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A Sublinear Algorithm for Approximate 
Keyword Searching 1 

E. W. Myers z 

Abstract. Given a relatively short query string W of length P, a long subject string A of length N, 
and a threshold D, the approximate keyword search problem is to find all substrings of A that align 
with W with not more than D insertions, deletions, and mismatches. In typical applications, such as 
searching a DNA sequence database, the size of the "database" A is much larger than that of the 
query W, e.g., N is on the order of millions or billions and P is a hundred to a thousand. In this paper 
we present an algorithm that given a precomputed index of the database A, finds rare matches in time 
that is sublinear in N, i.e., N c for some c < 1. The sequence A must be over afinite alphabet E. More 
precisely, our algorithm requires O(DN p~ log N) expected-time where e = DIP is the maximum 
number of differences as a percentage of query length, and pow(e) is an increasing and concave function 
that is 0 when e = 0. Thus the algorithm is superior to current O(DN) algorithms when e is small 
enough to guarantee that pow(e) < 1. As seen in the paper, this is true for a wide range of e, e.g., e up 
to 33% for DNA sequences (IE[ = 4) and 56% for proteins sequences (IEI = 20). In preliminary 
practical experiments, the approach gives a 50- to 500-fold improvement over previous algorithms for 
prolems of interest in molecular biology. 
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Introduction. Given  a relatively short query string W of length P, a long subject 

string A of length N, and  a threshold D, the approximate keyword search problem 
is to find all substr ings of A that  align with W with no t  more  than  D insertions,  

deletions, and  mismatches.  More  precisely, if 6(V, W) is the edit distance between 
V and  W, and  if A[i..j] denotes the substr ing of A consist ing of its ith through 

j t h  characters, then the problem is to find all pairs i,j such that  6(W, A[i..j]) _< D. 
For  this problem, we say that  the m a x i m u m  mismatch ratio is e = DIP and  that  

we are searching A for e-matches to W. 
This problem has been much  studied. Sellers IS] presented the obvious O(PN) 

algor i thm as a slight var ia t ion  of the classic dynamic  p rogramming  algori thm for 

the sequence versus sequence compar i son  problem (here we are compar ing  a 
sequence versus substr ings of the other). In  roughly the same time frame, U k k o n e n  
[U1]  and  Myers [ M M ]  bo th  reported practical and  simple O(DN) expected-time 
algorithms. No t  long thereafter, L a n d a u  and  Vishkin [LV] arrived at an O(DN) 
worst-case a lgor i thm that  required O(N) space. At abou t  the same time Myers 
[M 1] presented an  a lgor i thm with the same worst-case time complexity bu t  which 
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required only O(D 2) space. Recently, Galil and Park [GP] have reported another 
O(DN) worst-case time algorithm that takes O(P 2) space. 

With the advent of applications such as those in molecular biology where the 
database will be massive, e.g., N in the billions, the need for algorithms that are 
less than linear in N is becoming of paramount importance. Recently, Chang and 
Lawler [CL] devised a method that takes O(DN log P/P) expected time when the 
threshold D is less than P/(log P + O(1)). It does so by quickly eliminating stretches 
of the "database" sequence A where a match cannot possibly occur. They term 
their algorithm sublinear in the sense of Boyer and Moore IBM], i.e., cN characters 
of A are examined where c < 1. Note, however, that the algorithm still takes time 
linear in N and that as P gets larger the stringency of a match must be tightened 
as e must be less than 1/(log P + O(1)). 

In this paper we present an algorithm that, given a precomputed index of the 
database A, finds rare matches in time that is truly sublinear in N, i.e., N c where 
c < 1. More precisely, our algorithm requires O(DN p~ log N) expected-time 
where pow(e) is an increasing and concave function that is 0 when e = 0. Thus the 
algorithm is superior to the O(DN) algorithms when e is small enough to guarantee 
that pow(e) < 1. For example, pow(e) is less than one when e < 33% for 1121 = 4 
(DNA alphabet), and when e < 56% for iY~l = 20 (protein alphabet). Figure 4 
precisely plots the curve for several choices of [Er. Apart from the fact that our 
algorithm is "truly" sublinear, it also has the advantage over the Chang and 
Lawler algorithm that the degree of sublinearity just depends on e and not on P. 
On the other hand, we require a precomputed O(N) space index structure, whereas 
their method is purely scanning based, requiring only O(P) working storage. The 
bounding argument used in proving the expected complexity of our algorithm is 
rather crude. Consequently, performance in practice is much superior. In pre- 
liminary experiments the approach appears to represent a 100- to 500-fold 
improvement over the O(DN) search algorithms for problems of interest in 
molecular biology. 

1. Overview. In this overview we sketch the basic concepts and outline the 
algorithm embodying our result. The various sections of the paper then embellish 
upon the individual components. 

The algorithm assumes that an index for the sequences in the database has 
already been constructed. An index for a large text is a data structure that allows 
all occurrences of a given query string in the text to be found rapidly. In our 
method queries will all be of length T = lOglz I N. Thus, each query can be uniquely 
encoded as an O(N) integer, and we can store the results of all possible queries 
(which are lists of indices where the corresponding strings of size T appear in A) 
in an O(N) table. This simple structure can be built in O(N) time and 2N words 
of space as shown in Section 2. 

Let 6(V, W) be the edit distance between V and W. Let the D-neighborhood of 
a string W be the set of all strings distance less than or equal to D from W, i.e., 
No(W ) = (V: 6(V, W) _< D}. Let the condensed D-neighborhood of W be the set of 
all strings in the D-neighborhood of W that do not have a prefix in the 
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neighborhood, i.e., N--~(W) = {V: V in No(W) and no prefix of V is in ND(W)}. 
One way to find all approximate matches to W is to generate every string in the 
condensed D-neighborhood of W, then, for each such string, to find the locations 
at which the string occurs in the database using an index. Each such location is 
the leftmost position of an approximate match to W. The obvious problem is that 
as W or D become large the number of strings in No(W) quickly explodes, making 
the standard O(DN) algorithms superior. However, for strings W whose length is 
T = logl~ I N, the following are true: 

Section 3. An algorithm to generate the strings in ND(W) in lexicographical 
order in O(DN p~ worst-case time exists. The algorithm involves computing 
rows of a dynamic programming matrix in response to a backtracking search 
that essentially traces a trie of the words in ND(W). 

Section 4. IN---o(W)I < N p~ where pow(e) = lOgl~l(C + 1)/(c - 1) + e logl~ L c + e 
and c = e- ~ + x/1 + e-2. 

Section 5. Using the simple index described above, the algorithm can look up 
the locations of these strings at no additional overhead, and under the 
assumption that A is the result of Bernoulli trials, finds O(N p~ matches 
in expectation. 

Therefore, for small strings the strategy of generating all words in the neighbor- 
hood of the query is effective for sufficiently small distances. To extend this strategy 
to larger queries requires the following observation detailed in Section 6. Consider 
dividing the query W in a binary fashion until all pieces are of size logl~ L N. To 
model the various pieces, let W, for ~ {0, 1}* be recursively defined by the 
equations W~ = W, W~o = first_half_of(W,), and W~I = second_half_of(W~). The 
following lemma follows from a simple application of the Pigeonhole Principle. 

LEMMA. If W aligns to a string V with not more than D differences, then a word 
exists such that, for every prefix fl of ~, W~ aligns to a substring Vp of V with not 
more than [_D/21~l A differences. Moreover, V~, is a prefix or a suffix of Vr according 
to whether a is 0 or 1. 

This suggests that we can efficiently find approximate matches to W by first 
finding approximate matches to the words W, of length T and then verifying that 
Wp approximately matches for progressively shorter prefixes fl of e. At each stage, 
the string in question is twice as large and twice as much distance is allowed in 
the match, but the number of matches found drops hyperexponentially except 
where the search will reveal a distance D match to W. 

Suppose for simplicity that the length of W, P equals 2KT for some value of K. 
For d = [_D/2rJ, we begin by generating the words in Naa(W~) for each of the 2 K 
words W, of length T. From the above this takes O(DN p~ total time and delivers 
this many d-matches. We then see if these d-matches can be extended to [_D/21~- 1_]_ 
matches to the words W~ of length 2T. This step requires envisioning the result 
of the word generation lookups as delivering parallelogram-shaped regions of a 
dynamic programming matrix or edit graph. All d-matches to a T-word of W are 



348 E.W. Myers 

guaranteed to lie in one of these parallelograms. To find matches to 2T-words it 
suffices to do a dynamic programming calculation over a 2T by 2d parallelogram 
about each parallelogram of a T-word "hit." At the kth stage of this process, the 
number of matches is reduced by a factor of 1IN 2kr176 Thus, while the time 
to extend matches grows by a factor of 4 at each stage, this is overwhelmed by 
the reduction in the number of surviving matches. In the end the total time 
consumed in expectation is O(DN p~162 log N + HDP) where H is the number of 
matches to W that are found. 

Note that our algorithm's expected-time complexity is based on the assumption 
that the database is the result of random Bernoulli trials. In this case its expected 
complexity is O(DN p~ log N). However, if the database is not random but 
preconditioned to have H matches to W, then O(HDP) time will be spent on each 
of these matches. Consequently, our algorithm does not improve upon the O(DN) 
algorithm for the sequence-versus-sequence problem. Nonetheless, for seaching 
problems where the data base is large and "sufficiently" random, this algorithm 
can find near matches with great efficiency and no loss in sensitivity. 

2. A Simple Index Data Structure. An index for a large string A = aaa2"" aN, is 
a data structure that allows the efficient location of all occurrences of a shorter 
query string within A. In this work a very simple technique based on integer 
encodings can be used because all queries are of length O(log N) and we assume 
that the underlying alphabet Z is fixed and finite. From here on, let T = loglz I N 
and assume all queries are of length between T - D and T + D where D < T. 

