
Math. Systems Theory 28, 341-361 (1995) Mathematical
Systems

Theory
�9 1995 Spfinger-Vedag

New York Inc.

On Confluence of One-Rule Trace-Rewriting Systems*

C. Wrathall I and V. Diekert 2

1 Department of Mathematics, University of California,
Santa Barbara, CA 93106, USA

2 Institut f'dr Informatik, Universit~t Stuttgart,
Breitwiesenstrasse 22, D-7000 Stuttgart 80, Germany

Abstract. The paper presents combinatorial criteria for confluence of one-
rule trace-rewriting systems. The criteria are based on self-overlaps of traces,
which are closely related to the notion of conjugacy of traces, and can be tested
in linear time. As a special case, we reobtain the corresponding results for
strings.

1. Introduction

In this paper we consider the property of confluence for one-rule systems over
traces, that is, over strings modulo a partial commutation relation (which specifies
that certain pairs of letters commute). One value of one-rule systems in the study of
rewriting techniques is that they can illuminate the differences between types of
systems and the complexity of questions about rewriting. For example, any one-
relator group has a decidable word problem, while the same question for monoids
(that is, for one-rule Thue systems) remains open. Another set of contrasts is given
by questions of termination. It was shown by Dauchet that termination is un-
decidable for one-rule term-rewriting systems [8], as it is for finite string-rewriting
(q'hue) systems. For one-rule Thue systems, it is not known whether termination is
decidable. Of course, a length-reducing system must always be terminating; for the
other possibilities, see, for example, the work of Mttivier [18] and of Kurth [15].

Confluence is a desirable computational property for rewriting systems; one
advantage it gives is that equivalence-proofs for pairs of objects may be restricted to

* The work of the second author was supported in part by the EBRA working goup No. 3166
ASMICS.

342 C. Wrathall and V. Diekert

the finding of common descendants. In the setting of trace rewriting, confluence
corresponds to the preperfect property for Thue systems, and to a weak form of
confluence modulo an equivalence relation for term-rewriting systems. For trace-
rewriting systems in general, confluence is undecidable even if the systems are finite
and length-reducing [20]. In contrast, for finite and length-reducing Thue systems,
confluence can be decided in polynomial time [4]. The results here show the
decidability of confluence for one-rule trace-rewriting systems in which at least one
(nonempty) component of the left-hand side of the rule is not a factor of the right-
hand side. For a rule with a connected and nonempty left-hand side, the results
apply also to systems satisfying a certain condition (which will always hold for
strings) on the letters in the rule and the partial commutation relation. In particular,
confluence is decidable for all length-reducing one-rule trace-rewriting systems, and
for all terminating one-rule systems in which the left-hand side of the rule is
"connected"; however, the proofs make no assumption of termination.

The form of our results for connected left-hand sides is a generalization of the
characterization of confluence for one-rule Thue systems [15], [23], [26], and is
based on comparing the (self-) overlaps of the two sides of the rule. An overlap of a
trace t some trace s that is both an initial and a final factor of t; such an overlap s is
also a conjugator of the parts of t that remain when it is removed. This relationship
between overlaps and conjugacy allows us to make use of the information
developed by Duboc and others on conjugation of traces. When the left-hand
side of the rule is not connected and some component of the left-hand side of the
rule is not a factor of the right-hand side, the confluence property puts severe
restrictions on the structure of the two sides of the rule (Theorem 5.1). For example,
if the single rule is (u, v), the left-hand side u is not connected and no component of
u is a factor of v, then the system can only be confluent if u lies in a (totally)
commutative submonoid.

The criteria developed here for confluence are simple enough that, for a fixed
partially commutative alphabet, they can be tested in linear time (in the lengths of
the traces making up the rule). The tests involve pattern matching for traces and, in
particular, calculation of overlaps of traces.

The combinatorial analysis underlying the results here is more complicated than
that for strings, due to the influence of the partial commutation relation on letters. In
the situations to which our analysis applies, confluence is equivalent to the "strong
confluence" property, which can be established by local tests without assuming
termination. This equivalence between confluence and strong confluence also holds
for one-rule Thue systems; it does not hold for multirule systems, nor for every one-
rule trace-rewriting system.

