
Algorithmica (1994) 12:312-326 Algorithmica
�9 1994 Springer-Verlag New York Inc.

Parametric Optimization of Sequence Alignment 1

D. Gusfield, 2 K. Balasubramanian, 2 and D. Naor z

Abstract. The optimal alignment or the weighted minimum edit distance between two DNA or amino
acid sequences for a given set of weights is computed by classical dynamic programming techniques,
and is widely used in molecular biology. However, in DNA and amino acid sequences there is
considerable disagreement about how to weight matches, mismatches, insertions/deletions (indels or
spaces), and gaps. Parametric sequence alignment is the problem of computing the optimal-valued
alignment between two sequences as a function of variable weights for matches, mismatches, spaces,
and gaps. The goal is to partition the parameter space into regions (which are necessarily convex) such
that in each region one alignment is optimal throughout and such that the regions are maximal for
this property. In this paper we are primarily concerned with the structure of this convex decomposition,
and secondarily with the complexity of computing the decomposition. The most striking results are
the following: For the special case where only matches, mismatches, and spaces are counted, and where
spaces are counted throughout the alignment, we show that the decomposition is surprisingly simple:
all regions are infinite; there are at most n 2/a regions; the lines that bound the regions are all of the
form fl = c + (c + 0.5)cq and the entire decomposition can be found in O(knm) time, where k is the
actual number of regions, and n < m are the lengths of the two strings. These results were found while
implementing a large software package for parametric sequence analysis, and in turn have led to faster
algorithms for those tasks. A conference version of this paper first appeared in [10].

Key Words. Sequence alignment, Parametric analysis, Edit distance, Sequence homology, Global
alignment, Local alignment.

1. Introduction. Finding the minimum cost edit distance, or the best alignment,
of two DNA, RNA, or amino acid sequences has become almost the standard
technique for sequence comparison in molecular biology. It is used to determine
whether and where two sequences are similar (homologous), to determine evolu-
tionary history between species, to find consensus sequences, and other significant
functions. There are literally hundreds of papers written on this topic and its
applications to biology. For an introduction and small reflection of this literature
see [2], [33, [53-[73, [12], [133, [183, and [193.

However, in all the present methods for optimal sequence alignment, specific
substitution, insertion/deletion (indel), and gap penalties must be specified, and
the (biological) significance of the alignment depends heavily upon the "right"
choice of the weights. There is considerable disagreement among molecular
biologists about the correct choice, and it is probably the case that there is no
unique choice for the parameters (as pointed out in [5] and [1] with respect to

1 This research was partially supported by Grant DE-FG03-90ER60999 from the Department of
Energy, and Grants CCR-8803704 and CCR-9103937 from the National Science Foundation.
2 Computer Science Department, University of California, Davis, CA 95616, USA.

Received August 21, 1991; revised August 15, 1992. Communicated by Alberto Apostolico.

Parametric Optimization of Sequence Alignment 313

gap penalties). The significance of an alignment is based either on biological
grounds, or on its sensitivity to the choice of parameters. Instead of repeatedly
varying the parameter weights and solving for the optimal alignment, other
parametric methods ought to be employed. As an example, D. Sankoff and J.
Kruskal [13, pp. 290-293] demonstrate the difficulties in finding the relative
weights for gaps/substitutions and other operations by a specific example: the
comparison of human and E. Coli 5S RNA (two sequences of 120 characters each
over a four-letter alphabet). Their solution involves varying one parameter, the
number of indels, until its appropriate value is found. Similarly, the paper by Fitch
and Smith [-5] demonstrates how the biologically accepted alignment may easily
be missed if inappropriate weights are used.

There are two ways around the problem of choosing a "correct" choice of
parameters. The first is to compute, for a given set of initial guesses for parameter
values, the optimal alignment ~ at that point and, in addition, a maximal region
P such that d is optimal throughout P. The other, more general, approach is to
find the entire decomposition of the parameter space into such maximal regions.
Papers [5] and [-6] present examples of decompositions that were computed by
hand. During the process of developing and analyzing a computer program which
is based on these approaches, we were able to characterize this decomposition in
several cases, and this considerably simplified and accelerated the algorithm for
finding the decomposition.

We formally define the parametric alignment problem in Section 1.1 and
summarize our results in Section 1.2. In Sections 2 and 3 we consider the
two-parameter case, where only substitution and indel weights can vary. Two
different variants, the global and the local alignment, are studied. Section 4
deals with the three-parameter ease. Finally, in Section 5 we discuss a richer
variant of the problem, where independent weights for each type of mismatch are
specified.

