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Parametric Optimization of Sequence Alignment 1 

D. Gusfield, 2 K. Balasubramanian,  2 and D. Naor  z 

Abstract. The optimal alignment or the weighted minimum edit distance between two DNA or amino 
acid sequences for a given set of weights is computed by classical dynamic programming techniques, 
and is widely used in molecular biology. However, in DNA and amino acid sequences there is 
considerable disagreement about how to weight matches, mismatches, insertions/deletions (indels or 
spaces), and gaps. Parametric sequence alignment is the problem of computing the optimal-valued 
alignment between two sequences as a function of variable weights for matches, mismatches, spaces, 
and gaps. The goal is to partition the parameter space into regions (which are necessarily convex) such 
that in each region one alignment is optimal throughout and such that the regions are maximal for 
this property. In this paper we are primarily concerned with the structure of this convex decomposition, 
and secondarily with the complexity of computing the decomposition. The most striking results are 
the following: For the special case where only matches, mismatches, and spaces are counted, and where 
spaces are counted throughout the alignment, we show that the decomposition is surprisingly simple: 
all regions are infinite; there are at most n 2/a regions; the lines that bound the regions are all of the 
form fl = c + (c + 0.5)cq and the entire decomposition can be found in O(knm) time, where k is the 
actual number of regions, and n < m are the lengths of the two strings. These results were found while 
implementing a large software package for parametric sequence analysis, and in turn have led to faster 
algorithms for those tasks. A conference version of this paper first appeared in [10]. 

Key Words. Sequence alignment, Parametric analysis, Edit distance, Sequence homology, Global 
alignment, Local alignment. 

1. Introduction. Finding the minimum cost edit distance, or the best alignment, 
of two DNA, RNA, or amino acid sequences has become almost the standard 
technique for sequence comparison in molecular biology. It is used to determine 
whether and where two sequences are similar (homologous), to determine evolu- 
tionary history between species, to find consensus sequences, and other significant 
functions. There are literally hundreds of papers written on this topic and its 
applications to biology. For an introduction and small reflection of this literature 
see [2], [33, [53-[73, [12], [133, [183, and [193. 

However, in all the present methods for optimal sequence alignment, specific 
substitution, insertion/deletion (indel), and gap penalties must be specified, and 
the (biological) significance of the alignment depends heavily upon the "right" 
choice of the weights. There is considerable disagreement among molecular 
biologists about the correct choice, and it is probably the case that there is no 
unique choice for the parameters (as pointed out in [5] and [1] with respect to 
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gap penalties). The significance of an alignment is based either on biological 
grounds, or on its sensitivity to the choice of parameters. Instead of repeatedly 
varying the parameter weights and solving for the optimal alignment, other 
parametric methods ought to be employed. As an example, D. Sankoff and J. 
Kruskal [13, pp. 290-293] demonstrate the difficulties in finding the relative 
weights for gaps/substitutions and other operations by a specific example: the 
comparison of human and E. Coli 5S RNA (two sequences of 120 characters each 
over a four-letter alphabet). Their solution involves varying one parameter, the 
number of indels, until its appropriate value is found. Similarly, the paper by Fitch 
and Smith [-5] demonstrates how the biologically accepted alignment may easily 
be missed if inappropriate weights are used. 

There are two ways around the problem of choosing a "correct" choice of 
parameters. The first is to compute, for a given set of initial guesses for parameter 
values, the optimal alignment ~ at that point and, in addition, a maximal region 
P such that d is optimal throughout P. The other, more general, approach is to 
find the entire decomposition of the parameter space into such maximal regions. 
Papers [5] and [-6] present examples of decompositions that were computed by 
hand. During the process of developing and analyzing a computer program which 
is based on these approaches, we were able to characterize this decomposition in 
several cases, and this considerably simplified and accelerated the algorithm for 
finding the decomposition. 

We formally define the parametric alignment problem in Section 1.1 and 
summarize our results in Section 1.2. In Sections 2 and 3 we consider the 
two-parameter case, where only substitution and indel weights can vary. Two 
different variants, the global and the local alignment, are studied. Section 4 
deals with the three-parameter ease. Finally, in Section 5 we discuss a richer 
variant of the problem, where independent weights for each type of mismatch are 
specified. 

