properties of complex objects are converted into boolean combina-
tions of incidence and ordering conditions among simple objects.

3. Relations among simple objects are studied and computed in a characteristic
space, which depends on the nature of the objects involved. For example, lines
versus lines problems are studied in Pliicker space. Point versus planes are
studied in 3-space.

4. Using standard techniques (random sampling, construction of arrangements,
duality, batched queries, multilevel data structures) we are able to compute
efficiently relations among many simple objects.

It is our belief that the approach of Pliicker coordinates has a potential for
applications to problems involving lines, segments, and polyhedra in three-
dimensional space, which stretches beyond the algorithms presented in this paper.

Acknowledgments. Thanks to Richard Pollack, Micha Sharir, Janos Pach, Boris
Aronov, Pankaj K. Agarwal, and Peter Shor for useful discussions.

Appendix. Different Geometric Permutations in the Same Pliicker Cell. Figure
4 shows two lines l' and l" which have two different stabbing orders (also called
geometric permutat ions) with respect to two intersecting segments on the plane.
Lifting this two-dimensional construction into a three-dimensional one we obtain
two lines realizing two different geometric permutations, whose Pliicker points are
in the same cell of the Pliicker arrangement.

Recalling the terminology of Section 2.1, lines l' and I" intersect the base line P
in the same region of the partition induced on P by the lines spanning the segments
t 1 and t2, therefore, by results in Section 2.2, we conclude that the two Pliicker
points of l' and 1" belong to the same cell of the Pliicker arrangement.

We take the same two segments on the plane, we extend them in 3-space, and
we transform them into thin triangles in space to obtain, on the base plane, a map
corresponding to the partition of the line P. Now we move tl and t2 slightly apart
so that they become disjoint, keeping all other features of the picture the same.
Two stabbing lines with different stabbing orders, which on the plane must
intersect, can be twisted so that they are disjoint and still stabbing the two triangles.

The next lemma shows which geometric feature of the set T affects the presence
of different stabbing orders in the same cell. Given two triangles tl and t 2, let

492 M. Pellegrini

t t
g

/

t d] ,

' t2

?

Fig. 4. Two segments with the different stabbing orders from the same cell.

aft(tO and aft(t2) be the two spanning planes and let/12 = aft(t1) c~ aft(@ be their
intersection.

LEMMA 3. A necessary condition for two triangles q and t 2 to have stabbing lines
belonfin9 to the same cell of d(J~T) with different stabbin 9 orders is that both t 1
and t 2 intersect 112.

PROOF. Let us consider the set of triangles T = {ti, t2} and the planar map ~ '
generated on the reference plane P below T, by aft(t1) and aff(t2). A line t that
intersects region ~ of Jg and intersects T in the order (t 1, t2), necessarily hits the
plane aft(t1) before the plane aft(t2). This fact is equivalent to the fact that l is
above (or below) the line 112. Two lines l' and l" realizing two different stabbing
orders hit points belonging to the triangles above and below the line t12, therefore,
for convexity, both triangles intersect the line I12. D

[Agl]

[Ag2]

EAK]

JAMS]

lAPS]

References

P. K. Agarwal. Partitioning arrangements of lines, !: An efficient deterministi c algorithm.
Discrete & Computational Geometry, 5:449-483, 1990.
P. K. Agarwal. Partitioning arrangements of lines, II: Applications. Discrete & Computa-
tional Geometry, 5:533-573, 1990.
J. Arvo and D. Kirk. Fast ray tracing by ray classification. In M. C. Stone, editor,
SIGGRAPH '87 Conference Proceedings, pages 55-63, 1987.
B. Aronov, J. Matou~ek, and M. Sharir. On the sum of squares of cell complexities in
hyperplane arrangements. In Proceedings of the 7th ACM SymposiUm on Computational
Geometry, pages 307 313, 199l.
B. Aronov, M. Pellegrini, and M. Sharir. On the zone of an algebraic surface in a
hyperplane arrangemenL Discrete & Computational Geometry. To appear. Preliminary
version in Proceedings of the 1991 Workshop on Algorithms and Data Structures,

Ray Shooting on Triangles in 3-Space 493

[AS]

[BDEG]

[Be]

ICE]

[CEGS]

[Chl]

[Ch2]