Consider an arbitrary assignment (bijection) cp of the symbols in E to the integers 
0 through [E I - 1. q~ is naturally extended to strings with the recursive definition 
cp(Wa) = [EIcp(W ) + q~(a) where W is a string over Z and a is a symbol in E. 
Essentially cp(W) is the integer obtained when the string is viewed as a radix-[E I 
number. For  n ~ [-0, lYl T - 13 _~ [0, N - 13, let 

Bucket(n) = {i: cp(aiai+ l""ai+ r-  1) = n}. 

That is, Bucket(n) gives the indices of the leftmost character of each occurrence in 
A of the unique T-symbol string whose cp-code is n. This simple array of sets is 
our index structure. 

Under the assumption that A is the result of equiprobable Bernoulli trials, 
Bucket can be used to find all the, say Hv, occurrences of a query V within A in 
O(T + DHv) expected time as follows. If V is of length U < T, then the left- 
most indices of the occurrences of V are exactly the contents of Bucket(k) for 
k e [~o(V) IE[ T- v, (q~(V) + 1)1 Z I T - -  U - -  1]. In this case it takes time O(U) to compute 
the integers defining the interval of codes and O(Hv) time to list the Hv occurrences 
of V in A. Thus the total time is less than O(T + DHv) as claimed. In the case 
where U is greater than T it is known that the occurrences of V must be a subset 
of those in Bucket(q~(VT)) where VT denotes the string consisting of the first T 
symbols of V. It takes O(T) time to compute the ~o-code, and then it simply suffices 
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to check whether the remaining U - Tsymbols of V match at each of the locations 
in the given bucket. While potentially quite inefficient in the worst case this step 
works extremely well in the expected case where A is the result of equiprobable 
Bernoulli trials. Under this assumption the average number of coincidental 
matches to Vr is one and on average only [E I/(I El - 1) additional symbols of such 
coincidental matches to Vr need be checked before they are discovered not to 
match V. Thus in expectation only a constant amount  of time is spent investigating 
locations that do not match V. Moreover, O(U - T) = O(D) time is spent checking 
additional characters at those locations that do match V. Thus only O(T + DHv) 
expected time is spent in the case where U > T. 

Producing the index is also quite simple. First ~01 = qo(a~ai+l...ai+r_ 0 is 
computed for every index i. This is easily done in an O(N) sweep of A using the 
observation that qo i = ailEI r -1  + [_~oi+l/IEI/. Since the numbers qol are all in the 
range [0, N - 1], a simple O(N) radix sort produces the list Indices = (it, i 2 ..... iN) 
such that cp~j < ~oij+~. Finally, the array Header[n] = min{j: q~I,dicesUl = n} is pro- 
duced in an O(N) sweep of Indices. The arrays, Indices and Header, together 
provide a realization of the Bucket sets. Namely, 

Bucket(n) = {lndices[d]: j e [Header[n], Header[n + 1] -- 1]}. 

Thus our index occupies O(N) space and takes O(N) time to construct, a 
In the treatment immediately above, two details were overlooked that require 

attention. First was the statement that T be set to logly~ t N. T must be an integer, 
and so, in fact, the logarithm must be rounded either up or down. Rounding up 
implies that as much as O(IEIN) time and space are required to construct the 
index. Rounding down implies that while only O(N) space is used, long queries 
may take O(T + IZ I + DHv) expected time because the average bucket size can 
approach 1EL. If the cardinality of 2 is fairly large (e.g., 20 for protein sequences), 
then both of these alternatives are undesirable in practice. A simple repair is to 
round up, i.e., T = I-log I y.i NT, but to use only the first 

R = Llog  2 N - Lloglz I N J  l o g z  IZIJ 

bits of the last symbol when computing a code. Specifically, if W is of length T -- 1, 
then the modified encoding p of Wa is given by p(Wa) = q~(W)2 R + q~(a) rood 2 ~. 
The treatment for constructing the index is as before except that ~o i is replaced 
with Pi = p(aia~+ 1"" a~+ r -  1). With this choice of encoding, there are no more than 
N codes and there are no less than N/2. Thus the structure takes | time and 
space to construct independent of the size of Z, and the average bucket size is 
between 1 and 2 so that searches using the p-code on the first T symbols of a 
query V will take no more than O(DHv) expected time. Note that the Tth symbol 
of V will have to be compared against its corresponding symbol for each bucket 
entry, but this does not add to the asymptotic complexity. 

3 The structure requires exactly 2N + O(1) integers in the range 0 to N, and may be built with or(N) 
additional space with some very careful "in-place" manipulations, It is thus a very space-efficient and 
practical index. 
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The second detail is that (Pl (Pi) is not properly defined for i > N - T + 1 
(N - T). This can be rectified by simply adopting the convention that, for i > N, 
ai is any symbol not equal to a N. This guarantees that the integer codes for indices 
N - T + 2 to N are all distinct and thus contribute at most one extra element to 
any particular B u c k e t  set. Thus the expected case analysis for searching still holds, 
although each index in a bucket must additionally be checked and rejected it if it 
is greater than N - U where U is the length of the query. 

3. Generating Word Neighborhoods. The traditional sequence comparison of 
word W = w l w 2 . . ,  w r  with another word V = vlv2" ."  v v involves the computation 
of a dynamic programming matrix L[0. .  U, 0..  T] where L [ i , j ]  = fi(Vi, W~). The 
notation V~ denotes the prefix consisting of the first i symbols of K Given a vector 
R[0..  T] and symbol a in alphabet Z, let row(R,  a) be the vector S[0.. T] such 
that S[O] = R[O] + 1 and, for j > O, 

S [ j ]  = min{S[j - 1] + 1, R [ j ]  + 1, R [ j  - 1] + (i f  a = % then 0 else 1)}. 

It is well known that L[0] = (0, 1, 2 . . . .  , T)  and, for i > 0, L[i]  = row(L[ i  - 1], vi). 
Moreover, an induction reveals that entries in the matrix L increase by 0 or 1 
along diagonals (e.g., L [ i , j ]  = L [ i  - 1,j - 1] + {0, 1}), and by - 1 ,  0, or 1 along 
rows (e.g., L [ i , j ]  = L [ i , j  - 1] + { -1 ,  0, 1}). 

Consider the problem of generating the words in the condensed D-neighborhood 
of word W. Imagine a trie of all the words in this neighborhood and imagine 
traversing or delineating it with a backtracking search that explores the space of 
all words in lexicographical order. Figure 1 gives the trie for the neighborhood 
N---~(abbaa) over the alphabet Z = {a, b}. Note that all vertices of the trie have 
outdegree equal to either l Z[ or 1. The forthcoming algorithm of Figure 3 
essentially provides a constructive proof of this fact. It also proves that every word 
in the condensed neighborhood is exactly distance D from W. More directly, this 
follows by observing that if a more closely matching word were in the neighbor- 
hood, then the prefix obtained by deleting its last symbol is also in the neighbor- 
hood. As the search generates words it computes the corresponding rows of the 
dynamic programming matrix of the current word versus W. It uses these rows 
to direct the search as follows. If a word is generated for which the last entry of 

a T a  b T a - - a  

~ b - - ~  a b b - -  a a 
a 

a a 

Fig. 1. Trie for Nt(abbaa). 
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array L[0.. T + D + 1, 0.. T] 
vector V[1. .T + D + 1] 

1. procedure GEN(i) 
2. { for a~E do 
3. { L[i] ~ row(L[i - 1], a) 
4. Vi i i  ~- a 
5. if L[i, T] <_ D then 
6. V[l.. i] is in No(W). 
7. else if minj{L[i, j]} < O then 
8. GEN(i + 1) 
9. } 

10. } 
11. L[0] ~- <0, 1, 2 . . . . .  T)  
12. GEN(1) 

Fig. 2. Neighborhood generator algorithm. 

the most current row is D, then a word in the condensed neighborhood has been 
reached. On the other hand, if all entries of a row are greater than D, then the 
corresponding word and all extensions of it cannot be in the condensed neighbor- 
hood of W, and the search can backtrack. Otherwise there is some extension that 
is in the neighborhood and the search proceeds forward. The algorithm of Figure 
2 details such a search. 

The correctness of this procedure requires several observations. First, the 
smallest entry of row(R, a) is never smaller than the smallest entry of R and so it 
is correct to backtrack when a row is reached for which all entries are greater 
than D. Second, if a row contains an entry not greater than D, then it contains 
an entry equal to D because successive entries in a row differ by - 1 ,  0, or 1. 
Moreover, if the largest index of such an entry is j, then adding the suffix 
W ~ = % + l W j + I " " W T  gives a word in the neighborhood, and this justifies the 
decision to search forward. Finally, the length of a longest word in the neighbor- 
hood is bounded by T + D and so the sizes of L and V are adequate. 

The algorithm of Figure 2 spends O(I Z I T) time per call to G EN  and the number 
of calls is the number of characters in the trie of the neighborhood. The size of 
the trie is bounded by O ( T Z )  where Z is the number of words in the neighborhood. 
Thus the algorithm has a worst-case complexity of O([521TzZ). One can do quite 
a bit better, namely O ( T Z )  time, by better utilization of the information in the 
matrix rows. 

Note that as the search progresses forward through the trie a row whose 
minimum entry is D must be computed before computing a row whose minimum 
entry is greater than D. Consider the case where such a row is reached and it is 
further true that the last entry is not D. In this case the only extensions of the 
currently generated word that are in the condensed neighborhood are those that 
perfectly match the appropriate suffixes of W. That  is, if the j th entry is D, then 
adding W j gives a word whose distance from W is D and this is the only way to 
get a word this close to W. The one difficulty is that while the word may be in 
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the D-neighborhood, it may not be in the condensed neighborhood. For  example, 
when aba has been generated in the example of Figure 1, the current vector is 
(3, 2, 1, 1, 1, 2) and the possible extensions are the suffixes baa, aa, and a of 
W = abbaa. However; aba.aa is not in the condensed neighborhood as abaoa is. 
In essence, of the available suffix extensions, only those that do not have another 
as a prefix must be chosen. 

