
Algorithmica (1994) 12:345-374 Algorithmica
�9 1994 Springer-Verlag New York Inc.

A Sublinear Algorithm for Approximate
Keyword Searching 1

E. W. Myers z

Abstract. Given a relatively short query string W of length P, a long subject string A of length N,
and a threshold D, the approximate keyword search problem is to find all substrings of A that align
with W with not more than D insertions, deletions, and mismatches. In typical applications, such as
searching a DNA sequence database, the size of the "database" A is much larger than that of the
query W, e.g., N is on the order of millions or billions and P is a hundred to a thousand. In this paper
we present an algorithm that given a precomputed index of the database A, finds rare matches in time
that is sublinear in N, i.e., N c for some c < 1. The sequence A must be over afinite alphabet E. More
precisely, our algorithm requires O(DN p~ log N) expected-time where e = DIP is the maximum
number of differences as a percentage of query length, and pow(e) is an increasing and concave function
that is 0 when e = 0. Thus the algorithm is superior to current O(DN) algorithms when e is small
enough to guarantee that pow(e) < 1. As seen in the paper, this is true for a wide range of e, e.g., e up
to 33% for DNA sequences (IE[= 4) and 56% for proteins sequences (IEI = 20). In preliminary
practical experiments, the approach gives a 50- to 500-fold improvement over previous algorithms for
prolems of interest in molecular biology.

Key Words. Approximate match, Dynamic programming, Index, Word neighborhood.

Introduction. Given a relatively short query string W of length P, a long subject

string A of length N, and a threshold D, the approximate keyword search problem
is to find all substr ings of A that align with W with no t more than D insertions,

deletions, and mismatches. More precisely, if 6(V, W) is the edit distance between
V and W, and if A[i..j] denotes the substr ing of A consist ing of its ith through

j t h characters, then the problem is to find all pairs i,j such that 6(W, A[i..j]) _< D.
For this problem, we say that the m a x i m u m mismatch ratio is e = DIP and that

we are searching A for e-matches to W.
This problem has been much studied. Sellers IS] presented the obvious O(PN)

algor i thm as a slight var ia t ion of the classic dynamic p rogramming algori thm for

the sequence versus sequence compar i son problem (here we are compar ing a
sequence versus substr ings of the other). In roughly the same time frame, U k k o n e n
[U1] and Myers [M M] bo th reported practical and simple O(DN) expected-time
algorithms. No t long thereafter, L a n d a u and Vishkin [LV] arrived at an O(DN)
worst-case a lgor i thm that required O(N) space. At abou t the same time Myers
[M 1] presented an a lgor i thm with the same worst-case time complexity bu t which

1 This work was supported in part by the National Institutes of Health under Grant R01 LM04960-01
and the Aspen Center for Physics.
2 Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA.

Received September 25, 1991; revised August 16, 1992, Communicated by Alberto Apostolico.

346 E.W. Myers

required only O(D 2) space. Recently, Galil and Park [GP] have reported another
O(DN) worst-case time algorithm that takes O(P 2) space.

With the advent of applications such as those in molecular biology where the
database will be massive, e.g., N in the billions, the need for algorithms that are
less than linear in N is becoming of paramount importance. Recently, Chang and
Lawler [CL] devised a method that takes O(DN log P/P) expected time when the
threshold D is less than P/(log P + O(1)). It does so by quickly eliminating stretches
of the "database" sequence A where a match cannot possibly occur. They term
their algorithm sublinear in the sense of Boyer and Moore IBM], i.e., cN characters
of A are examined where c < 1. Note, however, that the algorithm still takes time
linear in N and that as P gets larger the stringency of a match must be tightened
as e must be less than 1/(log P + O(1)).

In this paper we present an algorithm that, given a precomputed index of the
database A, finds rare matches in time that is truly sublinear in N, i.e., N c where
c < 1. More precisely, our algorithm requires O(DN p~ log N) expected-time
where pow(e) is an increasing and concave function that is 0 when e = 0. Thus the
algorithm is superior to the O(DN) algorithms when e is small enough to guarantee
that pow(e) < 1. For example, pow(e) is less than one when e < 33% for 1121 = 4
(DNA alphabet), and when e < 56% for iY~l = 20 (protein alphabet). Figure 4
precisely plots the curve for several choices of [Er. Apart from the fact that our
algorithm is "truly" sublinear, it also has the advantage over the Chang and
Lawler algorithm that the degree of sublinearity just depends on e and not on P.
On the other hand, we require a precomputed O(N) space index structure, whereas
their method is purely scanning based, requiring only O(P) working storage. The
bounding argument used in proving the expected complexity of our algorithm is
rather crude. Consequently, performance in practice is much superior. In pre-
liminary experiments the approach appears to represent a 100- to 500-fold
improvement over the O(DN) search algorithms for problems of interest in
molecular biology.

1. Overview. In this overview we sketch the basic concepts and outline the
algorithm embodying our result. The various sections of the paper then embellish
upon the individual components.

The algorithm assumes that an index for the sequences in the database has
already been constructed. An index for a large text is a data structure that allows
all occurrences of a given query string in the text to be found rapidly. In our
method queries will all be of length T = lOglz I N. Thus, each query can be uniquely
encoded as an O(N) integer, and we can store the results of all possible queries
(which are lists of indices where the corresponding strings of size T appear in A)
in an O(N) table. This simple structure can be built in O(N) time and 2N words
of space as shown in Section 2.

Let 6(V, W) be the edit distance between V and W. Let the D-neighborhood of
a string W be the set of all strings distance less than or equal to D from W, i.e.,
No(W) = (V: 6(V, W) _< D}. Let the condensed D-neighborhood of W be the set of
all strings in the D-neighborhood of W that do not have a prefix in the

A Sublinear Algorithm for Approximate Keyword Searching 347

neighborhood, i.e., N--~(W) = {V: V in No(W) and no prefix of V is in ND(W)}.
One way to find all approximate matches to W is to generate every string in the
condensed D-neighborhood of W, then, for each such string, to find the locations
at which the string occurs in the database using an index. Each such location is
the leftmost position of an approximate match to W. The obvious problem is that
as W or D become large the number of strings in No(W) quickly explodes, making
the standard O(DN) algorithms superior. However, for strings W whose length is
T = logl~ I N, the following are true:

Section 3. An algorithm to generate the strings in ND(W) in lexicographical
order in O(DN p~ worst-case time exists. The algorithm involves computing
rows of a dynamic programming matrix in response to a backtracking search
that essentially traces a trie of the words in ND(W).

Section 4. IN---o(W)I < N p~ where pow(e) = lOgl~l(C + 1)/(c - 1) + e logl~ L c + e
and c = e- ~ + x/1 + e-2.

Section 5. Using the simple index described above, the algorithm can look up
the locations of these strings at no additional overhead, and under the
assumption that A is the result of Bernoulli trials, finds O(N p~ matches
in expectation.

Therefore, for small strings the strategy of generating all words in the neighbor-
hood of the query is effective for sufficiently small distances. To extend this strategy
to larger queries requires the following observation detailed in Section 6. Consider
dividing the query W in a binary fashion until all pieces are of size logl~ L N. To
model the various pieces, let W, for ~ {0, 1}* be recursively defined by the
equations W~ = W, W~o = first_half_of(W,), and W~I = second_half_of(W~). The
following lemma follows from a simple application of the Pigeonhole Principle.

LEMMA. If W aligns to a string V with not more than D differences, then a word
exists such that, for every prefix fl of ~, W~ aligns to a substring Vp of V with not
more than [_D/21~l A differences. Moreover, V~, is a prefix or a suffix of Vr according
to whether a is 0 or 1.

This suggests that we can efficiently find approximate matches to W by first
finding approximate matches to the words W, of length T and then verifying that
Wp approximately matches for progressively shorter prefixes fl of e. At each stage,
the string in question is twice as large and twice as much distance is allowed in
the match, but the number of matches found drops hyperexponentially except
where the search will reveal a distance D match to W.

Suppose for simplicity that the length of W, P equals 2KT for some value of K.
For d = [_D/2rJ, we begin by generating the words in Naa(W~) for each of the 2 K
words W, of length T. From the above this takes O(DN p~ total time and delivers
this many d-matches. We then see if these d-matches can be extended to [_D/21~- 1_]_
matches to the words W~ of length 2T. This step requires envisioning the result
of the word generation lookups as delivering parallelogram-shaped regions of a
dynamic programming matrix or edit graph. All d-matches to a T-word of W are

348 E.W. Myers

guaranteed to lie in one of these parallelograms. To find matches to 2T-words it
suffices to do a dynamic programming calculation over a 2T by 2d parallelogram
about each parallelogram of a T-word "hit." At the kth stage of this process, the
number of matches is reduced by a factor of 1IN 2kr176 Thus, while the time
to extend matches grows by a factor of 4 at each stage, this is overwhelmed by
the reduction in the number of surviving matches. In the end the total time
consumed in expectation is O(DN p~162 log N + HDP) where H is the number of
matches to W that are found.

Note that our algorithm's expected-time complexity is based on the assumption
that the database is the result of random Bernoulli trials. In this case its expected
complexity is O(DN p~ log N). However, if the database is not random but
preconditioned to have H matches to W, then O(HDP) time will be spent on each
of these matches. Consequently, our algorithm does not improve upon the O(DN)
algorithm for the sequence-versus-sequence problem. Nonetheless, for seaching
problems where the data base is large and "sufficiently" random, this algorithm
can find near matches with great efficiency and no loss in sensitivity.

2. A Simple Index Data Structure. An index for a large string A = aaa2"" aN, is
a data structure that allows the efficient location of all occurrences of a shorter
query string within A. In this work a very simple technique based on integer
encodings can be used because all queries are of length O(log N) and we assume
that the underlying alphabet Z is fixed and finite. From here on, let T = loglz I N
and assume all queries are of length between T - D and T + D where D < T.