1.1. Definitions. The edit distance between two sequences is the minimum weight- 
ed sequence of edit operations (insertion, deletion, and substitution of single 
characters) that must be performed to transform one sequence into another. This 
has found widespread use as a measure of sequence similarity. It is often more 
important to know what the actual edit operations are rather than just the total 
cost or value. These operations can be represented as an alignment, and it is often 
the alignment that is sought. 

An alignment of two sequences S 1 and $2 of lengths n and m (> n), respectively, 
is obtained by introducing spaces into the two sequences such that the lengths of 
the two resulting sequences are identical, and placing these two resultant sequences 
one upon the other subject to the constraint that no column contains two spaces. 
Any column that contains two identical characters is called a match. Any column 
that contains two dissimilar characters is called a mismatch and any column that 
contains a space is referred to as a space or indel. The correspondence between 
them and the edit operations is straightforward: a mismatch represents a substitu- 
tion, a space is either an insertion or a deletion, depending whether it is introduced 
in the source string or the target string, and a match is an untouched character. 
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A series of one or more contiguous space characters in the same sequence is 
referred to as gap. 

An alignment d may therefore be characterized by the number of matches, 
mismatches, spaces, and gaps. We denote these quantities by wd, x~, y~, z~,, 
respectively (or w, x, y, z when referring to an unspecified alginment). Note, 
however, that this representation is many-to-one: different alignments could have 
the same 4-tupe (w, x, y, z). If ~o is the mismatch penalty, rio is the space (indel) 
penalty, and 7o is the gap penalty, then the value of an alignment is defined to be 

v = w - ~o x - floY - 7o z. 

The region of interest is the region where ~, fl, 7 are all positive. We ignore the 
case where the weight of the matches is also a parameter since we can divide all 
the parameters by this value and reduce it to the above case without changing 
the relative order of the value of the alignments. For fixed weights, the value of 
the optimal (maximum value) alignment of two strings can be found by dynamic 
programming in O(nm) time [14], a fact that was discovered many times in- 
dependently. 

A given choice of parameter values ~o, rio, and 7o defines an optimal alignment 
(not necessarily unique). Since an alignment is essentially a discrete object any 
alignment that is optimal for some fixed values (~o, rio, 7o) is optimal in a certain 
region in the (~, fi, 7) space. Hence, the three-parameter space is decomposed into 
regions which we call optimal  regions such that in every region one alignment is 
optimal throughout and the regions are maximal for this property. This decompo- 
sition is completely defined by the two sequences. 

The value of an alignment is always a linear function of the parameters; hence 
it can be easily observed that the regions, which are bounded by the intersection 
of hyperplanes, are all convex polygons. 

The above definition of an alignment is called 91obal since it finds the edit 
distance between the entire two strings, and charges or penalizes for characters 
throughout the alignment. Another variant of the alignment problem is the local 

a l ignment  problem, and is formally defined below. 

THE LOCAL ALIGNMENT PROBLEM. Given two strings A and B, find substrings 
A' and B' of A and B, respectively, such that the optimal (global) alignment value 
of A' and B' is maximum over all pairs of substrings from A and B. 

The parametric version of the local alignment problem is to parametrize the 
(global) alignment value of A' and B'. While local alignment seems more complex 
than global alignment, when all the parameters are fixed an optimal local 
alignment can be found in O(nm) time [16], the same bound as for global 
alignment. 

In biological applications, 9lobal alignments are used for searching for homol- 
ogies between two sequences, that is, when the whole sequences are expected to be 
homologous. This is true more often of proteins than in the study of DNA, though 
global alignment problems also arise as subtasks of more complex alignment 



Parametric Optimization of Sequence Alignment 315 

problems [14]. In contrast, local alignments are used in cases where the two given 
sequences may not be highly homologous in their entirety, but contain substrings 
that are highly similar. 

There is yet another variant of the alignment problem, which is a hybrid of the 
global and the local. This is the end-free alignment. When computing the value of 
an end-free alignment, we ignore any (contiguous) spaces that overhang at the 
extreme ends of the alignment, i.e., we are permitted to delete one suffix and one 
prefix (perhaps of the same sequence) with no cost. Note that local alignment is 
a more restrictive version of the end-free alignment case. In this paper we consider 
the two main variants, the global and the local; however, all of our results for the 
local alignment carry over to the end-free case. 

