
Math, Systems Theory 28, 469-486 (1995) Mathematical 
Systems 

Theory 
�9 1995 Springer-Verlag 

New York Inc. 

Linear-Time Snapshot Implementations in Unbalanced Systems* 

A. Israeli, 1 A. Shaham, 2 and A. Shirazi 2 

1 Department of Electrical Engineering, Technion, 
Haifa 32000, Israel 

2 Department of Computer Science, Technion, 
Haifa 32000, Israel 

Abstract. An atomic snapshot memory object in shared memory systems 
enables a set of processes, called scanners, to obtain a consistent picture of the 
shared memory while other processes, called updaters, keep updating memory 
locations concurrently. In this paper we present two conversion methods of 
snapshot implementations. Using the first conversion method we obtain a new 
snapshot implementation in which the scan operation has linear time complex- 
ity and the time complexity of  the update operation becomes the sum of the 
time complexities of the original implementation. Applying the second 
conversion method yields similar results, where in this case the time complex- 
ity of the update protocol becomes linear. Although our conversion methods use 
unbounded space, their space complexity can be bounded using known 
techniques. 

One of the most intriguing open problems in distributed wait-free computing 
is the existence of a linear-time implementation of this object. Using our 
conversion methods and known constructions we obtain the following results: 

�9 Consider a system of n processes, each an updater and a scanner. We 
present an implementation in which the time complexity of either the 
update or the scan operation is linear, while the time complexity of the 
second operation is O(n log n). 

�9 We present an implementation with linear time complexity when the 
number of either updaters or scanners is O(n/log n), where n is the total 
number of processes. 

* A preliminary version of this paper appeared in Proceedings of the Seventh Workshop on 
Distributed Algorithms, 1993. The first two authors were partially supported by NWO through NFI 
Project ALADDIN under Contract Number NF 62-376. 



470 A. Israeli, A. Shaham, and A. Shirazi 

�9 We present an implementation with amortized linear time complexity 
when one of the protocols (either upate or scan) is executed significantly 
more often than the other protocol. 

1. Introduction 

Consider a system of n processes communicating through shared memory in which 
write and read operations are executed instantaneously. At any given time t, each 
memory cell holds a well-defined value which is the value that was most recently 
written to it (or its initial value if no such write action occurs before t. A snapshot at 
time t is the vector of values held by all memory cells at t. An atomic shapshot 
memory (for brevity, a snapshot memory) is an object that allows some processes to 
acquire a snapshot while other processes can update their memory cells con- 
currently. An implementation of a snapshot memory object consists of two protocols 
called the updater protocol and the scanner protocol. A process that wishes to 
update one of the memory cells executes the updater protocol; a process that wishes 
to acquire a snapshot executes the scanner protocol. Implementations of snapshot 
memories are key tools in designing concurrent protocols and have many 
applications. Among the applications are randomized consensus [As], concurrent 
timestamping [DS], approximate agreement [ALS], and wait-free implementation of 
data structures [AH]. 

Traditionally, a snapshot memory object is implemented by means of locking-- 
a process that wishes to scan the memory first locks it so no other process can 
update a memory cell until the scan operation is completed. This approach is used in 
many database systems satisfactorily. In contrast to the locking approach, there is an 
increasing interest in wait-free implementations. In these implementations no 
process is required to wait for the actions of another process while executing 
its own scan or update protocol. Wait-free implementations have a strong practical 
motivation: in a multiprocessor environment, processors of different speeds 
frequently need to cooperate. In such cases it is inefficient to allow a process 
executing on a fast processor to wait for a process executing on a slow processor. 
Moreover, in a multiprocess environment, processes may be delayed for long 
periods due to swapping, I/O operations, page faults, etc. Once more, waiting for a 
delayed process decreases the throughput. In addition, wait-free implementations 
are resilient to process failures. 

A wait-free implementation is evaluated by two complexity measures: 

1. Time complexity--the maximal number of read and write actions during a 
single execution of an update or a scan operation. 

2. Space complexity--the maximal size of the shared memory (not including 
the space in which the actual value is held) used by the implementation. 

1.1. Related Work 

The wait-free snapshot memory object was proposed independently by Afek et al. in 
[AAD] and by Anderson in [Anl] and [An2]. In [An2] Anderson presented an 



Linear-Time Snapshot Implementations in Unbalanced Systems 471 

exponential-time implementation for snapshot memory. An implementation with 
quadratic time complexity was presented in [AAD]. Another quadratic imple- 
mentation was presented by Aspnes and Herlihy in [AH]. A linear implementa- 
tion for a system with one scanner was presented by Kirousis et al. in [KST1] 
and [KST2]. 

A new approach was proposed by Attiya et al. in [AHR]. In this paper the 
authors introduced the notion of lattice agreement and showed that one can 
implement a snapshot memory using an implementation of lattice agreement 
without increasing the order of the time complexity. Then they presented a 
lattice-agreement implementation whose time complexity is linear using test 
and set registers for two processes. This last implementation induces a randomized 
implementation of a snapshot memory using read write registers. The expected time 
complexity of this implementation is O(n log 2 n), where n is the total number of 
processes. Another randomized implementation, with the same expected time 
complexity, was presented by Chandra and Dwork [CD]. 

Deterministic implementations of the lattice-agreement object (and hence for 
the snapshot memory object) were proposed independently by Israeli and Shirazi in 
[IS2] (time complexity O(n 1"5 log n)) and by Attiya and Rachman in [AR] (time 
complexity O(n log n)). 

The time complexity of all these implementations (except the single-scanner 
implementation) is superlinear. A linear-time implementation for a similar object, 
called time-lapse snapshot memory, was presented by Dwork et al. in [DHPW]. 
This object however is slightly weaker than snapshot memory, since time-lapse 
snapshots may be inconsistent. Hoepman and Tromp showed in [HT] that in order to 
implement a snapshot memory object it suffices to consider a system in which the 
value fields are single bits. 