The complications introduced by commuting letters can be seen clearly when
the left-hand side of the single rule is empty. A Thue system with empty left-hand
sides is always trivially confluent. In the trace case we are able to give a
characterization of strong confluence based on interactions between the right-hand
side of the rule and commuting pairs of letters (Theorem 6.1). Strong confluence is
not equivalent to confluence in this situation: Otto [22] has given an example of a
one-rule trace-rewriting system with an empty left-hand side that is confluent but
not strongly confluent.

On Confluence of One-Rule Trace-Rewriting Systems 343

Section 2 contains a review of definitions and basic results about traces and
about rewriting systems, and Section 3 gives the development of two necessary
conditions for confluence of a one-rule trace-rewriting system. Section 4 contains
characterizations of confluence when the left-hand side of the single rule is
connected and every letter independent of the left-hand side commutes with
the right-hand side. Section 5 is concemed with systems for which the left-hand
side is nonempty and not connected, and Section 6 is concerned with systems for
which the left-hand side is empty. Section 7 summarizes the results and presents the
remaining cases.

2. Preliminary Definitions and Results

2.1. Traces

The reader should consult, if necessary, the first chapter of [17] for notation and
basic results on strings (elements of a free monoid). Here we use e to denote the
empty string. Also, �9 denotes the Parikh mapping, which takes a string x E A* to
the sequence of nonnegative integers ~ (x) = (Ixlala ~A). Parikh images are
operated on and compared component by component.

The setting for the following work is a (finitely generated) free partially
commutative monoid M(A,I), which is determined by an alphabet A and a
symmetric and irreflexive independence relation / c A • A. The import of placing
a pair (a, b) into I is that we choose not to distinguish between ab and ba. The
formal definition o fM(A, I) is thus as a quotient A * / - - of the free monoid A* by
the congruence relation - generated by {ab = ba] (a, b) E 1}. Following Mazur-
kiewicz, a congruence class in this quotient is called a trace, and the quotient is
called a trace monoid. Note that elements of a congruence class have the same
Parikh image. We use representative strings to name congruence classes. Let
D = (A • A) - 1 denote the (symmetric and reflexive) dependence relation of the
trace monoid. Both the independence and the dependence relations are undirected
graphs on vertex set A. For simplicity in the examples, they are given by listing
symmetric pairs just once and not listing reflexive pairs.

Traces can also be profitably viewed as labeled acyclic graphs that take the
dependence relation into account. If a trace is given as (the congruence class of) a
string a l""an , then the associated graph is the labeled (multi-) set {a l , . . . , an}
with an arc from ai to aj whenever i < j and (ai, a j)ED. The notions of
connectedness and decomposition into connected components are most easily
seen using this point of view.

Traces x, y are independent, denoted by x _1_ y, if alph(x) • alph(y) is a subset
of / . Similarly, call subsets B and C of the alphabet A independent ifB • C _C 1. Ifa
trace t satisfies t ------ xy with x 2_ y, then t =- yx also; in Sections 5 and 6, we use the
notation t = x | as a shorthand for "t ~ xy and x _Ly," with the obvious
extension to more than two factors.

A trace is connected if its alphabet forms a connected subgraph of the
dependence graph (A,D); turning this around, a trace t is not connected if
alph(t) --- B U C with B, C nonempty and independent. A trace x is a (connected)

344 C. Wrathall and V. Diekert

component of a trace t i fx is nonempty and connected, and, for some y, t -- x |
The empty trace is thus connected but has no components; every other trace is the
nonempty product of its components.

Some additional notation is useful. For a trace x, let I(x) = {a E Ala _1_ x} =
{a ~Al{a } x alph(x)C_1} denote the set of letters that are independent of
(every letter in) x, and let O (x) = A - I (x) . Let C O M (x) = { a E a l a x - - x a }
denote the set of letters that commute with x in M(A,I) ; note that COM(x) =
I(x) U {a ~ AID(a) n alph(x) = {a}}. The sets l (x) , D(x), and COM(x) depend
only on the alphabet of x, not on its form.

The three following propositions review well-known properties of traces. The
first gives a division property for traces that generalizes that for strings; it is used
here to analyze equations involving traces.