1.2. Summary of  Results. In this paper we are concerned with the characteristics 
of the parametric space decomposition, and its algorithmic implications. We are 
also interested in questions of the type: Given an arbitrary line in the parametric 
space, how many different regions can it go through? The latter was motivated 
by our computer program PARAL which is based on a primitive operation 
that, when given a line in the space, can find all the regions it crosses in time 
O(knm), where k is the actual number of regions it goes through (using the 
algorithm of Eisner-Severance [4], [17]; this is essentially Newton's method for 
determining a piecewise linear function). Independently, Waterman et al. [20] 
developed a program that also finds the parametric decomposition. At the 
high level the methods are very similar, but important details and worst-case 
time bounds differ. Also, their work does not concern the questions addressed in 
this paper of the number and characteristics of the regions and lines in the 
decomposition. 

We first consider a case of particular interest, the two-dimensional case where 
gaps are ignored (that is, y = 0). Here, the optimal alignment is the one that 
maximizes w -  ~ x -  fly. We show that when 91obal alignments are considered, 
the decomposition of the ct, fl space is surprisingly structured. We prove that the 
number of (convex) polygons in the decomposition is bounded by n 2/3. We show 
further that every polygon is infinite and is bounded by two rays, each of which 
runs along a line of the form fl = c + a(c + 0.5) for some constant c. As a 
consequence, we show that the entire decomposition can be simply found in O(knm) 
time, where k is the number of actual polygons in the decomposition. Hence, the 
amortized cost for finding a single region is O(nm) time, which is also the time to 
find a single optimal alignment within that region. For local alignments, the 
decomposition becomes more complex; some of its regions can be bounded (finite), 
but their total number never exceeds n z. Any arbitrary line in the two-dimensional 
space can therefore go through at most n 2 regions. As a consequence, a simple 
implementation of the algorithm used in PARAL finds all the regions in time (nam) 
per region. A more involved, yet still practical, implementation of PARAL (which 
we have incorporated into a more user-friendly program called XPARAL) reduces 
that time to O(nm) per region for all penalty functions except the one discussed 
in Section 5. An alternative method by Gusfield [8], which is an adaptation of 
Megiddo's method [11], can find all regions in time O(nm log 3 n) per region for 
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any of the penalty functions. These algorithms are only briefly sketched in this 
paper and will be described in more details in a subsequent paper. 

If gaps are allowed, then we obtain similar results for the decomposition 
of the three-dimensional space if global alignments are considered. All regions, 
which are convex polyhedra, are unbounded cones, bordered by rays of the form 
fl = c + (c + 0.5)~, 7 = d + d~. An arbitrary line in the three-dimensional space 
can go through at most n z regions if global alignments are computed, and through 
at most n 3 regions for local alignments. 

A much more complex case arises when different weights are assigned to every 
possible mismatch (for example, in amino acid sequences, where the alphabet size 
is 20, there are 190 possible mismatch weights). In this most general setting, we 
show a subexponential bound on the number of regions that any straight line can 
intersect. 

2. Two-Parameter Global Alignment. In this section we consider the global 
alignment problem where only two parameters ~ and fl are given. We ignore the 
number of gaps, so ~ = 0. The objective function, therefore, is to maximize 
w -  ~ x -  fly, where w, x, and y are the numbers of matches, mismatches, and 
indels, respectively. We are interested in bounding the number of regions in the 
(first quadrant of) the ~, fl plane. We establish the following lemmas and 
observations for this purpose. 

LEMMA 2.1. For any alignment d with corresponding tuple (w, x, y), 2w + 2x + 
y = N,  where N = n + m is the sum o f  the sequence lengths. 

PROOF. Any character can be part of exactly one match, mismatch, or indel. A 
match or a mismatch involves two characters. Thus the total number of characters 
that form part of a match is 2w. Similarly, the total number of characters involved 
in mismatches is 2x. An indel involves only one character from the input sequences 
and since we do not ignore any indels in counting their total number it follows 
that the number of characters involved in indels is y. The lemma follows. []  

Recall that m > n. 

LEMMA 2.2. For any alignment d ,  w + x <_ n. 

PROOF. A match or mismatch involves one character from each sequence. Hence  
their total cannot exceed the number of characters in the shorter sequence. [] 

COROLLARY 2.1. For any alignment d ,  m -- n <_ y <_ m + n. 