Several new results appeared recently. Israeli and Shirazi showed in [IS3] that 
the time complexity of an optimal deterministic update protocol is | s}), 
where u is the number ofupdaters and s is the number of scanners. In an interesting 
paper [ICMT] Inoue et aL presented a linear-time implementation for snapshot 
memories. However, this implementation assumes a model which differs from the 
standard model. Namely, it assumes that the registers can be written by all the 
processes (and not by a single process). In [BIS] Ben-dor et al. studied the space 
complexity required by snapshot memories and showed two lower bounds for 
special cases. 

1.2. Our Results 

A common conjecture states: An implementation of  a snapshot memory exists such 
that the time complexity o f  both update and scan protocols is linear. In this paper 
we present two methods for converting an arbitrary implementation of snapshot 
memory into another implementation, such that one of its protocols has linear time 
complexity. Let J be any snapshot implementation. For a system ofu updaters and s 
scanners, we denote the time complexities of the update and scan operations in J by 
utcy(u, s) and stcy(u, s), respectively. The first method converts J into an 
implementation J '  for which utcy,(u, s) = utcy(u, u) + stcy(u, u) + 1, and 



472 A. Israeli, A. Shaham, and A. Shirazi 

stcj ,(u,  s) = u. The second method converts J into an implementation f for 
which utcj ,(u,  s) = u and s t c s ( u , s  ) = u + utc j (s ,  s) + stc~(s, s). 

In view of former work, two remarks are in order. First, both of our conversion 
methods store unbounded counters in the shared memory. Nevertheless, both of 
them can be bounded by applying the techniques of [DHW]. However, doing so will 
increase the time complexities of the resulting implementations: the time complex- 
ities of the scan protocol inthe first conversion method and of the update protocol in 
the second conversion method will be linear in the total number of processes 
(instead of  in the number of updaters only). 

Our second remark addresses the multiwriter snapshot memory object. In this 
object the updating processes can change all the locations in the memory (only one 
location at a time). Anderson presented, in [Anl ], a general method that converts an 
implementation of snapshot memory into an implementation of multiwriter 
snapshot memory. Applying this method to our first conversion method will 
not change the order of  the time complexities in the resulting implementation. 
Unfortunately, applying this method to our second conversion method is not better 
than applying it to the original implementation. 

Since all known general implementations of snapshot memory satisfy that the 
time complexities of both protocols are superlinear and of the same order of 
magnitude, our conversion methods improve all known implementations. In 
particular, applying each of these methods to the implementation presented in 
[AR], we obtain two implementations whose time complexities are the best known. 
Consider a system of n processes, each of which is an updater and a scanner. In 
these implementations one operation (either update or scan) has linear time 
complexity, while the time complexity of the second operation is O(n log n). 
The time complexities of these two implementations are not comparable. Since we 
introduce conversion methods for an arbitrary implementation, these methods 
improve any future implementation in which the time complexities of the update 
and scan protocols are superlinear. 

We remark that the linear time complexity achieved by our conversions is 
optimal (the second conversion method yields an implementation which is only 
asymptotically optimal): In the worst case, every scanner must read the registers of 
all the updaters. Otherwise, it is possible for a scanner not to notice an update 
operation completed before the scan operation begun. Also, as mentioned above, 
[IS3] showed that the time complexity of the update protocol is f~(n). We stress that 
both the lower bounds and the implementations do not bound the size of the 
registers being used. 

As the implementations of a snapshot memory presented in this paper are 
not linear for both protocols in a system of n updaters and n scanners, we turn 
to study the circumstances under which implementations with two linear proto- 
cols exist. We note that both protocols of the implementation presented by Afek et 
al. work in quadratic time in the number of updaters only. Therefore, their 
implementation works in linear time whenever the number of updaters is 
O(v/-n), where n is the total number of processes. A system is unbalanced if 
one of  the following holds: 



Linear-Time Snapshot Implementations in Unbalanced Systems 473 

1. Let u and s be the number of updaters and scanners, respectively. Either u/s 
or s/u is fl(log n). 

2. Let nu and ns be the number of times the update protocol and the scan 
protocol, respectively, are executed. Either n,/ns or n~/nu is f~(log n). 

Using our conversion methods, we derive two snapshot implementations whose 
time complexities are linear for systems that are unbalanced under the first 
definition. Furthermore, the amortized time complexity of these implementations 
is linear in systems that are unbalanced under the second definition. Given an 
unbalanced system, we obtain the linear-time implementation by applying the 
appropriate conversion method to the implementation of [Ar] (for which both 
protocols work in time O(n log n)). 

Finally, we remark that our results have not been rendered obsolete by the 
recent linear-time implementation of [ICMT]. This is mainly because their 
implementation assumes, in contrast with the accepted model, that all the processes 
can write into all the registers. Moreover, when the number of updaters is 
significantly smaller than the number of scanners, their implementation will also 
be improved by our conversion methods. In addition, our second conversion method 
was used in [IS3] to determine the time complexity of an optimal update protocol. 

The rest of this paper is organized as follows: The model of computation is 
presented in Section 2. The conversion methods are presented in Sections 3 and 4. 
Section 5 contains the main results of this paper. Concluding remarks are given in 
Section 6. 

2. Model and Requirements 

In this section we define the model of computation and the atomic snapshot memory 
implementation. Informally, processes are deterministic sequential threads of 
control that communicate through shared data structures called objects. For- 
mally, we model processes and objects using a simplified form of the I/O 
automata of Lynch and Tuttle [LT]. Processes access the objects by executing 
operations. Operations are either atomic or nonatomic. An atomic operation is 
executed instantaneously. A nonatomic operation is built from several operations 
executed one after the other (for convenience, we neglect the intemal computation). 
A process is described by its protocol--a nonatomic operation that can be executed 
several times (possibly an infinite number of times). Each atomic operation 
corresponds to a single state-transition. Each protocol has a distinguished atomic 
operation, called the initial operation, corresponding to the initial state. 