Consider an arbitrary assignment (bijection) cp of the symbols in E to the integers
0 through [E I - 1. q~ is naturally extended to strings with the recursive definition
cp(Wa) = [EIcp(W) + q~(a) where W is a string over Z and a is a symbol in E.
Essentially cp(W) is the integer obtained when the string is viewed as a radix-[E I
number. For n ~ [-0, lYl T - 13 _~ [0, N - 13, let

Bucket(n) = {i: cp(aiai+ l""ai+ r- 1) = n}.

That is, Bucket(n) gives the indices of the leftmost character of each occurrence in
A of the unique T-symbol string whose cp-code is n. This simple array of sets is
our index structure.

Under the assumption that A is the result of equiprobable Bernoulli trials,
Bucket can be used to find all the, say Hv, occurrences of a query V within A in
O(T + DHv) expected time as follows. If V is of length U < T, then the left-
most indices of the occurrences of V are exactly the contents of Bucket(k) for
k e [~o(V) IE[T- v, (q~(V) + 1)1 Z I T - - U - - 1]. In this case it takes time O(U) to compute
the integers defining the interval of codes and O(Hv) time to list the Hv occurrences
of V in A. Thus the total time is less than O(T + DHv) as claimed. In the case
where U is greater than T it is known that the occurrences of V must be a subset
of those in Bucket(q~(VT)) where VT denotes the string consisting of the first T
symbols of V. It takes O(T) time to compute the ~o-code, and then it simply suffices

A Sublinear Algorithm for Approximate Keyword Searching 349

to check whether the remaining U - Tsymbols of V match at each of the locations
in the given bucket. While potentially quite inefficient in the worst case this step
works extremely well in the expected case where A is the result of equiprobable
Bernoulli trials. Under this assumption the average number of coincidental
matches to Vr is one and on average only [E I/(I El - 1) additional symbols of such
coincidental matches to Vr need be checked before they are discovered not to
match V. Thus in expectation only a constant amount of time is spent investigating
locations that do not match V. Moreover, O(U - T) = O(D) time is spent checking
additional characters at those locations that do match V. Thus only O(T + DHv)
expected time is spent in the case where U > T.

Producing the index is also quite simple. First ~01 = qo(a~ai+l...ai+r_ 0 is
computed for every index i. This is easily done in an O(N) sweep of A using the
observation that qo i = ailEI r -1 + [_~oi+l/IEI/. Since the numbers qol are all in the
range [0, N - 1], a simple O(N) radix sort produces the list Indices = (it, i 2 iN)
such that cp~j < ~oij+~. Finally, the array Header[n] = min{j: q~I,dicesUl = n} is pro-
duced in an O(N) sweep of Indices. The arrays, Indices and Header, together
provide a realization of the Bucket sets. Namely,

Bucket(n) = {lndices[d]: j e [Header[n], Header[n + 1] -- 1]}.

Thus our index occupies O(N) space and takes O(N) time to construct, a
In the treatment immediately above, two details were overlooked that require

attention. First was the statement that T be set to logly~ t N. T must be an integer,
and so, in fact, the logarithm must be rounded either up or down. Rounding up
implies that as much as O(IEIN) time and space are required to construct the
index. Rounding down implies that while only O(N) space is used, long queries
may take O(T + IZ I + DHv) expected time because the average bucket size can
approach 1EL. If the cardinality of 2 is fairly large (e.g., 20 for protein sequences),
then both of these alternatives are undesirable in practice. A simple repair is to
round up, i.e., T = I-log I y.i NT, but to use only the first

R = Llog 2 N - Lloglz I N J l o g z IZIJ

bits of the last symbol when computing a code. Specifically, if W is of length T -- 1,
then the modified encoding p of Wa is given by p(Wa) = q~(W)2 R + q~(a) rood 2 ~.
The treatment for constructing the index is as before except that ~o i is replaced
with Pi = p(aia~+ 1"" a~+ r - 1). With this choice of encoding, there are no more than
N codes and there are no less than N/2. Thus the structure takes | time and
space to construct independent of the size of Z, and the average bucket size is
between 1 and 2 so that searches using the p-code on the first T symbols of a
query V will take no more than O(DHv) expected time. Note that the Tth symbol
of V will have to be compared against its corresponding symbol for each bucket
entry, but this does not add to the asymptotic complexity.

3 The structure requires exactly 2N + O(1) integers in the range 0 to N, and may be built with or(N)
additional space with some very careful "in-place" manipulations, It is thus a very space-efficient and
practical index.

350 E.W. Myers

The second detail is that (Pl (Pi) is not properly defined for i > N - T + 1
(N - T). This can be rectified by simply adopting the convention that, for i > N,
ai is any symbol not equal to a N. This guarantees that the integer codes for indices
N - T + 2 to N are all distinct and thus contribute at most one extra element to
any particular B u c k e t set. Thus the expected case analysis for searching still holds,
although each index in a bucket must additionally be checked and rejected it if it
is greater than N - U where U is the length of the query.

3. Generating Word Neighborhoods. The traditional sequence comparison of
word W = w l w 2 . . , w r with another word V = vlv2" ." v v involves the computation
of a dynamic programming matrix L[0. . U, 0.. T] where L [i , j] = fi(Vi, W~). The
notation V~ denotes the prefix consisting of the first i symbols of K Given a vector
R[0.. T] and symbol a in alphabet Z, let row(R, a) be the vector S[0.. T] such
that S[O] = R[O] + 1 and, for j > O,

S [j] = min{S[j - 1] + 1, R [j] + 1, R [j - 1] + (i f a = % then 0 else 1)}.

It is well known that L[0] = (0, 1, 2 , T) and, for i > 0, L[i] = row(L[i - 1], vi).
Moreover, an induction reveals that entries in the matrix L increase by 0 or 1
along diagonals (e.g., L [i , j] = L [i - 1,j - 1] + {0, 1}), and by - 1 , 0, or 1 along
rows (e.g., L [i , j] = L [i , j - 1] + { -1 , 0, 1}).

Consider the problem of generating the words in the condensed D-neighborhood
of word W. Imagine a trie of all the words in this neighborhood and imagine
traversing or delineating it with a backtracking search that explores the space of
all words in lexicographical order. Figure 1 gives the trie for the neighborhood
N---~(abbaa) over the alphabet Z = {a, b}. Note that all vertices of the trie have
outdegree equal to either l Z[or 1. The forthcoming algorithm of Figure 3
essentially provides a constructive proof of this fact. It also proves that every word
in the condensed neighborhood is exactly distance D from W. More directly, this
follows by observing that if a more closely matching word were in the neighbor-
hood, then the prefix obtained by deleting its last symbol is also in the neighbor-
hood. As the search generates words it computes the corresponding rows of the
dynamic programming matrix of the current word versus W. It uses these rows
to direct the search as follows. If a word is generated for which the last entry of

a T a b T a - - a

~ b - - ~ a b b - - a a
a

a a

Fig. 1. Trie for Nt(abbaa).

A Sublinear Algorithm for Approximate Keyword Searching 351

array L[0.. T + D + 1, 0.. T]
vector V[1. .T + D + 1]

1. procedure GEN(i)
2. { for a~E do
3. { L[i] ~ row(L[i - 1], a)
4. Vi i i ~- a
5. if L[i, T] <_ D then
6. V[l.. i] is in No(W).
7. else if minj{L[i, j]} < O then
8. GEN(i + 1)
9. }

10. }
11. L[0] ~- <0, 1, 2 T)
12. GEN(1)

Fig. 2. Neighborhood generator algorithm.

the most current row is D, then a word in the condensed neighborhood has been
reached. On the other hand, if all entries of a row are greater than D, then the
corresponding word and all extensions of it cannot be in the condensed neighbor-
hood of W, and the search can backtrack. Otherwise there is some extension that
is in the neighborhood and the search proceeds forward. The algorithm of Figure
2 details such a search.

The correctness of this procedure requires several observations. First, the
smallest entry of row(R, a) is never smaller than the smallest entry of R and so it
is correct to backtrack when a row is reached for which all entries are greater
than D. Second, if a row contains an entry not greater than D, then it contains
an entry equal to D because successive entries in a row differ by - 1 , 0, or 1.
Moreover, if the largest index of such an entry is j, then adding the suffix
W ~ = % + l W j + I " " W T gives a word in the neighborhood, and this justifies the
decision to search forward. Finally, the length of a longest word in the neighbor-
hood is bounded by T + D and so the sizes of L and V are adequate.

The algorithm of Figure 2 spends O(I Z I T) time per call to G EN and the number
of calls is the number of characters in the trie of the neighborhood. The size of
the trie is bounded by O (T Z) where Z is the number of words in the neighborhood.
Thus the algorithm has a worst-case complexity of O([521TzZ). One can do quite
a bit better, namely O (T Z) time, by better utilization of the information in the
matrix rows.

Note that as the search progresses forward through the trie a row whose
minimum entry is D must be computed before computing a row whose minimum
entry is greater than D. Consider the case where such a row is reached and it is
further true that the last entry is not D. In this case the only extensions of the
currently generated word that are in the condensed neighborhood are those that
perfectly match the appropriate suffixes of W. That is, if the j th entry is D, then
adding W j gives a word whose distance from W is D and this is the only way to
get a word this close to W. The one difficulty is that while the word may be in

352 E.W. Myers

the D-neighborhood, it may not be in the condensed neighborhood. For example,
when aba has been generated in the example of Figure 1, the current vector is
(3, 2, 1, 1, 1, 2) and the possible extensions are the suffixes baa, aa, and a of
W = abbaa. However; aba.aa is not in the condensed neighborhood as abaoa is.
In essence, of the available suffix extensions, only those that do not have another
as a prefix must be chosen.

