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Non-Linear Dynamical Analysis of Multichannel EEG: 
Clinical Applications in Dementia and Parkinson's 
Disease 

Kees J. Siam*, D~nes L.J. Tavy*, Brechtje Jelles*, Herbert A.M. Achtereekte*, Joris P.J. Slaets § 
and Ruud W.M. Keunen* 

Abstract: The irregular, aperiodic character of the EEG is usually explained by a stochastic model. In this view the EEG is linearly filtered noise. 
According to chaos theory such irregular signals can also result from low dimensional deterministic chaos. In this case the underlying dynamics is 
nonlinear, and has only few effective degrees of freedom. In contrast, stochastic models are less efficient, because they require in principle infinite 
degrees of freedom. Chaotic dynamics in the EEG can be studied by calculating the correlation dimension (D2). Although it has become clear that 
D2 calculations alone cannot prove chaos, the D2 has potential value as an EEG diagnostic. In this study we investigated whether D2 could be used 
to discriminate EEGs from normal controls, demented patients and Parkinson patients. We have analyzed epochs (20 channels; 2.5 s) from 52 EEGs 
(20 controls; 15 patients with dementia; 17 patients with Parkinson's disease). Controls had a mean D2 of 6.5 (0.9); demented patients of 4.4 (1,5), and 
Parkinson patients of 5.3 (0.9). Both groups were significantly different from controls (p < 0.001). There was a significant positive correlation between 
D2 and relative power in the beta band (r = 0.81) and a significant negative correlation between D2 and power in the delta (r = -0.60) and theta band 
(r =-0.37). These results suggest the possible usefulness of muttichannel D2 estimations in a clinical setting. 
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introduction 
The tacit assumption underlying the use of Fourier 

based methods for EEG analysis is that the EEG results 
from a large number of random processes. In this view 
the EEG is considered to be filtered noise. Recent 
developments in the mathematics of nonlinear dynami- 
cal systems ("chaos theory") have suggested an alterna- 
tive model .  This app roach  tries to ana lyze  the 
relationship between cortical dynamics and the EEG in 
terms of deterministic instead of random processes (Jan- 
sen 1991). A p r i m a ~  motivation for the alternative ap- 
proach is that low dimensional chaos, if it can be proven, 
actually is a far more simple (and therefore better, if we 
use Occam's razor) explanation for the irregularity of the 
EEG than the filtered noise model (Theiler 1990). Chaotic 
dynamics with a small number of effective degrees of 
freedom opens the way for reverse modelling, that is 
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deriving equations describing the dynamics of a system 
from a series of measurements on the system. (Crutchfield 
and McNamara 1987). For readers unfamiliar with chaos 
theory, a short explanation is given in an appendix to this 
paper. Valuable information can also be found in a num- 
ber of earlier papers in this journal (Lutzenberger et aI. 
1992; Rapp et aL 1989) and in a number of reviews such 
as: Farmer et al. (1983); Eckmann and Ruelle (1985); 
Theiler (1990); Denton and Diamond (1991); Grassberger 
et al. (1991); Jansen (1991) and Pritchard and Duke (1992). 

Several methods have been described to study chaotic 
dynamics. From a series of measurements of only one 
variable of the system an approxhnation of the attractor 
can be reconstructed (Takens 1981). If a number of simul- 
taneous series of measurements is available, the attractor 
can be reconstructed with so called spatial embedding 
(Destexhe et al. 1988; Dvorak 1990; Wackermann et al. 
1993). According to Eckmann and Ruelle (1985) spatial 
e m b e d d i n g  shou ld  be used  w h e n e v e r  possible .  
Grassberger and Procaccia (1983) described a powerful 
algorithm to estimate the dimension (correlation dimen- 
sion or D2) of the reconstructed attractor. Non-integer 
values for D2 suggest a strange attractor and chaotic 
dynamics. It should be stressed that in principle it is 
impossible to distinguish between chaos and random 
processes with Fourier analysis alone, because the 
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spectrum will be broadband in both cases. Wolf et al. 
(1988) described an algorithm to estimate the largest 
Lyapunov exponent from an attractor. The Lyapunov 
exponent is a measure for the divergence rate of nearby 
points on the attractor. A positive largest Lyaptmov 
exponent indicates sensitive dependence on initial con- 
ditions and is a powerful argument for chaotic dynamics. 