This difficulty can be efficiently handled with the failure links of the Knuth -  
Morr is-Prat t  construction [KMP]  used for exact keyword search. For  a word V, 
let failv(O ) = 0 and, for j ~  [1, I V[], let failv(j)  = max{k: V k is a suffix o f  Vj}. An 
array recording the values of fa i lv  can be computed in time linear in the length of V. 
For our problem, let J u m p [ T  - j ]  = T - failwR(j ) where W R is the reverse of W. 
For  index j, the indices Jump[j] ,  J u m p [ J u m p [ i l l ,  Jump[Jump[Jump[ j ] ] ]  . . . . .  are 
exactly those whose suffix extensions are prefixes of f s  suffix extension. Thus to 
check ifj's extension gives a word in the condensed neighborhood simply requires 
checking the above sequence until an index whose entry is D is reached (in which 
case reject) or until index T is reached (in which case accept). These checks are 
realized in lines 8-15 of the algorithm of Figure 3. In order to only spend O(T) 

5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 

array L[0. .  T + D, 0. .  T] 
vector V[0.. T + D], Jump[O.. T], Quick[O.. T] 

1. procedure GEN(i) 
2. { for a ~ Z  do 
3. { L[i] *- row(L[i -- 1], a) 
4. V[i] *- a 

if L[i, T]  = D then 
l/J1 .. i] is in ND(W ). 

else if minj{L[i,j]} = D then 
Quick[T] ~ T 
f o r j ~  T--  1, T - 2  . . . . .  0d o  

{ Quick[j] ~ Jump[j] 
if L[i, Quick[j]] ~ D then 

Quick[j] ~ Quick[Quick[j]] 
if Quick[j] = T and L[i, j] = D then 

V[1.. i] �9 W j is in ~-DD(W). 
} 

else 
GEN(i + 1) 

} 
} 

Compute Jump[O.. T]. 
L[0] ~- (0, 1, 2 . . . . .  T)  
if D = 0 then 

W is the only member of No(W). 
else 

GEN(I) 

Fig. 3. Refined neighborhood generator algorithm. 
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time, the indices are checked in decreasing order and Quick, a "short-circuited" 
version of Jump, is built on the fly. After indexj is processed in lines 10-12, Quick[j] 
either contains the smallest index on the Jump-chain from j whose entry is D, or 
T if there is no such index. This permits index j to be checked for suffix extension 
in constant time in lines 13 and 14. 

Figure 3 gives the improved variation of the algorithm of Figure 2. The search 
is more efficient because it stops as soon as a row whose minimum is D is reached. 
Each iteration of the loop of lines 2-18 takes O(T) time provided the concatenation 
in line 14 is not actually performed. It is shown in Section 5 that it is indeed 
unnecessary to actually concatenate the two strings. An iteration is either charged 
to the one or more words in the neighborhood reported in lines 6 or 8-15, or if 
line 17 is executed, then the iteration is charged to the vertex of the trie labeled 
with the current word. However, there are only O(Z) such vertices as each has 
outdegree lY, I > l. Thus the total time spent in the algorithm is O(TZ). 

A final improvement from O(TZ) to O(DZ + T) time is possible by observing 
that only a portion of the matrix L need be computed. As observed in several 
earlier papers [U2], [M2], only those entries L[i,j] for which [i - j [  < D can have 
a value less than D. Thus all the row queries of the algorithms above can be 
answered by computing only these portions of each row. Since this portion consists 
of at most 2D + 1 entries, the time for each execution of lines 3-18 can be reduced 
to O(D) worst-case time. This includes the extension step of lines 8-15 because it 
need only operate over the relevant indices. The O(T) term remains for the 
computation of the Jump-vector. 

4. Hit Probabilities and Neighborhood Sizes. In this section bounds are de- 
termined on the number of words in the condensed D-neighborhood of a word of 
length T, and on the probability of matching one of these words at a given position 
in a large and random database. Formally, let Z(T, D ) =  max{]N-~D(W)]: W is a 
word of length T}. Further let Pr(T, D) be the maximum of ~v~tw)IE]-Ivl over 
all words W of length T. If a database is the result of equiprobable Bernoulli 
trials over alphabet Z, then ]y~l-IVi is the probability of matching word V at a 
given position in the database. Thus Pr(T, D) is the maximum probability of 
matching a word in a condensed D-neighborhood of a word of length T at a given 
position in the database. Call Pr the hit probability and observe that if the data- 
base is of size N, then the number of occurrences of words in a neighborhood, or, 
equivalently, the number of hits is N • Pr(T, D). Expressions that bound both of 
these quantities from above are derived below. 

Every word V in the condensed D-neighborhood of a word W is exactly edit 
distance D from W as noted near the start of Section 3. Thus a very crude bound 
on Z(T, D) is to count the number of D-operation edit scripts on an arbitrary word 
of length T. This is an upper bound since some distinct scripts will produce exactly 
the same word, and others produce words not in the neighborhood. For  example, 
if W = abbaa, then deleting the fourth and fifth symbol produces the same word 
(abba) and inserting a b after the third symbol produces a word (abbbaa) that is 
not in Nl(abbbaa) because abba is. However, in making such an estimate counting 
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obviously redundant scripts that, for example, delete a symbol and insert another, 
as opposed to simply substituting the inserted symbol, can be avoided. Specifically, 
it suffices to consider only normalized scripts that may (0) insert some number of 
symbols before thefirst symbol of W, and at each position/symbol of W may either 
(1) do nothing, (2) delete the symbol, (3) insert some number of symbols after the 
position, or (4) substitute a different symbol and insert zero or more symbols after 
the position. 

Let S(T, D) be the number of D-operation edit scripts that adhere to restrictions 
(1)(4) above. These scripts do not allow the insertion of symbols before the first 
character of a word (restriction 0 above). Lemma 1 below presents a recurrence 
for S and a bound on Z in terms of S. 

LEMMA 1. 

1 

2[Xl 

S(T, D) = (2[Xl - 1)lXl 0-~ 

S T -  1, D) + S ( T -  1, D -  1) 
D 

+ (21Xl-  1) ~ IXlJ-~S(T-  1 , D - j )  
j = l  

D 
Z(T, D) < ~ IX[iS(T, D - j ) .  

j=0 

/ f D  = 0 ,  

if D= l and T =  I, 

i f D > l  and T = I ,  

otherwise, 

PROOF. S(T, 0) = 1 as there is only one empty edit script. In general, note that 
at a given position there is 1 script that deletes the symbol there, IX [J scripts that 
insert j symbols, and ([ E I - 1)112 [J-1 scripts that substitute a nonidentical symbol 
and then insert j - 1 new symbols. Thus S(1, 1) is 21Xl because we may perform 
one delete (1 script), perform one substitute ([ZI - 1 scripts), or perform one insert 
([E I scripts). For S(1, D) for D > l, there is only one position at which to perform 
D operations and deleting is not a possibility. Thus we may perform D inserts 
([Xl ~ scripts) or a substitute and D - 1 inserts ( ( IN[-  1)[2[ ~ scripts). Finally, 
in the general and recursive case we may either 

(1) do nothing at the first position and perform D edits at the remaining T -  1 
positions (S(T -- 1, D) scripts), 

(2) delete the symbol at the first position and perform D - i edits at the remaining 
T -  I positions ( S ( T -  1, D - 1) scripts), 

(3) insert j symbols after the first position for j e  [-1, D] and perform D - j  edits 
at the remaining T -  1 positions ([EIJS(T- 1, D - j )  scripts), or 

(4) substitute a nonidentical symbol and insert j - 1 symbols at the first position 
for j s [1, D] and perform D - j  edits at the remaining T -  1 positions 
((IXl - 1)lXlJ- 1S(T - 1, D - j )  scripts). 

Certainly Z(T, D) is bounded from above by the total number of normalized 
scripts. The only scripts not counted by S(T, D) are those with inserts before the 
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first symbol. The number of normalized scripts where j E [0, D] symbols are 
inserted before the first symbol is lY~IJS(T, D - j ) .  Thus Z(T, D) is bounded by the 
summation given in the statement of the lemma. [] 

To bound the probability Pr, a recurrence analogous to that for N is developed. 
In Lemma 2 below, Q(T, D) is the sum of the probabilities of matching each word 
generated by a normalized D-operation script that does not insert before the first 
character. Since different scripts generate the same word, its contribution may be 
summed several times, and so Q is not necessarily less than 1. It is a bound and 
not a probability. 

LEMMA 2. 

Q(T, D) = 

1/[Y~I r 

(31121- 1)/1121 

(21121 1)/lY~I 

Q ( T -  1,D)/1121 + Q ( T -  1, D - 1) 
D 

+ ~ 1 Q ( T -  1, D - j )  
j= 

if o = 0 ,  

if D =  1 and T = I ,  

if D > I  and T = I ,  

otherwise, 

D 
Pr(T, D) <_ ~ Q(T, D - j). 

j=O 

PROOF. The argument mimics exactly the proof of Lemma 1 except that now we 
multiply by 1/IE[ for each character that must be matched. For example, for the 
case T -  1 and D > 1, each of the I E[D insertion scripts produces a word that 
matches with probability ]El -~ and each of the (lY.[- 1)]Y~[ ~ scripts that 
substitute and insert produces words that also match with this probability. Thus 
the sum of the probabilities is 1121D/[Y~I o + (lY.I -- 1)1121~ D = (21121 - 1)/1121. 
As the second and final example, consider the recursive formula for Q. If nothing 
is done at the first position, then it will match with probability 1/112[ and the 
extensions, words obtained by performing D operations on the T -  1 other 
positions, will match with probability less than Q ( T -  1, D). This yields the 
Q ( T - 1 ,  D)/]121 term in the recurrence. If the first symbol is deleted, then 
a word obtained by performing D -- 1 operations on the other T -  1 positions 
must be matched and this happens with probability less than Q ( T -  1, D - 1). 
Inserting j symbols gives 112[J new symbols which along with the first position 
match with probability 1/I I21 j+ 1. The extensions match with probability less than 
Q(T - 1, D --j)  for a total contribution of Q(T - 1, D --j)/1121. Finally, the sub- 
stitute and j - 1 insert case yields a contribution of Q ( T -  1, D --J)(1121 -- 1)/[~1 
to the bound. Summing the four cases and performing a bit of algebraic simplifica- 
tion gives the central recurrence of the lemma. [] 
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With these recurrences in hand, the bounding expressions for Z and Pr given 
in Lemma 3 can easily be verified. Slightly tighter bounds for Pr are possible but 
not necessary since their use does not improve the complexity analysis which is 
dominated by the expression for Z. 