Executions are described under the interleaving model. A global state is 
described by a configuration--a vector containing the state of each process and the 
state of  each object. The system's initial configuration contains the processes' and 
objects' initial states. The execution of  an (atomic) operation is called an (atomic) 
action. An execution is a sequence of configurations and atomic actions E = confo, 
actl, confl,... ,conf_l, acti, conf , . . . ,  where confo is the system's initial con- 



474 A. Israeli, A. Shaham, and A. Shirazi 

figuration and, for every i > 0, conf is obtained from conf_l by executing the 
atomic action acti (conf is the occurrence configuration ofacti). We stress that no 
assumption is made on the relative speeds of  the processes. Usually, atomic actions 
of  different processes are interleaved. An execution is sequential i f  atomic actions of  
different nonatomic operations are not interleaved. 

An object is specified by a set of  legal sequential executions [HW]. The notion 
of  implementation is discussed and formally defined in [H] and [AAD]. We omit the 
formal definitions and give the essence of  implementing an object. An imple- 
mentation is wait-free if, in all its executions, the number of  atomic actions executed 
in each protocol is bounded, where the bound may depend on the number of  
processes in the system. We require our implementations to be wait-free. In 
addition, an implementation must satisfy the linearizabiliCy correctness condition 
[HW]. Informally, we want each nonatomic action to appear as if it was executed 
instantaneously. In addition, the order between nonatornic actions that are not 
concurrent should be preserved. 

Formally, consider any execution, E, of  an implementation in which the atomic 
actions of  the processes are interleaved. The execution induces a partial order <E 
on nonatomic operations executed in E: Let a, b be two nonatomic operations 
executed in E. I f a  ended before b started, than a <E b. An execution is linearizable 
if  <E can be extended to a complete order <s, where <s  is the order induced by 
some sequential execution of  the nonatomic operations in E and S is one of  the legal 
sequential executions. Clearly, since <s  extends <e,  the order between nonatomic 
operations that are not concurrent in E is preserved. An implementation is 
linearizable if all its executions are linearizable. 

Let a be a nonatomic operation executed in E. We denote the start and end 
configurations of  a in E by starte(a) and endE(a), respectively (if a does not 
complete in E, then endE(a) = c~). The execution interval of a in E includes all the 
configurations in the interval [start(a), end(a)]. In order to prove that E is 
linearizable, it is sufficient to assign a linearization point to each operation in 
E, a, such that the linearization point of a lies in the execution interval of a in E. 
The sequential execution obtained must be one of  the legal sequential executions. 

We consider two types of  shared objects: atomic registers, henceforth registers 
and atomic snapshot memory. Processes access registers by executing write and 
read operations. A write operation stores a new value in the register and a read 
operation obtains the value stored in the register. In the initial configuration, each 
register holds its initial value. Each operation is executed instantaneously 1 and each 
read operation returns the value written by the most recent, preceding, write 
operation, or the initial value i f  no such write operation exists. The registers are 
single writer multireader registers. That is, each register is associated with one 
process, called its owner, which is the only process that can write to it. However, any 
process can read the register. 

1 It is possible that an atomic register is implemented from weaker registers [L1], [L2], [VA], 
[ILV], [Ab], [IS 1 ]. However, in such cases the linearizability of the implementation allows us to assume 
that the operations appear as if they are executed instantaneously [HW]. 



Linear-Time Snapshot Implementations in Unbalanced Systems 475 

An atomic snapshot memory, henceforth a snapshot memory, is defined with 
respect to a set of  cells (this set is called a compound register in [An2]). The 
processes are divided into two groups: updaters and scanners. Updater i, denoted 
Ui, owns cell i and can change the value of  its cell in an update operations. Scanner 

j ,  denoted Sj, obtains the value of  all the cells in a scan operation. Though the two 
groups of  processes are not necessarily distinct, it is convenient to assume that they 
are. This does not harm the generality of  our results since a process which is both an 
updater and a scanner can be viewd as two processes. We denote the number of  
updaters and scanners by u and s, respectively. Also, n denotes the total number of  
processes (n = u + s). A snapshot object must be implemented from registers. An 
implementation o f  a snapshot object consists o f  two protocols, one for updaters and 
one for scanners. 

The time complexity of  a snapshot implementation is a pair (utc(u,s), 
stc(u,s)), where utc(u,s) and stc(u,s) are the maximal number of  atomic 
operations on registers performed in an update and scan operation, respec- 
tively. We stress that, as in all previous papers, the cost of  both the write opera- 
tion and the read operation is one, regardless of  the length of  the register which is 
accessed. As we present conversions of  snapshot implementations, one of  our 
objects is a snapshot memory. The original implementation and its two protocols 
are called the elementary implementation and elementary protocols, respectively. 
Since the elementary implementation is linearizable, we can assume that operations 
on this object occur instantaneously. However, since we measure the time complex- 
ity in the number of  operations on registers, the time complexity incurred by these 
operations is the time complexity of  the elementary protocol used. Throughout the 
rest of  this paper, it is understood that the read, write, elementary scan, and 
elementary update operations are atomic, while the scan and update operations are 
not. 