This difficulty can be efficiently handled with the failure links of the Knuth -
Morr is-Prat t construction [KMP] used for exact keyword search. For a word V,
let failv(O) = 0 and, for j ~ [1, I V[], let failv(j) = max{k: V k is a suffix o f Vj}. An
array recording the values of fa i lv can be computed in time linear in the length of V.
For our problem, let J u m p [T - j] = T - failwR(j) where W R is the reverse of W.
For index j, the indices Jump[j] , J u m p [J u m p [i l l , Jump[Jump[Jump[j]]] are
exactly those whose suffix extensions are prefixes of f s suffix extension. Thus to
check ifj's extension gives a word in the condensed neighborhood simply requires
checking the above sequence until an index whose entry is D is reached (in which
case reject) or until index T is reached (in which case accept). These checks are
realized in lines 8-15 of the algorithm of Figure 3. In order to only spend O(T)

5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

array L[0. . T + D, 0. . T]
vector V[0.. T + D], Jump[O.. T], Quick[O.. T]

1. procedure GEN(i)
2. { for a ~ Z do
3. { L[i] *- row(L[i -- 1], a)
4. V[i] *- a

if L[i, T] = D then
l/J1 .. i] is in ND(W).

else if minj{L[i,j]} = D then
Quick[T] ~ T
f o r j ~ T-- 1, T - 2 0d o

{ Quick[j] ~ Jump[j]
if L[i, Quick[j]] ~ D then

Quick[j] ~ Quick[Quick[j]]
if Quick[j] = T and L[i, j] = D then

V[1.. i] �9 W j is in ~-DD(W).
}

else
GEN(i + 1)

}
}

Compute Jump[O.. T].
L[0] ~- (0, 1, 2 T)
if D = 0 then

W is the only member of No(W).
else

GEN(I)

Fig. 3. Refined neighborhood generator algorithm.

A Sublinear Algorithm for Approximate Keyword Searching 353

time, the indices are checked in decreasing order and Quick, a "short-circuited"
version of Jump, is built on the fly. After indexj is processed in lines 10-12, Quick[j]
either contains the smallest index on the Jump-chain from j whose entry is D, or
T if there is no such index. This permits index j to be checked for suffix extension
in constant time in lines 13 and 14.

Figure 3 gives the improved variation of the algorithm of Figure 2. The search
is more efficient because it stops as soon as a row whose minimum is D is reached.
Each iteration of the loop of lines 2-18 takes O(T) time provided the concatenation
in line 14 is not actually performed. It is shown in Section 5 that it is indeed
unnecessary to actually concatenate the two strings. An iteration is either charged
to the one or more words in the neighborhood reported in lines 6 or 8-15, or if
line 17 is executed, then the iteration is charged to the vertex of the trie labeled
with the current word. However, there are only O(Z) such vertices as each has
outdegree lY, I > l. Thus the total time spent in the algorithm is O(TZ).

A final improvement from O(TZ) to O(DZ + T) time is possible by observing
that only a portion of the matrix L need be computed. As observed in several
earlier papers [U2], [M2], only those entries L[i,j] for which [i - j [< D can have
a value less than D. Thus all the row queries of the algorithms above can be
answered by computing only these portions of each row. Since this portion consists
of at most 2D + 1 entries, the time for each execution of lines 3-18 can be reduced
to O(D) worst-case time. This includes the extension step of lines 8-15 because it
need only operate over the relevant indices. The O(T) term remains for the
computation of the Jump-vector.

4. Hit Probabilities and Neighborhood Sizes. In this section bounds are de-
termined on the number of words in the condensed D-neighborhood of a word of
length T, and on the probability of matching one of these words at a given position
in a large and random database. Formally, let Z(T, D) = max{]N-~D(W)]: W is a
word of length T}. Further let Pr(T, D) be the maximum of ~v~tw)IE]-Ivl over
all words W of length T. If a database is the result of equiprobable Bernoulli
trials over alphabet Z, then]y~l-IVi is the probability of matching word V at a
given position in the database. Thus Pr(T, D) is the maximum probability of
matching a word in a condensed D-neighborhood of a word of length T at a given
position in the database. Call Pr the hit probability and observe that if the data-
base is of size N, then the number of occurrences of words in a neighborhood, or,
equivalently, the number of hits is N • Pr(T, D). Expressions that bound both of
these quantities from above are derived below.

Every word V in the condensed D-neighborhood of a word W is exactly edit
distance D from W as noted near the start of Section 3. Thus a very crude bound
on Z(T, D) is to count the number of D-operation edit scripts on an arbitrary word
of length T. This is an upper bound since some distinct scripts will produce exactly
the same word, and others produce words not in the neighborhood. For example,
if W = abbaa, then deleting the fourth and fifth symbol produces the same word
(abba) and inserting a b after the third symbol produces a word (abbbaa) that is
not in Nl(abbbaa) because abba is. However, in making such an estimate counting

354 E.W. Myers

obviously redundant scripts that, for example, delete a symbol and insert another,
as opposed to simply substituting the inserted symbol, can be avoided. Specifically,
it suffices to consider only normalized scripts that may (0) insert some number of
symbols before thefirst symbol of W, and at each position/symbol of W may either
(1) do nothing, (2) delete the symbol, (3) insert some number of symbols after the
position, or (4) substitute a different symbol and insert zero or more symbols after
the position.

Let S(T, D) be the number of D-operation edit scripts that adhere to restrictions
(1)(4) above. These scripts do not allow the insertion of symbols before the first
character of a word (restriction 0 above). Lemma 1 below presents a recurrence
for S and a bound on Z in terms of S.

LEMMA 1.

1

2[Xl

S(T, D) = (2[Xl - 1)lXl 0-~

S T - 1, D) + S (T - 1, D - 1)
D

+ (21Xl- 1) ~ IXlJ-~S(T- 1 , D - j)
j = l

D
Z(T, D) < ~ IX[iS(T, D - j) .

j=0

/ f D = 0 ,

if D= l and T = I,

i f D > l and T = I ,

otherwise,

PROOF. S(T, 0) = 1 as there is only one empty edit script. In general, note that
at a given position there is 1 script that deletes the symbol there, IX [J scripts that
insert j symbols, and ([E I - 1)112 [J-1 scripts that substitute a nonidentical symbol
and then insert j - 1 new symbols. Thus S(1, 1) is 21Xl because we may perform
one delete (1 script), perform one substitute ([ZI - 1 scripts), or perform one insert
([E I scripts). For S(1, D) for D > l, there is only one position at which to perform
D operations and deleting is not a possibility. Thus we may perform D inserts
([Xl ~ scripts) or a substitute and D - 1 inserts ((IN[- 1)[2[~ scripts). Finally,
in the general and recursive case we may either

(1) do nothing at the first position and perform D edits at the remaining T - 1
positions (S(T -- 1, D) scripts),

(2) delete the symbol at the first position and perform D - i edits at the remaining
T - I positions (S (T - 1, D - 1) scripts),

(3) insert j symbols after the first position for j e [-1, D] and perform D - j edits
at the remaining T - 1 positions ([EIJS(T- 1, D - j) scripts), or

(4) substitute a nonidentical symbol and insert j - 1 symbols at the first position
for j s [1, D] and perform D - j edits at the remaining T - 1 positions
((IXl - 1)lXlJ- 1S(T - 1, D - j) scripts).

Certainly Z(T, D) is bounded from above by the total number of normalized
scripts. The only scripts not counted by S(T, D) are those with inserts before the

A Sublinear Algorithm for Approximate Keyword Searching 355

first symbol. The number of normalized scripts where j E [0, D] symbols are
inserted before the first symbol is lY~IJS(T, D - j) . Thus Z(T, D) is bounded by the
summation given in the statement of the lemma. []

To bound the probability Pr, a recurrence analogous to that for N is developed.
In Lemma 2 below, Q(T, D) is the sum of the probabilities of matching each word
generated by a normalized D-operation script that does not insert before the first
character. Since different scripts generate the same word, its contribution may be
summed several times, and so Q is not necessarily less than 1. It is a bound and
not a probability.

LEMMA 2.

Q(T, D) =

1/[Y~I r

(31121- 1)/1121

(21121 1)/lY~I

Q (T - 1,D)/1121 + Q (T - 1, D - 1)
D

+ ~ 1 Q (T - 1, D - j)
j=

if o = 0 ,

if D = 1 and T = I ,

if D > I and T = I ,

otherwise,

D
Pr(T, D) <_ ~ Q(T, D - j).

j=O

PROOF. The argument mimics exactly the proof of Lemma 1 except that now we
multiply by 1/IE[for each character that must be matched. For example, for the
case T - 1 and D > 1, each of the I E[D insertion scripts produces a word that
matches with probability]El -~ and each of the (lY.[- 1)]Y~[~ scripts that
substitute and insert produces words that also match with this probability. Thus
the sum of the probabilities is 1121D/[Y~I o + (lY.I -- 1)1121~ D = (21121 - 1)/1121.
As the second and final example, consider the recursive formula for Q. If nothing
is done at the first position, then it will match with probability 1/112[and the
extensions, words obtained by performing D operations on the T - 1 other
positions, will match with probability less than Q (T - 1, D). This yields the
Q (T - 1 , D)/]121 term in the recurrence. If the first symbol is deleted, then
a word obtained by performing D -- 1 operations on the other T - 1 positions
must be matched and this happens with probability less than Q (T - 1, D - 1).
Inserting j symbols gives 112[J new symbols which along with the first position
match with probability 1/I I21 j+ 1. The extensions match with probability less than
Q(T - 1, D --j) for a total contribution of Q(T - 1, D --j)/1121. Finally, the sub-
stitute and j - 1 insert case yields a contribution of Q (T - 1, D --J)(1121 -- 1)/[~1
to the bound. Summing the four cases and performing a bit of algebraic simplifica-
tion gives the central recurrence of the lemma. []

356 E.W. Myers

With these recurrences in hand, the bounding expressions for Z and Pr given
in Lemma 3 can easily be verified. Slightly tighter bounds for Pr are possible but
not necessary since their use does not improve the complexity analysis which is
dominated by the expression for Z.

