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Abstract.  The paper presents combinatorial criteria for confluence of one- 
rule trace-rewriting systems. The criteria are based on self-overlaps of traces, 
which are closely related to the notion of  conjugacy of traces, and can be tested 
in linear time. As a special case, we reobtain the corresponding results for 
strings. 

1. Introduction 

In this paper we consider the property of  confluence for one-rule systems over 
traces, that is, over strings modulo a partial commutation relation (which specifies 
that certain pairs of letters commute). One value of  one-rule systems in the study of 
rewriting techniques is that they can illuminate the differences between types of 
systems and the complexity of questions about rewriting. For example, any one- 
relator group has a decidable word problem, while the same question for monoids 
(that is, for one-rule Thue systems) remains open. Another set of contrasts is given 
by questions of termination. It was shown by Dauchet that termination is un- 
decidable for one-rule term-rewriting systems [8], as it is for finite string-rewriting 
(q'hue) systems. For one-rule Thue systems, it is not known whether termination is 
decidable. Of  course, a length-reducing system must always be terminating; for the 
other possibilities, see, for example, the work of Mttivier [18] and of  Kurth [15]. 

Confluence is a desirable computational property for rewriting systems; one 
advantage it gives is that equivalence-proofs for pairs of  objects may be restricted to 

* The work of the second author was supported in part by the EBRA working goup No. 3166 
ASMICS. 
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the finding of common descendants. In the setting of trace rewriting, confluence 
corresponds to the preperfect property for Thue systems, and to a weak form of 
confluence modulo an equivalence relation for term-rewriting systems. For trace- 
rewriting systems in general, confluence is undecidable even if the systems are finite 
and length-reducing [20]. In contrast, for finite and length-reducing Thue systems, 
confluence can be decided in polynomial time [4]. The results here show the 
decidability of confluence for one-rule trace-rewriting systems in which at least one 
(nonempty) component of the left-hand side of the rule is not a factor of the right- 
hand side. For a rule with a connected and nonempty left-hand side, the results 
apply also to systems satisfying a certain condition (which will always hold for 
strings) on the letters in the rule and the partial commutation relation. In particular, 
confluence is decidable for all length-reducing one-rule trace-rewriting systems, and 
for all terminating one-rule systems in which the left-hand side of the rule is 
"connected"; however, the proofs make no assumption of  termination. 

The form of our results for connected left-hand sides is a generalization of the 
characterization of confluence for one-rule Thue systems [15], [23], [26], and is 
based on comparing the (self-) overlaps of the two sides of the rule. An overlap of a 
trace t some trace s that is both an initial and a final factor of t; such an overlap s is 
also a conjugator of the parts of t that remain when it is removed. This relationship 
between overlaps and conjugacy allows us to make use of the information 
developed by Duboc and others on conjugation of traces. When the left-hand 
side of the rule is not connected and some component of the left-hand side of the 
rule is not a factor of the right-hand side, the confluence property puts severe 
restrictions on the structure of the two sides of the rule (Theorem 5.1). For example, 
if the single rule is (u, v), the left-hand side u is not connected and no component of 
u is a factor of v, then the system can only be confluent if u lies in a (totally) 
commutative submonoid. 

The criteria developed here for confluence are simple enough that, for a fixed 
partially commutative alphabet, they can be tested in linear time (in the lengths of 
the traces making up the rule). The tests involve pattern matching for traces and, in 
particular, calculation of overlaps of traces. 

The combinatorial analysis underlying the results here is more complicated than 
that for strings, due to the influence of the partial commutation relation on letters. In 
the situations to which our analysis applies, confluence is equivalent to the "strong 
confluence" property, which can be established by local tests without assuming 
termination. This equivalence between confluence and strong confluence also holds 
for one-rule Thue systems; it does not hold for multirule systems, nor for every one- 
rule trace-rewriting system. 

The complications introduced by commuting letters can be seen clearly when 
the left-hand side of the single rule is empty. A Thue system with empty left-hand 
sides is always trivially confluent. In the trace case we are able to give a 
characterization of strong confluence based on interactions between the right-hand 
side of the rule and commuting pairs of letters (Theorem 6.1). Strong confluence is 
not equivalent to confluence in this situation: Otto [22] has given an example of a 
one-rule trace-rewriting system with an empty left-hand side that is confluent but 
not strongly confluent. 
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Section 2 contains a review of definitions and basic results about traces and 
about rewriting systems, and Section 3 gives the development of two necessary 
conditions for confluence of a one-rule trace-rewriting system. Section 4 contains 
characterizations of confluence when the left-hand side of the single rule is 
connected and every letter independent of the left-hand side commutes with 
the right-hand side. Section 5 is concemed with systems for which the left-hand 
side is nonempty and not connected, and Section 6 is concerned with systems for 
which the left-hand side is empty. Section 7 summarizes the results and presents the 
remaining cases. 

2. Preliminary Definitions and Results 

2.1. Traces 

The reader should consult, if necessary, the first chapter of [17] for notation and 
basic results on strings (elements of a free monoid). Here we use e to denote the 
empty string. Also, �9 denotes the Parikh mapping, which takes a string x E A* to 
the sequence of nonnegative integers ~ ( x ) =  (Ixlala ~A). Parikh images are 
operated on and compared component by component. 

The setting for the following work is a (finitely generated) free partially 
commutative monoid M(A,I),  which is determined by an alphabet A and a 
symmetric and irreflexive independence relation / c A • A. The import of placing 
a pair (a, b) into I is that we choose not to distinguish between ab and ba. The 
formal definition o fM(A, I )  is thus as a quotient A * / - -  of the free monoid A* by 
the congruence relation - generated by {ab = ba] (a, b) E 1}. Following Mazur- 
kiewicz, a congruence class in this quotient is called a trace, and the quotient is 
called a trace monoid. Note that elements of a congruence class have the same 
Parikh image. We use representative strings to name congruence classes. Let 
D = (A • A) - 1 denote the (symmetric and reflexive) dependence relation of the 
trace monoid. Both the independence and the dependence relations are undirected 
graphs on vertex set A. For simplicity in the examples, they are given by listing 
symmetric pairs just once and not listing reflexive pairs. 

Traces can also be profitably viewed as labeled acyclic graphs that take the 
dependence relation into account. If a trace is given as (the congruence class of) a 
string a l""an ,  then the associated graph is the labeled (multi-) set {a l , . . . , an}  
with an arc from ai to aj whenever i < j  and (ai, a j )ED.  The notions of  
connectedness and decomposition into connected components are most easily 
seen using this point of  view. 

Traces x, y are independent, denoted by x _1_ y, if alph(x) • alph(y) is a subset 
of / .  Similarly, call subsets B and C of the alphabet A independent ifB • C _C 1. Ifa  
trace t satisfies t ------ xy with x 2_ y, then t =- yx also; in Sections 5 and 6, we use the 
notation t = x |  as a shorthand for "t ~ xy and x _Ly," with the obvious 
extension to more than two factors. 

A trace is connected if its alphabet forms a connected subgraph of the 
dependence graph (A,D); turning this around, a trace t is not connected if 
alph(t) --- B U C with B, C nonempty and independent. A trace x is a (connected) 
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component of a trace t i fx  is nonempty and connected, and, for some y, t -- x |  
The empty trace is thus connected but has no components; every other trace is the 
nonempty product of its components. 

Some additional notation is useful. For a trace x, let I(x) = {a E Ala _1_ x} = 
{a ~Al{a } x alph(x)C_1} denote the set of letters that are independent of 
(every letter in) x, and let O ( x ) = A - I ( x ) .  Let C O M ( x ) =  { a E a l a x - - x a  } 
denote the set of letters that commute with x in M(A,I ) ;  note that COM(x) = 
I(x) U {a ~ AID(a ) n alph(x) = {a}}. The sets l (x) ,  D(x), and COM(x) depend 
only on the alphabet of  x, not on its form. 