COROLLARY 2.2. In all alignments o f  two sequences, y is always odd or always even 
depending on whether m + n is odd or even. There are therefore only n + 1 distinct 
values f o r  y. 
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THEOREM 2.1. Any  line forming a boundary between two regions is o f  the form 
fl = c + (c + �89 for  some c > - �89  

PROOF. At a given point (ct, fl) an alignment has the value v = w - ex  - fly. The 
left-hand side of Lemma 2.1, which can be rewritten as w + x + y/2 = (n + m)/2, 
is also a linear combination of w, x, and y, with e = - 1 and fl = -�89 This suggests 
that this point is of some significance. Therefore consider the point ( -  1, - �89 on 
the e, fl plane. At this point all alignments have the same value: v = w + x + y/2 = 
(n + m)/2 (from Lemma 2.1). In other words, all the value planes must meet at 
ct = - 1, fl = - �89  v = (n + m)/2. It follows then that any intersection between two 
such planes must also pass through that point. Now, let fl -- c + c1~ (for some c 1 
and c) be a boundary (intersection) line. Since ( - 1 ,  -�89 is a point on that line, 
- � 89  = c - cl. Hence c 1 = c + �89 In other words, fl = c + (c + �89 for some c. Since 
we are only interested in the quadrant where fl and e are positive, it follows that 
any line passing through that quadrant and the point ( - 1 ,  _1)  must have a 
positive slope. Hence c > -�89 []  

COROLLARY 2.3. All the regions o f  optimality are semi-infinite regions bounded by 
lines o f  the form fl = c + (c + �89 or by the coordinate axes. 

An example (using two made-up sequences) of the decomposition of the 
parameter space into regions of optimality, displaying the above property, is shown 
in Figure 1. 

2.1. The Number  o f  Regions. We now examine the maximum number of regions 
in any decomposition. A breakpoint along any given line is the point where the 
line moves between two adjacent regions. 

LEMMA 2.3. Along any horizontal line we never encounter breakpoints in the region 

~ > 2 f l .  

PROOF. Consider an alignment which contains at least one mismatch. A single 
mismatch may always be replaced by two indels, one in each sequence, so an 
alignment containing mismatches can be changed into one with no mismatches 
without affecting the number of matches. Thus if the cost of a mismatch, ct, is 
greater than twice that of an indel, fl, it follows that any optimal alignment for 
those parameters will have no mismatches. 

Consider now a horizontal line in the region a > 2ft. Any alignment that is 
optimal at a point in this region can have no mismatches. Thus the value of such 
an optimal alignment remains constant through this region on any horizontal line 
(where fl is constant). Hence there are no breakpoints on a horizontal line in this 
region. []  

LEMMA 2.4. There are at most n + 1 regions. 
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File Options Commands TBD 

deaabaeoaabaaeaa 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ' I H I l imnn'nl 

baabbebcaabccaacl 

-deaa-bao-caab--aaeaa 
b--aabb-cbeaabccaae-- 

Re9ion: X: 0.000000 to 10.000000 Y: 0.1)00009 to 10,000000 

~lei9ht o? a mismatch 

Fig. 1. Pa rame t r i c  decompos i t ion  of  the (~, fl) space for global  a l ignments  of  the s tr ings d c a a b a c c a a b a a -  

caa  and  b a a b b c b c a a b c c a a c .  T h e  value  funct ions  for the var ious  regions are: A, v(~, fl) = 7 - 9~t - Off; 
B,  v(~x, fl) = 11 - 3c( - 4fl; C, v(ct, f )  = 11 - 0c~ - 10ft. T he  da rkened  region cor responds  to the  align- 
m e n t  s h o w n  above  the decomposi t ion .  

PROOV. Lemma 2.3, with fl = 0, shows that we will encounter no breakpoints 
along the ~ axis and that therefore all the region boundaries must intersect the 
positive fl axis. In other words, the fl axis intersects all the regions. Let the 
alignments encountered, in order of increasing fl, be all, dz  . . . .  , ~r + a" Since ~ = 0 
the value of an alignment (along this line) is simply vg(f l )  = wg - f l y~ .  Since our 
objective function aims to maximize the alignments value, it can be seen that 
Y~+I < Yi for all ~ (i < k). By Corollary 2.2, the y~ can attain only n + 1 distinct 
values and the lemma follows. [] 

Let w i  - o~xi - f l y i  and w j  - ~ x j  - f l y j  be the planes corresponding to the values 
of two alignments ~ and ~r respectively. The equation of the line (or line segment) 
forming the boundary between the two regions with alignments ~ and ~ is 

f l  w i - -  w j  x j  - -  x i 

y~ - -  y~ Y~ - -  y j  
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We call this the ratio form of the boundary line? The ratio form of the boundary 
line suggests an added constraint on the number of mismatches x, and this 
constraint can be used to refine Lemma 2.4 further. 