1.1. Definitions. The edit distance between two sequences is the minimum weight-
ed sequence of edit operations (insertion, deletion, and substitution of single
characters) that must be performed to transform one sequence into another. This
has found widespread use as a measure of sequence similarity. It is often more
important to know what the actual edit operations are rather than just the total
cost or value. These operations can be represented as an alignment, and it is often
the alignment that is sought.

An alignment of two sequences S 1 and $2 of lengths n and m (> n), respectively,
is obtained by introducing spaces into the two sequences such that the lengths of
the two resulting sequences are identical, and placing these two resultant sequences
one upon the other subject to the constraint that no column contains two spaces.
Any column that contains two identical characters is called a match. Any column
that contains two dissimilar characters is called a mismatch and any column that
contains a space is referred to as a space or indel. The correspondence between
them and the edit operations is straightforward: a mismatch represents a substitu-
tion, a space is either an insertion or a deletion, depending whether it is introduced
in the source string or the target string, and a match is an untouched character.

314 D. Gusfield, K. Balasubramanian, and D. Naor

A series of one or more contiguous space characters in the same sequence is
referred to as gap.

An alignment d may therefore be characterized by the number of matches,
mismatches, spaces, and gaps. We denote these quantities by wd, x~, y~, z~,,
respectively (or w, x, y, z when referring to an unspecified alginment). Note,
however, that this representation is many-to-one: different alignments could have
the same 4-tupe (w, x, y, z). If ~o is the mismatch penalty, rio is the space (indel)
penalty, and 7o is the gap penalty, then the value of an alignment is defined to be

v = w - ~o x - floY - 7o z.

The region of interest is the region where ~, fl, 7 are all positive. We ignore the
case where the weight of the matches is also a parameter since we can divide all
the parameters by this value and reduce it to the above case without changing
the relative order of the value of the alignments. For fixed weights, the value of
the optimal (maximum value) alignment of two strings can be found by dynamic
programming in O(nm) time [14], a fact that was discovered many times in-
dependently.

A given choice of parameter values ~o, rio, and 7o defines an optimal alignment
(not necessarily unique). Since an alignment is essentially a discrete object any
alignment that is optimal for some fixed values (~o, rio, 7o) is optimal in a certain
region in the (~, fi, 7) space. Hence, the three-parameter space is decomposed into
regions which we call optimal regions such that in every region one alignment is
optimal throughout and the regions are maximal for this property. This decompo-
sition is completely defined by the two sequences.

The value of an alignment is always a linear function of the parameters; hence
it can be easily observed that the regions, which are bounded by the intersection
of hyperplanes, are all convex polygons.

The above definition of an alignment is called 91obal since it finds the edit
distance between the entire two strings, and charges or penalizes for characters
throughout the alignment. Another variant of the alignment problem is the local

a l ignment problem, and is formally defined below.

THE LOCAL ALIGNMENT PROBLEM. Given two strings A and B, find substrings
A' and B' of A and B, respectively, such that the optimal (global) alignment value
of A' and B' is maximum over all pairs of substrings from A and B.

The parametric version of the local alignment problem is to parametrize the
(global) alignment value of A' and B'. While local alignment seems more complex
than global alignment, when all the parameters are fixed an optimal local
alignment can be found in O(nm) time [16], the same bound as for global
alignment.

In biological applications, 9lobal alignments are used for searching for homol-
ogies between two sequences, that is, when the whole sequences are expected to be
homologous. This is true more often of proteins than in the study of DNA, though
global alignment problems also arise as subtasks of more complex alignment

Parametric Optimization of Sequence Alignment 315

problems [14]. In contrast, local alignments are used in cases where the two given
sequences may not be highly homologous in their entirety, but contain substrings
that are highly similar.

There is yet another variant of the alignment problem, which is a hybrid of the
global and the local. This is the end-free alignment. When computing the value of
an end-free alignment, we ignore any (contiguous) spaces that overhang at the
extreme ends of the alignment, i.e., we are permitted to delete one suffix and one
prefix (perhaps of the same sequence) with no cost. Note that local alignment is
a more restrictive version of the end-free alignment case. In this paper we consider
the two main variants, the global and the local; however, all of our results for the
local alignment carry over to the end-free case.

1.2. Summary of Results. In this paper we are concerned with the characteristics
of the parametric space decomposition, and its algorithmic implications. We are
also interested in questions of the type: Given an arbitrary line in the parametric
space, how many different regions can it go through? The latter was motivated
by our computer program PARAL which is based on a primitive operation
that, when given a line in the space, can find all the regions it crosses in time
O(knm), where k is the actual number of regions it goes through (using the
algorithm of Eisner-Severance [4], [17]; this is essentially Newton's method for
determining a piecewise linear function). Independently, Waterman et al. [20]
developed a program that also finds the parametric decomposition. At the
high level the methods are very similar, but important details and worst-case
time bounds differ. Also, their work does not concern the questions addressed in
this paper of the number and characteristics of the regions and lines in the
decomposition.