LEMMA 3. Let Bnd(T, D, c) = ((c + 1)/(c - 1))TcD[Z[D. For all c > 1,

N(T, D) <_ Bnd(T, D, c),
c

Z(T, D) < Bnd(T, D, c),
c - 1

Bnd(T, D, c) c Bnd(T, D, c)
Q(T, D) < [Y~I T , Pr(T, D) _< c - 1 IXl T

PROOF. A simple induction using Lemmas 1 and 2 suffices to verify the correct-
ness of the bounds. []

In the analyses of the algorithmic components that follow, T will be logls j N
or a multiple thereof, where N is the size of the database being searched. Letting
e = D/T be the permissible mismatch ratio, Lemma 4 below shows that both the
Z and Pr quantities are proportional to a power of N that is a concave increasing
function of e.

LEMMA 4.

where

For T = loglz I N and D < T,

Z(T, D) < 2N p~ and Pr(T, D) < 2N p~ 1,

c + 1
pow(e) = lOgls I ~ + e lOglz f c + ~ and c = e -1 + x/1 + e -~.

PROOF. When T = lOglx I N and e = D/T, some algebraic manipulation shows
that Bnd(T, D, c) = Bnd(loglx I N, e logr~ I N, c) = N "t''c) where

c + 1
~(e, c) = loglr~ I c ~ ~ + e loglz I c + e.

A straightforward application of calculus further shows that the value of a(e, c) is

minimized when e = e-1 + x/i- + e-2. In the statement of the lemma we let
pow(~) = ~(~, c) for this choice of e. Since e ranges from 0 to 1, it follows that c

ranges from 1 + x/~ and up, and thus c/(e - 1) is always less than 2. Thus it
follows that Z(T, D) < 2N p~ The bound for Pr follows easily from the final
observation that IX [l~ = N. []

A Sublinear Algorithm for Approximate Keyword Searching 357

i

0.8-

0.6-

0.4-

0.2-

E=4 2=20
,7 ,.1...._
', I

!

~/- " i i

33% 57%
I I I I I I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 4. Plot of pow(e) and sample bounding lines.

Figure 4 shows a plot of pow(e) for Z of sizes 4 and 20. Note that pow(e) < 1
for e < 0.3303 and e < 0.5671 for these two choices of IEI. Further note that the
function is concave and, for a fixed choice of c, ct(e, c) is an affine function of e that
bounds pow(e) and is a tangent of the curve. For example, when [El = 4,
pow(e) <_ ~(e, 6.520) = 0.2230 + 2.352e. When IE[= 20, pow(e) <. ~(e, 3.971) =
0.1718 + 1.460e. The bounding lines in these two examples are plotted in Figure
4. The value of c chosen for each line was that for which ~(e, c) = 1 exactly when
pow(~) = 1.

As noted in Section 2, T must be chosen to be an integer and so, in general,
logl~ I N must be rounded up or down. Considering [E[as a factor in the
complexity, rounding up can increase Z(T, D) by a factor of[El p~ and decrease
Pr(T, D) by the same amount. Rounding down can decrease neighborhood size
but increase match likelihood by the same factor. While in theory this is not
important since E is assumed to be of a fixed and finite size, in practice we choose
to round up for several reasons. As will be seen in the next section, this has the
effect of increasing neighborhood generation time some (Z is larger) but decreases
the space consumed by the record of positions matched in the database (Pr is
smaller). So our first reason to round up, is that we prefer to trade time (which
is unbounded) for space (which is bounded). Secondly, the next phase of the
algorithm requires O(D log N) time per match versus the O(D) time spent per
neighborhood word. Thus reducing the number of matches is more desirable than
reducing the number of words generated. Finally, we have shown in Section 2 that
we can conveniently accommodate rounding up for the index structure without
increasing the time or space complexity of this facet. With this said, we henceforth
assume [EI is a constant when expressing asymptotic complexity claims.

5. Finding Hits with the Index. This section deals with the details of combining
word generation with index lookups and characterizes the complexity and results
of this first phase of the total algorithm. Consider the following statement
of this first phase problem. A database A = ala2.. .an, a word W of length
T = [-logl~ I N-I, and a threshold D are given. Let

Scorew(i) = min{b(a/ai+ l "" ah, W)}.
h>_i

358 E.W. Myers

That is, Scorew(i) is the score of the closest word to W that begins at position i
of the database. Also let Hitsw(D) = {i: Scorew(i) < D}, i.e., the set of all positions
in the database where a word in the D-neighborhood of W begins. The task is
to compute Hitsw(D).

The solution is simply to run the generator algorithm of Figure 3 and as each
word is generated, to look up the indices of the left ends of all occurrences
of this word in A with the index. This set of positions, {i: 3V~No(W), V =
aiai+,'"ai+lvl-x}, is exactly the desired set Hitsw(D). This follows because if
Scorew(i) <_ D, then there is some word in the D-neighborhood whose leftmost
character is at index i, and certainly some prefix of this word is in the condensed
D-neighborhood.

Looking up a word V in the neighborhood takes O(T + DHv) expected time.
Recall that the O(T) term is for computing the q~- (p-) code, and that the O(DHv)
term is for verifying the Hv instances found in the relevant index bucket. If realized
exactly as described above the time to find all occurrences of all words in the
neighborhood would thus be O(TZ + DH) expected time where Z is the size of
the condensed neighborhood and H = I Hitsw(D)l is the number of hits. However,
the T-term is eliminated by noting that codes can be generated in parallel with
the neighborhood words. That is, as each character is added to the string
V in Figure 3, the q~-code is easily updated using its defining recurrence, q~(Va) =
~o(V)[ZI + q~(a). Moreover, for those words that consist of concatenating the
current word with a suffix of W in line 14 of Figure 3, it is not necessary to perform
explicitly the concatenation to do the lookup. If the current word, V, is of length
less than T, then consulting a precomputed, (T + 1)-element table of the codes of
every prefix of W allows the required code to be delivered in O(1) time. 4 Whatever
suffix of W remains is then used in checking for matches at each position in the
appropriate bucket. Thus, as promised earlier, all words, as well as their codes,
are effectively computed in O(DZ + T) worst-case time and the appropriate
buckets of the index are checked for hits in O(DH) expected time.

L E M M A 5. Given a precomputed index as described in Section 2, an aloorithm to
compute Hitsw(D) in O(DN p~ + T) expected time exists and H < 2N p~

PROOF. From Lemma 4 it follows that, for a database of size N, H is on average
Pr(T,D) x N < 2NP~162 1-pow(D/T) where x = [EIT--IogJ~JN E[1, [Eli. Thus the
result on the size of H follows. Lemma 4 also asserts that Z is O(N'~
However, then the result immediately follows as the procedure just described takes
O(D(Z + H) + T) expected time. []

As will be subsequently seen, we also need to solve a "reverse" version of the
first phase problem. Specifically, let Scorew(i) = minh<i{6(ahah+ l ' " a i , W)} and let

4if in line 14 the neighborhood word is V[1..i]e W j and i< T, then we need the code for
VeW[j + 1..j + (T--i)] and the remainder, suffix W j+(r-~ must be checked against bucket
positions (or suffix W j+(T-i) in the case that the parameter R = 0 for the index structure). However,
the required code is simply ~o(V)IZI r-i + q~(W[j + 1..j + (T -- i)]) and with the table of codes of every
prefix of W, the code for W[k.. hi is simply q~(Wh) -- q~(Wk-0[E[h-k+ 1.

A Sublinear Algorithm for Approximate Keyword Searching 359

Hi t sw(D) = {i: Scorew(i) <_ D}. These quantities are analogous to their unbarred
counterparts above except that they address where matches end as oppose to where
they begin. Computing Hitsw(D) requires a simple modification of the word
generator and index lookup. The key observation is that

Hi t sw(D) = { i: 3 V �9 -N--Do(WR), V R = ai -IV I +, ai - IV I + 2 " " ai}

where W R, the reverse of W, is WTWT_ 1 " " W l . 5 Thus it suffices to generate the
condensed neighborhood of the reverse of W and then lookup the positions at
which the reverse of the neighborhood words match A. The one subtlety is that
we have an index for left-to-right matching and we cannot afford the time to
reverse a neighborhood word. This is easily solved by computing the "forward"
codes of the reverse words as they are generated by observing that ~0((Va) R) =
~o(aV) = q~(a)lE] Ivl + ~0(V). In addition, the "concatenation" problem for line 14
of Figure 3 can be solved with the O(T) table of prefix codes in a fashion similar
to that proposed above. Thus we can find the left end of a match to the reverse
of a neighborhood word at no additional overhead. For each such location i at
which V R matches, we need simply record in Hitsw(D) the right end of the match,
i + l g l - 1 .

6. Extending Hits. We now turn to the problem of handling a query W of length
P >> T = [-lOgl~ INT. Throughout this section we assume that P I T is a power of
2, i.e., P = 2KT for some K. The case where it is not is treated at the conclusion
of this section. To begin, we review traditional dynamic programming approaches
and their graph-theoretic interpretation as finding shortest paths in an edit graph.
With this machinery we prove the decomposition lemma described in the overview.
Finally, we show how to apply this lemma to finding all approximate matches to
W in the database A.

As noted at the start of Section 3, comparison of word W against another word
A can be achieved with the computation of a dynamic programming matrix
L[0. . N, 0 . . P] where

L[~, j] = ~(A,, Wj)

-- min{L[i, j - 1] + l, L[i -- 1, j] + 1,

L[i -- 1, j -- 11 + (if a i = wj then 0 else 1)} for i , j > O .

For the cases where i or j is zero, we have L[i , 0] = L[0, i] = i. From a graph-
theoretic perspective, we can also view the problem as follows. Given A and W,
construct a graph with vertices (i,j) for i � 9 [0, N] and j � 9 [0, P], arranged in an
N + 1 by P + 1 grid or matrix as illustrated in Figure 5. For vertex (i,j) there are

5 Care must be taken here to realize that {VR: Ve~oo(WR)} is not equal to N-~D(W). On the other hand,
equality does hold in the case of No(W).