THEOREM 2.2. The number of regions is bounded by 0(n2/3).  

PROOF. We have seen that the boundaries between regions are of the form 
fl = c + (c + �89 Thus we may specify a boundary simply by specifying the slope 
m = c + �89 Consider the fl axis which, as we have seen, intersects all the regions. 
Let the alignments encountered, in order of increasing fl, be d 1, d 2 . . . .  , S4k+ x- Let 
them be separated by boundary lines with slopes m 1, m2 . . . . .  m k, respectively. We 
have seen that Yi + 1 < Yi for all s~/(i < k). The slopes mi are positive since we are 
interested only in the quadrant where c~ and fl are positive, and any line from the 
point ( -  1, -�89 that intersects that quadrant must have a nonzero (and noninfinite) 
positive slope. Let Axi = xi+l - x i  and Ay i = Y i -  Yi+l. Since Yi+l < Yi, AYi is 
positive. From the ratio form of the boundary line, m = AxJAyi,  therefore, Ax~ is 
positive. Thus a boundary slope can be identified by a pair of values (Axl, Aye), 
and there can be no more boundaries than there are distinct (Axe, Aye) pairs. 

Now, ~ i  Axi <- n and ~ i  AYi -< (m + n) - (m - n) = 2n. Therefore 

k 
3n >_ ~ (Axi + Ayi). 

i=1 

For all t consider the number of boundaries such that (Axi + Ayi) = t. Since the 
pairs have to be distinct there can be only t - 1 such pairs. Intuitively, the way 
to maximize the number of (Axi, Ayi) pairs is to generate as many as possible 
which sum to two, then three, and so on as long as the constraint on the total is 
maintained. Let s be the largest value such that 

3 n >  ~ t ( t - 1 )  
t=2 

= - 1 ) s ( s  + 1) .  

Therefore s = 0(nl/3). The number of regions is therefore 

s+l s(s + 1) 
k <  ~ ( t - 1 ) - - - - O ( s  2)=0(n2/3). 

t=~ 2 
[]  

a Writing the intersection of the two planes in this way also gives an interesting interpretation of the 
boundary between two regions. The slope of the boundary is the rate at which mismatches are 
exchanged for indels in the two adjacent alignments, and the intercept of the boundary line is the 
rate at which matches are exchanged for indels. 
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A closer analysis based on the same observation and using Euler's function O(i), 
the number of integers less than and relatively prime to i, can be used to show 
that k < 0.88n 2/3. 

THEOREM 2.3. All regions in the decomposition can be simply found in O(nm) time 
per region, i.e., the time per region is no more than the time to compute a single 
alignment at a fixed ~, fl point. 

PROOF. The Eisner-Severance [1], or Newton's, method finds all the breakpoints 
(intersections between regions) along any single line or direction in O(nm) time per 
breakpoint. We have seen that a single line, the fl axis, intersects all the regions. 
Hence all the regions can be found in O(knm) time by the Eisner-Severance method 
where k is the number of regions. This actually gives us the intercepts along the 
fl axis but this information is enough to determine the boundary lines since each 
line must pass through ( - 1 ,  -�89 [] 

COROLLARY 2.4. The entire decomposition can be found in O(nS/3m) time. 

3. Two-Parameter Local Alignment. In this section we consider the regions of 
optimality generated by looking at local instead of global alignments. In this case 
certain spaces, mismatches, and matches occurring at the ends of the alignment 
may be disregarded. This renders Lemma 2.1 invalid. However, we note that 
Lemma 2.2 remains valid. We may also make the following weaker observation. 

LEMMA 3.1. For any local alignment, 

2w + 2x + y < N, 

where N = n + m is the sum of the sequence lengths. 

In the local (or end-free) case, "extreme" spaces will not be counted (since any 
additional space will always decrement the value). Thus if space is "counted," it 
must be the case that there is at least one match/mismatch on either side of it, so 
if y > 0, then we must have at least two matches/mismatches consuming four 
characters. Hence, 

LEMMA 3.2. For any alignment, 

y < _ m + n - 4 .  