Proposition 2.1 (Division of Traces) [7, Proposition 1.3]. For all x,y, w, z E A*,
i f xy =__ wz, then p ,q , r , s E A* exist such that x = pq,y =_ rs, w =_ pr, z -- qs,
and q is independent o f r.

A second very useful property of traces is that they can be represented
(faithfully) by tuples of strings. For a subset B of A, the projection on B is the
homomorphism h : A * ~ B* determined by defining h (b) = b for b E B and
h(c) = e for c r B. Proofs of the following proposition may be found, for example,
in [5] and [7]. One of its consequences is that strings can be tested for congruence
(i.e., whether they represent the same trace) in linear time for a fixed alphabet and
independence relation [3]. Projection is used here to show that traces are the same
and to translate questions about traces into questions about strings.

Proposition 2.2 (Projection of Traces). For a, b E/s let 7r~b denote the projection
on {a, b}. For all x , y E A*, x - y i f and only if, for all pairs (a, b) E D,
7~ab (X) = 7~ab (y).

It follows from either of the two previous propositions that trace monoids are
cancellative.

A trace x is imprimitive if some trace y and integer k > 2 exist such that
x - yk; otherwise, x is primitive. Each nonempty trace x has a (primitive) root:
there is some y and some k > 1 such that x ---yk, and y is unique modulo the
congruence - . The following fact can be easily derived from the work of Duboc
[12] and Cod and M6tivier [6] on commuting traces.

Proposition 2.3. I f x is connected and xy =_ yx, then y =_ st where s d_ x a n d t i s a

power o f the root o f x.

For a trace x, let OVL(x) = {y E M(A,I)[p ,q exist such that x =--py =--yq}
denote the set of traces that are (self-) overlaps ofx. Under this definition, the empty
trace is an overlap of every trace, and each trace is an overlap of itself. A fact
about overlaps that is used frequently (and that follows easily from Proposition 2.2)
is that if x - p y - yq where x is connected mad p is nonempty, then

On Confluence of One-Rule Trace-Rewriting Systems 345

alph(p) = alph(q) = alph(x); that is, the part left over when a proper overlap is
removed from a connected trace contains occurrences of all the letters of the trace.

A pair o f traces (x,y) is conjugate if there is some z (called a conjugator) such
thatxz =- zy =_ w. Such a conjugator z is both a prefix and a suffix of the product w,
that is, it is an overlap o fw. Conjugacy is an equivalence relation on M(A, I) . The
following lemma expresses other connections between conjugation and overlaps, as
well as a structural relationship between a connected trace and its overlaps.

Lemma 2.4. Suppose u is a nonempty, connected trace. There are traces p, q, r, t
with the following properties:

1. t is the maximum proper overlap of u: any proper overlap of u is an overlap
oft.

2. r is the minimum conjugator o f (p, q): pr =_ rq and, for any trace x, i f
px =- xq, then x = pkry for some k > 0 and some trace y that is independent
o fu .

3. U =pm+lr and t =-pmr for some m >_ O, p, q are primitive, and
alph(p) = alph(q) = alph(u).

4. OVL(u) = OVL(pr) U {pkr[1 < k < m + 1}.

Proof. See also Theorem 4 of [24]. The existence of maximum overlaps of
connected, nonempty traces has been demonstrated elsewhere [25, Theorem 3.3];
also, ify, z E OVL(x), then w E OVL(x) exists such that ~I'(w) = max{k~(y), k~(z)}.
(More precisely, the overlaps of a trace form a lattice under "Parikh order" [25].)
Note further that if y, z belong to OVL(x) and ~(y) < ~(z), then y E OVL(z).

Suppose now that u is a connected, nonempty trace and write u =-pt =_ tq
where t is the maximum proper overlap of u. Since u is connected and p, q are
nonempty, alph(p) = alph(q) = alph(u); hence, in addition, p and q are connected.

Sincep and q are conjugate traces, it follows from the work of Duboc [12] that
they have a minimum conjugator r; indeed, any shortest conjugator has property 2.
In addition, p is not a prefix o f t and ~(r) ~ ~(p). Letp0, q0 be the roots o fp and q,
respectively; then por =- rqo and, for some n > 1, p _~ pg and q = qg [12, Proposi-
tion 3.5].