360 E . W . Myers

I/L I

Fig. 5. A sample

. VlO

\ \ \ \ \ \ \ \

\ \ \ \ \ \ \ \

\ \ \ \
\ \ \ \ \ \ \ \

v.c~)
Vt

D -path

- - - - - - D/2-path

. D/4-path

edit graph and illustration for Lemma 6.

up to three edges directed out of it:

(1) A deletion edge to (i + 1,j) (iff i < N).
(2) An insertion edge to (i,j + 1) (iffj < P).
(3) An alignment edge to (i + 1,j + 1) (iffi < N a n d j < P).

In the resulting edit graph, all paths from source vertex (0, 0) to sink vertex (N, P)
model the set of all possible alignments between A and W with the following
simple interpretation: a deletion edge to (i,j) models leaving ai unaligned, an
insertion edge to (i,j) models leaving w~ unaligned, and an alignment edge to (i,j)
models aligning a i and wj. If we weight deletion and insertion edges 1 and
alignment edges 0 or 1 according to whether ai equals wj, then the problem
of finding a minimal cost alignment between A and W is equivalent to finding
a minimum cost source to sink path in the corresponding edit graph. The
correlation to the matrix L is that L[i,j] is the cost of the minimum path from
the source to (i, j). Since the edit graph is acyclic, the shortest paths to each vertex
may be computed in any topological order of the vertices using the recurrence
defining L.

The preceding treatment was for the problem of comparing all of A against all
of W. For approximate keyword searching, we seek substrings of A that align to
W with less than D differences. In the respective edit graph, a d-path (i.e., a path
of cost d) from vertex (i, 0) to vertex (j, P) models an alignment between A[i + 1..fJ
and W with d differences. Thus, we are seeking paths from "row" 0 to "row" P
whose cost is not greater than D. That is, in this version of the problem, any vertex
withj = 0 can be a potential source vertex, and any vertex with j = P, a potential
sink. We can accommodate this shift by simply changing the boundary for the
recurrence for L to be L[i, 0] = 0, i.e., all values along row 0 are set to zero. With
this modification it is easy to show that L[i,j] = minh{~(A[h., i], Wj)}, the shortest
path to (i, j) from some vertex in row 0. Thus, ai is the right end of an approximate
match iff L[i, P] < D. In the treatment that follows, we compute the matrix L for
a number of different query words. Thus, we let Fee be the approximate match
matrix for query W. We use F to denote "forward," for there will also be occasion

A Sublinear Algorithm for Approximate Keyword Searching 361

to view this problem in its reverse sense. Namely, let

Rw[i,j] = minh{tS(A[i + 1.. hi, WJ)},

the shortest path from (i, j) to some vertex in row P. In this case the recurrence
for Rw is by analogy seen to be

Rw[i,j] = min{Rw[i, j + 1] + 1, Rw[i + 1,j] + 1,

Rw[i + 1,j + 1] + (if ai+ 1 = wj+ t then 0 else 1)}

for i < N and j < P .

The boundaries are given by Rw[N,j] = P - j and Rw[i, P] = 0. Note that, in
this case, ai+l is the left end of an approximate match iff Rw[i, 0] _< D.

Let diagonal k of an edit graph be the set of vertices {(i,j):i - j = k}. Note that
a d-path that begins or ends in diagonal k must lie entirely between diagonals
k - d and k + d as it requires a deletion or insertion to move from one diagonal
to another. In the algorithm that follows there will be occasion to determine if
there is a D-path from row 0 to row P lying between two diagonals k < h. Note
that it suff• to apply either the forward or reverse recurrence over just the
vertices lying in the parallelogram-shaped region between the diagonals, i.e., if the
value at a vertex between the diagonals depends on the value of a vertex outside
the diagonals, simply ignore that vertex's contribution to the three-way minimum
of the recurrence. Let F~ h denote the values of the forward recurrence when

F k h r i .'1 evaluated over just this region of the edit graph. Naturally i~ L ,JI is the value
of a minimum cost path to (i, j) over all paths lying between diagonals k and h.
Thus there is a D-path from row 0 to row P between diagonals k and h iff
R~ph[i, 0] _< D for some i e [k, hi, or iffFkph[i, P] < D for some i e [k + P, h + P].

With these preliminaries, we now proceed to the central lemma which we
efficiently lever to extend matches to subwords of W of length T, to approximate
matches to all of W. Consider dividing the query W in a binary fashion until all
pieces are of size T = [-loglz L N-] (recall we are assuming P = 2KT). To model the
various pieces, let W~ for a s {0, 1}* be recursively defined by the equations W~ = W,
W~o = W~[1.. I W~I/2] (the first half of W~), and 14z~1 = W~[I W~,[/2 + 1.. [W~I] (the
second half of W~). Figure 5 illustrates the decomposition as well as the proof of
Lemma 6 below. Note that, for a given length k < K, there are 2 k distinct labels

of that length and the strings W~ are all of length 2r~-kT = P/2 k. Let P~ = P/2L~ f
denote the length of W~ and let D~ = [_D/21~I_] be the match stringency to W~
required in Lemma 6 below.

LEMMA 6. I f W aligns to a string V with not more than D differences, then a word
a exists such that, for every prefix fl of ~, Wp aligns to a substrin9 Vp of V with not
more than D~ differences. Moreover, Vp~ is a prefix or a suffix of V~ according to
whether a is 0 or 1.

PROOF. We show that under the hypothesis it follows that either Wo or W1 aligns
to a prefix or suffix, respectively, of V with not more than [_D/2_] differences.

362 E.W. Myers

Applying this observation inductively gives the result. If W aligns to V with not
more than D differences, then as illustrated in Figure 5 there is a source to sink
path of cost D or less in the corresponding edit graph. The path passes through
one or more vertices on row P/2. Consider the two subpaths consisting of that
part of the path from the source to its first vertex in row P/2 and the part from
its last vertex in row P/2 to the sink. By the Pigeonhole Principle, one of these
two subpaths must have cost not greater than [_D/2_J. If it is true for the first part,
then simply observe that the subpath aligns W0 and a prefix of V. If it is true for
the later subpath, then there is an alignment of cost LD/2_J or less between W1 and
a suffix of V. []

Note that the conclusion of Lemma 6 may be rephrased as: a label c~ exists such
that, for every prefix fl of ~, Wp e-matches a substring Vp of V. This follows simply
because for each fl the mismatch ratio of the match between Wp and V~ is
Da/] Wp[= [._D/2 Ip I J/(P/21 al) < DIP = e. Moreover, while the induction of the proof
yields the conclusion on progressively smaller subwords, the lemma gives the
strategy for extending approximate matches to progressively larger subwords of
IV, For example, if an e-match to Wololl is found, then check for an e-match to
W01ol and if successful then check for an e-match to Woxo, and so on, until either
one fails to match at some level or succeeds in matching all of W = W~. If this
extension strategy is applied to all e-matches to all subwords Vr of length T, then
one is guaranteed to detect all e-matches to W by the lemma.

The one difficulty in applying the extension strategy is that in a region where
there is a particularly stringent match, an excessive amount of time can be spent
if we proceed one match at a time. For example, if Fw[i, P] = 0, then it is
guaranteed that Fw[i +_ d, P] < d because entries along a row or column of the
dynamic programming matrix change by - 1, 0, or 1. That is, if there is a 0-match
at a particular position, then there are guaranteed to be 2D additional matches
in the immediate neighborhood. Moreover, since W exactly matches this location,
then W~ matches at corresponding locations for every ~. Each of these exact
subword matches implies D, matches immediately about them, all of which if
extended individually would uncover the same matches at the level above.
Extending each match of length T would result in the O(D) matches to W being
discovered O(D K) times. So clearly, the matches at each level must be accumulated
before proceeding to the next. Moreover, extensions of adjacent matches must be
pursued simultaneously as otherwise the O(D) matches at the upper level will be
uncovered O(D 2) times by the level below.

Let F~ = {i: Fw~[i, P~] < D~}, the set of positions at which an e-match to W~
ends. Similarly, let R~ = {i: Rw~[i,O] < D,}, the set of positions at which an
e-match to W, begins. Our goal is to compute a representation of either F, or R~
for all ~ in decreasing order of label length. Certainly this suffices because F~ is
the set of right ends of e-matches to W, and R, gives the left ends. Term a list of
ordered pairs C = ((11, u,), (/2, U2) (ln, Un)) where l k ~ U k < Ik+l, a covering list
of set X if and only if U~ = 1 [lk, uk] --~ X. For each a of length less than K our
algorithm computes a covering list for F~o and one for R=,. Moreover, these
coverings are parsimonious in that if C covers F=(R,), then l k, u k e F=(R=) and

A Sublinear Algorithm for Approximate Keyword Searching 363

1. function FGEN(w, d)
2. { S ,,- Hits~(d)
3. Sort S
4. G * - ~
5. u ~ - d - 2
6. for k ~ S in increasing order do
7. { if k - d > u + l then
8. { i f u > 0 t h e n G ~ G � 9
9. l*--k

10. }
11. u*--k
12. }
13. if u > O then G ~ Ge(l, u)
14. return G
15. }

Fig. 6. Generating F~'s covering list when le[= K.

lk+ 1 - - U k > D, + 1 for all k. Note that these additional conditions uniquely
determine the covering list. Furthermore, because values change along a row by
- 1, 0, or 1, it follows that for every pair (I, u) either Fw~[l, P~] = Fw,[U, P~] = D~
or Rw,[l, 0] = Rw,[U, 0] = D, depending on whether the list covers F, or R~.

Initially, the process is started by computing coverings for F,(R~) where P~ = T
using the generator algorithm of Lemma 5 as a subroutine. Simply observe that
F~ = {i: minh_ <i{t}(ahah+ 1"'" ai, W,)} _< D} = Hitsw,(D,). Thus producing a cover-
ing list for F~ consists of simply invoking the reverse generator to compute
Hitsw~(D~), sorting the resulting set of indices with any O(H log H) sort, and then
producing the desired covering list in a simple O(H) scan of the sorted index list.
This process is encapsulated in the procedure FGEN(w, d) in Figure 6. Computing
a covering for R, follows analogously with the observation that it equals
Hitsw,(D~) -- 1 where the notation X - 1 denotes {i - 1: i ~ X}. Assume that pro-
cedure RGEN(w, d) computes coverings for R-sets for subwords of W of length T.