Many authors have attempted to use these techniques 
to investigate whether or not the EEG shows evidence of 
low dimensional deterministic chaos. Babloyantz et al. 
(1985) were probably the first to estimate the correlation 
dimension of the human scalp recorded EEG. They 
found an attractor with dimension 4.05 during sleep 
stage 4. In a later study a chaotic attractor with dimen- 
sion 2.05 and a positive Lyapunov exponent were found 
during a petit mal seizure (Babloyantz and Destexhe 
1986). Positive Lyapunov exponents were identified 
during the waking / eyes dosed state, sleep stage 4 and 
during Creutzfeldt Jakob coma (Gallez and Babloyantz 
1991). Rapp et al. (1985) reported low D2 values calcu- 
lated from single unit recordings in monkey cortex. 
Detailed EEG recordings from the bulbus olfactorius in 
the rabbit indicate chaotic dynamics which is intimately 
related to sensory information processing (Skarda and 
Freeman 1987; Skinner et al. 1992; Freeman 1991). Nan 
and Jinghua (1988) studied three subjects during a resting 
condition (awake / eyes closed) and during mental arith- 
metic. In the one left handed subject, D2 increased at the 
right centro-temporal lead during mental arithmetic; in 
the two right handed subjects, D2 increased at the left 
centro-temporal lead. 

Rapp et al. (1989) investigated five subjects during rest 
and mental activity. Prior to calculating the D2 they used 
single value decomposition as a noise reducing techni- 
que. In this study D2 also increased during mental ac- 
tivity, and was highest in the most demanding task. In a 
larger s tudy correlation dimensions were calculated 
from 15 electrodes in 31 subjects during a variety of tasks 
(Lutzenberger et al. 1992). D2 values were higher during 
mental imaging than during perceptual processing. In 
this study a comparison was made with Fourier analysis. 
D2 estimations contained information that was not avail- 
able from Fourier analysis. R6schke et al. (1993) es- 
timated the Lyapunov exponent in 15 subjects during the 
four sleep stages, and found a systematic decrease going 
from stage I to stage IV sleep. 

Initially, saturation of D2 versus embedding dimen- 
sion, and non-integer values of the D2 were considered 
by many authors as sufficient evidence for low dimen- 
sional chaos (see for instance Babloyantz 1985, and many 
of the other studies cited above). Demonstration of a 
positive largest Lyapunov exponent was also considered 
to prove chaotic dynamics. However, calculation of 
measures such as D2 from relatively short epochs of noise 

contaminated EEG data are hampered by serious difficul- 
ties which can undermine their usefulness in proving 
chaotic dynamics. For instance, it has been shown that 
short epochs of filtered noise can mimic low dimensional 
chaotic attractors (Rapp et al. 1993). Filtered noise can 
also give rise to a positive largest Lyapunov exponent 
(Theiler et al. 1992). Alternative techniques have been 
developed to test for the presence of determinism in 
short, noise contaminated time series. 

A very general and thorough approach has been 
developed by Thefler et al. (1992). Experimental time 
series are compared with a series of test signals, which 
share some important property (for instance the power 
spectrum) with the original signal but are otherwise ran- 
dom. A statistic (for instance D2, but in principle any 
measure can be used) is calculated from the time series 
and the test signals. The values of the statistic from the 
original time series can now be expressed as a z-score 
(deviation from the mean values of the statistic for the 
test signals expressed in number of standard deviations). 
With this approach, the likelihood that the original time 
series is in fact different from filtered noise can be 
specified exactly. Theiler et al. (1992) found evidence for 
determinism (but not for low dimensional chaos) in I out 
of 2 investigated EEG time series. Glass et al. (1993) 
examined real EEG signals en EEG signals from artificial 
neural nets using the surrogate data method of Theiler 
and an alternative method developed by the authors. 
With both methods evidence for determinism was only 
found in the artificial EEG, but not in the real EEG data. 
Using a simplified version of Theiler's method (with only 
one random test signal) Pijn et al. (1991) found evidence 
for low dimensional deterministic chaos in rat EEG or~ly 
during an epileptic seizure, but not during other states. 
These studies suggest that claims for low dimensional 
chaos in the EEG based only on D2 or  Lyaptmov ex- 
ponent calculations should be viewed with extreme 
skepticism. The question whether in general the EEG 
should be modelled as deterministic chaos or filtered 
noise cannot be answered on the basis of the presently 
available evidence; the answer will have to come from 
future studies using the rigorous control methods as 
suggested by Theiler et al. (1992) and Glass et aL (1993). 