Since t is a conjugator of(p, q), t = pmry for some m > 0 and somey _1_ u; bu ty
must be empty because alph(t) _ alph(u). Thus, t =-pmr and u =-pt =-pm+lr for
some m > 0. The traces p and q must be primitive, since otherwise u would have a
strictly longer overlap than t. (To see this, suppose p or q is imprimitive. As noted
above, p and q have the same exponent, so p = pg and q -- qg for some n > 2; but
then t ~ =p~0-1t is an overlap of u: u =-pgt =-po t~ =-pg-lpopmr = t'qo.) As is the
ease for strings, p is the prefix of u belonging to the conjugacy class of primitive
traces x such that u is a factor o f a power o f x; however, this fact is not needed here.

Finally, property 4 certainly holds if m = 0, so suppose m is positive. It is
enough to show that, for any proper overlap s of u, if ~(s) > k~(p), then s =_ pkr for
some k, 1 < k < m, and otherwise 9(s) < ~I'(pr). Since t is the maximum proper
overlap of u, s is a suffix of t: write t =_ xs, and note that u _: pxs ~ xsq. If
r > k~(p), then s =- py for some y (since both p and s are prefixes of u), so

346 C. Wrathall and V Diekert

u =-pxs =_ xpyq and thereforepx _= xp and it follows thatps - p y q - sq. Since s is
thus a conjugator of (p, q) and alph(s) C_ alph(u), indeed s has the form pkr for
some k; k is at least 1 because ~(s) _> ~(p) and k~(r) ~ ~(p), and k is at most m
because s is a prefix of t. Now suppose ~(s) ~ ~(p) . Both s andpr are overlaps of
u, so there is some w E OVL(u) such that 9 (w) = max{~(s) , ~ (pr)} > ~(pr) .
From the previous case, w --pkr for some k > 1. However, k >_ 2 would imply
�9 (s) = ~(w) > k~(p); hence k = 1 and gJ(s) < ~(pr) , completing the proof. []

2.2. Reduction and Rewriting Systems

An (abstracO reduction system S on a set U is a set of pairs of elements of U. For
such a system S C U • U, and a pair (ul, u2) E S, write ul 4 u2; we say that "Ul

�9 , , - , * �9

reduces to u2 m one step. The reductton relatton 4 determined by S is the
transitive, reflexive closure of the one-step reduction relation 4 . The equivalence
relation determined by S is the symmetric, transitive, and reflexive closure of 4 .

If there is some u2 such that Ul 4 u2, then ul is reducible, and otherwise Ul is
irreducible. If Ul * u2, then Ul is an ancestor of u2, and u2 is a descendant of ul. A
pair of elements (ul, u2) isjoinable i f they have a common descendant, that is, i f
there is some u3 such that ul 4 u3 and u2 4 U3. *

A reduction system is confluent if, whenever z 4 x and z * y, there is some w ,
such that x * w and y 4 w. In other words, a system is confluent if every pair of
elements with a common ancestor has a common descendant (that is, the pair is
joinab!e). Confluent reduction systems have the Church-Rosser property: every pair
of equivalent elements is joinable. A reduction system is terminating (or Noether-
ian) i f there is no infinite chain of reductions Xl ~ x2 4 x3 4 A system that is
both confluent and terminating is called a complete (or convergent) system.

A reduction system is locally confluent if, whenever z 4 x and z 4 y, the pair
(x,y) is joinable. While any locally confluent and terminating system is confluent,
we use here a more restricted notion of local confluence, one that allows proofs of
the confluence property for nonterminating systems. A pair of elements (ul, u2) is
stronglyjoinable i f they have a common descendant that can be obtained from each
in at most one step: either Ul --- u2 or Ul 4 u2 or u2 ~ Ul or there is some u3 such
that Ul ~ u3 and u2 4 u3. A reduction system is strongly confluent if, whenever
z 4 x and z 4 y, the pair (x,y) is strongly joinable. (This definition o f strong
confluence is the one used by Dershowitz and Jouannaud [9], which is slightly
stronger than that of Huet [13].) The following fact can be easily proved by
induction on the length of reduction sequences.