The three following propositions review well-known properties of traces. The 
first gives a division property for traces that generalizes that for strings; it is used 
here to analyze equations involving traces. 

Proposition 2.1 (Division of  Traces) [7, Proposition 1.3]. For all x,y,  w, z E A*, 
i f  xy =__ wz, then p ,q , r ,  s E A* exist such that x = pq,y =_ rs, w =_ pr, z -- qs, 
and q is independent o f  r. 

A second very useful property of traces is that they can be represented 
(faithfully) by tuples of strings. For a subset B of A, the projection on B is the 
homomorphism h : A * ~  B* determined by defining h ( b ) =  b for b E B and 
h(c) = e for c r B. Proofs of the following proposition may be found, for example, 
in [5] and [7]. One of its consequences is that strings can be tested for congruence 
(i.e., whether they represent the same trace) in linear time for a fixed alphabet and 
independence relation [3]. Projection is used here to show that traces are the same 
and to translate questions about traces into questions about strings. 

Proposition 2.2 (Projection of Traces). For a, b E/s let 7r~b denote the projection 
on {a, b}. For all x , y  E A*, x - y i f  and only if, for all pairs (a, b) E D, 
7~ab (X) = 7~ab (y). 

It follows from either of the two previous propositions that trace monoids are 
cancellative. 

A trace x is imprimitive if some trace y and integer k > 2 exist such that 
x -  yk; otherwise, x is primitive. Each nonempty trace x has a (primitive) root: 
there is some y and some k > 1 such that x ---yk, and y is unique modulo the 
congruence - .  The following fact can be easily derived from the work of Duboc 
[12] and Cod and M6tivier [6] on commuting traces. 

Proposition 2.3. I f  x is connected and xy =_ yx, then y =_ st where s d_ x a n d  t i s  a 

power o f  the root o f  x. 

For a trace x, let OVL(x) = {y E M(A,I )[p ,q  exist such that x =--py =--yq} 
denote the set of traces that are (self-) overlaps ofx. Under this definition, the empty 
trace is an overlap of  every trace, and each trace is an overlap of  itself. A fact 
about overlaps that is used frequently (and that follows easily from Proposition 2.2) 
is that if x -  p y -  yq where x is connected mad p is nonempty, then 
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alph(p) = alph(q) = alph(x); that is, the part left over when a proper overlap is 
removed from a connected trace contains occurrences of  all the letters of  the trace. 

A pair o f  traces (x,y) is conjugate if  there is some z (called a conjugator) such 
thatxz =- zy =_ w. Such a conjugator z is both a prefix and a suffix of  the product w, 
that is, it is an overlap o fw.  Conjugacy is an equivalence relation on M(A, I ) .  The 
following lemma expresses other connections between conjugation and overlaps, as 
well as a structural relationship between a connected trace and its overlaps. 

Lemma 2.4. Suppose u is a nonempty, connected trace. There are traces p, q, r, t 
with the following properties: 

1. t is the maximum proper overlap of  u: any proper overlap of  u is an overlap 
oft. 

2. r is the minimum conjugator o f  (p, q): pr  =_ rq and, for any trace x, i f  
px  =- xq, then x = pkry for  some k > 0 and some trace y that is independent 
o fu .  

3. U =pm+lr and t =-pmr for  some m >_ O, p, q are primitive, and 
alph(p) = alph(q) = alph(u). 

4. OVL(u) = OVL(pr) U {pkr[1 < k < m + 1}. 

Proof. See also Theorem 4 of  [24]. The existence of  maximum overlaps of  
connected, nonempty traces has been demonstrated elsewhere [25, Theorem 3.3]; 
also, ify, z E OVL(x), then w E OVL(x) exists such that ~I'(w) = max{k~(y), k~(z)}. 
(More precisely, the overlaps of  a trace form a lattice under "Parikh order" [25].) 
Note further that if y, z belong to OVL(x) and ~(y)  < ~(z), then y E OVL(z). 

Suppose now that u is a connected, nonempty trace and write u =-pt =_ tq 
where t is the maximum proper overlap of  u. Since u is connected and p, q are 
nonempty, alph(p) = alph(q) = alph(u); hence, in addition, p and q are connected. 

Sincep and q are conjugate traces, it follows from the work of  Duboc [12] that 
they have a minimum conjugator r; indeed, any shortest conjugator has property 2. 
In addition, p is not a prefix o f t  and ~( r )  ~ ~(p).  Letp0, q0 be the roots o fp  and q, 
respectively; then por =- rqo and, for some n > 1, p _~ pg and q = qg [12, Proposi- 
tion 3.5]. 

Since t is a conjugator of(p,  q), t = pmry for some m > 0 and somey  _1_ u; bu ty  
must be empty because alph(t) _ alph(u). Thus, t =-pmr and u =-pt =-pm+lr for 
some m > 0. The traces p and q must be primitive, since otherwise u would have a 
strictly longer overlap than t. (To see this, suppose p or q is imprimitive. As noted 
above, p and q have the same exponent, so p = pg and q -- qg for some n > 2; but 
then t ~ =p~0-1t is an overlap of  u: u =-pgt =-po t~ =-pg-lpopmr = t'qo.) As is the 
ease for strings, p is the prefix of  u belonging to the conjugacy class of  primitive 
traces x such that u is a factor o f  a power o f  x; however, this fact is not needed here. 

Finally, property 4 certainly holds if m = 0, so suppose m is positive. It is 
enough to show that, for any proper overlap s of  u, if  ~(s )  > k~(p), then s =_ pkr for 
some k, 1 < k < m, and otherwise 9(s )  < ~I'(pr). Since t is the maximum proper 
overlap of  u, s is a suffix of  t: write t =_ xs, and note that u _: pxs ~ xsq. If  
r > k~(p), then s =- py  for some y (since both p and s are prefixes of  u), so 
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u =-pxs =_ xpyq and thereforepx _= xp and it follows thatps - p y q  - sq. Since s is 
thus a conjugator of  (p, q) and alph(s) C_ alph(u), indeed s has the form pkr for 
some k; k is at least 1 because ~(s)  _> ~(p)  and k~(r) ~ ~(p),  and k is at most m 
because s is a prefix of  t. Now suppose ~(s)  ~ ~(p) .  Both s andpr are overlaps of  
u, so there is some w E OVL(u) such that 9 (w)  = max{~(s) ,  ~ (pr )}  > ~(pr) .  
From the previous case, w --pkr for some k > 1. However, k >_ 2 would imply 
�9 (s) = ~(w)  > k~(p); hence k = 1 and gJ(s) < ~(pr) ,  completing the proof. []  

2.2. Reduction and Rewriting Systems 

An (abstracO reduction system S on a set U is a set of  pairs of  elements of  U. For 
such a system S C U • U, and a pair (ul, u2) E S, write ul 4 u2; we say that "Ul 

�9 , ,  - , * �9 

reduces to u2 m one step. The reductton relatton 4 determined by S is the 
transitive, reflexive closure of  the one-step reduction relation 4 .  The equivalence 
relation determined by S is the symmetric, transitive, and reflexive closure of  4 .  

If  there is some u2 such that Ul 4 u2, then ul is reducible, and otherwise Ul is 
irreducible. If  Ul * u2, then Ul is an ancestor of  u2, and u2 is a descendant of  ul. A 
pair of  elements (ul, u2) isjoinable i f  they have a common descendant, that is, i f  
there is some u3 such that ul 4 u3 and u2 4 U3. * 

A reduction system is confluent if, whenever z 4 x and z * y, there is some w , 
such that x * w and y 4 w. In other words, a system is confluent if  every pair of  
elements with a common ancestor has a common descendant (that is, the pair is 
joinab!e). Confluent reduction systems have the Church-Rosser property: every pair 
of  equivalent elements is joinable. A reduction system is terminating (or Noether- 
ian) i f  there is no infinite chain of  reductions Xl ~ x2 4 x3 4 . . . .  A system that is 
both confluent and terminating is called a complete (or convergent) system. 