However, even though D2 calculations by themselves 
cannot prove chaotic dynamics, D2 could still have some 
value as an interesting EEG diagnostic. In the first place, 
a significant amount of data reduction is achieved, in 
particular when spatial embedding is used. Secondly, 
the relationship of D2 values and different brain states is 
of potential interest. Low values of D2 are generally 
associated wi th  deep sleep or p a t h o l o g y  (coma, 
Creutzfeldt Jakob, epilepsy). Intermediate values are 
found during the awake / eyes closed state and the 
highest values are associated with mental activity. This 
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suggest D2 estimations could be useful in a clinical set- 
ting, but  so far there have been only few reports of D2 in 
neurological disease. 

In this s tudy we examined the potential clinical use- 
fulness of D2 estimations using the multichannel ap- 
proach as suggested by Dvorak (1990). We calculated the 
global D2 from EEGs of control subjects, demented 
patients and Parkinson patients. Dementia is known to 
be associated with EEG changes (Maurer and Dierks 
1992; Soininen and Riekkinen 1992; Schreiter-Gasser et al. 
1993). In the early stages of the disease, EEG changes can 
be mild or absent. Several attempts have been made to 
increase the sensitivi~ of the EEG in early dementia, such 
as topographic mapping (Maurer and Dierks 1992), and 
specific analysis of the response to photostimulation 
(Drake et al. 1989; Politoff et al. 1992). Similar considera- 
tions apply to Parkinson's disease. Although uncompli- 
cated Parkinson's disease is not associated with EEG 
changes, demented Parkinson patients do show EEG 
changes (Neufeld et al. 1988; Soikkeli et al. 1991). If the 
multichannel D2 contains information that is not avail- 
able from visual analysis or Fourier analysis of the EEG, 
it could potentially contribute to diagnosis in Parkinson's 
disease and dementia. As a first step however, it is 
necessary to investigate whether there are group dif- 
ferences in D2 for demented and Parkinson patients com- 
pared with controls. This was the main object of this 
study. 

Methods 

Study pro toco l  

EEGs were selected as follows. From each digital EEG 
recorded  in the d e p a r t m e n t  since 1988 (Cadwel l  
Spectrum RDC 32 digital EEG apparatus) an amount of 
data have been stored in a database. With this database 
15 randomly selected EEGs of patients with the clinical 
diagnosis of dementia, and 17 randomly selected EEGs 
of patients with Parkinson's disease were retrieved from 
the archive on optical disks. The EEGs of the control 
group were selected as follows. Starting from a random 
point in the EEG archive consecutive EEGs were judged 
according to the following criteria: 1. age of patient over 
50 years; 2. no diagnosis of dementia or Parkinson's 
disease; 3. normal EEG on visual inspection (falling in 
category I or 2; see below for definition of the categories). 
This procedure was continued until 20 EEGs fulfilling the 
criteria had been found. 

Each EEG was inspected visually and scored accord- 
ing to a 4 point scale (1 = normal; 2 = low voltage fast 
activity; 3 = mild diffuse slowing; 4 = severe diffuse 
slowing). Category I and 2 were considered to be nor- 
mal; category 3 and 4 abnormal. From each EEG one 

representative artifact-free epoch of 2.5 seconds was 
chosen (20 channels; average reference; low pass 70 Hz, 
time constant i second, sample frequency 200 Hz, 8 bit 
amplitude representation) and copied as an ASCII file to 
a personal computer (Tandon 386 MCS slc/50 ) for fur- 
ther analysis (calculation of D2 and FFT). 

Clinical files from all patients (controls, demented and 
Parkinson patients) were retrieved. Diagnosis was 
checked against the clinical file. In the case of dementia, 
NINCDS/ADRDA (National Institute of Neurological 
and Communicative Disorders and Stroke/Alzheimer's 
Disease and related Disorders Association) criteria for 
"possible Alzheimer disease" had to be fulfilled (this was 
the case in all 15 patients). Age, sex and disease duration 
were recorded. In 7 demented patients MMSE (Mini 
Mental State examination) scores could be retrieved. 

Software 

Analysis of the EEG epochs, in particular calculation 
of the power spectra and estimation of the correlation 
dimension was done using software developed at our 
department. The program was written in Borland Pascal 
with Objects 7.0. Spectral analysis was done with a FFT 
algorithm. With 512 samples per epoch and a sample 
f requency  of 200 Hz m a x i m u m  resolu t ion  of the 
spectrum was 0.39 Hz. The spectrum was analyzed from 
1.5 to 50 Hz. Relative power was calculated for 4 frequen- 
cy bands: delta (1.56 - 3.9Hz); theta (4.29 - 7.82 Hz); alpha 
(8.19 - 12.48 Hz) and beta(12.87 - 49.84). For statistical 
analysis, relative power in each band was averaged over 
all 20 electrodes. 