We first consider a case of particular interest, the two-dimensional case where
gaps are ignored (that is, y = 0). Here, the optimal alignment is the one that
maximizes w - ~ x - fly. We show that when 91obal alignments are considered,
the decomposition of the ct, fl space is surprisingly structured. We prove that the
number of (convex) polygons in the decomposition is bounded by n 2/3. We show
further that every polygon is infinite and is bounded by two rays, each of which
runs along a line of the form fl = c + a(c + 0.5) for some constant c. As a
consequence, we show that the entire decomposition can be simply found in O(knm)
time, where k is the number of actual polygons in the decomposition. Hence, the
amortized cost for finding a single region is O(nm) time, which is also the time to
find a single optimal alignment within that region. For local alignments, the
decomposition becomes more complex; some of its regions can be bounded (finite),
but their total number never exceeds n z. Any arbitrary line in the two-dimensional
space can therefore go through at most n 2 regions. As a consequence, a simple
implementation of the algorithm used in PARAL finds all the regions in time (nam)
per region. A more involved, yet still practical, implementation of PARAL (which
we have incorporated into a more user-friendly program called XPARAL) reduces
that time to O(nm) per region for all penalty functions except the one discussed
in Section 5. An alternative method by Gusfield [8], which is an adaptation of
Megiddo's method [11], can find all regions in time O(nm log 3 n) per region for

316 D. Gusfield, K. Balasubramanian, and D. Naor

any of the penalty functions. These algorithms are only briefly sketched in this
paper and will be described in more details in a subsequent paper.

If gaps are allowed, then we obtain similar results for the decomposition
of the three-dimensional space if global alignments are considered. All regions,
which are convex polyhedra, are unbounded cones, bordered by rays of the form
fl = c + (c + 0.5)~, 7 = d + d~. An arbitrary line in the three-dimensional space
can go through at most n z regions if global alignments are computed, and through
at most n 3 regions for local alignments.

A much more complex case arises when different weights are assigned to every
possible mismatch (for example, in amino acid sequences, where the alphabet size
is 20, there are 190 possible mismatch weights). In this most general setting, we
show a subexponential bound on the number of regions that any straight line can
intersect.

2. Two-Parameter Global Alignment. In this section we consider the global
alignment problem where only two parameters ~ and fl are given. We ignore the
number of gaps, so ~ = 0. The objective function, therefore, is to maximize
w - ~ x - fly, where w, x, and y are the numbers of matches, mismatches, and
indels, respectively. We are interested in bounding the number of regions in the
(first quadrant of) the ~, fl plane. We establish the following lemmas and
observations for this purpose.

LEMMA 2.1. For any alignment d with corresponding tuple (w, x, y), 2w + 2x +
y = N, where N = n + m is the sum o f the sequence lengths.

PROOF. Any character can be part of exactly one match, mismatch, or indel. A
match or a mismatch involves two characters. Thus the total number of characters
that form part of a match is 2w. Similarly, the total number of characters involved
in mismatches is 2x. An indel involves only one character from the input sequences
and since we do not ignore any indels in counting their total number it follows
that the number of characters involved in indels is y. The lemma follows. []

Recall that m > n.

LEMMA 2.2. For any alignment d , w + x <_ n.

PROOF. A match or mismatch involves one character from each sequence. Hence
their total cannot exceed the number of characters in the shorter sequence. []

COROLLARY 2.1. For any alignment d , m -- n <_ y <_ m + n.

COROLLARY 2.2. In all alignments o f two sequences, y is always odd or always even
depending on whether m + n is odd or even. There are therefore only n + 1 distinct
values f o r y.

Parametric Optimization of Sequence Alignment 317

THEOREM 2.1. Any line forming a boundary between two regions is o f the form
fl = c + (c + �89 for some c > - �89

PROOF. At a given point (ct, fl) an alignment has the value v = w - ex - fly. The
left-hand side of Lemma 2.1, which can be rewritten as w + x + y/2 = (n + m)/2,
is also a linear combination of w, x, and y, with e = - 1 and fl = -�89 This suggests
that this point is of some significance. Therefore consider the point (- 1, - �89 on
the e, fl plane. At this point all alignments have the same value: v = w + x + y/2 =
(n + m)/2 (from Lemma 2.1). In other words, all the value planes must meet at
ct = - 1, fl = - �89 v = (n + m)/2. It follows then that any intersection between two
such planes must also pass through that point. Now, let fl -- c + c1~ (for some c 1
and c) be a boundary (intersection) line. Since (- 1 , -�89 is a point on that line,
- � 89 = c - cl. Hence c 1 = c + �89 In other words, fl = c + (c + �89 for some c. Since
we are only interested in the quadrant where fl and e are positive, it follows that
any line passing through that quadrant and the point (- 1 , _1) must have a
positive slope. Hence c > -�89 []

COROLLARY 2.3. All the regions o f optimality are semi-infinite regions bounded by
lines o f the form fl = c + (c + �89 or by the coordinate axes.