Proposi t ion 2.5. Ira reduction system is strongly confluent, then it is confluent.

Suppose M = M(A, I) = A*/--- is a trace monoid. A rewriting system on M is
a set of rules R C M x M. The system R determines a reduction system on M by
defining x ~ y i fx -- sut andy - svt for some traces s, t and some rule (u, v) E R.
A (semi-) Thue system is a rewriting system on a free monoid A* ---- M(A, ~) . A
rewriting system R on a trace monoid M(A, I) gives rise to a Thue system on A* by
fixing particular strings to represent the rules in R and adding a set S of rules of the

On Confluence of One-Rule Trace-Rewriting Systems 347

form (ab, ba) for pairs (a, b) E I to express the commutation of independent letters.
Further definitions for Thue systems may be found in [1] and [14].

A length-reducing trace-rewriting system R is confluent exactly when its
associated Thue system T = R U S is "preperfect"; the corresponding notion
for term-rewriting systems is that " R / S is confluent mod S." The preperfect
property is undecidable for finite Thue systems [19]; it remains undecidable for
systems T -- R U S in which R is finite and S consists of just one rule of the form
(ab, ha) [20], that is, for trace-rewriting systems on a trace monoid M(A, I) where I
contains just one pair of independent letters. By contrast, the results here concern
systems T = R U S in which S is finite and R has size one. A stronger property that
has also been studied for Thue systems is that of "almost-confluence." This is a
decidable property for finite Thue systems; for term-rewriting systems, it corre-
sponds to "R is confluent modulo S." Suppose R = {(u, v)} is a one-rule trace-
rewriting system with [u[> Ivl, and (viewing the traces as strings) T = {(u, v)} tO S
is its associated Thue system. If lul = 1, then T is almost confluent. When lul > 1,
T is almost confluent if and only if it is preperfect and, for all letters a, b, no
commutation rule applies to aub. In effect, for one-rule trace-rewriting systems, the
property of almost-confluence requires the single rule and the independence relation
to be disjoint.

3. Necessary Conditions for Confluence

This section begins with a demonstration (Lemma 3.1) that, for a one-rule Thue
system, critical pairs (which are derived from overlaps of the left-hand side of the
rule) can only be joined in a restricted manner. In Lemma 3.2 we apply that
information to one-rule trace-rewriting systems in general, to draw conclusions
from joinability under certain conditions. For example, if R = {(u, v)} is a
confluent trace-rewriting system and u is connected, then any proper overlap
of u with Parikh image bounded above by that of v must be an overlap of v.
Example 3.3 shows the limitations of the technique used in deriving Lemma 3.2
from Lemma 3.1.

One source of additional complexity of trace rewriting over string rewriting is
the possible existence of letters that are independent of the left-side of a rule. Such
letters must interact in some way with the other rules of the system to ensure
confluence. For a one-rule system R = { (u, v) }, the interaction is simple to analyze
as long as u is not a factor of v: any letter that is independent of u must commute
with v (Lemma 3.4).

The idea behind the following lemma is due to Kurth [15].

Lemma 3.1. Suppose T = {(u, v)} is a Thue system on A* and u = ps = sq with
p, q nonempty. I f pv and vq have a common descendant with respect to T, then
one o f the following conditions holds:

(i) Iv I < Isl, vq = pv, and v E OVL(s).
(ii) Ivl ___ Isl, vq and pv have a common one-step descendant, and s E OVL(v).

348 C. Wrathall and V. Diekert

Proof Suppose vq andpv have a common descendant. If Iv[< Is[, then vq andpv
are both shorter than u, so they must be irreducible and hence vq =pv. The
equations ps = sq and pv = vq, together with the inequality Iv I < Isl, imply that
s=p~v=vqko for some k > l , where P0 and q0 are the roots o f p and q,
respectively; hence v E OVL(s).