Calculat ion of mul t ichannel  D2 

The multichannel D2 is calculated from an EEG epoch 
consisting of 20 channels with 512 samples per channel 
(sample frequency 200Hz; 8 bit data path). From these 
data a series of vectors x(i), i= {1_512} is constructed. The 
coordinates of the vectors are the sample values of the 20 
channels at one of the 512 discrete time points. The EEG 
epoch is thus represented as a series of 512 points (vec- 
tors) in a 20 dimensional phase space, each "axis" cor- 
responding with one of the original 20 EEG channels. 
This series of points constitutes a geometrical shape, 
which, if certain conditions are met, is an approximation 
of the systems attractor. 

The dimension of the reconstructed attractor is calcu- 
lated as follows. One of the vector points is taken as a 
reference. Around this reference point a 20 dimensional 
sphere with radius r is drawn. Next, the fraction (be- 
tween 0 and 1) of vector points that fall within the sphere 
with radius r is calculated. This is the number of points 
that lie closer to the reference point than a distance r 
divided by the total number of points. The same proce- 
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Table I, Result of visual classification of EEGs. EEG classes: 
I: normal; 2: low vo l tage fast EEG; 3: mild diffuse slowing; 
4: severe diffuse slowing. (Chi square = 51.34; p < 0,001). 

EEG Class Controls Dementia Parkinson Total 

1 4 3 9 16 

2 16 0 0 16 

3 0 7 8 15 

4 0 5 0 5 

Total 20 15 17 52 

plateau present in the D2 versus log(r) curve. 

Statistics 

Storage of data and statistical procedures were done 
using the statistical package Systat (version 5.01 for Win- 
dows). Group differences were tested with a two tailed 
t-test for independent samples or with an ANCOVA with 
age as a covariable. Cross tabs were evaluated with the 
Chi square test. Correlations were tested with the Pear- 
son correlation coefficient, and with a multiple linear 
regression. 

dure is repeated for all of the points on the attractor, and 
for a range of values for r. Thus, for each value of r, an 
average value for the fraction of points lying closer 
together than r can be calculated. This fraction is called 
the correlation integral Cr. The formula for Cr is: 

Cr (r) = 2 / N  2 E N i=l,j=i+l H ( r - I  x ( O - x ( j ) l  ) 

Here N is the number of vectors, and H denotes the 
Heaviside function, which is I if the distance between the 
two vectors is smaller than r, and 0 if the distance between 
the two vectors is larger than r. A very important char- 
acteristic of the correlation integral is that for relatively 
small values of r, and a sufficient number of points N the 
following relation holds: 

D2 Crcr 1, 

where  D2 is the correlat ion dimension.  Taking 
logarithms shows that, for a certain range of values of r, 
the slope of log(Cr) versus log(r) is equal to D2. 

LOG (Cr) oc D2 * LOG (r) 

In order to calculate D2, the first derivative of the 
log(Cr) versus log(r) curve is plotted. This is in fact a plot 
of D2 against log(r). If, for a certain range of r, a plateau 
is present in this curve, we take D2 to be the value of this 
plateau. Each D2 / log(r) curve was inspected visually, 
and reasonable upper and lower bounds for r were 
chosen on the basis of this visual inspection. To estimate 
the height of the plateau, we calculated the number of 
crossings of the D2 / log(r) curve (within the reasonable 
range of values for r) with straight lines plotted at increas- 
ing value of D2. This procedure was repeated for a range 
for values for D2 (from 1.5 to 15, increment 0.01). The 
value of D2 for which the maximum number of crossings 
between the line and the curve was found, was taken as 
an estimate of D2. On visua ! inspection the estimates of 
D2 thus obtained corresponded very well with the largest 

Results 
EEGs of 52 subjects were studied. Of these 20 

belonged to the control group (mean age 62.1 year, s.d. 
10.4; 14 females, 6 males); 15 to the demented group 
{mean age 80.8 year, s.d. 9.0; 9 females, 6 males), and 17 
to the Parkinson group (mean age 77.0 year, s.d. 5.9; 8 
females, 9 males). Mean disease duration (s.d.) was 1.45 
(0.72) year in the demented group, and 4.7 (4.0) year in 
the Parkinson group. In view of the age differences 
between the control group and the demented and Parkin- 
son groups, age was used as a covariable in all statistical 
tests on neurophysiological differences between controls 
and patients. Disease duration was shorter in the de- 
mented group than in the Parkinson group, but reliable 
information could not always be retrieved from the clini- 
cal records. 