A reduction system is locally confluent if, whenever z 4 x and z 4 y, the pair 
(x,y) is joinable. While any locally confluent and terminating system is confluent, 
we use here a more restricted notion of  local confluence, one that allows proofs of  
the confluence property for nonterminating systems. A pair of  elements (ul, u2) is 
stronglyjoinable i f  they have a common descendant that can be obtained from each 
in at most one step: either Ul --- u2 or Ul 4 u2 or u2 ~ Ul or there is some u3 such 
that Ul ~ u3 and u2 4 u3. A reduction system is strongly confluent if, whenever 
z 4 x and z 4 y, the pair (x,y) is strongly joinable. (This definition o f  strong 
confluence is the one used by Dershowitz and Jouannaud [9], which is slightly 
stronger than that of  Huet [13].) The following fact can be easily proved by 
induction on the length of  reduction sequences. 

Proposi t ion 2.5. Ira reduction system is strongly confluent, then it is confluent. 

Suppose M = M(A, I) = A*/--- is a trace monoid. A rewriting system on M is 
a set of  rules R C M x M. The system R determines a reduction system on M by 
defining x ~ y i fx  -- sut andy - svt for some traces s, t and some rule (u, v) E R. 
A (semi-) Thue system is a rewriting system on a free monoid A* ---- M(A, ~ ) .  A 
rewriting system R on a trace monoid M(A, I) gives rise to a Thue system on A* by 
fixing particular strings to represent the rules in R and adding a set S of  rules of  the 
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form (ab, ba) for pairs (a, b) E I to express the commutation of  independent letters. 
Further definitions for Thue systems may be found in [1] and [14]. 

A length-reducing trace-rewriting system R is confluent exactly when its 
associated Thue system T = R U S  is "preperfect"; the corresponding notion 
for term-rewriting systems is that " R / S  is confluent mod S." The preperfect 
property is undecidable for finite Thue systems [19]; it remains undecidable for 
systems T -- R U S in which R is finite and S consists of  just one rule of  the form 
(ab, ha) [20], that is, for trace-rewriting systems on a trace monoid M(A,  I)  where I 
contains just one pair of  independent letters. By contrast, the results here concern 
systems T = R U S in which S is finite and R has size one. A stronger property that 
has also been studied for Thue systems is that of  "almost-confluence." This is a 
decidable property for finite Thue systems; for term-rewriting systems, it corre- 
sponds to "R is confluent modulo S." Suppose R = {(u, v)} is a one-rule trace- 
rewriting system with [u[ > Ivl, and (viewing the traces as strings) T = {(u, v)} tO S 
is its associated Thue system. If  lul = 1, then T is almost confluent. When lul > 1, 
T is almost confluent if and only if  it is preperfect and, for all letters a, b, no 
commutation rule applies to aub. In effect, for one-rule trace-rewriting systems, the 
property of  almost-confluence requires the single rule and the independence relation 
to be disjoint. 

3. Necessary Conditions for Confluence 

This section begins with a demonstration (Lemma 3.1) that, for a one-rule Thue 
system, critical pairs (which are derived from overlaps of  the left-hand side of  the 
rule) can only be joined in a restricted manner. In Lemma 3.2 we apply that 
information to one-rule trace-rewriting systems in general, to draw conclusions 
from joinability under certain conditions. For example, if R = {(u, v)} is a 
confluent trace-rewriting system and u is connected, then any proper overlap 
of  u with Parikh image bounded above by that of  v must be an overlap of  v. 
Example 3.3 shows the limitations of  the technique used in deriving Lemma 3.2 
from Lemma 3.1. 

One source of  additional complexity of  trace rewriting over string rewriting is 
the possible existence of  letters that are independent of  the left-side of  a rule. Such 
letters must interact in some way with the other rules of  the system to ensure 
confluence. For a one-rule system R = { (u, v) }, the interaction is simple to analyze 
as long as u is not a factor of  v: any letter that is independent of  u must commute 
with v (Lemma 3.4). 

The idea behind the following lemma is due to Kurth [15]. 

Lemma 3.1. Suppose T = {(u, v)} is a Thue system on A* and u = ps  = sq with 
p, q nonempty. I f  pv  and vq have a common descendant with respect to T, then 
one o f  the following conditions holds: 

(i) Iv I < Isl, vq = pv, and v E OVL(s). 
(ii) Ivl ___ Isl, vq and pv have a common one-step descendant, and s E OVL(v). 
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Proof Suppose vq andpv have a common descendant. If  Iv[ < Is[, then vq andpv 
are both shorter than u, so they must be irreducible and hence vq =pv.  The 
equations ps = sq and pv = vq, together with the inequality Iv I < Isl, imply that 
s=p~v=vqko  for some k > l ,  where P0 and q0 are the roots o f p  and q, 
respectively; hence v E OVL(s). 

Now suppose Ivl >_ Is[. I f s  ~ OVL(v), with, say, v = vas = sv2, then vq andpv 
have the common one-step descendant VlSV2. I f s  r OVL(v), then in fact vq andpv 
can have no common descendant. To see this, note first that if  s f[ OVL(v), then 
either s is not a Prefix of  v or s is not a suffix of  v; the arguments are symmetric, so 
suppose s is not a prefix ofv. Since Ivl > Isl, strings so, sl, vl and distinct letters a, b 
exist such that s = soasl and v = sobva. Then so andpso are both prefixes of  u, so 
pso = sop' for some pq Since so is a prefix of  all the strings u, v, vq = sobvlq and 
pv = soptbVl, a simple argument will show that descendants of  vq and pv with 
respect to T correspond to descendants of  bvlq and p'bvl with respect to the Thue 
system {(asql,bVl)}. Thus, we may assume that so is empty. 

Write, therefore, v = by1, s ~-as1, and u =pus1 = aslq where a r b and p 
begins with a. Every descendant of  vq = bvlq begins with b (since the right-hand 
side of  the rule begins with b). On the other hand, every descendant o f p v  begins 
with a, so vq and pv can have no common descendant, as desired. To see the claim 
concerning pv, consider the "dictionary ordering" that puts a before b: x appears 
before y in the dictionary if, for some z, za is a prefix o f x  and zb is a prefix ofy.  
(This is a transitive and irreflexive relation on strings.) Since u begins with a, 
application of  the rule is increasing for this ordering; hence no descendant of  
pv = pbVl can have pus1 = u as a prefix, and it follows that the first letter, a, o fpv  
persists in every descendant of  pv. [] 

The following fact is derived by combining Lemma 3.1 with the technique of  
the projection of  traces given in Proposition 2.2. 

Lemma 3.2. Suppose R = { (u, v) } is a rewriting system on M(A, I ) ,  s is a proper 
overlap of  u with u =_ps - sq, ql(v) >_ 9(s),  and pv and vq have a common 
descendant with respect to 1~ I f  u is connected or i f  alph(s) c_ alph(p), then 
s ~ OVL(v).  