[Ch3]

[Cll]

[Cl2]

[CSl]

[CS2]

[csw]

[dBHO +]

[DK]

[~d]

[EGS]

[EMP +]

[EOS]

[G1]
[GOS3

pages 13-19. Lecture Notes in Computer Science, Volume 519. Springer-Verlag, Berlin,
1991
P. K. Agarwal and M. Sharir. Applications of a new space partitioning technique. In
Proceedings of the 1991 Workshop on Algorithms and Data Structures, pages 379-391.
Lecture Notes in Computer Science, Volume 519. Springer-Verlag, Berlin, 1991.
M. Bern, D. Dobkin, D. Eppstein, and R. Grossman. Visibility with a moving point. In
Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms, pages 107-117,
1990.
M. Bern. Hidden surface removal for rectangles. In Proceedings of the 4th ACM
Symposium on Computational Geometry, pages 183-192, 1988.
B. Chazelle and H. Edetsbrunner. An optimal algorithm for intersecting line segments in
the plane. In Proceedings of the 29th Annual Symposium on Foundations of Computer
Science, pages 590-600, t988.
B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Lines in space: combinatorices,
algorithms and applications. In Proceedings of the 21st Symposium on Theory of Com-
puting, pages 382-393, 1989.
B. Chazelle. Fast Searching in a Real Algebraic Manifold with Applications to Geometric'
Complexity, pages 145-156. Lecture Notes in Computer Sciences, Volume 185. Springer-
Verlag, Berlin, 1985.
B. ChazeUe. An optimal algorithm for intersecting three-dimensional convex polyhedra.
In Proceedings of the 30th IEEE Symposium on Foundations of Computer Science, pages
586-591, 1989.
B. Chazelle. An optimal convex hull algorithm and new results on cuttings. In Proceedings
of the 32rid IEEE Symposium on Foundations of Computer Science, pages 29-38, 1991.
K. L. Clarkson. New applications of random sampling in computational geometry.
Discrete & Computational Geometry, 2:195 222, 1987.
K. L. Clarkson. A randomized algorithm for closest-point queries. SIAM Journal on
Computing, 17:830-847, 1988.
R. Cole and M. Sharir. Visibility Problems for Polyhedral Terrains. Technical Report
266, CIMS, December 1986.
B. Chazelle and M. Sharir. An Algorithm for Generalized Point Location and Its
Applications. Technical Report 153, Robotics Laboratory, Courant Institute of Mathema-
tical Sciences, May 1988.
B. Chazelle, M. Sfiarir, and E. Welzl. Quasi-optimal upper bounds for simplex range
searching and new zone theorems. In Proceedinqs of the 6th ACM Symposium on
Computational Geometry, pages 23-33, 1990.
M. de Berg, D. Halperlin, M. Overmars, J. Snoeyink, and M. van Kreveld. Efficent
ray-shooting and hidden surface removal. In Proceedings of the 7th A CM Symposium on
Computational Geometry, pages 21-30, 1991.
D. Dobkin and D. Kirkpatrick. Determining the separation of preprocessed polyhedra:
a unified approach. In Proceedings of the 17th International Colloquium on Automata,
Languages and Programming, pages 400-413, 1990.
H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, New York,
1987.
H. Edelsbrunner, L. Guibas, and M. Sharir. The complexity of many faces in arrangements
of lines and segments. In Proceedings of the 4th A CM Symposium on Computational
Geometry, pages 44-55, 1988.
H: Edelsbrunner, H. Mauer, F. Preparata, E. Welzl, and D. Wood. Stabbing line segments.
BIT, 22:274-281, 1982.
H. Edelsbrunner, J. O'Rourke, and R. Seidel. Constructing arrangements of lines and
hyperplanes with applications. SlAM Journal on Computing, 15:341-363, 1986.
A. S. Glassner, editor. Ray Tracin 9. Academic Press, New York, 1989.
L. Guibas, M. Overmars, and M. Sharir. Ray Shooting, Implicit Point Location and
Related Queries in Arrangements of Segments. Technical Report TR433, Courant In-
stitute, 1989.