3. Implementations with Linear Scan Protocols 

In this section we describe a method to convert an arbitrary implementation of  
snapshot memory to another implementation. The time complexity of  the scan 
protocol in the new implementation is equal to the number ofupdaters. This is best 
possible since for any implementation an execution exists in which the scan protocol 
must read all the updaters' registers (otherwise, it is possible that the snapshot 
returned might not include all the update actions completed prior to the start of  the 
scan operation). The underlying idea is that the updaters execute the scan operation 
for the scanners, using the elementary scan protocol. The result o f  each such 
elementary scan is an elementary snapshot and all elementary snapshots are 
ordered. A scanner reads an elementary snapshot from each updater and returns 
the latest one. 

3.1. Description 

The update and scan protocols are presented in Figure 1. The elementary update and 
scan protocols are denoted by escan and eupdate, respectively. Each updater, U/, 
keeps an internal variable, counti, which is initialized to zero and incremented by 1 



476 A. Israeli, A. Shaham, and A. Shirazi 

Updatei(value) 
counti ~---counti + 1 
eupdate(value,counti) 
s [ 1 . . ,  u] ~ esean 
ri ~ write (s[1. . .u]) 

Scanj 
for k ~ 1 to u read (rk) 
return dominating elementary snapshot 

Fig. 1. The protocols for a few updaters. 

eu~" 
es~ 
w7 

~ [ 1 ] . . . ~ [ u ]  

every time Ui executes an update operation. The new update protocol for Ui consists 
of an elementary update operation of the record (value, count). Next, an elementary 
scan operation is executed. The elementary snapshot obtained by this escan action is 
written into an additional register called ri which can be read by all the scanners. 
The ath update operation of  U/is denoted by Uf, the value it gets as input is denoted 
by vale; its elementary update, elementary scan, and write operations are denoted by 
euT, esT, and w~/, respectively. The elementary snapshot returned by es7 is denoted 
by esnap a. 

The new scan protocol works as follows: First, each ri is read to obtain an 
elementary snapshot from each updater Ui and then the dominating elementary 
snapshot is returned. The domination order is naturally defined on the count fields 
in the following way: Let esnap and esnap I be two elementary snapshots, esnap 
dominates esnaff if for every i, 1 < i < u, the count field in the ith entry ofesnap is 
not less than the count field in the ith entry of esnap ~. Note that since for every 
updater, U~, counti is nondecreasing, and since the elementary implementation is 
linearizable, it follows that all elementary snapshots which are written into registers 
are fully ordered by domination. The bth scan operation executed by Sj is denoted 
by so; its subactions are denoted by rb[1], , ~[u] and the snapshot it returns is 

J J " ' "  
denoted by snap b. The complexity of the update protocol is equal to the sum of the 
complexities of the elementary protocols. The complexity of the scan protocol is 
equal to u, the number of updaters. 

3.2. Linearization Scheme 

In the linearization scheme for the protocols, we allow an action to be linearized 
within its execution interval or just after it. That is, we allow an action to be 
linearized after the last configuration in its execution interval, but before the next 
configuration in the execution. Clearly, this preserves the order between noncurrent 
operations. 2 For the rest of this section we consider an arbitrary execution, E, of  the 
converted implementation and prove that the execution is linearizable. For brevity, 
we omit the reference to the execution throughout the remainder of this section. In 
particular, < and < should ble read as <E and _<E, respectively. For any nonatomic 
action a, the linearization point of a, denoted fin(a), is related to some specific 
configuration. This configuration is called the linearization configuration of a and 
is denoted by l in_conf(a) .  Sometimes, more than one action is serialized by the 

2 Alternatively, we could have added a dummy operation at the end of  the protocol 



Linear-Time Snapshot Implementations in Unbalanced Systems 477 

same configuration. In some of  the arguments below, it is simpler to consider the 
linearization configuration. The starting and ending configurations of  a are denoted 
by start(a) and end(a), respectively. For an atomic action a, occ(a) denotes the 
occurrence configuration of  a. 

The occurrence configurations of  the atomic actions are used to define the 
linearization for the new implementation. We first define the linearization for update 
actions. 

Definition 1. The linearization configuration for update action U~' is defined to be 
the occurrence configuration of  the earliest write, w~, whose corresponding escan 
action, es~, occurred after eu~: 

lin-conf ( U a) = min{occ(wb)locc(es b) > occ(eu~) }. 
.]: b J J 

We say that U a is linearized by w~, The linearization point of  U a is just after 
lin_conf (ua). If  several update actions are linearized by the same write action, they 
are further linearized in the order of  their own eupdate actions, in this way no two 
update actions are linearized at the same point. 

Definition 2. Let Ut a be the latest update action whose value is included in snap b. 
The linearization configuration of  scan action S b is defined to be the maximum 
between its starting configuration and the linearization configuration of  U~: 

lin_ conf ( Sj b) --- max{ start( Sjb. ), max{ lin_conf ( U~ ) [val~ E snap b } }. 
k,  c 

In the first case the linearization point is the same as the linearization configuration. 
In the second case we say that Sj b is linearized by U/, and the linearization point of  
4. 6 is just after lin(U/), where ties are broken arbitrarily. 

3.3. Correctness Proof 

Lemma 1. Every action is linearized within its execution interval. 

Proof We start with update actions. Let U a be an arbitrary update action. 
Definition 1 immediately implies: 

�9 l in_conf (U a) > occ(eua). 
�9 lin_conf(U a) <_ occ(w~i ) = end(Ua). 

The proof follows. 
We now prove the lemma for scan actions: Let Sj b be an arbitrary scan action. If  

S b is linearized at its beginning, then the proof is immediate. Therefore, we assume 
tlaat Sj b is linearized after its beginning by update action U~. Hence, valCk E snap b 
and 

 in_conf = h _conf ( 



478 A. Israeli, A. Shaham, and A. Shirazi 

Let esnap d be the elementary snapshot returned by Sf (possibly U~ = U(). Since 
val~ C esnap/, Definition 1 implies 

lin_conf(U~) < occ(wa). 

Since Sj b returns esnap d, we obtain that 

o c(wf) < o c(r It]) < end(Sj ). 