Proof Suppose pv and vq have the common descendant z. I f  u is connected, then 
alph(p) = alph(u), so alph(s) C_ alph(p). (The only way the inclusion could fail to 
hold is i fu  is not connected and some component o fu  is also a component ofs.) To 
see that alph(s) C alph(p) implies s E OVL(v), consider any pair (a, b) E D; it is 
enough to argue that s' = nab(S) belongs to OVL(v') for v' = nab(V ). I fs '  = e, then 
surely s ' E  OVL(v/). If  s ' r  e, then nab(P)• e, so s' is a proper overlap of  
u t =  Irab(U) = ~Zab(PS) = Irab(Sq). Let Rab be the Thue system on {a, b}* with 
the single rule (u', v'). Since pv and vq both reduce to zwith respect to R, the strings 
7Zab(P)v I and Vt~Zab(q) both reduce to rCab(Z) with respect to Rab. Since ~(v) > ~(s),  
the string v' must be at least as long as s', and it follows from Lemma 3.1 that 
s t e OVL(v ' ) .  [ ]  
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In the proof of  Lemma 3.2, joinability of  specific traces with respect to a trace- 
rewriting system R was used to establish joinability of  specific strings relative to a 
Thue system that was found by "projecting" R. The following examples show that it 
is not possible to use projection to lift a characterization of  confluence directly from 
Thue systems to trace-rewriting systems. 

Example 3.3. Let A = {a, b, c, d},  I = {ac, ad, bd}, and D = {ab, bc, cd}. Let x 
be the trace ab2aZbc2dc2ba. The trace-rewriting system R = {(x, a)} is confluent; 
this follows from Theorem 4.2, since x is connected, I(x) is empty, and the 
maximum proper overlap o fx  is a. However, none of  the three projected systems is 
confluent: Rab = {(ab2a2b2a, a)} is not confluent on {a, b}*, Rbc = {(b3c4b, e)} is 
not confluent on {b, c}*, and Rca = {(c2dc z, e)} is not confluent on {c, d}*. These 
projected systems are not confluent because the projections o fx  have more overlaps 
than x does. For example, ccdccdcc ~ dcc and ccdccdcc ~ ccd with respect to Rca, 
but dc 2 and c2d are irreducible and unequal. 

The trace-rewriting system S = { ( a 2 b ,  acd)} is not confluent, since 
a2 bd ~ acdd and a2 bd - da2 b --~ dacd - adcd but the traces acdd and adcd 
are irreducible and distinct. On the other hand, the three projected systems 
Sab = {(a2b, a)}, Sbc = {(b, c)}, and Scd =~ {(e, cd)} are confluent. 

The trace-rewriting system S in Example 3.3 could not be confluent because of  
the letter d: d was independent of  all the letters in the left-hand side of  the rule but 
did not commute with all of  those in the right-hand side. Such a situation cannot 
occur for Thue systems (with nonempty left-hand sides); the following simple 
lemma shows that it prevents a terminating one-rule trace-rewriting system from 
being confluent. 

Lemma 3.4. Suppose R = {(u, v)} is a rewriting systemon M(A,  I). l f  R is con- 
fluent and u is not a factor o f  v, then every trace independent o f  u commutes 
with v. 

Proof  Suppose z is independent of  u but vz ~ zv. Then uz--~ vz and 
uz - zu ~ zv so, since R is confluent, vz and zv have a common proper descendant. 
Hence vz (and zv) must be reducible: vz - sut for some traces s, t. However, since u 
and z have no letter in common, the Division Property applied to vz - sut implies 
that u is a factor of  v, a contradiction. []  

Recall that I(x) = {a E Alx A_ a} denotes the set of  letters independent of  x, 
and COM(x) = {a ~ Alax = xa} denotes the set of  letters that commute with x. 
Every trace independent o f  x commutes with y if and only if I(x) C_ COM(y); 
hereafter the set inclusion is freely used as an abbreviation for the phrase. Both 
I(x) and COM(x) can be found easily from the independence relation I and the 
set alph(x). Note also that when a lph (y )=  {b} consists of  a single letter, 
COM(y) = I(b)  U {b}. 

The condition in Lemma 3.4 is not a necessary one for confluence of  a one-rule 
trace-rewriting system when the left-hand side of  the rule is a factor of  the right- 
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hand side. For example, ifA = (a, b, c} and I = {ab, ac), then the system ((a, ab)) 
is confluent, but a _k c and (ab)c ~ c(ab). For multirule systems, even a complete 
trace-rewriting system might fail to have the property that traces independent of  the 
left-hand side of  some rule commute with the right-hand side of  the rule; Otto has 
given the following example [21, Example 3]: i fA = {a, b, c} and I = {ac}, then 
the system {(a, bb), (bbc, cbb)} is confluent and terminating, but a • c and 
(bb)c ~ c(bb). 

Returning to the question of  applying projection to trace-rewriting systems, 
suppose R = {(u, v)} is a rewriting system on M(A, I) for which u is connected and 
nonempty. Any feasible combination of  confluence or nonconfluence of  R and of  
its projections can occur, as long as the question of  whether I(u) C_ COM(v) is 
disregarded. However if I(u) ~= COM(v), then at least one projected system will 
be confluent, since it will have an empty left-hand side. Also, it can be shown 
(using Corollary 4.4 and Theorem 4.2) that i f I (u )  C_ COM(v) and every projected 
system of  R is confluent, then R is confluent; this is in contrast to the system S of  
Example 3.3. 

4. When the Left-Hand Side of the Rule Is Connected 

This section deals with trace-rewriting systems R = { (u, v)} for which the leR-hand 
side u is connected and certain other conditions hold. The principal condition is that 
traces independent of  u commute with v (that is, I(u) c_C_ COM(v)); from Lemma 
3.4, this is also a necessary condition for confluence when u is not a factor of  v. 
Theorem 4.2, the main result of  the paper, presents a characterization of  confluence 
in terms of  the structure of  u, v and their overlaps when u is connected and 
I(u) c_ COM(v). In addition, it states that confluence and strong confluence are 
equivalent for such systems, and identifies a finite set of  critical pairs for 
confluence. Corollary 4.3 restates Theorem 4.2 under the assumptions that u 
is connected and is not a factor of  v, and hence characterizes confluence for all 
terminating one-rule systems with a connected left-hand side. Corollary 4.4 gives 
the (known) characterization of  confluence for Thue systems as a special case of  
trace-rewriting systems. 

Finally, in Corollary 4.5, we show that confluence under these conditions is a 
decidable property for a fixed trace monoid: it can be tested in linear time in the size 
of  the given system. 

The following lemma gives a description of  critical pairs for strong confluence 
under the assumption I(u) c_ COM(v). The critical pairs are similar to those for a 
one-rule Thue system, with a slight complication introduced by traces independent 
of  some overlap of  u. 

Lemma 4.1. Suppose R = { (u, v) } is a rewriting system on M(A, I) for which u is 
connected and I(u) C_ COM(v). Let 

CP(u, v) = { (pzv, vzq)lu -- ps = sq with p, q, s nonempty and s _1_ z}. 

The system R is strongly confluent if and only if every pair in CP(u, v) is strongly 
joinable. 
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P r o o f  If  (pzv, vzq) E CP(u,  v), then pzu  --~ p z v  and pzu  - pzsq  =_ pszq  - 
uzq ~ vzq; hence i fR is strongly confluent, then in particular every pair in CP(u,  v) 
is strongly joinable. 

The reverse implication follows from the analyses done by Diekert [10], [11] 
and by Otto [21] of  critical pairs for multirule trace-rewriting systems. In this 
simpler case it can also be seen directly, as follows. 