Now suppose Ivl >_ Is[. I f s ~ OVL(v), with, say, v = vas = sv2, then vq andpv
have the common one-step descendant VlSV2. I f s r OVL(v), then in fact vq andpv
can have no common descendant. To see this, note first that if s f[OVL(v), then
either s is not a Prefix of v or s is not a suffix of v; the arguments are symmetric, so
suppose s is not a prefix ofv. Since Ivl > Isl, strings so, sl, vl and distinct letters a, b
exist such that s = soasl and v = sobva. Then so andpso are both prefixes of u, so
pso = sop' for some pq Since so is a prefix of all the strings u, v, vq = sobvlq and
pv = soptbVl, a simple argument will show that descendants of vq and pv with
respect to T correspond to descendants of bvlq and p'bvl with respect to the Thue
system {(asql,bVl)}. Thus, we may assume that so is empty.

Write, therefore, v = by1, s ~-as1, and u =pus1 = aslq where a r b and p
begins with a. Every descendant of vq = bvlq begins with b (since the right-hand
side of the rule begins with b). On the other hand, every descendant o f p v begins
with a, so vq and pv can have no common descendant, as desired. To see the claim
concerning pv, consider the "dictionary ordering" that puts a before b: x appears
before y in the dictionary if, for some z, za is a prefix o f x and zb is a prefix ofy.
(This is a transitive and irreflexive relation on strings.) Since u begins with a,
application of the rule is increasing for this ordering; hence no descendant of
pv = pbVl can have pus1 = u as a prefix, and it follows that the first letter, a, o fpv
persists in every descendant of pv. []

The following fact is derived by combining Lemma 3.1 with the technique of
the projection of traces given in Proposition 2.2.

Lemma 3.2. Suppose R = { (u, v) } is a rewriting system on M(A, I) , s is a proper
overlap of u with u =_ps - sq, ql(v) >_ 9(s), and pv and vq have a common
descendant with respect to 1~ I f u is connected or i f alph(s) c_ alph(p), then
s ~ OVL(v).

Proof Suppose pv and vq have the common descendant z. I f u is connected, then
alph(p) = alph(u), so alph(s) C_ alph(p). (The only way the inclusion could fail to
hold is i fu is not connected and some component o fu is also a component ofs.) To
see that alph(s) C alph(p) implies s E OVL(v), consider any pair (a, b) E D; it is
enough to argue that s' = nab(S) belongs to OVL(v') for v' = nab(V). I fs ' = e, then
surely s ' E OVL(v/). If s ' r e, then nab(P)• e, so s' is a proper overlap of
u t = Irab(U) = ~Zab(PS) = Irab(Sq). Let Rab be the Thue system on {a, b}* with
the single rule (u', v'). Since pv and vq both reduce to zwith respect to R, the strings
7Zab(P)v I and Vt~Zab(q) both reduce to rCab(Z) with respect to Rab. Since ~(v) > ~(s),
the string v' must be at least as long as s', and it follows from Lemma 3.1 that
s t e OVL(v ') . []

On Confluence of One-Rule Trace-Rewriting Systems 349

In the proof of Lemma 3.2, joinability of specific traces with respect to a trace-
rewriting system R was used to establish joinability of specific strings relative to a
Thue system that was found by "projecting" R. The following examples show that it
is not possible to use projection to lift a characterization of confluence directly from
Thue systems to trace-rewriting systems.

Example 3.3. Let A = {a, b, c, d}, I = {ac, ad, bd}, and D = {ab, bc, cd}. Let x
be the trace ab2aZbc2dc2ba. The trace-rewriting system R = {(x, a)} is confluent;
this follows from Theorem 4.2, since x is connected, I(x) is empty, and the
maximum proper overlap o fx is a. However, none of the three projected systems is
confluent: Rab = {(ab2a2b2a, a)} is not confluent on {a, b}*, Rbc = {(b3c4b, e)} is
not confluent on {b, c}*, and Rca = {(c2dc z, e)} is not confluent on {c, d}*. These
projected systems are not confluent because the projections o fx have more overlaps
than x does. For example, ccdccdcc ~ dcc and ccdccdcc ~ ccd with respect to Rca,
but dc 2 and c2d are irreducible and unequal.

The trace-rewriting system S = { (a 2 b , acd)} is not confluent, since
a2 bd ~ acdd and a2 bd - da2 b --~ dacd - adcd but the traces acdd and adcd
are irreducible and distinct. On the other hand, the three projected systems
Sab = {(a2b, a)}, Sbc = {(b, c)}, and Scd =~ {(e, cd)} are confluent.