LEMMA 3. Let Bnd(T, D, c) = ((c + 1)/(c - 1))TcD[Z[ D. For all c > 1, 

N(T, D) <_ Bnd(T, D, c), 
c 

Z(T, D) < Bnd(T, D, c), 
c - 1  

Bnd( T, D, c) c Bnd( T, D, c) 
Q(T, D) < [Y~I T , Pr(T, D) _< c - 1 IXl T 

PROOF. A simple induction using Lemmas 1 and 2 suffices to verify the correct- 
ness of the bounds. []  

In the analyses of the algorithmic components that follow, T will be logls j N 
or a multiple thereof, where N is the size of the database being searched. Letting 
e = D/T be the permissible mismatch ratio, Lemma 4 below shows that both the 
Z and Pr quantities are proportional to a power of N that is a concave increasing 
function of e. 

LEMMA 4. 

where 

For T = loglz I N and D < T, 

Z(T, D) < 2N p~ and Pr(T, D) < 2N p~ 1, 

c + 1  
pow(e) = lOgls I ~ + e lOglz f c + ~ and c = e -1 + x/1 + e -~. 

PROOF. When T = lOglx I N and e = D/T, some algebraic manipulation shows 
that Bnd(T, D, c) = Bnd(loglx I N, e logr~ I N, c) = N "t''c) where 

c + 1  
~(e, c) = loglr~ I c ~  ~ + e loglz I c + e. 

A straightforward application of calculus further shows that the value of a(e, c) is 

minimized when e = e-1 + x/i- + e-2. In the statement of the lemma we let 
pow(~) = ~(~, c) for this choice of e. Since e ranges from 0 to 1, it follows that c 

ranges from 1 + x/~ and up, and thus c/(e - 1) is always less than 2. Thus it 
follows that Z(T, D) < 2N p~ The bound for Pr follows easily from the final 
observation that IX [ l~ = N. [] 
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Fig. 4. Plot of pow(e) and sample bounding lines. 

Figure 4 shows a plot of pow(e) for Z of sizes 4 and 20. Note that pow(e) < 1 
for e < 0.3303 and e < 0.5671 for these two choices of IEI. Further note that the 
function is concave and, for a fixed choice of c, ct(e, c) is an affine function of e that 
bounds pow(e) and is a tangent of the curve. For  example, when [El = 4, 
pow(e) <_ ~(e, 6.520) = 0.2230 + 2.352e. When IE[ = 20, pow(e) <. ~(e, 3.971) = 
0.1718 + 1.460e. The bounding lines in these two examples are plotted in Figure 
4. The value of c chosen for each line was that for which ~(e, c) = 1 exactly when 
pow(~) = 1. 

As noted in Section 2, T must be chosen to be an integer and so, in general, 
logl~ I N must be rounded up or down. Considering [E[ as a factor in the 
complexity, rounding up can increase Z(T, D) by a factor of[El  p~ and decrease 
Pr(T, D) by the same amount. Rounding down can decrease neighborhood size 
but increase match likelihood by the same factor. While in theory this is not 
important since E is assumed to be of a fixed and finite size, in practice we choose 
to round up for several reasons. As will be seen in the next section, this has the 
effect of increasing neighborhood generation time some (Z is larger) but decreases 
the space consumed by the record of positions matched in the database (Pr is 
smaller). So our first reason to round up, is that we prefer to trade time (which 
is unbounded) for space (which is bounded). Secondly, the next phase of the 
algorithm requires O(D log N) time per match versus the O(D) time spent per 
neighborhood word. Thus reducing the number of matches is more desirable than 
reducing the number of words generated. Finally, we have shown in Section 2 that 
we can conveniently accommodate rounding up for the index structure without 
increasing the time or space complexity of this facet. With this said, we henceforth 
assume [EI is a constant when expressing asymptotic complexity claims. 

5. Finding Hits with the Index. This section deals with the details of combining 
word generation with index lookups and characterizes the complexity and results 
of this first phase of the total algorithm. Consider the following statement 
of this first phase problem. A database A = ala2.. .an,  a word W of length 
T = [-logl~ I N-I, and a threshold D are given. Let 

Scorew(i) = min{b(a/ai+ l "" ah, W)}. 
h>_i 
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That is, Scorew(i ) is the score of the closest word to W that begins at position i 
of the database. Also let Hitsw(D) = {i: Scorew(i) < D}, i.e., the set of all positions 
in the database where a word in the D-neighborhood of W begins. The task is 
to compute Hitsw(D ). 

The solution is simply to run the generator algorithm of Figure 3 and as each 
word is generated, to look up the indices of the left ends of all occurrences 
of this word in A with the index. This set of positions, {i: 3V~No(W),  V = 
aiai+,'"ai+lvl-x},  is exactly the desired set Hitsw(D). This follows because if 
Scorew(i) <_ D, then there is some word in the D-neighborhood whose leftmost 
character is at index i, and certainly some prefix of this word is in the condensed 
D-neighborhood. 

Looking up a word V in the neighborhood takes O(T + DHv) expected time. 
Recall that the O(T) term is for computing the q~- (p-) code, and that the O(DHv) 
term is for verifying the Hv instances found in the relevant index bucket. If realized 
exactly as described above the time to find all occurrences of all words in the 
neighborhood would thus be O(TZ + DH) expected time where Z is the size of 
the condensed neighborhood and H = I Hitsw(D)l is the number of hits. However, 
the T-term is eliminated by noting that codes can be generated in parallel with 
the neighborhood words. That  is, as each character is added to the string 
V in Figure 3, the q~-code is easily updated using its defining recurrence, q~(Va) = 
~o(V)[ZI + q~(a). Moreover, for those words that consist of concatenating the 
current word with a suffix of W in line 14 of Figure 3, it is not necessary to perform 
explicitly the concatenation to do the lookup. If the current word, V, is of length 
less than T, then consulting a precomputed, (T + 1)-element table of the codes of 
every prefix of W allows the required code to be delivered in O(1) time. 4 Whatever 
suffix of W remains is then used in checking for matches at each position in the 
appropriate bucket. Thus, as promised earlier, all words, as well as their codes, 
are effectively computed in O(DZ + T) worst-case time and the appropriate 
buckets of the index are checked for hits in O(DH) expected time. 

L E M M A  5. Given a precomputed index as described in Section 2, an aloorithm to 
compute Hitsw(D ) in O(DN p~ + T) expected time exists and H < 2N p~ 

PROOF. From Lemma 4 it follows that, for a database of size N, H is on average 
Pr(T,D) x N < 2NP~162 1-pow(D/T) where x = [EIT--IogJ~JN E[1, [Eli. Thus the 
result on the size of H follows. Lemma 4 also asserts that Z is O(N'~ 
However, then the result immediately follows as the procedure just described takes 
O(D(Z + H) + T) expected time. []  

As will be subsequently seen, we also need to solve a "reverse" version of the 
first phase problem. Specifically, let Scorew(i) = minh<i{6(ahah+ l ' " a i ,  W)} and let 

4if in line 14 the neighborhood word is V[1..i]e W j and i< T, then we need the code for 
VeW[j + 1..j + (T--i)] and the remainder, suffix W j+(r-~ must be checked against bucket 
positions (or suffix W j+(T-i) in the case that the parameter R = 0 for the index structure). However, 
the required code is simply ~o(V)IZI r-i + q~(W[j + 1..j + (T -- i)]) and with the table of codes of every 
prefix of W, the code for W[k.. hi is simply q~(Wh) -- q~(Wk-0[E[ h-k+ 1. 
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Hi t sw(D ) = {i: Scorew(i  ) <_ D}. These quantities are analogous to their unbarred 
counterparts above except that they address where matches end as oppose to where 
they begin. Computing Hitsw(D)  requires a simple modification of the word 
generator and index lookup. The key observation is that 

Hi t sw(D ) = { i: 3 V �9 -N--Do(WR), V R = ai -IV I +, ai - IV I + 2 " "  ai} 

where W R, the reverse of W, is WTWT_ 1 " " W l .  5 Thus it suffices to generate the 
condensed neighborhood of the reverse of W and then lookup the positions at 
which the reverse of the neighborhood words match A. The one subtlety is that 
we have an index for left-to-right matching and we cannot afford the time to 
reverse a neighborhood word. This is easily solved by computing the "forward" 
codes of the reverse words as they are generated by observing that ~0((Va) R) = 
~o(aV) = q~(a)lE] Ivl + ~0(V). In addition, the "concatenation" problem for line 14 
of Figure 3 can be solved with the O(T)  table of prefix codes in a fashion similar 
to that proposed above. Thus we can find the left end of a match to the reverse 
of a neighborhood word at no additional overhead. For  each such location i at 
which V R matches, we need simply record in Hitsw(D)  the right end of the match, 
i + l g l - 1 .  

6. Extending Hits. We now turn to the problem of handling a query W of length 
P >> T = [-lOgl~ INT. Throughout  this section we assume that P I T  is a power of 
2, i.e., P = 2KT for some K. The case where it is not is treated at the  conclusion 
of this section. To begin, we review traditional dynamic programming approaches 
and their graph-theoretic interpretation as finding shortest paths in an edit graph. 
With this machinery we prove the decomposition lemma described in the overview. 
Finally, we show how to apply this lemma to finding all approximate matches to 
W in the database A. 