494 M. Pellegrin

[KK]

[Ma]

[Mi]
~MO]

[OSl]

[OS2]

[-Pel]

[Pe2]

[Se]

[Sh]

[SML]

T. L. Kay and J. T. Kajiya. Ray tracing complex scenes. Computer GraptTics~ 20:269-278.
t986.
J. Matougek. Cutting hyperplane arrangements. In Proceedings of the 6th ACM Symposi-
um on Computational Geometry, pages 1-9. 1990.
D. S. Mitrinovic. Analytic hwqualities. Springer-Verlag, New York. 1970.
M. McKenna and J. O'Rourke. Arrangements of lines in 3-space: A data structure with
applications. In Proceedinys of" the 4th Annual Sympostum on Computational Geometry,
pages 371-380, 1988.

[MPn_, D.E. Muller and F. P. Preparata. Finding the intersection of two convex polyhedra.
Theoretical Computer Science. 7:217-236. 1978.

[MS] K. Mehlhorn and K. Simon. Intersecting two polyhedra one of which is convex, tn
Proceedings of Fundamentals of Computation Theory, pages 534-542. Lecture Notes in
Computer Science, Volume 199. Springer-Verlag, Berlin, 1985.
M. Overmars and M. Sharir. Output-sensitive hidden surface removal. In Proceedings of
the 30th IEEE Symposium on Foundations of Computer Science. pages 598-603. 1989.
M. H. Overmars and M. Sharir. Merging visibility maps. In Proceedings of the 6th ACM
Symposium on Computational Geometry, pages 168-176. 1990.
M. Pellegrini. Stabbing and ray shooting in 3-dimensional space. In Proceedings of the
6th ACM Symposium on Computational Geometry, pages 177-186. 1990.
M. Pellegrini. Combinatorial and Algorithmic Analysis of Stabbing and Visibility Pro-
blems in 3-Dimensional Space. Ph.D. thesis, New York University-Courant Institute of
Mathematical Sciences, February 1991. Report Number 241, Robotics Laboratory,
Courant Institute.

[Pe3] M. PelIegrini. Ray shooting and isotopy classes of lines in 3-dimensional space. In
Proeeedinqs of the 1991 Workshop on Algorithms and Dam Structures. pages 20-31.
Lecture Notes in Computer Science, Volume 519. Springer-Verlag, Berlin. 199!.

[PSI M. Pellegrini and P. Shor, Finding stabbing lines in 3-dimensional space. In Proceedings
of the Second SIAM-ACM Symposium on Discrete Algorithms, pages 24-31, 1991.

[PY] M.S. Paterson and F F. Yao. Binary partitions with applications to hidden surface
removal and solid modelling. In Proceedings of the 5th ACM Symposium on Computational
Geometry, pages 23-32. 1989.

[Ro] S.D. Roth. Ray casting for modeling solids. Computer Graphics and [rnage Processinq,
18: i0%144_ 1982.

[RS] J.H. Reif and S Sen. An efficient output-sensitive hidden-surface removal algorithm and
its parallelization. In Proceedings of the 4th A CM Symposium on Computational Geometw,
pages 193-200. 1988.
R. Seidel. Constructing higher-dimensional convex hulls at logarithmic cost per face. In
Proceedings of the 18th Annual Symposium on Theory of Computing, pages 404-4!3, 1986.
M. Sharir. The shortest watchtower and related problems for polyhedral terrains.
Information Processing Letters. 29:265-270. 1988.
A Schmitt, H. Muller, and W. Leister. Ray tracing algorithms theory and practice. In
R A, garnshaw, editor, Theoretical Foundations of Computer Graphics and CAD. pages
997-1030. NATO ASI. Volume 40, Springer-Verlag, New York. 1988.

[So] D. M H. Sommerville. Anatytical geometry of Three Dimensions. Cambridge University
Press, Cambridge, 1951.

[SS] J.T. Schwartz and M. Sharir. On the piano mover's problem: II. General techmques for
computing topological properties of real algebraic manifolds. Advances in Applied Mathe-
qmtics. 4:298-351, 1983.

[St] J. Stolfi. Primitives for Computational Geometry Technical Reporl 36, Digital SRC.
1989.

[Ta] R.E. Tarjan. Data Structures and Newtork AhJorithms CBMS-BSF Regional Conference
Series in Applied Mathematics. Volume 44, SIAM, Philadelphia. PA, 1983.