For strong confluence, we must show that ifxlux2 ~ yluy2,  then, for x = XlVX 2 
andy  = ylvy2, either x _= y, or one of  x, y reduces in one step to the other, orx  andy 
have a common one-step descendant. It is clearly sufficient to show this when Xl, Yl 
have no nonempty common prefix and x2, y2 have no nonempty common suffix; 
from the Division Property, it follows that Xl is independent of  Yl, and x2 is 
independent of y2, and hence ~l/(Xl) : ffff(Y2) and X~/(X2) : -  tx~(yl).  A projection 
argument then establishes that xau = uy2, ux2 - y lu ,  and alph(xl), alph(x2), and 
alph(u) - alph(XlX2) are pairwise independent. Up to this point, no assumptions 
about u and v have been needed. Now, however, since u is connected, we have (by 
symmetry) two cases: either alph(u) is disjoint from alph(xlx2) or 
alph(u) C_ alph(xa). In the first case u is independent of  xlyax2y2, so xa - y 2 ,  
x2 = Yl, Xl andx2 commute with v, and hence x = XlVX2 - ylvy2 : y. In the second 
case x2 is independent of  u, so x2 = Yl and x2 commutes with v. Therefore, 
x = (xlv)x2 a n d y  = ylvy2 = x2vy2 ~ (vy2)x2 ,  and we may restrict attention to XlV 

and vy2. Since alph(u) c_ alph(xl) a n d x l u  =_ uy2, the Division Property implies that 
u -- p s  = sq, xl  = pz,  Y2 -- zq for some traces p ,  q, s, z such that s _k z and 
alph(s) c_ alph(p). I f  s is empty, then Xl --- uz, y2 - zu, and so XxV and vy2 have 
the common one-step descendant vzv. If  s is nonempty, then so must p and q 
be, so (XlV, vy2) = (pzv, vzq) belongs to CP(u,  v) and, by assumption, is strongly 
joinable. []  

The following theorem presents three properties that are equivalent to con- 
fluence for certain one-rule trace-rewriting systems {(u, v)}. The third property 
means that either every proper overlap of  u is an overlap of  v, or v splits into a 
proper overlap of  u and a part independent of  u (and the other overlaps of  u are 
restricted). The fourth property is a description of  a set of  critical pairs for 
confluence of  the system, which (as is the case for Thue systems) is a finite set 
determined solely by the overlaps of  u. 

Theorem 4.2. Suppose R = { (u, v) } is a rewriting system on M ( A ,  I )  f o r  which u 
is nonempty  and connected. Let  t be the maximum proper  overlap o f  u. I f  
I (u )  C COM(v) ,  then the fo l lowing  statements are equivalent. 

(1) R is confluent. 
(2) R is strongly confluent. 
(3) Either (a) t OIL(v)  or (b) traces x # e, y ana z, and integer k >_ 2 exist such 

that z I u, u ==--xky, v = y z ,  and OIL(u)  = OIL(y) U {~y[1 < i _< k}. 
(4) Every pair  in the set { (pv, vq)[u =- ps  -~ sq with p, q, s nonempty) is joinable. 
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Proof Write u - p o t  - tqo ==-p'~+lr where (as in Lemma 2.4) r is the minimum 
conjugator of  (P0, q0). 

Clearly, (2) implies (1), and (1) implies (4). 
That (3) implies (2) follows from Lemrna 4.1, since we are given that 

I(u) c_ COM(v). To see this, suppose that (pwv, vwq) E CP(u, v) with u - ps  =- sq 
wherep,  q , s  are nonempty ands  _1_ w. I f s  E OVL(v) with, say, v - vxs = sv2, then 
pwv and vwq have the common one-step descendant vwvz - VlWV. I f s  ~ OVL(v), 
then necessarily clause (3b) holds with s E O V L ( u ) - O V L ( v ) :  therefore 
v = yz, z _1_ u, u - xJ'y, and s =- xiy for some i, 1 < i < k - 1, and hence (using 
u =_ ps  --- sq) p = x k-i and py  =_ xk-iy - yq. From the form of s, we see that 
alph(s) = alph(u), so u _1_ w and therefore w commutes with v; a simple calculation 
now shows that pwv = vwq. 

For the final implication, suppose that (4) holds. If  t is empty, then it belongs to 
OVL(v), so suppose that t r e. Consider the pair (pov, vqo) where, again, 
u =-pot =- tqo --p~+Ir; by assumption, pov and vqo have a common descendant. 
I f~ (v )  >_ ~(t) ,  then (from Lernma 3.2) t E OVL(v), so suppose ~(v) ~ k~(t). Both 
pov and vqo must then be irreducible, so pov =- vqo. Since r is the minimum 
conjugator of  (P0, q0), it follows that v =- yz with z _k u andy --- P/0r for somej  >_ 0; 
also j _ < m - 1  since otherwise ~ ( v ) > _ ~ ( t ) .  Thus, for k = m + l - j _ > 2 ,  
u =- p~y, v =_ yz, and z _1_ u, and certainly OVL(y) U {p~y[1 < i < k} C_ OVL(u). 
For the reverse inclusion, it is enough, from Lemma 2.4, to show that any nonempty 
proper overlap of  por =- rqo belongs to OVL(y). This is clearly true if j > 0, 
so suppose j = 0, that is, v =- rz. If por =- p l s  =- sql with Pl and s nonempty, 
then u =- (p~pl)s =-s(qlq'~), so, by assumption, p'~plv and vqlq'~ have a 
common descendant. If  either pt~plV o r  vqlq~ is reducible, then 
f f f f (p~plV)  -~- qd(vqlq~) > ~(u)  so ~P(plrz) > ~(por) and hence (since z -l-por) 
fit(P1) > ~(P0). It follows that ~( r )  > ~(s) ,  so, since r and s belong to OVL(u), 
s E OVL(r) = OVL(y). I f p ~ p l v  and vqlq~ are irreducible, then p~plv  =- vqlq'~ 
and so p~plr  =- rqlq~. We have plp~+lr =- p lu  =- plrq~ +1 =- plsqlq~ =- 
porqlq~ =P0- m+lplr, so plP0m+l _= p~+lpl.  Since P0 is primitive andpl  is nonempty 
with alph(pl) C_ alph(u) = alph(p0), the tracepl must therefore be a positive power 
of  p0, so again ~(Pl )  > ~(P0), ~(r )  > ~(s) ,  and s E OVL(r). [] 

In the situation treated in Theorem 4.2, the system {(u, v)} is confluent if and 
only if  it is confluent as a system on the submonoid of  M ( A , I )  generated by 
alph(uv). This equivalence is not true in general when I(u) ~= COM(v). Theorem 
4.2 (and the following corollaries) do apply to some nonterminating systems; for 
example, when ab C D, the system with rule (ab, bbaa) is (strongly) confluent, but 
it is not terminating since abb ~ bbaab ~ bb(abb)aa. 

The following fact can b e  easily derived from Theorem 4.2 and Lemma 3.4. 

Corollary 4.3. Suppose R ---- {(u, v)} is a rewriting system on M(A,  I)  for which u 
is nonempty and connected. Let t be the maximum proper overlap o f  u. 

A. When 9(v)  > ~(t) and u is not a factor of  v: the system R is confluent i f  and 
only if  l(u) C_ COM(v) and t ~ OVL(v). 
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B. When ~(v)  ~ ~(t): the system R is confluent i f  and only i f  I(u) C COM(v) 
and traces x ~ e, y and z, and integer k > 2 exist such that z I u, u - xky, 
v - y z ,  and OVL(u) = O/,'L(y) U {x/y]l < i < k). 

A series of  results [2], [23], [15] (summarized in [26]) has led to a char- 
acterization of  confluence for all one-rule Thue systems. That characterization for 
systems with a nonempty left-hand side is given in the following corollary; it is an 
immediate consequence of  Theorem 4.2, as is the fact that confluence and strong 
confluence are equivalent for one-rule Thue systems. 

Corol lary 4.4. Suppose R = {(u, v)} is a Thue system on A* with u ~ e, and let t 
be the longest proper overlap o f  u. The system R is confluent i f  and only i f  either (a) 
t E OVL(v) or (b) string x # e and integer k > 2 exist such that u = xkv and 
OVL(u) = OVL(v) U {x/v[1 < i < k}. 

The finite set o f  critical pairs identified in Theorem 4.2 makes it clear that 
confluence is a decidable property for the one-rule trace-rewriting systems to which 
it applies. The combinatorial characterization gives another avenue for testing 
confluence, and, in fact, it can be checked very easily for a fixed trace monoid. 