As noted at the start of Section 3, comparison of word W against another word 
A can be achieved with the computation of a dynamic programming matrix 
L[0. .  N, 0 . .  P] where 

L[~, j] = ~(A,, Wj) 

-- min{L[i, j - 1] + l, L[ i  -- 1, j ]  + 1, 

L[ i  -- 1, j -- 11 + (if  a i = wj  then 0 else 1)} for i , j > O .  

For the cases where i or j is zero, we have L[i ,  0] = L[0, i] = i. From a graph- 
theoretic perspective, we can also view the problem as follows. Given A and W, 
construct a graph with vertices (i,j) for i � 9  [0, N] and j � 9  [0, P], arranged in an 
N + 1 by P + 1 grid or matrix as illustrated in Figure 5. For  vertex (i,j) there are 

5 Care must be taken here to realize that {VR: Ve~oo(WR)} is not equal to N-~D(W). On the other hand, 
equality does hold in the case of No(W). 
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up to three edges directed out of it: 

(1) A deletion edge to (i + 1,j) (iff i < N). 
(2) An insertion edge to (i,j + 1) (iffj < P). 
(3) An alignment edge to (i + 1,j + 1) (iffi < N a n d j  < P). 

In the resulting edit graph, all paths from source vertex (0, 0) to sink vertex (N, P) 
model the set of all possible alignments between A and W with the following 
simple interpretation: a deletion edge to (i,j) models leaving ai unaligned, an 
insertion edge to (i,j) models leaving w~ unaligned, and an alignment edge to (i,j) 
models aligning a i and wj. If we weight deletion and insertion edges 1 and 
alignment edges 0 or 1 according to whether ai equals wj, then the problem 
of finding a minimal cost alignment between A and W is equivalent to finding 
a minimum cost source to sink path in the corresponding edit graph. The 
correlation to the matrix L is that L[i,j] is the cost of the minimum path from 
the source to (i, j). Since the edit graph is acyclic, the shortest paths to each vertex 
may be computed in any topological order of the vertices using the recurrence 
defining L. 

The preceding treatment was for the problem of comparing all of A against all 
of W. For approximate keyword searching, we seek substrings of A that align to 
W with less than D differences. In the respective edit graph, a d-path (i.e., a path 
of cost d) from vertex (i, 0) to vertex (j, P) models an alignment between A[i + 1..fJ 
and W with d differences. Thus, we are seeking paths from "row" 0 to "row" P 
whose cost is not greater than D. That is, in this version of the problem, any vertex 
withj  = 0 can be a potential source vertex, and any vertex with j = P, a potential 
sink. We can accommodate this shift by simply changing the boundary for the 
recurrence for L to be L[i, 0] = 0, i.e., all values along row 0 are set to zero. With 
this modification it is easy to show that L[i,j] = minh{~(A[h., i], Wj)}, the shortest 
path to (i, j) from some vertex in row 0. Thus, ai is the right end of an approximate 
match iff L[i, P] < D. In the treatment that follows, we compute the matrix L for 
a number of different query words. Thus, we let Fee be the approximate match 
matrix for query W. We use F to denote "forward," for there will also be occasion 
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to view this problem in its reverse sense. Namely, let 

Rw[i,j] = minh{tS(A[i + 1.. hi, WJ)}, 

the shortest path from (i, j) to some vertex in row P. In this case the recurrence 
for Rw is by analogy seen to be 

Rw[i,j] = min{Rw[i, j + 1] + 1, Rw[i + 1,j] + 1, 

Rw[i + 1,j + 1] + (if ai+ 1 = wj+ t then 0 else 1)} 

for i < N and j < P .  

The boundaries are given by Rw[N,j]  = P - j  and Rw[i, P] = 0. Note that, in 
this case, ai+l is the left end of an approximate match iff Rw[i, 0] _< D. 

Let diagonal k of an edit graph be the set of vertices {(i,j):i - j  = k}. Note that 
a d-path that begins or ends in diagonal k must lie entirely between diagonals 
k - d and k + d as it requires a deletion or insertion to move from one diagonal 
to another. In the algorithm that follows there will be occasion to determine if 
there is a D-path from row 0 to row P lying between two diagonals k < h. Note 
that it suff• to apply either the forward or reverse recurrence over just the 
vertices lying in the parallelogram-shaped region between the diagonals, i.e., if the 
value at a vertex between the diagonals depends on the value of a vertex outside 
the diagonals, simply ignore that vertex's contribution to the three-way minimum 
of the recurrence. Let F~  h denote the values of the forward recurrence when 

F k h r  i .'1 evaluated over just this region of the edit graph. Naturally i~ L ,JI is the value 
of a minimum cost path to (i, j) over all paths lying between diagonals k and h. 
Thus there is a D-path from row 0 to row P between diagonals k and h iff 
R~ph[i, 0] _< D for some i e [k, hi, or iffFkph[i, P] < D for some i e [ k  + P, h + P]. 

With these preliminaries, we now proceed to the central lemma which we 
efficiently lever to extend matches to subwords of W of length T, to approximate 
matches to all of W. Consider dividing the query W in a binary fashion until all 
pieces are of size T = [-loglz L N-] (recall we are assuming P = 2KT). To model the 
various pieces, let W~ for a s {0, 1}* be recursively defined by the equations W~ = W, 
W~o = W~[1.. I W~I/2] (the first half of W~), and 14z~1 = W~[I W~,[/2 + 1.. [W~I] (the 
second half of W~). Figure 5 illustrates the decomposition as well as the proof of 
Lemma 6 below. Note that, for a given length k < K, there are 2 k distinct labels 

of that length and the strings W~ are all of length 2r~-kT = P/2 k. Let P~ = P/2L~ f 
denote the length of W~ and let D~ = [_D/21~I_] be the match stringency to W~ 
required in Lemma 6 below. 

LEMMA 6. I f  W aligns to a string V with not more than D differences, then a word 
a exists such that, for every prefix fl of ~, Wp aligns to a substrin9 Vp of V with not 
more than D~ differences. Moreover, Vp~ is a prefix or a suffix of V~ according to 
whether a is 0 or 1. 

PROOF. We show that under the hypothesis it follows that either Wo or W1 aligns 
to a prefix or suffix, respectively, of V with not more than [_D/2_] differences. 
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Applying this observation inductively gives the result. If W aligns to V with not 
more than D differences, then as illustrated in Figure 5 there is a source to sink 
path of cost D or less in the corresponding edit graph. The path passes through 
one or more vertices on row P/2. Consider the two subpaths consisting of that 
part of the path from the source to its first vertex in row P/2 and the part from 
its last vertex in row P/2 to the sink. By the Pigeonhole Principle, one of these 
two subpaths must have cost not greater than [_D/2_J. If it is true for the first part, 
then simply observe that the subpath aligns W0 and a prefix of V. If it is true for 
the later subpath, then there is an alignment of cost LD/2_J or less between W1 and 
a suffix of V. []  

Note that the conclusion of Lemma 6 may be rephrased as: a label c~ exists such 
that, for every prefix fl of ~, Wp e-matches a substring Vp of V. This follows simply 
because for each fl the mismatch ratio of the match between Wp and V~ is 
Da/] Wp[ = [._D/2 Ip I J/(P/21 al) < DIP = e. Moreover, while the induction of the proof 
yields the conclusion on progressively smaller subwords, the lemma gives the 
strategy for extending approximate matches to progressively larger subwords of 
IV, For  example, if an e-match to Wololl is found, then check for an e-match to 
W01ol and if successful then check for an e-match to Woxo, and so on, until either 
one fails to match at some level or succeeds in matching all of W = W~. If this 
extension strategy is applied to all e-matches to all subwords Vr of length T, then 
one is guaranteed to detect all e-matches to W by the lemma. 

The one difficulty in applying the extension strategy is that in a region where 
there is a particularly stringent match, an excessive amount  of time can be spent 
if we proceed one match at a time. For  example, if Fw[i, P] = 0, then it is 
guaranteed that Fw[i +_ d, P] < d because entries along a row or column of the 
dynamic programming matrix change by - 1, 0, or 1. That is, if there is a 0-match 
at a particular position, then there are guaranteed to be 2D additional matches 
in the immediate neighborhood. Moreover, since W exactly matches this location, 
then W~ matches at corresponding locations for every ~. Each of these exact 
subword matches implies D, matches immediately about them, all of which if 
extended individually would uncover the same matches at the level above. 
Extending each match of length T would result in the O(D) matches to W being 
discovered O(D K) times. So clearly, the matches at each level must be accumulated 
before proceeding to the next. Moreover, extensions of adjacent matches must be 
pursued simultaneously as otherwise the O(D) matches at the upper level will be 
uncovered O(D 2) times by the level below. 

Let F~ = {i: Fw~[i, P~] < D~}, the set of positions at which an e-match to W~ 
ends. Similarly, let R~ = {i: Rw~[i,O ] < D,}, the set of positions at which an 
e-match to W, begins. Our goal is to compute a representation of either F,  or R~ 
for all ~ in decreasing order of label length. Certainly this suffices because F~ is 
the set of right ends of e-matches to W, and R, gives the left ends. Term a list of 
ordered pairs C = ((11, u,), (/2, U2) . . . . .  (ln, Un) ) where l k ~ U k < Ik+l, a covering list 
of set X if and only if U~ = 1 [lk, uk] --~ X. For  each a of length less than K our 
algorithm computes a covering list for F~o and one for R=,. Moreover, these 
coverings are parsimonious in that if C covers F=(R,), then l k, u k e F=(R=) and 
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1. function FGEN(w, d) 
2. { S ,,- Hits~(d) 
3. Sort S 
4. G * - ~  
5. u ~  - d - 2  
6. for k ~ S in increasing order do 
7. { if k - d > u + l then 
8. { i f u > 0 t h e n G ~ G � 9  
9. l*--k 

10. } 
11. u*--k 
12. } 
13. if u > O then G ~ Ge(l, u) 
14. return G 
15. } 

Fig. 6. Generating F~'s covering list when le[ = K. 

lk+ 1 - - U  k > D, + 1 for all k. Note that these additional conditions uniquely 
determine the covering list. Furthermore, because values change along a row by 
- 1, 0, or 1, it follows that for every pair (I, u) either Fw~[l, P~] = Fw,[U, P~] = D~ 
or Rw,[l, 0] = Rw,[U, 0] = D, depending on whether the list covers F,  or R~. 