An example (using two made-up sequences) of the decomposition of the
parameter space into regions of optimality, displaying the above property, is shown
in Figure 1.

2.1. The Number o f Regions. We now examine the maximum number of regions
in any decomposition. A breakpoint along any given line is the point where the
line moves between two adjacent regions.

LEMMA 2.3. Along any horizontal line we never encounter breakpoints in the region

~ > 2 f l .

PROOF. Consider an alignment which contains at least one mismatch. A single
mismatch may always be replaced by two indels, one in each sequence, so an
alignment containing mismatches can be changed into one with no mismatches
without affecting the number of matches. Thus if the cost of a mismatch, ct, is
greater than twice that of an indel, fl, it follows that any optimal alignment for
those parameters will have no mismatches.

Consider now a horizontal line in the region a > 2ft. Any alignment that is
optimal at a point in this region can have no mismatches. Thus the value of such
an optimal alignment remains constant through this region on any horizontal line
(where fl is constant). Hence there are no breakpoints on a horizontal line in this
region. []

LEMMA 2.4. There are at most n + 1 regions.

318 D. Gusfield, K. Ba l a sub raman ian , and D. N a o r

File Options Commands TBD

deaabaeoaabaaeaa
. ' I H I l imnn'nl

baabbebcaabccaacl

-deaa-bao-caab--aaeaa
b--aabb-cbeaabccaae--

Re9ion: X: 0.000000 to 10.000000 Y: 0.1)00009 to 10,000000

~lei9ht o? a mismatch

Fig. 1. Pa rame t r i c decompos i t ion of the (~, fl) space for global a l ignments of the s tr ings d c a a b a c c a a b a a -

caa and b a a b b c b c a a b c c a a c . T h e value funct ions for the var ious regions are: A, v(~, fl) = 7 - 9~t - Off;
B, v(~x, fl) = 11 - 3c(- 4fl; C, v(ct, f) = 11 - 0c~ - 10ft. T he da rkened region cor responds to the align-
m e n t s h o w n above the decomposi t ion .

PROOV. Lemma 2.3, with fl = 0, shows that we will encounter no breakpoints
along the ~ axis and that therefore all the region boundaries must intersect the
positive fl axis. In other words, the fl axis intersects all the regions. Let the
alignments encountered, in order of increasing fl, be all, dz , ~r + a" Since ~ = 0
the value of an alignment (along this line) is simply vg(f l) = wg - f l y~ . Since our
objective function aims to maximize the alignments value, it can be seen that
Y~+I < Yi for all ~ (i < k). By Corollary 2.2, the y~ can attain only n + 1 distinct
values and the lemma follows. []

Let w i - o~xi - f l y i and w j - ~ x j - f l y j be the planes corresponding to the values
of two alignments ~ and ~r respectively. The equation of the line (or line segment)
forming the boundary between the two regions with alignments ~ and ~ is

f l w i - - w j x j - - x i

y~ - - y~ Y~ - - y j

Parametric Optimization of Sequence Alignment 319

We call this the ratio form of the boundary line? The ratio form of the boundary
line suggests an added constraint on the number of mismatches x, and this
constraint can be used to refine Lemma 2.4 further.

THEOREM 2.2. The number of regions is bounded by 0(n2/3).

PROOF. We have seen that the boundaries between regions are of the form
fl = c + (c + �89 Thus we may specify a boundary simply by specifying the slope
m = c + �89 Consider the fl axis which, as we have seen, intersects all the regions.
Let the alignments encountered, in order of increasing fl, be d 1, d 2 , S4k+ x- Let
them be separated by boundary lines with slopes m 1, m2 m k, respectively. We
have seen that Yi + 1 < Yi for all s~/(i < k). The slopes mi are positive since we are
interested only in the quadrant where c~ and fl are positive, and any line from the
point (- 1, -�89 that intersects that quadrant must have a nonzero (and noninfinite)
positive slope. Let Axi = xi+l - x i and Ay i = Y i - Yi+l. Since Yi+l < Yi, AYi is
positive. From the ratio form of the boundary line, m = AxJAyi, therefore, Ax~ is
positive. Thus a boundary slope can be identified by a pair of values (Axl, Aye),
and there can be no more boundaries than there are distinct (Axe, Aye) pairs.