Results of the visual classification of the EEGs are 
shown in table I. Per definition, EEGs of the controls fall 
in class I or 2; however there is a relative preponderance 
of low voltage fast EEGs. In the demented group, 3 EEGs 
were considered to be normal on visual inspection. Most 
EEGs were classified as "mild or severe slowing". In the 
Parkinson group, 9 EEGs were normal on visual inspec- 
tion, and 8 showed mild diffuse slowing. In both patient 
groups none of the EEGs was classified as class 2 (low 
voltage fast activity). For statistical analysis, results for 
EEG classes 1 and 2 (normal) and 3 and 4 (abnormal) were 
clustered. There were significantly more abnormal EEGs 
in the demented group than in the control group (Fisher 
exact test, two tailed, p < 0.001). There were also more 
abnormal EEGs in the Parkinson group compared to 
controls (Fisher exact test, two tailed, p < 0.001). 

For analysis of the FFT results relative power in each 
of the four main frequency bands was averaged over all 
electrodes. Results are shown in table IL Again, there is 
a preponderance of relative power in the beta band in 
the control group. Group differences were tested with an 
ANCOVA, with age as covariable. Demented patients 
had more power in the delta (F(1,32) = 10.285; p < 0.003) 
and theta bands (F(1,32) = 12.099; p < 0.001), and less 
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Table II. Mean  relative power  (%) in the four f requency 
bands, ave raged  over al le 20 e lec t rode sites, Standard 
deviat ion in brackets. A N C O V A  (analysis of covar iance,  
with a g e  as covariable):  *significant d i f ference from con- 
trols; p < 0.05; ** p < 0.005; #significant d i f ference be tween  
dement ia  and  Parkinson's disease; p < 0.05; ## p < 0.005. 

Controls Dementia Parkinson 

Delta 21.1 (8.0) 40.5 (21.8) ** 22.8 (9.2) ## 

Theta 13.0 (3.0) 32.4 (13.9) ** 28.7 (16.3) ** 

Alpha 26.5 (14.7) 13.8 (9.8) 28.7 (16.3) ## 

Beta 39.4 (12.4) 13.4 (10.2) ** 19.8 (10.3) ** 

Table III. Correlation coefficients. Data are shown for all 
subjects in who a D2 could be  ca lcu la ted  (N= 47). *: p < 
0.05; **: p < 0.005. 

Age D2 Delta Theta Alpha Beta 

Age 1 

D2 -0.395** 1 

Delta 0 .226  -0.597** 1 

Theta 0.437** -0.371" 0.046 1 

Alpha -0.125 0 . 1 7 2  -0.619"*-0.426** 1 

Beta -0.534** 0.811"* -0.476**-0.476** 0.06 1 

power  in the beta band (F(1,32) = 24.281; p < 0.001) 
compared with  controls. Parkinson patients had  more 
power  in the theta band  (F(1,34) = 15.088; p < 0.001), and 
less power  in the beta band (F(1,34) = 16.594; p < 0.001) 
compared with  controls. In comparison with demented 
patients, Parkinson patients had  less power  in the delta 
band (F(1,29) = 9.420; p < 0.005 ) and more power  in the 
alpha band  (F(1,32) = 10.705; p < 0.003). 

In a few cases (2 controls, 1 demented  patient and 2 
Parkinson patients) the D2 / log(r) curve did not  show a 
clear scaling region, most ly  due to excess muscle artifact. 
In these cases no reliable D2 could be calculated. Results 
of the mult ichannel  D2 calculation are shown in figure 1. 
Mean D2 (s.d. in brackets) in the control group was 6.54 
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Figure t Plot showing the individual D2 values for controls 
(N=20), d e m e n t e d  patients (N= ] 5) and  Parkinson patients 
(N=17). 

(0.9), in the demented group 4.45 (1.5), and  in the Parkin- 
son group 5.28 (0.9). Compared  with  controls, D2 was 
significantly lower in the demented  group (F(1,30) = 
14.368; p < 0.001) and in the Parkinson group (F(1,31)= 
9.410; p < 0.004). Al though D2 is somewhat  higher in the 
Parkinson group than in the demented  group, this dif- 
ference was not significant (F(1,26) = 3.206; p < 0.085). 
Examples of individual  curves for a control subject, a 
demented subject and a Parkinson patient are shown in 
figure 2, 3 and 4. 