Combining these inequalities we get that lin_conf(Sj b) < end(Sjb). [] 

The linearization configuration of  an update action might be up to 2.u 
configurations away from the occurrence configuration of its eupdate action. 
However, the following lemma shows that the complete order between the 
linearized update actions is identical to the complete order between their eupdate 
actions. This fact greatly simplifies the proof of Lemma 3. 

Lemma 2. Let U a and U.. b be two arbitrary update actions. I f  
occ(eu a) < occ(eub), then lin(U~l < lin(Ujb). 

Proof We assume that occ(eu~) < occ(eu b) and prove that lin(U~) < lin(Ujb). 
First, we claim that lin_conf(U a) < lin_conf(Uf). To prove the claim, assume 
Uf is linearized by w~. Clearly, occ(eu b) < occ(es~). Since occ(eu a) < occ(eub), 
we have that occ(eu~) < occ(esC~). By Definition 1 we have that 
lin_conf(U~) <_ occ(w~). Hence, the claim. 

Next, we consider two cases. If lin_conf(U~) ~ lin_conf(Ujb), the above 
claim implies lin_conf(U~) < lin_conf(Uj b) and we are done. On the other hand, 
if U F and Uf are both linearized by w~ by Definition 1 they are further linearized in 
the order of  their eupdate actions. The lemma follows. [] 

By Lemma 2, every elementary snapshot is also the valid snapshot just after the 
configuration in which the last update included in it is linearized. To complete the 
correctness proof, we show that the elementary snapshot returned by any scan action 
is the valid snapshot at the linearization point of the scan action. 

Lemma 3. Snapshot snap~ is the valid snapshot at lin(S~). 

Proof Let S~' be an arbitrary scan action and let Uj b be the last update whose value 
is included in snap a. From the previous lemma it is clear that snap~ is a snapshot 
just after lin(Ujb). Hence, if S a is lineafized by Uf we are done. 

Next, we look at the case that S~' is linearized at its beginning. Definition 2 
ensures that a scan action does not return any value whose update action is 
linearized after that scan action. Let Uj b be the last update action of updaterj that 
is linearized before start(ST). In order to prove the lemma we have to show that 
valj b is included in at least one elementary snapshot read by $7. Since the 
dominating elementary snapshot is returned, it is clear that the most recent value 
of each updater is returned. We assume that Uf is linearized by U~ (possibly 



Linear-Time Snapshot Implementations in Unbalanced Systems 479 

Uj b = U~). Therefore, valj b E esnapCk. Since Uj b is linearized before start(Sa),  it 
holds that occ(wCk) < start(Sa).  The register of updater k is read in Sa[k]. From the 
above observations, it follows that valj b is included in the elementary snapshot 
obtained. []  

4. Implementations with Linear Update Protocols 

In this section we describe a method to convert an arbitrary elementary imple- 
mentation of snapshot memory to another implementation with a linear-time update 
protocol. The underlying idea is a modification of a single scanner protocol of 
KJrousis et al. in [KST2]. Similar to the previous section, each updater prepares 
information for the scanners. However, the information is less precise--instead of 
preparing an elementary snapshot, the updater prepares a view: It reads the registers 
of all the updaters and for every updater it chooses the latest value it sees. The 
updater completes its protocol by writing its view. A scanner also begins by 
preparing a view, composed from the views held by updaters. Clearly, the views held 
by different scanners are only partially ordered. Therefore, the views may not serve 
as snapshots. In order to achieve a complete order, each scanner eupdates its view 
and then performs an escan operation to obtain the views held by the other scanners. 
Choosing the latest value seen for each updater yields a snapshot. 

4.1. Description 

The Protocols appear in Figures 2 and 3. Once more, updater U/keeps an internal 
variable, counti, which is initialized to 0 and incremented at the beginning of  every 
update action. The register of Ui, called viewi, consists of an array of  u entries. Each 
entry is a pair of the form (value, count), and the kth entry of viewi always holds a 
(value, count) pair of Uk. The updater protocol is to read the views of all other 
updaters, and for each updater to choose the pair with the highest count. All these 
pairs are stored in a local view variable called Iview (the count fields of  lview are 
initialized to -1) .  After that, U/assigns its new (value, count) pair to Iview[i] and 

begin 
counti +-- counti + 1 
f o r j ~ -  1 to u 

temp ~-- read(viewj) 
for k+- 1 to u 

if temp[k] . count > lview[k] 
endfor 

endfor 
lview[i] ~-- (counti, value) 
v i e w  i +-- write(lview) 

end 

count then lview[k]~--temp[k] 

w?/ 

Fig. 2. Protocol for Ui. 



480 A. Israeli, A. Shaham, and A. Shirazi 

begin 
f o r k ~ - l t o u  

temp ~-- read(viewk) ~ [k] 
for l ~ 1 to u 

i f  temp[l] count > Iview[l]. count then lview[1] ~ temp[l] 
endfor 

endfor 
eupdate(lview) eub___~ 
scan ~- escan es~ 
for k ~  1 to s  

f o r l ~ - I  t ou  
if  scan[kill] . count > Iview[I] . count then lview[l] ~-- scan[k][l] 

endfor 
endfor 
Return (tview) 

end 

Fig. 3. Protocol for Sj. 

then Iv iew is written into viewi.  We denote the ath update action ofupdater  i by U a. 
The atomic actions executed during U/a are denoted by ~ [ 1 ] . . .  ~[u], w~i. The value 
and the view written during U a are denoted by val  a and v i ew  a, respectively. The 
complexity of  the update protocol is u, the number of  updaters. 