Now, ~ i Axi <- n and ~ i AYi -< (m + n) - (m - n) = 2n. Therefore

k
3n >_ ~ (Axi + Ayi).

i=1

For all t consider the number of boundaries such that (Axi + Ayi) = t. Since the
pairs have to be distinct there can be only t - 1 such pairs. Intuitively, the way
to maximize the number of (Axi, Ayi) pairs is to generate as many as possible
which sum to two, then three, and so on as long as the constraint on the total is
maintained. Let s be the largest value such that

3 n > ~ t (t - 1)
t=2

= - 1) s (s + 1) .

Therefore s = 0(nl/3). The number of regions is therefore

s+l s(s + 1)
k < ~ (t - 1) - - - - O (s 2)=0(n2/3).

t=~ 2
[]

a Writing the intersection of the two planes in this way also gives an interesting interpretation of the
boundary between two regions. The slope of the boundary is the rate at which mismatches are
exchanged for indels in the two adjacent alignments, and the intercept of the boundary line is the
rate at which matches are exchanged for indels.

320 D. Gusfield, K. Balasubramanian, and D. Naor

A closer analysis based on the same observation and using Euler's function O(i),
the number of integers less than and relatively prime to i, can be used to show
that k < 0.88n 2/3.

THEOREM 2.3. All regions in the decomposition can be simply found in O(nm) time
per region, i.e., the time per region is no more than the time to compute a single
alignment at a fixed ~, fl point.

PROOF. The Eisner-Severance [1], or Newton's, method finds all the breakpoints
(intersections between regions) along any single line or direction in O(nm) time per
breakpoint. We have seen that a single line, the fl axis, intersects all the regions.
Hence all the regions can be found in O(knm) time by the Eisner-Severance method
where k is the number of regions. This actually gives us the intercepts along the
fl axis but this information is enough to determine the boundary lines since each
line must pass through (- 1 , -�89 []

COROLLARY 2.4. The entire decomposition can be found in O(nS/3m) time.

3. Two-Parameter Local Alignment. In this section we consider the regions of
optimality generated by looking at local instead of global alignments. In this case
certain spaces, mismatches, and matches occurring at the ends of the alignment
may be disregarded. This renders Lemma 2.1 invalid. However, we note that
Lemma 2.2 remains valid. We may also make the following weaker observation.

LEMMA 3.1. For any local alignment,

2w + 2x + y < N,

where N = n + m is the sum of the sequence lengths.

In the local (or end-free) case, "extreme" spaces will not be counted (since any
additional space will always decrement the value). Thus if space is "counted," it
must be the case that there is at least one match/mismatch on either side of it, so
if y > 0, then we must have at least two matches/mismatches consuming four
characters. Hence,

LEMMA 3.2. For any alignment,

y < _ m + n - 4 .

Due to these weaker conditions, the picture of all the optimal regions in the
local alignment case may be more complicated and not show the structure that
we observed for global alignments. The example in Figure 2, using the same
sequences as Figure 1, illustrates this increased complexity.

Parame t r i c Opt imiza t ion of Sequence Al ignmeut 321

File Options Commands TBD

dcaabaceaabaacaa

baabbcbeaabccaa~
dc [aabac-caab--aac] aa
b [aabbcbcaabecaac]

rco.,o.e st.iooolI, o." ol, 11,-x, 3> IIc1=1.oo I
Region: X: 0.000000 to 10.000000 Y: 0.000000 to 10.000000

t4eight of a mismatch

Fig. 2. Pa rame t r i c decompos i t ion of the (c~, fl) space for local a l ignments of the s tr ings dcaabaccaabaacaa

and baabbcbcaabccaac. T h e value funct ions for the var ious regions are: A, v(c~, #) = 11 - 2c~ - 2fl; B,

v(ct, f l) = l l - l ~ - 3 f l ; C , v (~ , f l) = l l - 0 ~ - 5 f l ; D , v (~ , f l) = 8 - 0 a - l f l ; E , v (~ , f l) = 4 - 0 ~ - 0 f l ;
F, v(ct, fl) = 6 - 2ct - 0fl; G, v(~, fl) = 8 - 6~ - Off. Region B cor responds to the local a l ignment given
above the decomposi t ion .

We further note that Lemma 2.3 remains valid in the local alignment case since
it did not require any of the above-mentioned conditions for its proof.

LEMMA 3.3. There are at most n 2 optimal regions.

PROOF. Consider two alignments d 1 and d2, each optimal for some region in
the decomposition, which have tuples (w, x, yl) and (w, x, Y2), i.e., they differ only
in the number of indels. Without loss of generality, assume that Yt < Y2. Since we
are interested in the region where the mismatch and indel penalties are always
positive, it follows that d l will always have a larger value than d2, which
contradicts our assumption that d2 is optimal for some region.