Initially, the process is started by computing coverings for F,(R~) where P~ = T 
using the generator algorithm of Lemma 5 as a subroutine. Simply observe that 
F~ = {i: minh_ <i{t}(ahah+ 1"'" ai, W,)} _< D} = Hitsw,(D,). Thus producing a cover- 
ing list for F~ consists of simply invoking the reverse generator to compute 
Hitsw~(D~), sorting the resulting set of indices with any O(H log H) sort, and then 
producing the desired covering list in a simple O(H) scan of the sorted index list. 
This process is encapsulated in the procedure FGEN(w,  d) in Figure 6. Computing 
a covering for R, follows analogously with the observation that it equals 
Hitsw,(D~) -- 1 where the notation X - 1 denotes {i - 1: i ~ X}. Assume that pro- 
cedure RGEN(w,  d) computes coverings for R-sets for subwords of W of length T. 

With the basis of the induction handled by the generator algorithms, we now 
turn to the induction: given covering lists for F~o and R,1, how do we compute a 
covering list for F~(R,)? Consider the edit graph for W~ versus A and a path between 
rows 0 and P~ of cost no greater than D,. Suppose this path passes through row 
P J2  = P,o = P~I  at vertex (i, P~o). Then, by Lemma 6, i must be a member of 
either F,o or R,1 and hence covered by a pair (l, u) of the appropriate covering 
list. We show that the entire path must lie between diagonals l - P~o - A, and 
u - P~o + A~ where A~ = D~ - D~o. Suppose that i ~ F~o; the case where i ~ R~I is 
entirely symmetric. This implies that the first part of the path from row 0 to vertex 
(i, P~o) costs D~o or less, say it is d. As observed earlier, since this d-subpath ends 
in diagonal i -  P~o, the entire subpath must lie between diagonals i - P ~ o -  d 
and i - P~o + d. However, since i ~ [l, u] and D~o < A~ it follows that the first part 
of the path lies between the desired diagonals. Now, the remainder of the path 
from (i, P~o) to row P~ has cost no greater than D~ - d. As noted when covering 
lists were introduced, Fw~[X, P~o] = Fw~o[ x, P~o] = D~o for x =  l and x = u. 
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Moreover ,  since values change by - 1 ,  0, or  1 along a given row it follows 
that  d = Fw~[i, P~o] cannot  be less than  Fw~[l, P ~ o ] -  ( i -  l) nor  less than 
Frr P~o] - (u - / ) .  Thus  d > D~o - min{i - l, u -- i}. However ,  then it follows 
that  the second par t  of  the pa th  must  lie between diagonals  

i -- P~o -+ (D, -- d) _ i - P,o -+ (D, - (D,o - min{i - l, u - i})) 

= i - P,o + (h ,  + min{i - 1, u -- i}) 

_~ [I - -  P~o - -  A~,  u - P~o + A j .  

In the last p a r a g r a p h  we showed that  if there is a pa th  between rows 0 and P~ 
of cost D~ or less in the edit g raph  of W~ versus A, then it must  lie entirely between 
diagonals  l - P,o - A~ and u - P,o + A, for some pair  (l, u) in the covering list 
of F~o or R~I. Let L,  be the covering list of  

{[I -- P=o - A~, u -- P=o + A j :  (l, u)6F=o w R=I } 

that  is as pars imonius  as possible, i.e., span(L,) = ~ , = ,  [Uk -- Ik + i I is minimal  
and a m o n g  those lists whose span is minimal,  L~'s cardinality,  n, is smallest. This 
list is computab le  in t ime linear in the size of  the lists F,o and R,1 with the call 
UNION(F~o, R,I ,  A,,  P~o) to the subrout ine  U N I O N  shown in Figure 7. It  consists 
of  s imply merging the two ordered lists while " expand ing"  each pair  by A, and 
" t rans la t ing"  each by - P ~ o .  Trans formed  pairs whose intervals over lap are fused 
into a single pair  representing the combined  interval. 

F r o m  the two preceding pa rag raphs  it follows that  to compu te  F ,  it suffices to 
compu te  Fw~ only between those diagonals  given b y  pairs of  the list L, .  Formal ly ,  

1. function UNION(L 1, L2, d, p) 
2. { G *- ~5 
3. u+-- - d - 2  
4. whi le  L 1 ~ ~ or L 2 r ~ do 
5. { i f  L 2 -~ ~ or head(L1), l < head(L2), l then 
6. (i, j) ~ pop(L1) 
7. else 
8. (i, j) ~ pop(L2) 
9. i f  i - d > u + 1 then 

10. { i f u _ > p a n d l < N - p t h e n G ~ - G � 9  
11. l ~ i - d  
12. } 
13. u +--j + d 
14. } 
15. i f  u_> p and l < N - p  then G ~  G � 9  u - p )  
16. return G 
17. } 

Fig. 7. Merging covering lists. 
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1. function FSCAN(L, w, d) 
2. { G ~  
3. u ~  - d - 2  
4. while L ~ ~ do 
5. { (i, j) *-- pop(L) 
6. Compute vector F{j[?, p = Iw[] 
7. for k ~- i + p to min[j + p, N} do 
8. if F~J[k, p] <_ d then 
9. { if k - d > u + l then 

10. { if u _> 0 then G ~- G �9 (/, u) 
11. l~-k  
12. } 
13. u ~ k  
14. } 
is. } 
16. if u >_ O then G ~ G�9 u) 
17. return G 
18. } 

Fig. 8. Generating F,'s covering list from L~ when I~[ < K. 

�9 . l,u . _ D~}. Replacing F with R gives the analogous result 
for R,. Let FSCAN(L ,  w, d) be a procedure that computes F{~ u for each pair 
(/, u) on the list L and examines the last row of this computation to build 
a covering list of the entires that are less than d. The algorithm is sketched 
in Figure 8 primarily to confirm the details of the covering list construction. 
The time required by this procedure is O(]w[ x span(L)) and the space required is 
O(max{l - u + 1 : (I, u) 6 L}). The space requirement could be O(N) in the worst 
case but in expectation it is O(D). By virtue of the preceding remarks it follows 
that the list returned by the call F S C A N ( L , ,  W~, D,) is a covering list for F,.  We 
assume an analogous procedure R S C A N ( L ,  w, d) that computes a covering list for 
R-sets. 

The overall algorithm in terms of the subprocedures - -FGEN,  R G E N ,  F S C A N ,  
R S C A N ,  and U N I O N - - i s  given in Figure 9. The recursive procedure LIST(a)  
returns a pointer to the covering list L,. When [a[ = K - 1, it does so by generating 
covering lists for F,o and R,1 with the appropriate calls to the neighborhood-based 
algorithms F G E N  and RGEN.  It then combines these to form L~ with a call to 
U N I O N .  When[a[  < K - 1, the difference is that recursive calls to L I S T p r o d u c e  
L~o and L~I which are then used by F S C A N  and R S C A N  to produce the covering 
lists for F~o and R,~. At the top level, when L~ is returned it suffices to call R S C A N  
to obtain a covering list of the positions at which approximate matches to W 
begin. A call to F S C A N  would produce a covering list of the right ends. For  these 
top level calls to the S C A N  routines, the term - d  in line 9 of Figure 8 should be 
removed in order to produce covering lists whose covered positions are exactly 
the indices at which approximate matches begin or end. 

The various covering lists are assumed to be implemented as simple linked lists 
of integer pairs. Note that each of the subroutines presented in Figures 6-8 are 
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list o f  pairs G 
1. function LIST(g) 
2. { list o f  pairs H 
3. i f  l al : K - 1 then 
4. { H ~ FGEN(W~o, D~o ) 
5. G ~- RGEN(W,1 , D~I ) 
6. } 
7. else 
8. { H ,-  FSCAN(LIST(g0), W~o, D~o) 
9. G ~- RSCAN(LIST(gl), W~I, D~I ) 

10. } 
11. return UNION(G, H, A~, P,o) 
12. } 
13. G +-- LIST(e) 
14. Report intervals in RSCAN(G, W, D) 

Fig. 9. The sublinear algorithm. 

careful to consume (via pops) their input lists as they produce their resultant lists. 
Thus the algorithm of Figure 9 is carefully structured so that at a given instance 
there is never more than the list G of the current recurrence level, and one list 
H pending a U N I O N  at each level of the recurrence. This feature is very 
important  to the space requirement of the algorithm proven in Lemma 7. 

LEMMA 7. Given that A is the result of equiprobable Bernoulli trials and that 
pow(e) <_ 1, the algorithm of Figure 9 in expectation takes O(DN p~176 log N + P) 
time and O(N p~ + P) working space (excludes the index). I f  A does have matches 
to W, then in the worst case O(DP) time is spent on each of these occurrences. 