With the basis of the induction handled by the generator algorithms, we now
turn to the induction: given covering lists for F~o and R,1, how do we compute a
covering list for F~(R,)? Consider the edit graph for W~ versus A and a path between
rows 0 and P~ of cost no greater than D,. Suppose this path passes through row
P J2 = P,o = P~I at vertex (i, P~o). Then, by Lemma 6, i must be a member of
either F,o or R,1 and hence covered by a pair (l, u) of the appropriate covering
list. We show that the entire path must lie between diagonals l - P~o - A, and
u - P~o + A~ where A~ = D~ - D~o. Suppose that i ~ F~o; the case where i ~ R~I is
entirely symmetric. This implies that the first part of the path from row 0 to vertex
(i, P~o) costs D~o or less, say it is d. As observed earlier, since this d-subpath ends
in diagonal i - P~o, the entire subpath must lie between diagonals i - P ~ o - d
and i - P~o + d. However, since i ~ [l, u] and D~o < A~ it follows that the first part
of the path lies between the desired diagonals. Now, the remainder of the path
from (i, P~o) to row P~ has cost no greater than D~ - d. As noted when covering
lists were introduced, Fw~[X, P~o] = Fw~o[x, P~o] = D~o for x = l and x = u.

364 E.W. Myers

Moreover , since values change by - 1 , 0, or 1 along a given row it follows
that d = Fw~[i, P~o] cannot be less than Fw~[l, P ~ o] - (i - l) nor less than
Frr P~o] - (u - /) . Thus d > D~o - min{i - l, u -- i}. However , then it follows
that the second par t of the pa th must lie between diagonals

i -- P~o -+ (D, -- d) _ i - P,o -+ (D, - (D,o - min{i - l, u - i}))

= i - P,o + (h , + min{i - 1, u -- i})

_~ [I - - P~o - - A~, u - P~o + A j .

In the last p a r a g r a p h we showed that if there is a pa th between rows 0 and P~
of cost D~ or less in the edit g raph of W~ versus A, then it must lie entirely between
diagonals l - P,o - A~ and u - P,o + A, for some pair (l, u) in the covering list
of F~o or R~I. Let L, be the covering list of

{[I -- P=o - A~, u -- P=o + A j : (l, u)6F=o w R=I }

that is as pars imonius as possible, i.e., span(L,) = ~ , = , [Uk -- Ik + i I is minimal
and a m o n g those lists whose span is minimal, L~'s cardinality, n, is smallest. This
list is computab le in t ime linear in the size of the lists F,o and R,1 with the call
UNION(F~o, R,I , A,, P~o) to the subrout ine U N I O N shown in Figure 7. It consists
of s imply merging the two ordered lists while " expand ing" each pair by A, and
" t rans la t ing" each by - P ~ o . Trans formed pairs whose intervals over lap are fused
into a single pair representing the combined interval.

F r o m the two preceding pa rag raphs it follows that to compu te F , it suffices to
compu te Fw~ only between those diagonals given b y pairs of the list L, . Formal ly ,

1. function UNION(L 1, L2, d, p)
2. { G *- ~5
3. u+-- - d - 2
4. whi le L 1 ~ ~ or L 2 r ~ do
5. { i f L 2 -~ ~ or head(L1), l < head(L2), l then
6. (i, j) ~ pop(L1)
7. else
8. (i, j) ~ pop(L2)
9. i f i - d > u + 1 then

10. { i f u _ > p a n d l < N - p t h e n G ~ - G � 9
11. l ~ i - d
12. }
13. u +--j + d
14. }
15. i f u_> p and l < N - p then G ~ G � 9 u - p)
16. return G
17. }

Fig. 7. Merging covering lists.

A Sublinear Algorithm for Approximate Keyword Searching 365

1. function FSCAN(L, w, d)
2. { G ~
3. u ~ - d - 2
4. while L ~ ~ do
5. { (i, j) *-- pop(L)
6. Compute vector F{j[?, p = Iw[]
7. for k ~- i + p to min[j + p, N} do
8. if F~J[k, p] <_ d then
9. { if k - d > u + l then

10. { if u _> 0 then G ~- G �9 (/, u)
11. l~-k
12. }
13. u ~ k
14. }
is. }
16. if u >_ O then G ~ G�9 u)
17. return G
18. }

Fig. 8. Generating F,'s covering list from L~ when I~[< K.

�9 . l,u . _ D~}. Replacing F with R gives the analogous result
for R,. Let FSCAN(L , w, d) be a procedure that computes F{~ u for each pair
(/, u) on the list L and examines the last row of this computation to build
a covering list of the entires that are less than d. The algorithm is sketched
in Figure 8 primarily to confirm the details of the covering list construction.
The time required by this procedure is O(]w[x span(L)) and the space required is
O(max{l - u + 1 : (I, u) 6 L}). The space requirement could be O(N) in the worst
case but in expectation it is O(D). By virtue of the preceding remarks it follows
that the list returned by the call F S C A N (L , , W~, D,) is a covering list for F,. We
assume an analogous procedure R S C A N (L , w, d) that computes a covering list for
R-sets.

The overall algorithm in terms of the subprocedures - -FGEN, R G E N , F S C A N ,
R S C A N , and U N I O N - - i s given in Figure 9. The recursive procedure LIST(a)
returns a pointer to the covering list L,. When [a[= K - 1, it does so by generating
covering lists for F,o and R,1 with the appropriate calls to the neighborhood-based
algorithms F G E N and RGEN. It then combines these to form L~ with a call to
U N I O N . When[a[< K - 1, the difference is that recursive calls to L I S T p r o d u c e
L~o and L~I which are then used by F S C A N and R S C A N to produce the covering
lists for F~o and R,~. At the top level, when L~ is returned it suffices to call R S C A N
to obtain a covering list of the positions at which approximate matches to W
begin. A call to F S C A N would produce a covering list of the right ends. For these
top level calls to the S C A N routines, the term - d in line 9 of Figure 8 should be
removed in order to produce covering lists whose covered positions are exactly
the indices at which approximate matches begin or end.

The various covering lists are assumed to be implemented as simple linked lists
of integer pairs. Note that each of the subroutines presented in Figures 6-8 are

366 E.W. Myers

list o f pairs G
1. function LIST(g)
2. { list o f pairs H
3. i f l al : K - 1 then
4. { H ~ FGEN(W~o, D~o)
5. G ~- RGEN(W,1 , D~I)
6. }
7. else
8. { H ,- FSCAN(LIST(g0), W~o, D~o)
9. G ~- RSCAN(LIST(gl), W~I, D~I)

10. }
11. return UNION(G, H, A~, P,o)
12. }
13. G +-- LIST(e)
14. Report intervals in RSCAN(G, W, D)

Fig. 9. The sublinear algorithm.

careful to consume (via pops) their input lists as they produce their resultant lists.
Thus the algorithm of Figure 9 is carefully structured so that at a given instance
there is never more than the list G of the current recurrence level, and one list
H pending a U N I O N at each level of the recurrence. This feature is very
important to the space requirement of the algorithm proven in Lemma 7.

LEMMA 7. Given that A is the result of equiprobable Bernoulli trials and that
pow(e) <_ 1, the algorithm of Figure 9 in expectation takes O(DN p~176 log N + P)
time and O(N p~ + P) working space (excludes the index). I f A does have matches
to W, then in the worst case O(DP) time is spent on each of these occurrences.

PROOF. First, consider the time spent in calls to FGEN and RGEN. The number
of calls to each is P/2T. Observe that, when I~[= K, D~ equals a = [_eTA. By
Lemma 5, it takes 0((o- + 1)N p~ + T) expected time to produce S in line 2
and it is of size N p~ Further sorting S and producing the covering list takes
O(N p~ log N p~ additional time. There are two cases to consider. First, if
e < l/T, then a = 0 and N p~ = N p~176 = N o = 1. Thus, in this case, each call
to FGEN or RGEN takes O(T) time in expectation, for a total over all PIT calls
of O(P) time. For the other case where e > 1/T, note that PIT < eP = D. Thus the
time taken in line 2 over all calls is

O(P/T(aN p~ + T)) = O(P/T(eTN p~ + T)) = O(ePN p~ + P)

= O(DNpOW(~) + P).

The time taken for the sort and covering list construction is

O(P/T(N l'~ log Nv~ = O(DN v~ log N).

A Sublinear Algorithm for Approximate Keyword Searching 367

Thus, the total expected time spent in the GEN subroutines is within the bound
of the lemma.

The time spent in a call to UNION is linear in the sizes of the lists produced
by the corresponding calls to FSCAN and RSCAN. Thus the total time spent in
calls to the SCAN routines dominates the time spent in UNION. Extending the
proof of Lemma 4, observe that Bnd(n logl~ I N, ne logl~ I N, c) = N ~(~'c) and thus
Pr(rcT, riD)< 2N ~(p~ Thus it follows that the expected number of ap-
proximate matches to a word of length P, with no more than Do differences is
less than N x Pr(2~ 2"eT) _< 2N/N 2a(x-p~ where a denotes K -- [e[. Now a
covering list for Fo or R, has this many elements in expectation, each pair giving
an O(Do) width interval about an approximate match. Because Lo is the union of
Foo and R~I it follows that it has less than 4N/N 2~176 intervals of expected
width O(D,). Thus, the expected time spent in a call to FSCAN(Lo, W~, Do) is
O([L, IDoPo) = O(e, NT24a/N2"-~(1-P~ The same amount of time is spent in a
call to RSCAN and there are a total of P/(2"T) such calls made on words of length
P~. Thus the total time spent on words of length Po is O(DNT(2"/N 2"-'~ -pow(~))).
Over the entire course of the algorithm, a runs from 1 to K, so the total time

r - 1 -po~,))). For e in spent in calls to FSCAN and RSCAN is O(DNT ~c=o 2c/N2~1
the range of interest we can assume N ~ -power) > 2 and so the progression of terms
in the summation above approach zero hyperexponentially. Thus the sum is
asymptotically dominated by the first term and we can conclude that in expecta-
tion O(DNT/N ~-p~ = O(DNpO,,) log N) time is spent extending hits.