In other words, it is not possible for two different alignments to have the same
values of w and x. Thus there can be only as many regions as there are distinct
pairs w, x. This proves the lemma. []

322 D. Gusfield, K. Balasubramanian, and D. Naor

Two Parameters with Gaps. Suppose that we allow gaps in the objective function,
but still hold the number of variable parameters to two. An example of this is the
important objective function: Maximize

v = c l w - - c 2 x - - c~y- flz,

where c 1 and c 2 are constants. Then the number of optimal regions in the
decomposition is at most O(nm), for essentially the same reasons. Let d l and d2
be two alignments that are optimal for two regions in the decomposition with
tuples (wl, Xl, y, z) and (w2, xz, y, z). If, say, ClWl - c2xl > clw2 - c2x2, then d l
will always have a higher value than d2, a contradiction. Hence, it is not possible
for two different alignments in the decomposition to have the same values of y
and z, so the number of regions is bounded by the maximum number of distinct
(y, z) pairs, which is O(nm) for the local case (in the next section we show that
z < 2n - 1). This fact is important in obtaining a time bound of O(nm) per polygon
for the algorithm that finds the entire decomposition.

4. Three-Parameter Alignment. We now consider the case where gap penalties
can also vary as a parameter 7, hence the parameter space is now three-
dimensional. The consideration of gap penalties is very important in the context
of DNA or protein sequences since, in many cases, the alignments accepted as
"standard" or best by biologists cannot be obtained by the dynamic programming
approach unless a specific nonzero penalty is added for each gap. For an example
of this see [5]. As in the two-dimensional case, we can prove a simpler decomposi-
tion when global alignments are considered. Recall that z is the number of gaps
in the alignment. The following observation holds in general:

LEMMA 4.1. Z < 2n -- 1.

PROOF. Any space that is introduced in the long sequence must be opposite to
a character in the short sequence, hence the number of spaces, and therefore the
number of gaps, in the long sequence is bounded by n. Likewise, any gap in the
short string must be bracketed by characters at both ends, hence the number of
gaps in the short string is bounded by n - 1. The claim follows. []

4.1. Global Alignments with Gaps. We first note that Lemmas 2.1 and 2.2 and
Corollaries 2.2 and 2.1 from Section 2 are still valid in this three-parameter
global-alignment case, for exactly the same reasons, since we are not changing the
way we count indels, mismatches, or spaces.

Let us describe a line in three dimensions ~, fl, and V as a function of one
parameter, ~, by two equations fl = Co + clc~ and y = c 2 + c3~.

THEOREM 4.1. Any line forming a boundary between three or more regions is o f
the form fl = c + (c + �89 y = d + d~.

Parametric Optimization of Sequence Alignment 323

PROOF. Consider the point (- 1, - �89 0) on the ~,/~, 7 plane. At this point all the
alignments have the same value: v = w + x + y/2 = (n + m)/2 (from Lemma 2.1).
In other words, all the value hyperplanes must meet at ~ = - 1 , fl = -�89 7 = 0,
v = (n + m)/2. By the same reasoning as in Theorem 2.1 it follows that the
intersection between two such hyperplanes is a plane containing this point and
the intersection between three or more hyperplanes must be a line passing through
this point. Again using the same reasoning it can be seen that the family of these
boundary lines passing through the point ~ = - 1, fl = -�89 y = 0 is described by
the conditions fl = c + (c + �89 7 :- d + d~. []

COROLLARY 4.1. All optimal regions are semi-infinite "conic" regions bounded by
lines of the form fl = c + (c + �89 ~ = d + d~.

This implies that just as the two-parameter global alignment essentially had
only one degree of freedom (in the sense that alignments that are optimal at some
point must also be optimal at some point on the a or fl axis) so the three-parameter
global alignment also essentially has only two degrees of freedom since any
alignment that is optimal at some interior point must also be optimal on one of
the three coordinate planes where one of the three parameters is zero. In other
words, if we compute the decomposition for the three coordinate planes we have
all the information required to describe the entire decomposition.

THEOREM 4.2. There are at mos t O(n 2) optimal regions in the decomposition of the
~, fl, ~ parameter space.

PROOF. We know from Theorem 2.2 that there can be only O(n 2/3) regions on
the 7 = 0 plane. Using the same arguments as in Lemma 3.3, we can see that on
the fl = 0 plane there can be at most as many regions as there are distinct (w, x)
pairs and on the ~ = 0 plane there can be at most as many regions as there are
distinct (w, y) pairs. Both of these are n 2. []

By similar arguments, it is easy to show that, in the case of local alignments
with gaps:

(1) An arbitrary line can go through at most n 3 regions.
(2) The number of regions is at most n 3.