The register of  each scanner also holds a view; these registers are accessed by 
the elementary update and scan protocols. The scanner protocol consists of  two 
parts: In the first part the scanner reads the updaters' registers and computes a local 
view from the views of  all updaters. In the second part the scanner eupdates its local 
view and then escans the views of  all scanners. Following the elementary scan 
operation, the local view is computed from the views obtained in the snapshot 
action. At this point, lv iewj  holds a snapshot which is returned. We denote the bth 

b b scan action of  scannerj by ~ .  The atomic actions executed during S~ are denoted by 
~[1] . . .  ~[u], eubi,esbi . T h e  view eupdated in action eu~ and the snapshot returned 
b~y Sj b are denot~ed l~y v i e ~ j  and snap~, respectively. Recall that we neglect the 
internal computation, and hence the last atomic action of  Sj b is es~. T h e  complexity 
of  the scan protocol is equal to the number of  updaters plus the sum of  the 
complexities of  the elementary, protocols. 

4.2. L inear i za t ion  S c h e m e  

As in the previous section, we consider an arbitrary execution, E, of  the converted 
implementation and prove that the execution is linearizable. For brevity, we omit the 
reference to the execution throughout the remainder of  this section. We use the 
occurrence configurations of  the atomic actions to define the linearization for the 
new implementation. We start with linearizing scan actions. 

Def in i t i on  3. The linearization configuration of  scan action S a is defined to be the 



Linear-Time Snapshot Implementations in Unbalanced Systems 481 

minimum between end(S a) and the occurrence configuration of the first write 
action, ~ ,  for which c is larger than the count of snapT[k]: 

lin_conf(S~) = min(end(S~), min{occ(wb. )tb > snap a [j].count} }. 
j ,  b J 

In the first case the linearization point is the same as the linearization configuration. 
In the second case we say that S 7 is linearized by ~ ,  and the linearization point is 
just before the linearization configuration. If two scan actions are linearized by the 
same write action, then they are further linearized by the domination order of the 
views they return as snapshots. If the snapshots are equal, then the scan actions are 
linearized arbitrarily. 

The validity of the above definition is guaranteed by Lemma 5 which 
shows that all views returned as snapshots are ordered by domination and the 
fact that two scan actions of  the same scanner cannot be linearized by the same 
write action. 

Definition 4. The linearization configuration of update action Uj b is defined to be 
the minimum between end (Uj b) and the linearization configuration of the first scan 
action S b which returns valj6: 

l in_conf  ( Uj b) = min{ end ( Ujb), min{lin_conf(S~)lvalj b ~ snapC~ } }. 
k,  c 

In the first case the linearization point is the same as the linearization configuration. 
In the second case we say that Uj b is linearized by S d, and the linearization point is 
just before lin(S/), where ties are broken arbitrarily. 

4.3. Correctness Proof 

Lemma 4. Every view written by an updater dominates all previous views written 
by it," the same holds for  every view that is eupdated by a scanner. 

Proof We prove the lemma by induction on the configurations. The lemma 
trivially holds for the first configuration. Assume the next action is w~ (by an 
updater) or e ~  (by a scanner). For any updater, Uj, let Uk be the updater from which 
the (value, count) pair of Uj in view~i -1 was taken. By the induction hypothesis, the 
count of Uj read in ~[k] is not smaller than the count of Uj read in ~-1 [k], hence the 
lemma. [] 

We can now prove in a similar manner that all the views returned as snapshots 
are ordered by domination. 

Lemma 5. I f  snap~ and snap b are views returned as snapshots (where i is not 



482 A. Israeli, A. Shaham,  and A�9 Shirazi 

necessarily different from j), then either view~i dominates view~j or view~j dominates 
v i e ~ j  . 

The following lemma shows that every action is linearized within its execution 
interval: 

Lemma 6. Every action is linearized within its execution interval. 

Proof By Definitions 3 and 4, all actions are linearized no later than their last 
atomic action. We have to show that they are not linearized before their first read 
action. We start with scan actions. Let S~ be an arbitrary scan action. I f  S~' is 

linearized at its ending configuration, we are done. Assume S a is linearized by w~j�9 In 
this case snapa[j].count < b and hence start(S a) <_ occ(~[j]) < occ(w b) (other- 
wise in ~[j],Si reads valjb). 

We continue with update actions: Assume by way of contradiction that U/a is 
linearized before ~[1]. In this case there is a scan action Sj b which returns val a, 
and Sf is linearized before ~[1]. Recall that val a is written for the first time in 
action w~i. Since it is included in snap b we can conclude that occ(w~i ) < occ(es)). 
Hence Sj b is not lineafized at es b, but sooner by a write action�9 Let w~ be the write 
action by which S b is linearized before start(U~a). It follows that val~ ~ snap b and 
occ(w~k) < start(~a). However, occ(w~) < start(U a) implies that val~ E view~i. 
Since val~ appears in snap b, val~ should be in snap~ as well, a contradiction. 

[] 

To complete the correctness proof, we show that the scan protocol returns 
snapshots: 

Lemma 7. Snapshot snap a is the valid snapshot at lin(~). 

Proof We show that if val~ belongs to snapT, then lin( U~ ) < lin( S~ ) < lin( U~+ l ). 
By Definition 4, lin(U~)< lin(Sa). Also, by Definition 3, we get that 

lin(S a) < occ(w~+l). Hence, if  U~ +1 is linearized at w~ +1 we are done, so we 
assume that lin_conf(U~ +1) < occ(w~k+l). In this case Definition 4 implies that 
U~ +1 is linearized by some scan action Sj b where val~§ E snap b. Since 

val~ E snap~, Lemma 5 implies that snap b dominates snapT. Since 
val~ +1 E snap b, it is clear that occ(w~ +1) < occ(es]). Hence, S~ b is not linearized at 

es~ (since U; +1 is linearized by Sj b before occ(wCk+l)), but by some write action 

wd~ where snapm[m].eount < d. Since snap b dominates snap~., we get that 
a �9 ~ c+ l  snapa[m].count < d as well. Recall that hn_conf(U~ ) =  occ(Wam), and that 

�9 a �9 c + l  �9 �9 a we want to show Im(S~) < lm(V~ ). Hence, if  lm_conf(S~) < occ(wd~), we 
are done. Otherwise, by Definition 3, lin_conf(S~)= OCc(Wdm). Since view~i is 
dominated by viewbjj, it follows that lin(S a) < lin(Sjb). Since U~ +1 is linearized by 
Sj b w e  get lin(S a) < lin(U~ +1) < lin(Sjb), and the proof follows. [] 



Linear-Time Snapshot Implementations in Unbalanced Systems 483 

5. Main Results 

In this section we use the conversion methods presented in the previous sections in 
order to establish the main claims of the paper. 