Due to these weaker conditions, the picture of all the optimal regions in the 
local alignment case may be more complicated and not show the structure that 
we observed for global alignments. The example in Figure 2, using the same 
sequences as Figure 1, illustrates this increased complexity. 
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File Options Commands TBD 

dcaabaceaabaacaa 

baabbcbeaabccaa~ 
dc [ aabac-caab--aac ] aa 
b [ aabbcbcaabecaac ] 

rco.,o.e st.iooolI, o." ol, 11,-x, 3> IIc1=1.oo I 
Region: X: 0.000000 to 10.000000 Y: 0.000000 to 10.000000 

t4eight of a mismatch 

Fig. 2. Pa rame t r i c  decompos i t ion  of the (c~, fl) space for local a l ignments  of  the  s tr ings dcaabaccaabaacaa 

and  baabbcbcaabccaac.  T h e  value  funct ions  for the var ious  regions are: A, v(c~, #) = 11 - 2c~ - 2fl; B, 

v(ct, f l ) = l l - l ~ - 3 f l ; C , v ( ~ , f l ) = l l - 0 ~ - 5 f l ; D , v ( ~ , f l ) = 8 - 0 a - l f l ; E , v ( ~ , f l ) = 4 - 0 ~ - 0 f l ;  
F, v(ct, fl) = 6 - 2ct - 0fl; G,  v(~, fl) = 8 - 6~ - Off. Region B cor responds  to the local a l ignment  given 
above  the decomposi t ion .  

We further note that Lemma 2.3 remains valid in the local alignment case since 
it did not require any of the above-mentioned conditions for its proof. 

LEMMA 3.3. There are at most n 2 optimal regions. 

PROOF. Consider two alignments d 1 and d2,  each optimal for some region in 
the decomposition, which have tuples (w, x, yl) and (w, x, Y2), i.e., they differ only 
in the number of indels. Without loss of generality, assume that Yt < Y2. Since we 
are interested in the region where the mismatch and indel penalties are always 
positive, it follows that d l  will always have a larger value than d2,  which 
contradicts our assumption that d2  is optimal for some region. 

In other words, it is not possible for two different alignments to have the same 
values of w and x. Thus there can be only as many regions as there are distinct 
pairs w, x. This proves the lemma. []  
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Two Parameters with Gaps. Suppose that we allow gaps in the objective function, 
but still hold the number of variable parameters to two. An example of this is the 
important objective function: Maximize 

v = c l w - -  c 2 x - -  c~y-  flz, 

where c 1 and c 2 are constants. Then the number of optimal regions in the 
decomposition is at most O(nm), for essentially the same reasons. Let d l  and d2 
be two alignments that are optimal for two regions in the decomposition with 
tuples (wl, Xl, y, z) and (w2, xz, y, z). If, say, ClWl - c2xl  > clw2 - c2x2, then d l  
will always have a higher value than d2,  a contradiction. Hence, it is not possible 
for two different alignments in the decomposition to have the same values of y 
and z, so the number of regions is bounded by the maximum number of distinct 
(y, z) pairs, which is O(nm) for the local case (in the next section we show that 
z < 2n - 1). This fact is important in obtaining a time bound of O(nm) per polygon 
for the algorithm that finds the entire decomposition. 

4. Three-Parameter Alignment. We now consider the case where gap penalties 
can also vary as a parameter 7, hence the parameter space is now three- 
dimensional. The consideration of gap penalties is very important in the context 
of DNA or protein sequences since, in many cases, the alignments accepted as 
"standard" or best by biologists cannot be obtained by the dynamic programming 
approach unless a specific nonzero penalty is added for each gap. For  an example 
of this see [5]. As in the two-dimensional case, we can prove a simpler decomposi- 
tion when global alignments are considered. Recall that z is the number of gaps 
in the alignment. The following observation holds in general: 

LEMMA 4.1. Z < 2n -- 1. 

PROOF. Any space that is introduced in the long sequence must be opposite to 
a character in the short sequence, hence the number of spaces, and therefore the 
number of gaps, in the long sequence is bounded by n. Likewise, any gap in the 
short string must be bracketed by characters at both ends, hence the number of 
gaps in the short string is bounded by n - 1. The claim follows. []  

4.1. Global Alignments with Gaps. We first note that Lemmas 2.1 and 2.2 and 
Corollaries 2.2 and 2.1 from Section 2 are still valid in this three-parameter 
global-alignment case, for exactly the same reasons, since we are not changing the 
way we count indels, mismatches, or spaces. 