PROOF. First, consider the time spent in calls to FGEN and RGEN. The number 
of calls to each is P/2T. Observe that, when I~[ = K, D~ equals a = [_eTA. By 
Lemma 5, it takes 0((o- + 1)N p~ + T) expected time to produce S in line 2 
and it is of size N p~ Further sorting S and producing the covering list takes 
O(N p~ log N p~ additional time. There are two cases to consider. First, if 
e < l/T, then a = 0 and N p~ = N p~176 = N o = 1. Thus, in this case, each call 
to FGEN or RGEN takes O(T) time in expectation, for a total over all PIT  calls 
of O(P) time. For  the other case where e > 1/T, note that PIT  < eP = D. Thus the 
time taken in line 2 over all calls is 

O(P/T(aN p~ + T)) = O(P/T(eTN p~ + T)) = O(ePN p~ + P) 

= O(DNpOW(~) + P). 

The time taken for the sort and covering list construction is 

O(P/T(N l'~ log Nv~ = O(DN v~ log N). 
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Thus, the total expected time spent in the GEN subroutines is within the bound 
of the lemma. 

The time spent in a call to UNION is linear in the sizes of the lists produced 
by the corresponding calls to FSCAN and RSCAN. Thus the total time spent in 
calls to the SCAN routines dominates the time spent in UNION. Extending the 
proof of Lemma 4, observe that Bnd(n logl~ I N, ne logl~ I N, c) = N ~(~'c) and thus 
Pr(rcT, riD)< 2N ~(p~ Thus it follows that the expected number of ap- 
proximate matches to a word of length P,  with no more than Do differences is 
less than N x Pr(2~ 2"eT) _< 2N/N 2a(x-p~ where a denotes K -- [e[. Now a 
covering list for Fo or R, has this many elements in expectation, each pair giving 
an O(Do) width interval about an approximate match. Because Lo is the union of 
Foo and R~I it follows that it has less than 4N/N 2~176 intervals of expected 
width O(D,). Thus, the expected time spent in a call to FSCAN(Lo, W~, Do) is 
O([L, IDoPo) = O(e, NT24a/N2"-~(1-P~ The same amount of time is spent in a 
call to RSCAN and there are a total of P/(2"T) such calls made on words of length 
P~. Thus the total time spent on words of length Po is O(DNT(2"/N 2"-'~ -pow(~))). 
Over the entire course of the algorithm, a runs from 1 to K, so the total time 

r - 1  -po~,))). For  e in spent in calls to FSCAN and RSCAN is O(DNT ~c=o 2c/N2~1 
the range of interest we can assume N ~ -power) > 2 and so the progression of terms 
in the summation above approach zero hyperexponentially. Thus the sum is 
asymptotically dominated by the first term and we can conclude that in expecta- 
tion O(DNT/N ~-p~ = O(DNpO,,) log N) time is spent extending hits. 

As stated in the first paragraph of the proof, the size of the "Hit  list" S used in 
R GEN and F G E N  is N p~ = O(NP~ Thus the bound on space is observed 
at the lowest level of the recursion, since only one S is in existence at any given 
time. At an arbitrary point in the computation there are some number of H lists 
at distinct levels of the recursion, awaiting the production of the G list to which 
they will be merged. Each H is a covering list of F,  for some c~ and so as argued 
above is of expected size 2N/N z~ -po~(~)). Thus the total space occupied by the at 

K most K H lists at distinct levels is O(N ~ = o  N~ N2~O -pow(e))). As noted previously, 
this sum is dominated by the first term which is O(Np~ At any moment there 
is at most one G list in existence, so certainly the space claim is not exceeded by 
the covering lists created and destroyed during the course of the algorithm. [] 

We conclude this section with a discussion of how to treat the case where PIT 
is not a power of 2. To make a beginning, consider the case where P is a multiple 
of T. The difficulty here is that progressively halving W does not lead to pieces 
of size T. The key to handling this is to observe that W could equally well have 
been divided into thirds, then the thirds split in third, and so on without changing 
the principle aspects of Lemma 6, the algorithm, and its complexity. Specifically, 
for a word W such that its length P = 3 r T  for some K, we could have let W~ for 

~ {0, 1, 2}* be recursively defined by the equations W~ = W, W,o = W,[1 .. [ W,[/3] 
(the first third of W~), W~I = W~[[ W,[/3 + 1.. 1W,12/3] (the second third of Wo), 
and Wo2 = Wo[[ W~[2/3 + 1.. [W o[ ] (the last third of W~). If we had then let 
D, = [_D/3 I~ be the match stringency to Wo, then Lemma 6 as stated would 
remain true. Moreover, in analogy with the argument given for producing L o in 
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Figure 7, it can be shown that all paths of cost D, or less in the edit graph of W, 
versus A, must lie on the set of diagonals: 

U {[1 - P,o -- D~, u -- P~o + D j :  (1, u) e F~o } 

u {[-I - P,o - P,1 - D,, u - P,o - P , i  + D~]: (l, u) e F , i  w R~z }. 

Certainly, a covering list L, of this set can be built with a three-way merge of 
covering lists for F,o, F,l ,  and R,2. Note that in this case we must expand each 
pair (l, u) by D~ as opposed to A, and thus the F S C A N  (RSCAN) procedure over 
the covering list L,  may take twice as long as before, but this inefficiency does 
not affect the asymptotics of the complexity argument. Thus, in almost exact 
analogy with the development of the algorithm of Figure 8, we could have 
proceeded to build an algorithm based on three-way merges. Moreover, the 
complexity would remain unchanged since the critical sum, ~f=o 2c/N2~ -vow(e)), 
in the analysis becomes ~ff=o 3C/N 3~176 which still converges hyperexpo- 
nentially. 

Taking this idea a little further, observe that as we partition W into pieces we 
may split these pieces into halves or thirds on an individual basis. The only 
difficulty is how to distribute the errors in the case where an even split is not 
possible, e.g., if P = l l T ,  then "halving" it gives pieces of sizes 5T and 6T. An 
easy extension of Lemma 6 shows that if W aligns to V with not more than D 
differences and W = Wo W1, then either Wo aligns to a prefix of V with not more 
than [_DlWol/IW[_J errors, or W~ aligns to a suffix of V with not more than 
LD[ W~ I/I wI]  errors. Thus an uneven split does not create a problem, we still seek 
e-matches to the subparts. So our solution involves repeatedly halving W into 
pieces whose length is divisible by T until pieces of size T or 3T result. Those 
pieces of length 3 T are split into thirds and then processed as a three-way merge 
as discussed above. For  example, i f P  = 7T, then Po = 3T, P1 = 4T, Poo = Pol = 
P o 2 = T ,  P l o = P o l = 2 T ,  and P l o o = P l o ~ = P l l o = P i l i = T .  Such a sub- 
division method always applies when T divides P, and requires finding e-matches at 
each level. Note that three-way merges are always confined to the deepest level and 
that the expected time still decreases hyperexponentially as we move up the decom- 
position hierarchy. Thus this approach continues to guarantee O(DN p~ log N) 
expected time under the more general condition where T divides P. 

Finally, consider the case where P is arbitrary. Our technique for this case 
requires that P must not be less than T 2 or f~(log 2 N) in order to maintain the 
asymptotic complexity claim. In principle this is permissible since we need to prove 
the result only for N and P sufficiently large. So suppose P > T z and let a = [_P/TJ 
and b = P(mod T), i.e., P = aT + b where b < T. Now it is possible to subdivide 
W into a pieces using the 2- and 3-splitting method, where b of the pieces are of 
length T + 1 and the rest are of length T (this requires that P > T2). For  the 
pieces of length T + 1, finding e-matches to them requires the generation of 
O(IE I~'~ p~ words for a [ E  I-factor increase in time for this phase (recall the 
discussion at the middle of p. 357). Since I~1 is assumed to be a constant from an 
asymptotic point of view, we are done. In practice this works very well since the 
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per-word cost of generation is much less than that the per-hit cost of extension. 
For queries that are very short, we divide W into pieces of length T +_ c for small 
c, in a fashion that gives the best performance possible. 

7. Practical Experience. In order to determine the practical efficiency of our 
approach to the approximate keyword searching problem, the theoretical 
algorithm described in the preceding sections was implemented in the C pro- 
gramming language. The implementation effort amounted to about 1500 lines of 
software. The index data structure was implemented exactly as described in Section 
2. For the algorithm proper, however, a number of practical considerations require 
slight variations on the theoretical design and these are described in the next two 
paragraphs. 

Three small observations improved the practical performance of the word 
generation and lookup phase of the algorithm. First, in practice there is no 
advantage in going from the O(TZ) version to the O(DZ + T) version that 
computed only the relevant 2D + 1 entries of each row. For the small values of 
T and D actually involved (e.g., T E [5, 10] and D ~ [0, 4]), the overhead of checking 
which entries to compute outweighs the straightforward calculation of the entire 
row. Secondly, using the KMP construction to avoid generating words not in the 
condensed neighborhood was similarly found to be ineffective in practice because 
it eliminates very few words in expectation. The third variation involves the 
interaction of the generation of words with their lookup in the index: Specifically, 
in the case where a word of length T has been generated that is still a proper 
prefix of a condensed neighborhood word (i.e., there is an entry less than D in the 
current row), then this word is looked up in the index immediately, and the 
extensions of the individual matches to this word are checked for membership in 
the condensed neighborhood by continuing the computation of the dynamic 
programming matrix on the extension. This is more efficient in practice because 
there are always at least ]EI extensions of the word in the condensed neighborhood, 
but on average only one occurrence of their T-symbol prefix in the database. 