Corol lary 4.5. For a f ixed partially commutative alphabet (A, I), given strings 
representing traces u, v with u connected and not a factor o f  v, it can be tested in 
time linear in [uv I whether the trace-rewriting system {(u,v)} is confluent. 

Proof  Note first that, given u and v, whether u is connected can be tested by 
simply examining the alphabet o f  u, and whether u is a factor o fv  in M(A,  I) can be 
tested in time linear in luvl [16]. 

If  u is connected, let t be the maximum prope r overlap of  u. Let p, q be strings 
such that u - p t  -- tq, let r be the minimum conjugator of  (t9, q) in M(A,  1), and let 
s be the maximum proper overlap of  pr. (The trace pr  must be connected since 
alph(p) = alph(u).) The following statement follows easily from Corollary 4.3: 

When u is connected and not a factor of  v, the system {(u, v)} is confluent 
on M(A,  I)  if and only if I(u)  C_ COM(v) and either 

(a) ~(v) _> k~(t) and t is both a prefix and a suffix of  v, or 
(b) kV(v) ~ 9 ( t ) ,  pv  - vq, and either p is a prefix of  v or Isl ___ Irl. 

Given a connected trace u, its maximum proper overlap t can be found in time linear 
in [u I [25]. The Parikh image of  a prefix y of  a trace x determines the prefix, 
which can be formed by erasing from x the last [X[a- ~V]a occurrences of  
each letter a. Therefore, strings representing p, q, and r can be found easily 
from u and t: kO(p) = ~(q)  = ~(u)  - k~(t) and k~(r) = ~ ( t ) -  m~(p)  for 
m = min{[Itla/~laJla E A}. The maximum overlap s o f p r  can be found in time 
linear in lpr I, and Iprl < lul. 

As noted in Section 3, whether I (u)  is a subset of  COM(v) can be tested in 
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constant time once the alphabets of  u and v are known. The other functions needed 
for the statement above, comparing lengths and Parikh images of  strings and testing 
whether traces are the same or one is a prefix or a suffix of  the other, can also be 
performed in time linear in their lengths. [ ]  

5. When the Left-Hand Side of the Rule Is Not Connected 

The information developed in the previous section for trace-rewriting systems 
follows closely the pattern of  that for string-rewriting systems. When the left-hand 
side of  the single rule is not connected, the situation becomes more complex. We 
have obtained a characterization of  confluence, given in the following theorem, only 
in case at least one component of  the left-hand side is not a factor of  the right-hand 
side. When at least two components of  the left-hand side are not factors of  the right- 
hand side, any confluent system must be terminating. 

Theorem 5.1. Suppose R = {(u, v)} is a rewriting system on M ( A ,  I)  f o r  which at 
least one component  o f  u is not a fac tor  o f  v. Let  u = Ul | . . .  | Urn, m > 1, be the 
decomposition o f  u into its connected components with, say, ul not a fac tor  o f  v. The 
system R is confluent i f  and only if." 

(i) The trace v can be decomposed as v = w @ vl |  @ Vm where w A_ u, ul vl 
is connected and vl I u2 �9 �9 �9 urn. 

(ii) For all i > 2, i f  vi ~ ui then there is a letter ai such that ui, vi belong to ai 

and, fo r  all j such that uj is not a factor o f  v, [(uj) CC_ l(ai) U {ai}. 
(iii) 1fat  least two components o f  u are not factors o f  v, then there is a letter al 

such that Ul, vl E a~ and, for  all j such that uj is not a factor o f  v, 
[(uj) C_ I(al)  U {al}. 

(iv) For all j such that uj is not a factor o f  v, I(uj) C_ COM(w).  
(v) The system {(ul,vl)} is confluent. 

Although the statement of  Theorem 5.1 includes the possibility that the left- 
hand side u is connected (m = 1), it gives no new information in that case. Under 
the assumptions of  the theorem, it can be seen from the proof that the system is 
confluent if  and only if  it is strongly confluent. 

Condition (v) in the statement 0nly comes into play when all the components of  
u except ul are factors of  v; otherwise it is superseded by condition (iii). Condition 
(iii), together with the assumption that ul is not a factor of  v, implies that a confluent 
system in which at least two components of  u are not factors o f  v must be 
terminating: application of  the rule reduces the number of  occurrences of  the letter 
al.  Otherwise, as in the case of  a connected left-hand side, a confluent system need 
not be terminating. 

P r o o f  o f  Theorem 5.1. Let N F  = {i lui is not a factor of  v} be the set of  indices of  
components of  u that are not factors of  v; in particular, 1 E NF.  

First, assume that R is confluent. Taking u I = u2 �9 �9 - urn, we have uu ~ ~ vu ~ and 
u d  - utu ~ dv .  Both v d  and u~v are irreducible (since Ul is not a factor of  v) 
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so vu' -- u'v. Using projection and Proposition 2.3, it follows that 
v = v' @ v2 | "-'. @ Vm where v' A_ u ~ and each vi (i > 2) is a power of  the root 
of  ui. Examination of  the components of  alph(ulv ~) allows us to split v' as 
v ~ = w @ Vl with alph(ulvl) connected and w _1_ u. This establishes property (i). I f  
INFI > 1, then an analogous argument shows that, in addition, Vl is a power of  the 
root of  ul. In any event, Vl ~Ul  since Ul is not a factor of  v. 

To see that properties (ii)-(iv) and also 1(Ul) c_ C O M ( v l )  hold, first consider 
any index i such that vi ~ ui and N F  contains an index other than i (which will in 
particular be true if  i > 2), and any letter a E alph(ui). The traces uiav and vaui are 
then irreducible but have the common ancestor uiau ~ uaui, so uiav =- vaui. From 
the form established in the previous paragraph for v, this implies that uiavi --- viaui. 
Since in this situation vi, ui are different powers of  a common root and a occurs in 
ui, it follows that ui, vi E a*. Thus, when vi ~ ui and N F  - {i} is nonempty, the root 
of  ui is a single letter ai. Now suppose b A_ uj for some j E NF,  and let 
z = Ul . . . .  Uj-lUj+l . . .  U,n. Then vbz and zbv are irreducible and have the common 
ancestor ubz - zbu, so vbz =- zbv. A projection argtmaent then shows that wb =- bw 
(establishing (iv)), vjb =_ bvj and, for all k ~ j ,  vkbuk = ukbvk. The second equation 
fo r j  = 1 establishes I (u  0 C COM(v l ) .  I f / = j ,  then certainly b E I(ai)  U {ai}; if  
i # j ,  then the equation vibui - uibvi implies that b commutes with the root ofui, so 
b E I(ai)  U {ai}. 

It remains only to show that the system R1 = { (ul, Vl) } is confluent. (Note that 
this is trivially true if  some component other than ul is not a factor of  v.) Since 
I ( u  0 C_ C O M ( v l )  and ul is connected, it is enough (from Theorem 4.2) to show 
that if  Ul - p s  - sq, then the pair (pv l , v lq )  is joinable by R1. Ill this situation 
p u  =- uq so, since R is confluent, p v  and vq have a common R-descendant y. Let zc 
denote the projection on alph(UlVl); it is easy to see (using induction on the length 
of  the reduction sequences) that re(y) is a common R1-descendant ofpvl  = n(pv) 
and v lq  = n(vq).  

For the reverse implication, we show that the systems are strongly confluent. 
Note first that conditions (i)-(v) imply that I(u)C_ COM(v)  and that 
alph(vi) C alph(u/) for i _ 2. 