Let us describe a line in three dimensions ~, fl, and V as a function of one 
parameter, ~, by two equations fl = Co + clc~ and y = c 2 + c3~. 

THEOREM 4.1. Any  line forming a boundary between three or more regions is o f  
the form fl = c + (c + �89 y = d + d~. 
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PROOF. Consider the point ( -  1, - �89 0) on the ~,/~, 7 plane. At this point all the 
alignments have the same value: v = w + x + y/2 = (n + m)/2 (from Lemma 2.1). 
In other words, all the value hyperplanes must meet at ~ = - 1 ,  fl = -�89 7 = 0, 
v = (n + m)/2. By the same reasoning as in Theorem 2.1 it follows that the 
intersection between two such hyperplanes is a plane containing this point and 
the intersection between three or more hyperplanes must be a line passing through 
this point. Again using the same reasoning it can be seen that the family of these 
boundary lines passing through the point ~ = - 1, fl = -�89 y = 0 is described by 
the conditions fl = c + (c + �89 7 :- d + d~. []  

COROLLARY 4.1. All optimal regions are semi-infinite "conic" regions bounded by 
lines of the form fl = c + (c + �89 ~ = d + d~. 

This implies that just as the two-parameter global alignment essentially had 
only one degree of freedom (in the sense that alignments that are optimal at some 
point must also be optimal at some point on the a or fl axis) so the three-parameter 
global alignment also essentially has only two degrees of freedom since any 
alignment that is optimal at some interior point must also be optimal on one of 
the three coordinate planes where one of the three parameters is zero. In other 
words, if we compute the decomposition for the three coordinate planes we have 
all the information required to describe the entire decomposition. 

THEOREM 4.2. There are at mos t  O(n 2) optimal regions in the decomposition of the 
~, fl, ~ parameter space. 

PROOF. We know from Theorem 2.2 that there can be only O(n 2/3) regions on 
the 7 = 0 plane. Using the same arguments as in Lemma 3.3, we can see that on 
the fl = 0 plane there can be at most as many regions as there are distinct (w, x) 
pairs and on the ~ = 0 plane there can be at most as many regions as there are 
distinct (w, y) pairs. Both of these are n 2. [] 

By similar arguments, it is easy to show that, in the case of local alignments 
with gaps: 

(1) An arbitrary line can go through at most n 3 regions. 
(2) The number of regions is at most n 3. 

5. The Case of Richer Weights and Penalties. In the previous results the total 
penalty for mismatches was just the product of the mismatch penalty �9 and the 
number of mismatches. While this is sufficient in many biological applications, 
many other applications use a richer set of weights and penalties. In detail, for 
each pair (a, b) of unequal characters in the alphabet, there is a number w(a, b) 
which is the base penalty for aligning these mismatching characters. A character- 
dependent penalty for aligning a particular character with a space, and also a 
positive weight for aligning two matching characters which depends on the 
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particular pair of characters may also be specified. There are several commonly 
used pair-dependent weight and penalty schemes in the biological literature. The 
most widely referred to is the PAM matrix, developed by Dayhoff [15]. 

With such pair-dependent weights and penalties, the value of an alignment d 
is computed as M ( d ) -  M S ( d ) -  S(d)  where M(d)  is the sum of all the 
(pair-dependent) weights contributed by matching pairs of characters in d,  MS(d)  
is the sum of all the (pair-dependent) penalties contributed by mismatching pairs 
of characters, and S(d) is the sum of all the (pair-dependent) penalties contributed 
by characters opposite spaces. 

One might want to parametrically study the effect of changing these pair- 
dependent weights, but this seems too unwieldy. A simpler question that is still of 
importance is how to balance the influence of the term contributed by matches 
versus the terms contributed by mismatches and spaces. So for a given alignment 
d,  its parametric value is M(d)  - c~MS(d) - flS(d). As before, the ~, fl space 
decomposes into maximal convex regions where a particular alignment is optimal 
throughout. The results in the previous sections depend on M(d),  MS(d),  and 
S(d) being the number of matches, mismatches, and spaces in d,  respectively, but 
they do not carry over for a richer weight/penalty structure. We do not know 
nontrivial bounds on the number of regions in the parametric decomposition, but 
we can prove that along any line, the number is subexponential. 