The last and most significant deviation from the theoretical algorithm described 
above is in the way Hitsw(d) (Hitsw(d)) is recorded and sorted in lines 2 and 3 of 
FGEN (RGEN). An array S of bits is used to record the position of the hits. 
Initially all bits are set to zero and whenever a word is generated that matches at 
position i, then the ith bit of S is set. Thus at the conclusion of word generation 
S[i] is set iff i ~ Hitsw(d). Simply reading off the set bits left to right gives the hit 
list in sorted order. We take this another step farther by recording both the forward 
generation on W~o and the reverse generation on W,1 for what would normally 
be the calls to FGEN and RGEN at the bottom level of the recursion of the 
function L I S T  in lines 4 and 5. That is, instead of calling these two routines, we 
establish the bit array S so that S[i] = 1 iff i ~ Hitsw~o(D~o ) w Hitsw~l(D~O. Then 
we call a special version of U N I O N  which produces the covering list for L, in a 
single left-to-right pass over the array S. As regards space, this is not too great a 
cost, since S requires N/8 bytes versus the 6N bytes required by the index itself. 
While avoiding a couple of covering list constructions, the potential pitfall is that 
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the scan of S takes O(N) time as opposed to the O(N v~ log N) time taken by a 
sort over a listing of the hit set. This inefficiency for sparse problems (i.e., small 
e) is rectified as follows. On the computers in our laboratory an integer occupies 
32 bits and S is realized as an N/32 element array of integers. The left-to-right 
scan only needs to examine the bits of an integer if it is nonzero, i.e., one of its 32 
bits is set. Thus the time for the scan is improved by a factor of 32 for sparse 
problems, but this may still be too inefficient. So a second array T of N/322 = 
N/1024 integers is maintained such that the j th bit of T is set if and only if the j th 
word of S is nonzero. This requires twice as much time when a bit, say i, of S must 
be set, because the i/32th bit of T must also be set. However, for sparse problems, 
only N/1024 integers need to be checked during the scan, and only those 1024 
position stretches containing hits are examined further. We could extend this idea 
recursively, essentially arriving at a logarithmic scheme, but we found that a 
two-tiered approach was quite sufficient for problems where N is in the 1 million 
to 10 million range. 

We compared our implementation against an implementation of the standard 
O(NP) dynamic programming algorithm IS], the O(DN) expected-time algorithm 
of Ukkonen lU l l ,  [MM],  and a novel use of the 4-Russians paradigm that permits 
the dynamic programming matrix to be computed five entries at a step EWMM]. 
In all cases the software had been written at an earlier time by this author and 
represent his best efforts at efficient code. All experiments were performed on a 
SparcStation 2 with 64 megabytes of memory and all code was compiled under 
the standard SunOS C-compiler with the optimization option on. For each timing 
result reported, we ran the given algorithm enough times so that the total elapsed 
time was at least 100 seconds and then averaged. Given that the system clock is 
accurate to about 0.1 to 0.2 seconds, timing results are figured to be accurate to 
the third digit. A random query of length 80 was searched against a random (every 
symbol equally likely) database of a million symbols for a four-letter alphabet, 
and 4 million symbols for a 20-letter alphabet. A plot of the results is shown in 
Figure 10. The curves for the standard dynamic programming algorithm are 
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Fig. 10. Timing plots for queries of length P = 80. (a) N = 1,000,000 and IG] = 4 and (b) N -- 4,000,000 
and [ G I = 20. 
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labeled Top, those for the Ukkonen algorithm are labeled Tv, those for the 
4-Russians algorithm are labeled T4R, and those for our sublinear algorithm T~am. 
A logarithmic time scale is used because the sublinear algorithm's time perfor- 
mance increases exponentially in D. Thus the curve for T v is shaped like a log 
curve because it is actually a straight line on a normal scale. TDp and T4R are 
straight lines because the complexity of their underlying algorithms depend only 
on P and N. 

Observe from the figures that for the case where 137 [ = 4, our algorithm is three 
orders of magnitude faster than any of the others when e < 10%o. It is two orders 
of magnitude faster when e < 20%, and a single factor of 10 faster when e < 30%. 
Moreover, it crosses over with the best algorithms in the 30-40% range of e exactly 
as suggested by the curve for pow(e) given in Figure 4. In the case where I EI -- 20, 
our algorithm achieves slightly more modest factors of improvement for the 
intervals 0-20% (three orders), 20-40% (two orders), and 40-60% (factor of 4). 
When e is above 60% it performs considerably worse than the 4-Russians 
algorithm. 

Tables 1 and 2 show some of the exact numbers used to produce the plots of 
Figure 10 and also display some statistics on the number of hits and covering list 
spans for the sublinear algorithm. In studying these statistics, which readily explain 
the time performance, it is important to note that T = 10 for the experiments in 
Table 1, and T = 5 for the experiments in Table 2. Thus, in the first case, the 
length of the query P = 23T, and, in the latter, P = 24T. The column, Hits, gives 
the average number of matches to words in the neighborhood about each T 
subpiece of the query string. The columns labeled Span j, for some j, give the 
percentage of the database spanned by the average covering list L, where I~1 = J. 
For example, when e = 20/80 = 25%, Span 2 = 1.54 in Table 1, indicating that on 
average span(L,) = 1.54N/100 = 15,400 when hal = 2. The interesting observation 
about these columns is that they reveal that as D is increased for the query, D, 
increases at each level and the corresponding statistics increase exponentially, but 
more slowly at the higher levels. Some readers may wonder what happens when 
P becomes larger than 80. If P were doubled (without changing N), then each of 
the first three columns concerning time would double, but the numbers in the 

T a b l e  1. Times and hit frequencies when P = 80, I ZI  = 4, a n d  N = 1,000,000. 

D T~I. m (sec.) T v (sec.) T4R (sec.) Hits Span2(% ) Span1(% ) Spano(% ) Matches 

0 0.0015 1.8 12.8 1 0.0 0.0 0.0 0 
4 0.0017 7.6 12.8 1 0.0 0.0 0.0 0 
8 0.037 13.0 12.8 54 0.03 0.0 0.0 0 

12 0.045 18.7 12.8 54 0.05 0.0 0.0 0 
16 0.97 24.3 12.8 1,400 1.12 0.0 0.0 0 
20 1.17 30.5 12.8 1,400 1.54 0.12 0.0 0 
24 10.8 36.6 12.8 17,000 14.0 1.2 0.0 0 
28 16.0 42.6 12.8 17,000 18.0 9.4 0.4 0 
30 17.3 45.5 12.8 17,000 18.0 10.5 2.2 1 
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Table 2. Times and hit frequencies when P = 80, IX[ = 20, and N = 4,000,000. 

D T~t.m (sec.) T v (sec.) T4~ (sec.) Hits Span3(% ) Span2(% ) Span1(% ) 

0 0.0097 6.1 40.1 0.0 0.0 0.0 
8 0.0097 38.5 40.1 0.0 0.0 0.0 

16 0.184 71.0 40.1 0.03 0.0 0.0 
24 0.223 104.0 40.1 0.05 0.0 0.0 
32 9.8 140.0 40.1 2.5 0.3 0.0 
40 13.4 173.0 40.1 3.4 1.0 0.0 
44 13.8 190.0 40.1 3.4 1.1 0.07 
48 179.0 204.0 40.1 46.0 15.0 1.1 

remaining columns would be exactly the same. However, the headers Spanj would 
become Spanj+ 1. Thus for fixed e and N, time varies proportionally with P while 
the coverage statistics remain constant. 

In a final experiment we ran our algorithm over an older version of the PIR 
database containing 3,000,538 symbols. The query was the 104 symbol sequence 
for human Cytochrome C. This test was run to see how critical the uniformity 
assumption for the database was. The underlying alphabet had 23 characters, 
containing two codes that denoted one of two residues, and a wild card code, "X," 
denoting any residue. These symbols appeared much less frequently than the 
others, and, in general, the frequency of occurrence of each letter was not uniform. 
Indeed, about 40% of all buckets in the index were empty, and there was one that 
had 553 positions in it. Nonetheless, note that the performance figures in Table 3 
are very comparable with those in Table 2. Times are roughly about three times 
slower. As D increases the factor becomes less. The key thing to note is that there 
are many cytochrome C entries for other organisms in the database and, con- 
sequently, this search is preconditioned to contain quite a few matches to the 
query. As noted in the overview, this effectively means that complete dynamic 
programming computations are run for each match. It is this time that is primarily 
responsible for the differential over simulated data and not the skew in character 
distribution. 

Table 3. Times and  hit frequencies for Searching a Protein Database 

D T~za m (sec.) Hits Span3(% ) Span2(% ) Spana(% ) Spano(% ) Matches 

0 0.027 23 > 0.0 > 0.0 > 0.0 > 0.0 2 
8 0.067 23 0.005 0.005 0.01 0.01 18 

16 0.40 298 0.06 0.01 0.02 0.03 32 
24 0.58 298 0.09 0.02 0.04 0.07 44 
32 12.4 19,900 3.2 0.1 0.1 0.1 74 
40 17.2 19,900 4.3 1.6 0.1 0.2 79 
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8. Conclusion. A sublinear algorithm for approximate keyword searching has 
been presented that not only represents an asymptotic improvement  for the 
problem, but also provides order-of-magnitude speedups in practice. We close 
with several observations and conjectures. First observe that, with e = 37.5%, a 
match was found just by chance as shown in Table 1. We conjecture that the point 
at which D becomes large enough, so that Z(T,  D) = N,  is strongly correlated to 
the point at which at (D/T) -match  to a word W would be found purely by 
coincidence in a random database. Second, we observe that there is nothing in 
the algorithm itself that precludes using more general measures of similarity such 
as real-valued arbitrary scores for indels and substitutions. The only aspect of our 
treatment that was specifically tied to the simple unit measure was in the 
mathematics for bounding the sizes of neighborhoods. An open development is 
to demonstrate that the approach works well in practice for scoring schemes where 
neighborhoods are not " t oo"  large. Alternatively, a formal treatment of how 
neighborhood size is a function of scoring scheme needs to be developed. Third, 
is there any way to improve upon the O(N p~ working storage required by the 
algorithm? Finally, we note that the essential idea of this paper  can be summed 
up as: "find approximate matches to subparts using exact matches to neighbor- 
hoods as a filter to those locations where an extension strategy can be profitably 
employed." There are potentially many  other ways to instantiate this idea and 
perhaps there are better ones than that realized here. For  example, this approach 
was the essential idea behind a heuristic sequence comparison tool, BLASTA, now 
in popular  use for protein database searches [AGM+] .  
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