Correlations between age, D2 and relative power  in 
the four frequency bands are shown in table III. Higher 
age is significantly correlated with  lower D2 values, less 
power  in the beta band and more power  in the delta band. 
Higher D2 values are correlated with  less power  in the 
delta and the theta bands,  and wi th  more power  in the 
beta band. Multiple linear regressions were done with 
D2 as dependent  variable, and total power  in the four 
frequency bands as independent  measures and age as a 
covariable. After this correction for age effects, there is 
still a significant negative correlation between D2 and 
power  in the delta band (standard coefficient = -0.535; p 
< 0.001), and a significant positive correlation between 
D2 and power  in the beta band (standard coefficient = 
0.840; p < 0.001). 

Mean D2 values (s.d. in brackets) for the visual clas- 
sification groups were for class 1:5.73 (0.96); class 2:6.75 
(0.85); class 3:4.82 (0.91) and class 4:3.35 (1.36). D2 values 
are highest for class 2, and decrease going from class i to 
3 and 4. There is a significant global effect of EEG class 
on D2 (F(3,44) = 19.509; p < 0.001). Post hoc analysis 
(Bonferroni adjustment) showed significant differences 
in D2 between class I and 2 (p < 0.037); class I and 4 (p < 
0.001); class 2 and 3 (p < 0.001); class 2 and  4 (p < 0.001) 
and class 3 and 4 (p < 0.030). 

Discussion 
This s tudy  demonstra ted a decrease of mult ichannel  

D2 in demented and Parkinson patients. Low values of 
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Figure 2, Subject from the control group, The left part shows the EEG epoch (2.5 seconds; average reference), The graph 
in the upper right shows the Log(Cr) / Log(r) curve for increasing spatial embedding from 1 to 20 channels. The straight 
part of the curve converges to a limit, The curve in the lower right shows D2 as a function of spatial embedding (number 
of channels used in the reconstruction of the attractor). D2 converges to a limit. 

D2 were associated with increased relative power in the 
delta and theta bands, and less power in the beta band. 
D2 values of EEG fragments also correlated with a clas- 
sification based upon visual analysis. However, D2 
analysis could not discriminate between demented and 
Parkinson patients as well as Fourier analysis. Spectral 
analysis showed a more severe slowing of the EEG in 
demented than in Parkinson patients. There was a trend 
for lower D2 values in the demented group compared 
with controls, but  this was not significant. 

Our demonstration of generalized slowing of the EEG 
in demented and Parkinson patients corresponds with 
the findings of other authors (Maurer and Dierks 1992; 
Soininen and Riekkinen 1992; Schreiter-Gasser et al. 
1993). Despite th e relatively short disease duration in the 
demented group, the degree of EEG slowing suggests 
rather severe disease. The most likely explanation for the 
intermediate slowing found in the Parkinson group is 
that at least some of them were suffering from (early) 
dementia. Due to the retrospective nature of the study, 
no definite conclusions can be drawn on the exact num- 
ber of demented Parkinson patients. 

D2 values in the control group are only slightly higher 
than D2 values found in the "awake / eyes closed" state 
by Destexhe et al. (1988) and Dvorak (1990). The slightly 
higher D2 values in our s tudy could be related to 
preponderance of beta activity in the EEGs of controls 
(higher D2 values correlated significantly with more 
power in the beta band). Our control subjects were also 
much older than those studied by Destexhe et al. (1988) 
and Dvorak (1990). Changes in D2 in Alzheimer's dis- 
ease were also reported by  Pritchard et al. (1991). In this 
study there was no difference in D2 of the eyes closed / 
resting condit ion be tween  controls and Alzheimer 
patients. However, in the control group D2 increased on 
eye opening, whereas D2 remained the same in the 
Alzheimer group. There are no prior studies on D2 in 
Parkinson's disease. The present results confirm the 
general impression so far, that brain pathology is usually 
associated with a decrease, and not with an increase in 
D2 values. 