As stated in the first paragraph of the proof, the size of the "Hit list" S used in
R GEN and F G E N is N p~ = O(NP~ Thus the bound on space is observed
at the lowest level of the recursion, since only one S is in existence at any given
time. At an arbitrary point in the computation there are some number of H lists
at distinct levels of the recursion, awaiting the production of the G list to which
they will be merged. Each H is a covering list of F, for some c~ and so as argued
above is of expected size 2N/N z~ -po~(~)). Thus the total space occupied by the at

K most K H lists at distinct levels is O(N ~ = o N~ N2~O -pow(e))). As noted previously,
this sum is dominated by the first term which is O(Np~ At any moment there
is at most one G list in existence, so certainly the space claim is not exceeded by
the covering lists created and destroyed during the course of the algorithm. []

We conclude this section with a discussion of how to treat the case where PIT
is not a power of 2. To make a beginning, consider the case where P is a multiple
of T. The difficulty here is that progressively halving W does not lead to pieces
of size T. The key to handling this is to observe that W could equally well have
been divided into thirds, then the thirds split in third, and so on without changing
the principle aspects of Lemma 6, the algorithm, and its complexity. Specifically,
for a word W such that its length P = 3 r T for some K, we could have let W~ for

~ {0, 1, 2}* be recursively defined by the equations W~ = W, W,o = W,[1 .. [W,[/3]
(the first third of W~), W~I = W~[[W,[/3 + 1.. 1W,12/3] (the second third of Wo),
and Wo2 = Wo[[W~[2/3 + 1.. [W o[] (the last third of W~). If we had then let
D, = [_D/3 I~ be the match stringency to Wo, then Lemma 6 as stated would
remain true. Moreover, in analogy with the argument given for producing L o in

368 E.W. Myers

Figure 7, it can be shown that all paths of cost D, or less in the edit graph of W,
versus A, must lie on the set of diagonals:

U {[1 - P,o -- D~, u -- P~o + D j : (1, u) e F~o }

u {[-I - P,o - P,1 - D,, u - P,o - P , i + D~]: (l, u) e F , i w R~z }.

Certainly, a covering list L, of this set can be built with a three-way merge of
covering lists for F,o, F,l , and R,2. Note that in this case we must expand each
pair (l, u) by D~ as opposed to A, and thus the F S C A N (RSCAN) procedure over
the covering list L, may take twice as long as before, but this inefficiency does
not affect the asymptotics of the complexity argument. Thus, in almost exact
analogy with the development of the algorithm of Figure 8, we could have
proceeded to build an algorithm based on three-way merges. Moreover, the
complexity would remain unchanged since the critical sum, ~f=o 2c/N2~ -vow(e)),
in the analysis becomes ~ff=o 3C/N 3~176 which still converges hyperexpo-
nentially.

Taking this idea a little further, observe that as we partition W into pieces we
may split these pieces into halves or thirds on an individual basis. The only
difficulty is how to distribute the errors in the case where an even split is not
possible, e.g., if P = l l T , then "halving" it gives pieces of sizes 5T and 6T. An
easy extension of Lemma 6 shows that if W aligns to V with not more than D
differences and W = Wo W1, then either Wo aligns to a prefix of V with not more
than [_DlWol/IW[_J errors, or W~ aligns to a suffix of V with not more than
LD[W~ I/I wI] errors. Thus an uneven split does not create a problem, we still seek
e-matches to the subparts. So our solution involves repeatedly halving W into
pieces whose length is divisible by T until pieces of size T or 3T result. Those
pieces of length 3 T are split into thirds and then processed as a three-way merge
as discussed above. For example, i f P = 7T, then Po = 3T, P1 = 4T, Poo = Pol =
P o 2 = T , P l o = P o l = 2 T , and P l o o = P l o ~ = P l l o = P i l i = T . Such a sub-
division method always applies when T divides P, and requires finding e-matches at
each level. Note that three-way merges are always confined to the deepest level and
that the expected time still decreases hyperexponentially as we move up the decom-
position hierarchy. Thus this approach continues to guarantee O(DN p~ log N)
expected time under the more general condition where T divides P.

Finally, consider the case where P is arbitrary. Our technique for this case
requires that P must not be less than T 2 or f~(log 2 N) in order to maintain the
asymptotic complexity claim. In principle this is permissible since we need to prove
the result only for N and P sufficiently large. So suppose P > T z and let a = [_P/TJ
and b = P(mod T), i.e., P = aT + b where b < T. Now it is possible to subdivide
W into a pieces using the 2- and 3-splitting method, where b of the pieces are of
length T + 1 and the rest are of length T (this requires that P > T2). For the
pieces of length T + 1, finding e-matches to them requires the generation of
O(IE I~'~ p~ words for a [E I-factor increase in time for this phase (recall the
discussion at the middle of p. 357). Since I~1 is assumed to be a constant from an
asymptotic point of view, we are done. In practice this works very well since the

A Sublinear Algorithm for Approximate Keyword Searching 369

per-word cost of generation is much less than that the per-hit cost of extension.
For queries that are very short, we divide W into pieces of length T +_ c for small
c, in a fashion that gives the best performance possible.

7. Practical Experience. In order to determine the practical efficiency of our
approach to the approximate keyword searching problem, the theoretical
algorithm described in the preceding sections was implemented in the C pro-
gramming language. The implementation effort amounted to about 1500 lines of
software. The index data structure was implemented exactly as described in Section
2. For the algorithm proper, however, a number of practical considerations require
slight variations on the theoretical design and these are described in the next two
paragraphs.

Three small observations improved the practical performance of the word
generation and lookup phase of the algorithm. First, in practice there is no
advantage in going from the O(TZ) version to the O(DZ + T) version that
computed only the relevant 2D + 1 entries of each row. For the small values of
T and D actually involved (e.g., T E [5, 10] and D ~ [0, 4]), the overhead of checking
which entries to compute outweighs the straightforward calculation of the entire
row. Secondly, using the KMP construction to avoid generating words not in the
condensed neighborhood was similarly found to be ineffective in practice because
it eliminates very few words in expectation. The third variation involves the
interaction of the generation of words with their lookup in the index: Specifically,
in the case where a word of length T has been generated that is still a proper
prefix of a condensed neighborhood word (i.e., there is an entry less than D in the
current row), then this word is looked up in the index immediately, and the
extensions of the individual matches to this word are checked for membership in
the condensed neighborhood by continuing the computation of the dynamic
programming matrix on the extension. This is more efficient in practice because
there are always at least]EI extensions of the word in the condensed neighborhood,
but on average only one occurrence of their T-symbol prefix in the database.

The last and most significant deviation from the theoretical algorithm described
above is in the way Hitsw(d) (Hitsw(d)) is recorded and sorted in lines 2 and 3 of
FGEN (RGEN). An array S of bits is used to record the position of the hits.
Initially all bits are set to zero and whenever a word is generated that matches at
position i, then the ith bit of S is set. Thus at the conclusion of word generation
S[i] is set iff i ~ Hitsw(d). Simply reading off the set bits left to right gives the hit
list in sorted order. We take this another step farther by recording both the forward
generation on W~o and the reverse generation on W,1 for what would normally
be the calls to FGEN and RGEN at the bottom level of the recursion of the
function L I S T in lines 4 and 5. That is, instead of calling these two routines, we
establish the bit array S so that S[i] = 1 iff i ~ Hitsw~o(D~o) w Hitsw~l(D~O. Then
we call a special version of U N I O N which produces the covering list for L, in a
single left-to-right pass over the array S. As regards space, this is not too great a
cost, since S requires N/8 bytes versus the 6N bytes required by the index itself.
While avoiding a couple of covering list constructions, the potential pitfall is that

370 E .W. Myers

the scan of S takes O(N) time as opposed to the O(N v~ log N) time taken by a
sort over a listing of the hit set. This inefficiency for sparse problems (i.e., small
e) is rectified as follows. On the computers in our laboratory an integer occupies
32 bits and S is realized as an N/32 element array of integers. The left-to-right
scan only needs to examine the bits of an integer if it is nonzero, i.e., one of its 32
bits is set. Thus the time for the scan is improved by a factor of 32 for sparse
problems, but this may still be too inefficient. So a second array T of N/322 =
N/1024 integers is maintained such that the j th bit of T is set if and only if the j th
word of S is nonzero. This requires twice as much time when a bit, say i, of S must
be set, because the i/32th bit of T must also be set. However, for sparse problems,
only N/1024 integers need to be checked during the scan, and only those 1024
position stretches containing hits are examined further. We could extend this idea
recursively, essentially arriving at a logarithmic scheme, but we found that a
two-tiered approach was quite sufficient for problems where N is in the 1 million
to 10 million range.

We compared our implementation against an implementation of the standard
O(NP) dynamic programming algorithm IS], the O(DN) expected-time algorithm
of Ukkonen lU l l , [MM], and a novel use of the 4-Russians paradigm that permits
the dynamic programming matrix to be computed five entries at a step EWMM].
In all cases the software had been written at an earlier time by this author and
represent his best efforts at efficient code. All experiments were performed on a
SparcStation 2 with 64 megabytes of memory and all code was compiled under
the standard SunOS C-compiler with the optimization option on. For each timing
result reported, we ran the given algorithm enough times so that the total elapsed
time was at least 100 seconds and then averaged. Given that the system clock is
accurate to about 0.1 to 0.2 seconds, timing results are figured to be accurate to
the third digit. A random query of length 80 was searched against a random (every
symbol equally likely) database of a million symbols for a four-letter alphabet,
and 4 million symbols for a 20-letter alphabet. A plot of the results is shown in
Figure 10. The curves for the standard dynamic programming algorithm are

100 sec.

10 sec.

.~ 1 see.
[..

1/I0 see.

1/100 see.,

TDp

. . . , - - , ~ ~ F _ ~ 100 sec.