THEOREM 5.1. With pair-dependent weights and penalties, the number of break- 
points encountered along any line L in the parametric decomposition is at most 
(2re)log2". 

PROOF. Along a line L in a, fl space, the value of fl is linearly dependent on ~, 
so by adjusting the base penalties for spaces, we have a one-parameter problem. 
In that problem the parametric value of an alignment d can be assumed to be 
M ( d ) -  or[MS(d)+ S(d)]. Consider the dynamic programming table used to 
find the optimal alignment, once a fixed value of a is specified. An optimal 
alignment is specified by a path in that table from cell (0, 0) to cell (n, m). We 
associate a single optimal alignment in each region of the decomposition, and 
hence a single optimal path in each region. Thus as we move along L (with 
changing c~) through changing regions, the corresponding path changes. Let S be 
the set of paths which correspond to the regions encountered along L. Let T(n, m) 
denote the maximum possible size of S in any n by m table. 

Each path in S goes through row n/2. Consider a fixed cell (n/2, k). The number 
of paths in S which go through cell (n/2, k) is bounded by 

T(n/2, k) + T(n/2, m -- k) < 2T(n/2, m). 

The reason for the plus (rather than a product) is that changes in the optimal path 
before row n/2 occur as ~ is changing and are totally independent with changes 
in the optimal path that occur after row n/2. Hence T(n, m) < 2mT(n/2, m), which 
implies that T(n, m) < (2m) |~ [] 
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6. Program Description. We have developed a program, PARAL, which allows 
the user to specify two sequences, a range for ~ and fl, and the desired type of 
alignment, global, local, or end-flee, with or without gaps. Then, when a specific 
choice for ~ and j~ is given, the program computes an optimal alignment d for 
that choice and then determines and displays the region P in the ~, j~ space for 
which d is optimal. The user may explore the interesting part of the space by 
repeatedly specifying values for ~ and fi which have not been placed yet in a 
region. It can also generate all the regions in the entire decomposition system- 
atically without having to choose any specific points. A version of PARAL, called 
XPARAL, now runs under X-windows. A program for parametric sequence 
comparisons is also reported in [203. 

The implementation is based on the following primitive: given a point p and a 
direction 1, find the first point p' along I in which 1 crosses to a different region, 
and also find the new alignment at p'. This primitive can be simply implemented 
in O(knm) time, where k is the actual number of regions that l goes through, by 
using the method of [4] and [173 that finds all breakpoints along a line. It can 
also be implemented in O(nm log 3 n) time, independent of k, where each successive 
breakpoint is found by Gusfield's [8] adaptation of Megiddo's method [11]. We 
have adopted the first approach in PARAL. 

Given a point p, its optimal region P is ideally found as follows: First, an 
arbitrary direction l is chosen and the next point p' is computed. Given the 
alignment at p', one boundary of P can now be determined by intersecting both 
alignments. The procedure is repeated, say, clockwise, along the new boundary 
until all boundaries of P are found. The idealized method needs more detail to 
handle degeneracies that can occur if more than three regions meet at a point. We 
omit the details here. 

By more careful bookkeeping, we can implement the algorithm so that every 
alignment computed gets "charged" to either a polygon, a line segment, or a vertex 
of the decomposition, with the guarantee that at most a constant number of 
alignments are charged to any polygon, line segment, or vertex. The idea is that 
we keep information about every alignment done and use that list to avoid 
redundant alignments, hence speeding up the basic algorithm of [4] and [-17]. The 
net result is that the (amortized) running time is O(R +nm) per polygon, where 
R is the total number of polygons in the decomposition. Since R is at most n 2 or 
nm in all the two-parameter objective functions, the running time is O(nm) per  
polygon. The same bound of O(R + rim) per polygon holds in the case of the richer 
objective functions considered in Section 5 but this does not imply the O(nm)-time 
bound per polygon since R in that case is not known to be bounded by O(nm). 

A more complete paper on the program is in progress 1-9]. 

Acknowledgments. Thanks to Rob Irving for working out the constant in the 
O(n 2/3) bound on the number of regions in the case of two-dimensional global 
alignment (Theorem 2.2). Thanks also to Stephen Altschul who encouraged us to 
re-examine the implementation of PARAL, leading to the amortized improvement 
mentioned in Section 6. 
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