The retrospective nature of the present s tudy poses 
some limitations on its clinical aspects. Although all 
medical records were s tudied extensively, and the 
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male, 81 year [demented group] 
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Figure 3. Subject from the demented group. The left part shows the EEG epoch (2.5 seconds; average reference). The 
graph in the upper right shows the Log(Cr) / Log(r) curve for increasing spatial embedding from 1 to 20 channels. The 
straight part of the curve converges to a limit. The curve in the lower right shows D2 as a function of spatial embedding 
(number of channels used in the reconstruction of the attractor). D2 converges to a limit, 

primary diagnosis of dementia or Parkinson's disease 
could be confirmed in all, it proved to be difficult to 
obtain reliable information on disease severity at the 
moment of EEG recording in all cases. Finding a reliable 
control group posed special problems. Our protocol 
resulted in a relatively large control group, which was 
however younger than both patient groups. Letting the 
younger controls out in order to obtain the same mean 
age in the control group proved impossible because this 
resulted in a control group of only a few subjects. The 
only solution for the problem right now is to use age as 
a covariable in all statistical tests, as has been done in this 
study. Another problem with the control group is that 
these subjects, although they do not suffer from dementia 
or Parkinson's disease, do have neurological signs and 
symptoms. Neurological disease could result in a lower 
D2 in the controls. Despite this bias, significant differen- 
ces between controls, demented patients and Parkinson 
patients could still be found, which strengthens our main 
finding. 

Two problems were encountered with the multichan- 
nel D2 calculation procedure. The first problem is that 

the calculations are very time consuming. This was the 
main reason for limiting the analysis to one single epoch 
per EEG. Future implementation of algorithms such as 
described by Theiler (1987) and Grassberger (1990) could 
substantially reduce the required calculation time. The 
second problem is that some amount of subjective judge- 
ment enters into the procedure. The "reasonable range" 
of values for r in the D2 / log(r) curve was derived from 
a visual inspection of the curve. We have also experi- 
mented with automatic algorithms to find lower and 
upper limits of r, but  so far the results have been less 
reliable. On visual analysis, a reliable plateau could not 
be identified in 5 of the 52 cases (equally divided over the 
3 groups). This was almost always due to excess muscle 
artifact in more than 2 channels. 

The present study shows that Fourier analysis is better 
able to discriminate between demented and Parkinson 
patients than the correlation dimension. At this stage, 
FFT is still superior for clinical purposes, because its 
calculation is straightforward and fast, and it is slightly 
more specific than D2. On the other hand one should 
realize that Fourier analysis has more or less matured, 
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Figure 4. Subject from the Parkinson group. The left part shows the EEG epoch (2.5 seconds; average reference), The 
graph in the upper right shows the Log(Cr) / Log(r) curve for increasing spatial embedding from 1 to 20 channels. The 
straight part of the curve converges to a limit. The curve in the lower right shows D2 as a function of spatial embedding 
(number of channels used in the reconstruction of the affractor). D2 converges to a limit, 

and significant improvements are not very likely. Non- 
linear EEG analysis on the other hand is still in its infancy, 
and major progress is more likely to occur. Nonlinear 
EEG measures such as D2 contain information that can 
never be derived from the power  spectrum. This is 
shown very clearly by Theiler et al. (1992): one and the 
same power spectrum can result from filtered noise or 
low dimensional chaos. Given this fact that, on analytical 
grounds, the FFT and nonlinear analysis provide dif- 
ferent information, it could be that a combined use of 
these techniques will prove to be the best strategy in a 
clinical setting. 

At this stage it is only possible to give a tentative 
explanat ion w h y  D2 is lowered  in dementia  and 
Parkinson's disease. As stated in the introduction, low 
non-integer values of D2 by themselves cannot be taken 
as evidence for low dimensional chaos, although they are 
fully consistent with it. Nevertheless, this study has 
shown that the D2 can be used as a single number "statis- 
tic" that characterizes clinically relevant aspects of the 
EEG. In our view, D2 is a measure of EEG complexity, 
and as such is closely related to the phenomenon of 

desynchronisation. Low D2 values in the patient groups 
sugges t  d e c r e a s e d  c o m p l e x i t y  and  inc reased  
s y n c h r o n i z a t i o n  of the cor t ica l  d y n a m i c s .  We 
d e m o n s t r a t e d  the r e l a t ionsh ip  b e t w e e n  EEG 
desynchronization (which is a measure of cortical activa- 
tion) and EEG complexity in an earlier s tudy (Stam et al. 
1993). Loss of dynamical complexity seems to be a 
general finding in different kinds of brain pathology 
(similar results were reported in epilepsy and Creutfeldt 
Jakob disease), tt seems likely that the causes of lower 
complexity will be different in these various diseases. 
Mathematical analysis suggests that most nonlinear 
dynamical systems are governed by one or more so called 
"control parameters". These are variables that describe 
general characteristics of the system, such as the strength 
of interactions between the elements. Increasing the 
value of such a control parameter leads to a stepwise 
(discrete) increment in the dimension of the systems 
attractor (Eckmann and Ruelle 1985). This suggests at 
least one possible mechanism for lower D2 values in 
brain disease. 