T h eorem 8. Let I be an implementation of  snapshot memory for which the time 
complexities of  the update and scan protocols are J(u, s) and g(u, s), respectively. 
There is an implementation of  snapshot memory for which the time complexities of  
the update and scan protocols are flu, u) + g(u, u) + I and u, respectively. In addi- 
tion, a second implementation of  snapshot memory exists for which the time com- 
plexities of  the update and scan protocols are u and u + fls, s) + g(s, s), respectively. 

Proof The first part of the theorem follows by applying the first conversion 
method to the given implementation I. The second part of the theorem follows by 
applying the second conversion method to the given implementation I. []  

Recall that the implementation presented in [AR] satisfies that the time 
complexity of both update and scan protocols is O(n log n), where n is the 
total number of  processes in the system. Applying the above theorem to the 
implementation presented in JAR] as the elementary implementation, we obtain the 
following two corollaries: 

Corollary 9. Consider a system of  n updaters and n scanners. There is an 
implementation of  snapshot memory for which the time complexities of  the update 
and scan protocols are O(n log n) and n, respectively. In addition, a second 
implementation of  snapshot memory exists for which the time complexities of  the 
update and scan protocols are n and O(n log n), respectively. 

Corollary 10. Consider a system of  u updaters and s scanners and let n be the 
total number of  processes. I f  the number of  either scanners or updaters is 
O(n/ log n), then an implementation of  snapshot memory exists for which the 
time complexities of  the update and scan protocols are O(n). 

In some applications the number of  times that one of the operations is executed 
is significantly greater than the number of times that the second operation is 
executed. For instance, it is possible for a process to examine the state of the system 
(meaning perform the snapshot operation) many times before it updates its register. 
On the other hand, it may be the case that a process performs many update 
operations based on a single observation. This is possible in applications that 
resemble the consensus protocol of [BR], in which the entire memory is read only 
after many writes to the register. For this kind of unbalanced system, it is possible to 
amortize the total cost due to operations on the snapshot object and obtain a linear 
amortized cost. This is stated formally in the next corollary: 

Corollary 11. Let nu and ns be the number of  times the update protocol and the 
scan protocol, respectively, are executed. I f  either nu/ns or n~/n,, is ~(log n), then 



484 A. Israeli, A. Shaham, and A. Shimzi 

an implementation of  snapshot memory exists for which the amortized time 
complexities o f  the update and scan protocols are O(n). 

6. Concluding Remarks 

We presented two conversion methods for snapshot implementations. The first 
method converts an arbitrary implementation to an implementation whose scan 
operation time complexity is linear; while the time complexity of the update 
operation becomes the sum of the time complexities of the two given protocols. The 
second method converts an arbitrary implementation to an implementation whose 
update operation time complexity is linear, while the time complexity of the scan 
operation becomes the sum of the time complexities of the two given protocols. 
These conversion methods improve all known implementations of snapshot 
memory, and will improve any future implementation in which the time complex- 
ities of  both protocols are superlinear. 

It is interesting to see whether a way to bound our conversion methods without 
increasing the time complexity exists. In addition, one of the most intriguing open 
problems in wait-free computation is whether an implementation exists that is 
optimal for both protocols. In other words, does a linear implementation of snapshot 
memory exist? 

Acknowledgments 

We are grateful to Jaap Hoepman for his careful reading of an early version of this paper. The Center for 
Mathematics and Computer Science in Amsterdam, CWI, was a very warm host for two of the authors 
who gratefully acknowledge it. 

References 

[Ab] 

[An1] 

[An2] 

[As] 

[~.~D] 

[An] 

U. Abraham. On Interprocess Communication and the Implementation of a Multi-Writer 
Atomic Register, Preprint. 
J. Anderson, Composite Registers, Proceedings of the 9th Annual ACM Symposium on 
Principles of Distributed Computing, 1990, pp. 15-29. 
J. Anderson, Composite Registers, Distributed Computing, Vol. 6, No. 3, 1993, pp. 141- 
154. 
J. Aspnes, Time- and Space-Efficient Randomized Consensus, Proceedings of  the 9th 
Annual ACM Symposium on Principles of  Distributed Computing, 1990, pp. 15-29. 
Y. Afek, H. Attiya, D. Dolev, E. Gafni, M Men'itt, and N. Shavit, Atomic Snapshots of 
Shared Memory, Proceedings of  the 9th Annual ACM Symposium on Principles of  
Distributed Computing, 1990, pp. 1-13. 
J. Aspnes and M. Herlihy, Wait-Free Data Structures in the Asynchronous PRAM Model, 
Proceedings of the 2nd Annual Symposium on Parallel Algorithms and Architectures, 1990, 
pp. 340=349. 
H. Attiya, M. Herlihy, and O. RAchman, Efficient Atomic Snapshots Using Lattice 
Agreement, Proceedings of  the 6th International Workshop on Distributed Algorithms 



Linear-Time Snapshot Implementations in Unbalanced Systems 485 

[ALS] 