5. The Case of Richer Weights and Penalties. In the previous results the total
penalty for mismatches was just the product of the mismatch penalty �9 and the
number of mismatches. While this is sufficient in many biological applications,
many other applications use a richer set of weights and penalties. In detail, for
each pair (a, b) of unequal characters in the alphabet, there is a number w(a, b)
which is the base penalty for aligning these mismatching characters. A character-
dependent penalty for aligning a particular character with a space, and also a
positive weight for aligning two matching characters which depends on the

324 D. Gusfield, K. Balasubrarnanian, and D. Naor

particular pair of characters may also be specified. There are several commonly
used pair-dependent weight and penalty schemes in the biological literature. The
most widely referred to is the PAM matrix, developed by Dayhoff [15].

With such pair-dependent weights and penalties, the value of an alignment d
is computed as M (d) - M S (d) - S(d) where M(d) is the sum of all the
(pair-dependent) weights contributed by matching pairs of characters in d, MS(d)
is the sum of all the (pair-dependent) penalties contributed by mismatching pairs
of characters, and S(d) is the sum of all the (pair-dependent) penalties contributed
by characters opposite spaces.

One might want to parametrically study the effect of changing these pair-
dependent weights, but this seems too unwieldy. A simpler question that is still of
importance is how to balance the influence of the term contributed by matches
versus the terms contributed by mismatches and spaces. So for a given alignment
d, its parametric value is M(d) - c~MS(d) - flS(d). As before, the ~, fl space
decomposes into maximal convex regions where a particular alignment is optimal
throughout. The results in the previous sections depend on M(d), MS(d), and
S(d) being the number of matches, mismatches, and spaces in d, respectively, but
they do not carry over for a richer weight/penalty structure. We do not know
nontrivial bounds on the number of regions in the parametric decomposition, but
we can prove that along any line, the number is subexponential.

THEOREM 5.1. With pair-dependent weights and penalties, the number of break-
points encountered along any line L in the parametric decomposition is at most
(2re)log2".

PROOF. Along a line L in a, fl space, the value of fl is linearly dependent on ~,
so by adjusting the base penalties for spaces, we have a one-parameter problem.
In that problem the parametric value of an alignment d can be assumed to be
M (d) - or[MS(d)+ S(d)]. Consider the dynamic programming table used to
find the optimal alignment, once a fixed value of a is specified. An optimal
alignment is specified by a path in that table from cell (0, 0) to cell (n, m). We
associate a single optimal alignment in each region of the decomposition, and
hence a single optimal path in each region. Thus as we move along L (with
changing c~) through changing regions, the corresponding path changes. Let S be
the set of paths which correspond to the regions encountered along L. Let T(n, m)
denote the maximum possible size of S in any n by m table.

Each path in S goes through row n/2. Consider a fixed cell (n/2, k). The number
of paths in S which go through cell (n/2, k) is bounded by

T(n/2, k) + T(n/2, m -- k) < 2T(n/2, m).

The reason for the plus (rather than a product) is that changes in the optimal path
before row n/2 occur as ~ is changing and are totally independent with changes
in the optimal path that occur after row n/2. Hence T(n, m) < 2mT(n/2, m), which
implies that T(n, m) < (2m) |~ []

Parametric Optimization of Sequence Alignment 325

6. Program Description. We have developed a program, PARAL, which allows
the user to specify two sequences, a range for ~ and fl, and the desired type of
alignment, global, local, or end-flee, with or without gaps. Then, when a specific
choice for ~ and j~ is given, the program computes an optimal alignment d for
that choice and then determines and displays the region P in the ~, j~ space for
which d is optimal. The user may explore the interesting part of the space by
repeatedly specifying values for ~ and fi which have not been placed yet in a
region. It can also generate all the regions in the entire decomposition system-
atically without having to choose any specific points. A version of PARAL, called
XPARAL, now runs under X-windows. A program for parametric sequence
comparisons is also reported in [203.

The implementation is based on the following primitive: given a point p and a
direction 1, find the first point p' along I in which 1 crosses to a different region,
and also find the new alignment at p'. This primitive can be simply implemented
in O(knm) time, where k is the actual number of regions that l goes through, by
using the method of [4] and [173 that finds all breakpoints along a line. It can
also be implemented in O(nm log 3 n) time, independent of k, where each successive
breakpoint is found by Gusfield's [8] adaptation of Megiddo's method [11]. We
have adopted the first approach in PARAL.

Given a point p, its optimal region P is ideally found as follows: First, an
arbitrary direction l is chosen and the next point p' is computed. Given the
alignment at p', one boundary of P can now be determined by intersecting both
alignments. The procedure is repeated, say, clockwise, along the new boundary
until all boundaries of P are found. The idealized method needs more detail to
handle degeneracies that can occur if more than three regions meet at a point. We
omit the details here.