Cholinergic fibres from the nucleus basalis of Meynert 
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are known to project to large parts of the neocortex and 
to exert a strong excitatory influence on cortical neurons 
(Steriade et al. 1990). In terms of cortical dynamics the 
general level of activity in the ascending cholinergic sys- 
tem seems to be a good candidate  for a "control 
parameter". Under  physiological circumstances, in- 
creased activity of the ascending cholinergic system 
would lead to a (possibly discrete) increase of D2. This 
corresponds with the known increase of D2 going from 
deep sleep to the awake state. Under pathological cir- 
cumstances, abnormal low activity in the ascending 
cholinergic system could lead to abnormal low D2 
values, even in the awake state. In Alzheimer's disease, 
one of the most important neuropathological findings is 
the loss of ascending cholinergic neurons of the nucleus 
basalis (Whitehouse et al. 1981). Similar findings have 
also been reported in Parkinsonian patients with demen- 
tia (Wbitehouse et al. 1983). Our hypothesis is that the 
lower D2 values in dementia and Parkinson's disease 
reflect, at least partially, a loss of "dynamical complexity" 
in the cortex due to diminished activity in the activating 
cholinergic system. 

The results of the present study suggest the potential 
usefulness of EEG analysis with techniques from non- 
linear dynamics, even when the presence of chaos cannot 
be rigorously proved. Future studies will have to con- 
firm and expand the present findings, for instance to 
measure D2 in a prospective study in dementia and 
Parkinson's disease, which will allow more accurate dis- 
ease criteria and s tudy of the relationship between 
measures of disease severity and D2. Correlations be- 
tween neuropsychologicaI measurements and D2 will be 
particularly interesting. As a next step, it will be useful 
to measure D2 not only under the standard "awake / eyes 
closed" condition, but also under other well defined con- 
ditions (awake / eyes open; during mental arithmetic). 
Measurement of the influence of cholinergic drugs on D2 
in Alzheimer's disease could provide a good test of our 
hypothesis. 

Appendix: A Short Introduction in Chaos 
Theory 

Chaos theory can be defined as the study of unstable 
aperiodic behaviour in nonlinear deterministic dynami- 
cal systems (Kellert 1993). A nonlinear deterministic 
dynamical system consists of elements which have non- 
linear influences on each other. The system is dynamical 
if its state changes over time. If the state of a dynamical 
system at a certain time point can be described by M 
variables, this state can be represented by a point (vector) 
in a M dimensional "phase space". The time evolution 
consists of a series of such points which form a trajectory 
in phase space. In the limit of infinite time the trajectory 

will only fill a sffbspace of the system's phase space. This 
subspace is called the system's "attractor". An attractor 
is a geometrical representation of the long term dynamics 
of a system. Attractors can be characterized by their 
dimensions. An attractor dimension of 0 (point attractor) 
corresponds to a static system: there is no change over 
time. An attractor dimension of 1 corresponds with a 
periodic system. In such a system a finite number of 
states is repeated indefinitely. Attractor dimensions of 2 
and higher (provided they are whole "integer" numbers) 
correspond with quasi periodic systems. The attractor 
dimension indicates the number of independent frequen- 
cies. In a fully random system the attractor dimension is 
equal to M~ Such a system cannot be described by dif- 
ferential equations and would  show a broadband 
("white") frequency spectrum. 

The main discovery of chaos theory is that there exists 
a third type of dynamics, which is different from (quasi) 
periodic and from random dynamics. This third type is 
called "chaotic dynamics" and is characterized by sensi- 
tive dependence on initial conditions and "strange attrac- 
tors". Sensitive dependence on initial conditions means 
that even if two states of the system are only in- 
finitesimally different, after a short time these differences 
will become very large. This characteristic corresponds 
to the unstable character of chaotic dynamics, and makes 
long term predictions impossible in principle (such long 
term predictions would require measurement of some 
initial conditions with infinite precision). Strange attrac- 
tors are attractors with non-integer ("broken") dimen- 
sions. Such geometrical shapes are called fractals. 
Fractals are extremely complex structures which show 
scale independent self similarity. Chaotic dynamics dif- 
fers from (quasi) periodic dynamics in showing sensitive 
dependence on initial conditions, and in being unpre- 
dictable and far more complex. Measurements from 
chaotic systems usually appear quite r andom and 
Fourier analysis shows broad spectra. On the other hand, 
chaos is different from random processes in that it is fully 
deterministic and has a (very complex) structure. 
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