For 1 < i < m, letBi = D(uivi) = {b E Al(a, b) ~ D for some a E alph(uivi)}, 
let B0 = A - alph(uvl), and let 1"~ i denote the projection of A onto Bi, 0 < i < m. 
The projection IX i sends M ( A , I )  to the trace monoid determined by B i and 
I N (Bi x Bi). Because any two dependent letters belong to a common set Bi, two 
easy consequences of  the Projection Lemma are that: 

(1) x --- y if and only if Hi(x) -- Hi(y) for 0 < i < m. 
(2) x is a prefix (or suffix) o f y  if and only if Hi(x) is a prefix (resp. suffix) of 

IIi(v) for 0 < i < m. 

Based on the preliminary analysis in the proof of  Lemma 4.1, to establish 
strong confluence it is enough to show that each pair (XlVX2,ylvy2) is strongly 
joinable when  xlu=_-uy2, ux2 =-ylu,  the three sets alph(xl), alph(x2), and 
alph(u) - alph(XlX2) are pairwise independent, and u is not independent of  both 
xl and x2. Using a projection argument and the independence relationships, we find 
that the components of  u can be partitioned into two products u' and u" with 
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u = u ~ @ u" and xlY2U' independent of  x2ylut'; further, Xl - p ' i ,  Y2 ~- z'q', 
u I - p ' s  I - s l q  ' wi th  i • s t, and Yl - p " z " ,  x 2 - - i l q  ", u" - p " s "  - s " q " w i t h  
z " l  s". Projecting these equations onto the alphabets o f  the components of  u, 
we obtain overlap relationships ui ~- pisi ~- siqi with ~z tt _1_ si, 1 < i < m. (That is, 
if ui is part of  u ~, then pi, si, qi are the projections Of p',  s ~, q' on  Bi, and 
IIi(p" s" q") = e; and, similarly, if ui is part of  u".) Assume, without loss of  
generality, that ul is part o f  u'. 

We distinguish two cases. 

(1) For some i, si ~ OVL(vi). In this case we will see that XlVX2 - ylvy2. 
I f s i  is not an overlap ofvi,  then vi ~ ui and ui, vi cannot be powers of  a single 

letter with ui shorter than vi; therefore ui is not a factor o f  v, and, by symmetry, we 
may assume that Sl ~ Ol/L(vl). From (i) and (v) and the representation given in 
Theorem 4.2, it follows in this case that a l p h ( v l ) c  a lph(Ul)=  alph(Sl) and 
ply1 - v l q l .  Hence, in addition, ztz" I ul and so z' and z" commute with w 
and with all ai such that i >- 2 and ui ~ vi. 

To verify  that XllJX2 ~-y lvy2 ,  it suffices to check their projections onto the 
alphabets Bo,BI ,  . . . ,Bin. First, HO(Xl VX2) =-- H0(p'ztwvlv2 " '"  Vrn~' q tt) -~ IIo(~/w~/') 
and H0(ylvy2 ) ~ H0(~tw~), and these projections are the same trace because 
w commutes with z t and z", and z ~ l z  ". Next, Hl(XlVXE)_=l-Ii(plVl)~ 
Hl(Vlql) -- Hl(ylvy2). Finally, for i >_2, the problem reduces to showing that 
PigiVi ~-Viziq i where  z i I si. (That  is, if, for example, ui is part of  u", then 
I-[i(XIVX2) -~ H i ( v i i ' q " )  and Hi(ylvy2) ~ Hi(pHztlVi), and z i : Hi(zIt).) If 
ui --  vi, then  Pigivi -~ PiZiui ~- pigisiqi ~_ pisigiqi ~- uigiq i ~ vigiq i. I f  ui ~ vi, then  
the traces ui, vi ,pi ,  and qi all belong to a~, pi = qi, andz i  connnutes  wi th  ai, so again 
PiZiVi ~- 1)iziqi. 

(2) For all i, si E OVL(vi). In this case XlVX2 andylvY2 have a common one-step 
descendant. 

We will find that XIVX2 ~- UO~ andylvy2 -- flu for some ct, fl with v~ - fly; from 
the remarks above, it is again sufficient to work with the projections of  the traces on 
the alphabets Bi. To avoid doing the case analysis twice, the two demonstrations are 
given simultaneously. 

Write vi - risi ~ Siti, 1 < i < m. 
For the projection on B0, we have Ho(xlvx2) - H0(z~wz ") - II0(~t) -- II0(u~) 

and H0(ylvy2) - II0(z"wz') - IIo(fl) - II0(flu). Since z" is independent of  Ul, it 
commutes with w, so Ho(v~) - IIo(wz'wz") - IIo(z"wz'w) - Ho(flv). 

For the projection on B1, first note that, since x2yl / Ul, 
Hi(x2) ---- Hx(yl) - IIl(Z") and z r commutes with Vl and hence with r! (and 
/1)- Therefore IIl(XiVX2) ~- IIl(PlgtVl gO) ~--- IIi(PlZrSlt l  glt) ~-- I I l (p lSlgt t l  gO) 
II1 (UlZttl zn) =-- 1-I1 (Ula) and 1-I1 (ylvy2) = IIl(ZC'VlZlql) _ I I l ( zg tr l~ul )  = 1-I1 (flUl). 
Then II1 (v0~) ~ 1-[1 (VlZt t l~  t) -~ IIl (rlslz '  fiz/') =- II1 (rlz' Sl tlZ") -- II1 (rlZ/Vl zn) 

l I  1 (Z~ -~ 1~ 1 (flV). 
Now, suppose i > 2  and ui is part o f  u ~. Then x 2 y l Z u i v i ,  so 

IIi(xllPX2 ) m_ IIi(piztVi) ~- IIi(piz'sit,) -- II,(uiz~t,) ==- Hi(u,a) and IIi(ylvY2) -~ 
I I i ( v i f  qi) ~- 1-li(riz~ui) ~ n i ( f lu i ) ;  and then  Hi(voe) --  I[i(vizgti) -~ IIi(ris,z~t,) =-- 
r ,(rfv,) _= ni( v). 
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Finally, suppose i > 2 and ui  is part of u", so xly2 _L uivi. If ui =-vi, 
then II i(xlvx2) :- IIi(vix2) ~__ ~Ii(uio 0 and IIi(ylvy2) ~ I~i(~ivi) ::__ IIi(flui) and 
Hi(VO~ ) ~--- IXi(uix2) ~- IXi(pisizttqi) ~- IXi(Pizttui) ~-~ ~Ii(flv ). I f  ui ~ vi, then all the 
traces ui, vi, s i ,pi  : qi ~md ri = ti belong to a* and z a~ commutes with ai, SO 
rli(x vx2) - 17i(viz" -- IIi(sitiz" qi) - IIi(siqitiz") - l i(Uit ) a n d  1-Ii(YlVY2) ~- 
IIi(Pig'risi) = IIi(z"riPiSi) = IIi(flui) and IIi(v~) = rl , (v , t ,z")  =_ rl;(z"rm) = 

This completes the proof. [] 

In the hope of  making the rather complicated statement of  Theorem 5.1 more 
understandable, we present the form to which it reduces when no component of  the 
left-hand side u is a factor of  the right-hand side v. In particular, every component of 
u is a power of a single letter and those letters commute with precisely the same 
subset of A, placing severe restrictions on u. 

Corollary 5.2. Suppose R-----{(u,v)} is a rewriting system on M ( A , I )  for  
which u is not connected and no component o f  u is a factor o f  v. Let 
u = Ul @. ."  @Um,m > 2, be the decomposition o f u  into its connected compo- 
nents. The system R is confluent i f  and only if" 

(i) V = W @ V l @ ' ' ' @ V m  with wJ_u.  
(ii) For all i, 1 < i < m, there is a letter ai such that ui, vi E a~. (with vi shorter 

than ui) and I(a,) C_ COM(w). 
(iii) COM(al) = COM(a2) . . . . .  COM(am). 