By more careful bookkeeping, we can implement the algorithm so that every
alignment computed gets "charged" to either a polygon, a line segment, or a vertex
of the decomposition, with the guarantee that at most a constant number of
alignments are charged to any polygon, line segment, or vertex. The idea is that
we keep information about every alignment done and use that list to avoid
redundant alignments, hence speeding up the basic algorithm of [4] and [-17]. The
net result is that the (amortized) running time is O(R +nm) per polygon, where
R is the total number of polygons in the decomposition. Since R is at most n 2 or
nm in all the two-parameter objective functions, the running time is O(nm) per
polygon. The same bound of O(R + rim) per polygon holds in the case of the richer
objective functions considered in Section 5 but this does not imply the O(nm)-time
bound per polygon since R in that case is not known to be bounded by O(nm).

A more complete paper on the program is in progress 1-9].

Acknowledgments. Thanks to Rob Irving for working out the constant in the
O(n 2/3) bound on the number of regions in the case of two-dimensional global
alignment (Theorem 2.2). Thanks also to Stephen Altschul who encouraged us to
re-examine the implementation of PARAL, leading to the amortized improvement
mentioned in Section 6.

326 D. Gusfield, K. Balasubramanian, and D. Naor

References

[1] P. Argos and M. Vingron, Sensitivity comparison of protein amino acid sequences, in Methods
in Enzymology, Vol. 183 (R. Doolittle, ed.), Academic Press, San Diego, CA, pp. 352-365.

[2] R. F. Doolittle, Of Urfs and Orfs: A Primer on How To Analyze Derived Amino Aeid Sequences,
University Science Books, 1986.

[3] R.F. Doolittle (ed.), Methods in Enzymology, Vol. 183, Academic Press, San Diego, CA.
[4] M. Eisner and D. Severance, Mathematical techniques for efficient record segmentation in large

shared databases. J. Assoc. Comput. Maeh., 23 (1976), 619-635.
[5] W.M. Fitch and T. F. Smith, Optimal sequence alignments. Proc. Nat. Acad. Sei. USA, 80

(1983), 1382-1386.
[-6] O. Gotob, Optimal sequence alignment allowing for long gaps, Bull. Math. Biol., 52(3) (1990),

359-373.
[7] M. Gribskov and J. Devereux, Sequence Analysis Primer, Stokton Press, 1991.
[8] D. Gusfield, Parametric combinatorial computing and a problem of program module distribu-

tion, J. Assoc. Comput. Mech., 30 (1983), 551-563.
[-9] D. Gusfield, K. Balasubramanian, J. Bronder, D. Mayfield, D. Naor, and P. Stelling, PARAL:

An efficient program to optimally align strings with variable match, mismatch, space and gap
weights, in preparation.

[10] D. Gusfield, K. Balasubramanian and D. Naor, Parametric optimization of sequence alignment,
Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms, 1992,
pp. 432-439.

[11] N. Megiddo, Combinatorial optimization with rational objective functions, Math. Oper. Res.,
4 (1979), 414-424.

[,,12] W.R. Pearson and D. J. Lipman, Improved tools for biological sequence comparison, Proc.
Nat. Acad. Sci. USA, 85 (1988), 2444-2448.

[13] D. Sankoff and J. Kruskal (eds.), Time Warps, String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison, Addison-Wesley, Reading, MA, 1983.

[14] G.D. Schuler, S. F. Altschul and D. J. Lipman, A workbench for multiple alignment construction
and analysis, in Proteins: Structure Function and Geneties, 9(3), 180-190, in press.

[15] R. Schwarz and M. Dayhoff, Matrices for detecting distant relationships, in Atlas of Protein
Sequences, National Biomedical Research Foundation, Washington, DC, 1979, pp. 353-358.

[,16] T. F. Smith and M. S. Waterman, Identification of common molecular subsequences,
J. Molecular Biol., 147 (1981), 195-197.

[17] H. Stone, Critical load factors in distributed systems. IEEE Trans. Software Engrg., 4(3) (1978),
254-258.

[18] G. yon Heijne, Sequence Analysis in Molecular Biology, Academic Press, New York, 1987.
[19] M.S. Waterman, Sequence alignments, in Mathematical Methods for DNA Sequences (M. S.

Waterman, ed.), CRC Press, Boca Raton, FL, 1989, pp. 53-92.
[20] M.S. Waterman, M. Eggert, and E. Lander, Parametric sequence comparisons, Proc. Nat. Acad.

Sci. USA, 89 (1992), 6090-6093.