TV 10% 20% 30% 40% ~ 10 sec.
' ' (~

Mismatch Ratio) "~"

1 sec. ~z

Tstarn 1[10 see.

(a)

1/100 sec.

TDp

?o~]4o~ 6o7o
Mismatch Ratio (~)

Tslam

(b)

Fig. 10. Timing plots for queries of length P = 80. (a) N = 1,000,000 and IG] = 4 and (b) N -- 4,000,000
and [G I = 20.

A Sublinear Algorithm for Approximate Keyword Searching 371

labeled Top, those for the Ukkonen algorithm are labeled Tv, those for the
4-Russians algorithm are labeled T4R, and those for our sublinear algorithm T~am.
A logarithmic time scale is used because the sublinear algorithm's time perfor-
mance increases exponentially in D. Thus the curve for T v is shaped like a log
curve because it is actually a straight line on a normal scale. TDp and T4R are
straight lines because the complexity of their underlying algorithms depend only
on P and N.

Observe from the figures that for the case where 137 [= 4, our algorithm is three
orders of magnitude faster than any of the others when e < 10%o. It is two orders
of magnitude faster when e < 20%, and a single factor of 10 faster when e < 30%.
Moreover, it crosses over with the best algorithms in the 30-40% range of e exactly
as suggested by the curve for pow(e) given in Figure 4. In the case where I EI -- 20,
our algorithm achieves slightly more modest factors of improvement for the
intervals 0-20% (three orders), 20-40% (two orders), and 40-60% (factor of 4).
When e is above 60% it performs considerably worse than the 4-Russians
algorithm.

Tables 1 and 2 show some of the exact numbers used to produce the plots of
Figure 10 and also display some statistics on the number of hits and covering list
spans for the sublinear algorithm. In studying these statistics, which readily explain
the time performance, it is important to note that T = 10 for the experiments in
Table 1, and T = 5 for the experiments in Table 2. Thus, in the first case, the
length of the query P = 23T, and, in the latter, P = 24T. The column, Hits, gives
the average number of matches to words in the neighborhood about each T
subpiece of the query string. The columns labeled Span j, for some j, give the
percentage of the database spanned by the average covering list L, where I~1 = J.
For example, when e = 20/80 = 25%, Span 2 = 1.54 in Table 1, indicating that on
average span(L,) = 1.54N/100 = 15,400 when hal = 2. The interesting observation
about these columns is that they reveal that as D is increased for the query, D,
increases at each level and the corresponding statistics increase exponentially, but
more slowly at the higher levels. Some readers may wonder what happens when
P becomes larger than 80. If P were doubled (without changing N), then each of
the first three columns concerning time would double, but the numbers in the

T a b l e 1. Times and hit frequencies when P = 80, I ZI = 4, a n d N = 1,000,000.

D T~I. m (sec.) T v (sec.) T4R (sec.) Hits Span2(%) Span1(%) Spano(%) Matches

0 0.0015 1.8 12.8 1 0.0 0.0 0.0 0
4 0.0017 7.6 12.8 1 0.0 0.0 0.0 0
8 0.037 13.0 12.8 54 0.03 0.0 0.0 0

12 0.045 18.7 12.8 54 0.05 0.0 0.0 0
16 0.97 24.3 12.8 1,400 1.12 0.0 0.0 0
20 1.17 30.5 12.8 1,400 1.54 0.12 0.0 0
24 10.8 36.6 12.8 17,000 14.0 1.2 0.0 0
28 16.0 42.6 12.8 17,000 18.0 9.4 0.4 0
30 17.3 45.5 12.8 17,000 18.0 10.5 2.2 1

372 E. W. Myers

Table 2. Times and hit frequencies when P = 80, IX[= 20, and N = 4,000,000.

D T~t.m (sec.) T v (sec.) T4~ (sec.) Hits Span3(%) Span2(%) Span1(%)

0 0.0097 6.1 40.1 0.0 0.0 0.0
8 0.0097 38.5 40.1 0.0 0.0 0.0

16 0.184 71.0 40.1 0.03 0.0 0.0
24 0.223 104.0 40.1 0.05 0.0 0.0
32 9.8 140.0 40.1 2.5 0.3 0.0
40 13.4 173.0 40.1 3.4 1.0 0.0
44 13.8 190.0 40.1 3.4 1.1 0.07
48 179.0 204.0 40.1 46.0 15.0 1.1

remaining columns would be exactly the same. However, the headers Spanj would
become Spanj+ 1. Thus for fixed e and N, time varies proportionally with P while
the coverage statistics remain constant.

In a final experiment we ran our algorithm over an older version of the PIR
database containing 3,000,538 symbols. The query was the 104 symbol sequence
for human Cytochrome C. This test was run to see how critical the uniformity
assumption for the database was. The underlying alphabet had 23 characters,
containing two codes that denoted one of two residues, and a wild card code, "X,"
denoting any residue. These symbols appeared much less frequently than the
others, and, in general, the frequency of occurrence of each letter was not uniform.
Indeed, about 40% of all buckets in the index were empty, and there was one that
had 553 positions in it. Nonetheless, note that the performance figures in Table 3
are very comparable with those in Table 2. Times are roughly about three times
slower. As D increases the factor becomes less. The key thing to note is that there
are many cytochrome C entries for other organisms in the database and, con-
sequently, this search is preconditioned to contain quite a few matches to the
query. As noted in the overview, this effectively means that complete dynamic
programming computations are run for each match. It is this time that is primarily
responsible for the differential over simulated data and not the skew in character
distribution.

Table 3. Times and hit frequencies for Searching a Protein Database

D T~za m (sec.) Hits Span3(%) Span2(%) Spana(%) Spano(%) Matches

0 0.027 23 > 0.0 > 0.0 > 0.0 > 0.0 2
8 0.067 23 0.005 0.005 0.01 0.01 18

16 0.40 298 0.06 0.01 0.02 0.03 32
24 0.58 298 0.09 0.02 0.04 0.07 44
32 12.4 19,900 3.2 0.1 0.1 0.1 74
40 17.2 19,900 4.3 1.6 0.1 0.2 79

A Sublinear Algorithm for Approximate Keyword Searching 373

8. Conclusion. A sublinear algorithm for approximate keyword searching has
been presented that not only represents an asymptotic improvement for the
problem, but also provides order-of-magnitude speedups in practice. We close
with several observations and conjectures. First observe that, with e = 37.5%, a
match was found just by chance as shown in Table 1. We conjecture that the point
at which D becomes large enough, so that Z(T, D) = N, is strongly correlated to
the point at which at (D/T) -match to a word W would be found purely by
coincidence in a random database. Second, we observe that there is nothing in
the algorithm itself that precludes using more general measures of similarity such
as real-valued arbitrary scores for indels and substitutions. The only aspect of our
treatment that was specifically tied to the simple unit measure was in the
mathematics for bounding the sizes of neighborhoods. An open development is
to demonstrate that the approach works well in practice for scoring schemes where
neighborhoods are not " t oo" large. Alternatively, a formal treatment of how
neighborhood size is a function of scoring scheme needs to be developed. Third,
is there any way to improve upon the O(N p~ working storage required by the
algorithm? Finally, we note that the essential idea of this paper can be summed
up as: "find approximate matches to subparts using exact matches to neighbor-
hoods as a filter to those locations where an extension strategy can be profitably
employed." There are potentially many other ways to instantiate this idea and
perhaps there are better ones than that realized here. For example, this approach
was the essential idea behind a heuristic sequence comparison tool, BLASTA, now
in popular use for protein database searches [AGM+] .

Acknowledgments. The author wishes to thank his colleague and mentor Andrzej
Ehrenfeucht for his advice, ideas, and encouragement early in the development of
this work. Also thanks to George Corugedo for the courage to finish a long
overdue paper.

[AGM +]

[BM]

[CL]

[GP]

[KMP]

[LV]

[M1]

References

Altschul, S., W. Gish, W. Miller, E. Myers, and D. Lipman, A basic local alignment search
tool, J. Molecular Biol. 215 (1990), 403 410.
Boyer, R., and J. Moore, A fast string searching algorithm, Comm. ACM 20(10) (1977),
262-272.
Chang, W. I., and E. L. Lawler, Approximate matching in sublinear expected time, Proc.
31st IEEE Symp. on Foundation of Computer Science, 1990, pp. 116-124.
Galil, Z., and K. Park, An improved algorithm for approximate string matching, SlAM
J. Comput. 19(6) (1990), 989-999.
Knuth, D. E., J. H. Morris, and V. R. Pratt, Fast pattern matching in strings, SIAM J.
Comput. 6(2) (1977), 323-350.
Landau, G. M., and U. Vishkin, Introducing efficient parallelism into approximate string
matching and a new serial algorithm, Proc. Symp. on Theory of Computing, 1986,
pp. 220-230.
Myers, E. W., Incremental alignment algorithms and their applications, Technical Report
86-22, Department of Computer Science, University of Arizona, Tucson, AZ 85721, 1986.

374 E.W. Myers

[M2]

[MM]

is]

[u1]
[u2]

[WMM]

Myers, E. W., An O(ND) difference algorithm and its variants, Algorithmica 1 (1986),
251-266.
Myers, E. W., and D. Mount, Computer program for the IBM personal computer that
searches for approximate matches to short oligonucleotide sequences in long target DNA
sequences, Nucleic Acids Res. 14(1) (1986), 1025-1041.
Sellers, P. H., The theory and computation of evolutionary distances: pattern recognition,
J. Algorithms 1 (1980), 359-373.
Ukkonen, E., Finding approximate patterns in strings, Y. Algorithms 6 (1985), 132-137.
Ukkonen, E., Algorithms for approximate string matching, Inform. and Control 64 (1985),
100-118.
Wu, S., U. Manber, and E. W. Myers, A Subquadratic Algorithm for Approximate Limited
Expression Matching, Technical Report TR92-36, Department of Computer Science,
University of Arizona, Tucson, AZ 85721, 1992 (submitted to Aloorithmiea).