Corollary 5.3. For a f ixedpartial ly  commutative alphabet (.4,1), given strings 
representing traces u, v, where u is not connected and at least one component of 
u is not a factor o f  v, it can be tested in time linear in luvl whether the trace- 
rewriting system { (u, v) } is confluent. 

Proof  Finding the decompositions ofu  and v and Performing the tests required for 
conditions (i)-(iv) of  Theorem 5.1 can all be done in time bounded by a constant 
multiple of  luvl when the partially commutative alphabet is fixed; most of this work 
depend only on the alphabets ofu  and v, and the rest involves such tasks as checking 
whether two traces are equal or whether one is a factor of another. (Note that the 
number of components of  a trace is bounded by its alphabet size.) Condition (v) can 
also be tested in linear time, as shown in Corollary 4.5. []  

6. When the Left-Hand Side of  the Rule Is Empty 

The results in the previous sections do not apply to a one-rule trace-rewriting system 
in which the left-hand side of the rule is empty (except for the trivial system 
{(e, e)}). Of course, such a system will not be terminating, but it might or might not 
be confluent. For a string-rewriting system with empty left-hand sides, there is no 
question about confluence: the system is necessarily strongly confluent. The 
additional complexity introduced by allowing partial commutations is especially 
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noticeable in this case, since, as Otto has recently shown [22], it is possible for a 
trace-rewriting system of  the form {(e, v)} to be confluent but not strongly 
confluent. 

The following proposition gives a characterization of strong confluence for 
one-rule trace-rewriting systems with an empty left-hand side; the condition asks 
whether some pair of  independent letters can be connected by a path in the 
dependence relation through the alphabet of  the right-hand side. 

Proposition 6.1. A trace-rewriting system {(e,v)} is strongly confluent on 
M ( A , I )  i f  and only if, f o r  every pa ir  (a ,b)  E I, the letters a and b lie in different 
components o f  alph(abv). 

P r o o f  Both sides of  the statement are clearly true i fv  is empty, so suppose v ~ e. 
For the implication from right to left, it is sufficient to show that, for any traces 

s, t such that s • t, there is some w such that svt ~ w and tvs ~ w. Since s is 
independent of  t, the condition in the statement implies that no component of 
alph(stv) contains both a letter from s and a letter from t. It follows that v --- x | y 
with sx • ty. Therefore, svt = sx | y t  = y t  • sx ~ yty  | xsx = xsx | y ty  and 
tvs = xs �9 ty ~ xsx ~ yty. 

Now suppose the system {(e, v)} is strongly confluent. I f  there is any pair of  
independent letters connected by a path in the dependence relation through alph(v), 
then there is some (possibly different) pair of independent letters both of  which 
are dependent on some letter in v; and this latter condition will lead to a 
contradiction. Assume, therefore, that (distinct) letters a, b, e exist such that 
c E alph(v), (a, b) E I, (a, c) E D, and(b, c) E D. Let n be any integer larger than 
21v[a+2]vlb, and consider the pair of  reductions a n b " ~ a n v b "  and 
anb " - -  b n a " ~  bnva n. Since the system is strongly confluent and application 
of  the rule increases length in increments of Iv[, either anvb n =_ bnva n, or the 
traces anvb n and b"va n have a common one-step descendant. The first case leads 
immediately to a contradiction: the projection of  v on { a , c }  cannot commute 
with an. 

In the second case consider first any one-step descendant t of  anvb n. From the 
definition of reduction, traces x, y exist such that anvb n - xy and t =-- xvy. Applying 
the Division Property to the equation anvb n-= xy, we find that, for some 
i , j , x  =_ an- iv lb / ,y  ==- aiv2b n-j, and v ~- VlV2, with Vl • a i and v~_ • b i. Since 
Iv[c>0,  either Iv~[c>0 or IV2[c>0. If  IVl]c>0, then i = 0  and 
t ==_xvy =_ anvlb/vv2b "-j, so an is a prefix of  t. Also, since vl and v contain 
occurrences of the letter c, the longest prefix o f t  in b* has length at most [Vl [b < n, 
and the longest suffix of  t in a* has length at most IVV2[a < n. If  [v2[c > 0, then 

j -~ 0 and t - an-ivxvaiv2b n, so b n is a suffix of  t, the longest prefix of t in b* has 
length at most [vlv[b < n, and the longest suffix of t in a* has length at most 
IV2la < n. Summarizing these remarks: 

(1) Either a n is a prefix of t or b n is a suffix of t. 
(2) b n is not a prefix of t and a" is not a suffix of t. 
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Interchanging the roles of  a and b, if  s is a one-step descendant of  bnva n, then: 

(1") Either b n is a prefix of s or a n is a suffix of s. 

Since conditions (2) and (1") cannot hold simultaneously, anvb ~ and bnva n can 
have no common one-step descendant. [] 

The technique used in the proof of  Proposition 6.1 only applies when an a 
priori bound is known for the length of  reduction sequences to join pairs with a 
common one-step ancestor; for strongly confluent systems, the bound is 1. It is not 
diffficult to show that i f  independent letters a, b belong to the same component of  
alph(abv) but neither belongs to alph(v), then the system {(e, v)} cannot even be 
confluent: for a sufficiently large integer m, every descendant ofavmb must have the 
a before the b and every descendant of  bvma must have the b before the a. 

7. Remaining Cases 

The results in the previous sections leave open some questions concerning 
confluence of  a one-rule rewriting system R = {(u, v)} on a trace monoid M(A, I). 

When the left-hand side u is empty, we have characterized strong confluence 
but not confluence, and, as Otto has shown, there are confluent systems of  this type 
that are not strongly confluent. 

When u is nonempty and connected, we have shown that confluence and strong 
confluence of  R are equivalent and characterized the confluence property based on 
the structure o fu  and v, except when u is a factor ofv  and some letter independent of  
u fails to commute with v. In particular, the characterization applies to all 
terminating systems of this type. Within the exception to this characterization, 
both confluent and non-confluent systems are possible. 

Example 7.1. Let A = {a, b, c}. 

(i) For I = {ab, ac}, the rules (a, ab) and (a, abe) give rise to strongly confluent 
systems. (Clearly, a is a factor of both ab and abe; also, I(a)= 
{b, c}, COM(ab) = {a, b}, and COM(abc) = {a}.) 

(ii) For I = {at}, the rule (a, abe) gives rise to a nonconfluent system. (For this 
independence relation, I(a) = {c} and COrn(abe) = ;ZJ.) 

When the left-hand side u of  the rule (u, v) is not connected, we have shown 
strong confluence to be equivalent to confluence and obtained a structural 
characterization of  confluence, except when every component of  u is a factor 
of  v. Again, the exception permits both confluent and nonconfluent systems. 

Example 7.2. Let A = {a, b, c}. 

(i) For I = {ab, ac}, the rule (ab, abe) gives rise to a strongly confluent system. 
(ii) For I----- {at}, the rules (ac, abe) and (ac, acb) give rise to nonconfluent 

systems. 
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In Exampl e 7.2(i), the left-hand side of the rule is a factor of the right-hand side; 
we have no examPle of  a confluent system of this type in which every component 
of  u, but not u itself, is a factor of  v. Note also that in Example 7.2(ii), the first 
rule determines a terminating system, and the second rule determines a non- 
terminating one. 

The remaining specific questions about confluence are thus in two groups. First, 
under what circumstances can a one-rule trace-rewriting system be confluent but not 
strongly confluent? Second, when is a one-rule trace-rewriting system (u, v) in 
which every component of  u (or u itself) is a factor of  v confluent or strongly 
confluent? More generally, while the characterizations presented here give rise to 
linear-time algorithms for deciding confluence when they apply, the question of  
whether confluence is a decidable property for one-rule trace-rewriting systems 
remains open. 
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