[AR] 

[BIS] 

[BR] 

[CD] 
[DHPW] 

[DHW] 

[DS] 

[HW] 

[ICMT] 

[KST1] 

[KST2] 

and Graphs, Haifa, November 1992 (A. Segall and S. Zaks, eds.), pp. 35-53, Lecture Notes 
on Computer Science, Vol. 647, Springer-Verlag, Berlin, 1992. 
H. Attiya, N. A. Lynch, and N. Shavit, Are Wait-Free Algorithms Fast? Proceedings of  the 
31st IEEE Symposium on Foundations of  Computer Science, 1990, pp. 55-64. 
H. Attiya and O. Rachman, Atomic Snapshots in O(n log n) Operations, Proceedings of  
the 12th Annual ACM Symposium on Principles of  Distributed Computing, 1993. 
A. Ben-dor, A. Israeli, and A. Shirazi, On The Space Complexity of Snapshot Memories, 
Preprint. 
G. Bracha and O. Rachman, Randomized Consensus in Expected O(n 2 tog n) Operations, 
Proceedings of the Fifth Workshop on Distributed Algorithms, 1991. 
T. D. Chandra and C. Dwork, Personal communications. 
C. Dwork, M. Herlihy, S. Plotkin, and O. Waarts, Time-Lapse Snapshots, Proceedings of  the 
1st Israeli Symposium on Theory of Computing and Systems, Haifa, May 1992 (D. Dolev, Z. 
Galil and M. Rodeh, eds.), pp. 154-170, Lecture Notes in Computer Science, Vol. 601, 
Springer-Verlag, Berlin, 1992. 
C. Dwork, H. Herlihy, and O. Waarts, Bounded Round Numbers, Proceedings of  the 12th 
Annual ACM Symposium on Principles of  Distributed Computing, 1993. 
D. Dolev and N. Shavit, Bounded Concurrent Time-Stamp Systems Are Construetible!, 
Proceedings of  the 21st Annual ACM Symposium on Theory of  Computing, 1989, pp. 454- 
465. 

[H] M. P. Herlihy. Impossibility and Universality Results for Wait-Free Synchronization, 
Proceedings of  the 7th ACM Symposium on Principles of  Distributed Computing, 
1988, pp. 276-290. 

[HT] J.H. Hoepman and J. Tromp, Binary Snapshots, Proceedings of  the 7th International 
Workshop on Distributed Algorithms and Graphs, Lausanne, September 1993, pp. 18-25, 
Lecture Notes in Computer Science, Vol. 725, Springer-Verlag, Berlin, 1993. 
M. P. Herlihy and J. M. Wing, Linearizability: A Correctness Condition for Concurrent 
Objects, ACM Transactions on Programming Languages and Systems, Vol. 12, No. 3, July 
i990, pp. 463492. 
M. Inoue, W. Chen, T. Masuzawa, and N. Tokura, Linear-Time Snapshot Using Multi- 
Writer Multi-Reader Registers, Proceedings of  the 8th International Workshop on Dis- 
tributed Algorithms and Graphs, 1994. 

[ILV] A. Israeli, M. Li, and P. Vitanyi, Simple Multireader Registers Using Time-Stamp Schemes, 
Report No. CS-R8758 Center for Mathematics and Computer Science, Amsterdam, 
November 1987. 

[IS1] A. Israeli and A. Shaham, Optimal Multi-Writer Multi-Reader Atomic Registers, Proceed- 
ings of  the 11th ACM Symposium on Principles of  Distributed Computing, 1992, pp. 71-82. 

[IS2] A. Israeli and A. Shirazi, Efficient Snapshot Protocol Using 2-Lattice Agreement, Preprint. 
[IS3] A. Israeli and A. Shirazi, The Complexity of Updating Snapshot Memories, Information 

Processing Letters, to appear. Also in Proceedings of  the 2nd Annual European Symposium 
on Algorithms, 1994, pp. 171-182, Lecture Notes in Computer Science, Vol. 855, Springer- 
Verlag, Berlin, 1994. 
L. M. Kirousis, P. Spirakis, and P. Tsigas, Reading Many Variables in One Atomic 
Operation: Solutions with Linear or Sublinear Complexity, Proceedings of  the 5th 
International Workshop on Distributed Algorithms and Graphs, Delphi, October 1991 
(S. Toueg, P. Spirakis, and L. Kirousis, eds.), pp. 229-241, Lecture Notes in Computer 
Science, Vol. 579, Springer-Verlag, Berlin, 1992. 
L. M. Kirousis, P. Spirakis, and P. Tsigas, Simple Atomic Snapshots, A Linear Complexity 
Solution with Unbounded Time-Stamps, Proceedings of Advances in Computing and 
Information--ICCI, 1991, pp. 582-587, Lecture Notes in Computer Science, Vol. 497, 
Springer-Veflag, Berlin, 1991. 

[L1] L. Lamport, On Interprocess Communications. Part I: Basic Formalism, Distributed 
Computing, Vol. 1, No. 2 1986, pp. 77-85. 

[L2] L. Lamport, On Interprocess Communication. Part II: Algorithms, Distributed Computing, 
Vol. 1, No. 2 1986, pp. 86-101. 



486 A. Israeli, A. Shaham, and A. Shirazi 

[LT] N. Lynch and M. Tuttle, Hierarchical Correctness Proofs for Distributed Algorithms, 
Proceedings of  the 6th ACM Symposium on Principles of  Distributed Computing, 1988, 
pp. 137-151. 

[VA] P. Vitanyi and B. Awerbuch, Atomic Shared Register Access by Asynchronous Hardware, 
Proceedings of  the 27th Annual Symposium on Foundations of  Computer Science, 1986, 
pp. 233-243. 

Received March 1994 and in final form January 1995. 