The trace-rewriting system S in Example 3.3 could not be confluent because of
the letter d: d was independent of all the letters in the left-hand side of the rule but
did not commute with all of those in the right-hand side. Such a situation cannot
occur for Thue systems (with nonempty left-hand sides); the following simple
lemma shows that it prevents a terminating one-rule trace-rewriting system from
being confluent.

Lemma 3.4. Suppose R = {(u, v)} is a rewriting systemon M(A, I). l f R is con-
fluent and u is not a factor o f v, then every trace independent o f u commutes
with v.

Proof Suppose z is independent of u but vz ~ zv. Then uz--~ vz and
uz - zu ~ zv so, since R is confluent, vz and zv have a common proper descendant.
Hence vz (and zv) must be reducible: vz - sut for some traces s, t. However, since u
and z have no letter in common, the Division Property applied to vz - sut implies
that u is a factor of v, a contradiction. []

Recall that I(x) = {a E Alx A_ a} denotes the set of letters independent of x,
and COM(x) = {a ~ Alax = xa} denotes the set of letters that commute with x.
Every trace independent o f x commutes with y if and only if I(x) C_ COM(y);
hereafter the set inclusion is freely used as an abbreviation for the phrase. Both
I(x) and COM(x) can be found easily from the independence relation I and the
set alph(x). Note also that when a lph (y)= {b} consists of a single letter,
COM(y) = I(b) U {b}.

The condition in Lemma 3.4 is not a necessary one for confluence of a one-rule
trace-rewriting system when the left-hand side of the rule is a factor of the right-

350 C. Wrathall and V. Diekert

hand side. For example, ifA = (a, b, c} and I = {ab, ac), then the system ((a, ab))
is confluent, but a _k c and (ab)c ~ c(ab). For multirule systems, even a complete
trace-rewriting system might fail to have the property that traces independent of the
left-hand side of some rule commute with the right-hand side of the rule; Otto has
given the following example [21, Example 3]: i fA = {a, b, c} and I = {ac}, then
the system {(a, bb), (bbc, cbb)} is confluent and terminating, but a • c and
(bb)c ~ c(bb).

Returning to the question of applying projection to trace-rewriting systems,
suppose R = {(u, v)} is a rewriting system on M(A, I) for which u is connected and
nonempty. Any feasible combination of confluence or nonconfluence of R and of
its projections can occur, as long as the question of whether I(u) C_ COM(v) is
disregarded. However if I(u) ~= COM(v), then at least one projected system will
be confluent, since it will have an empty left-hand side. Also, it can be shown
(using Corollary 4.4 and Theorem 4.2) that i f I (u) C_ COM(v) and every projected
system of R is confluent, then R is confluent; this is in contrast to the system S of
Example 3.3.

4. When the Left-Hand Side of the Rule Is Connected

This section deals with trace-rewriting systems R = { (u, v)} for which the leR-hand
side u is connected and certain other conditions hold. The principal condition is that
traces independent of u commute with v (that is, I(u) c_C_ COM(v)); from Lemma
3.4, this is also a necessary condition for confluence when u is not a factor of v.
Theorem 4.2, the main result of the paper, presents a characterization of confluence
in terms of the structure of u, v and their overlaps when u is connected and
I(u) c_ COM(v). In addition, it states that confluence and strong confluence are
equivalent for such systems, and identifies a finite set of critical pairs for
confluence. Corollary 4.3 restates Theorem 4.2 under the assumptions that u
is connected and is not a factor of v, and hence characterizes confluence for all
terminating one-rule systems with a connected left-hand side. Corollary 4.4 gives
the (known) characterization of confluence for Thue systems as a special case of
trace-rewriting systems.

Finally, in Corollary 4.5, we show that confluence under these conditions is a
decidable property for a fixed trace monoid: it can be tested in linear time in the size
of the given system.

The following lemma gives a description of critical pairs for strong confluence
under the assumption I(u) c_ COM(v). The critical pairs are similar to those for a
one-rule Thue system, with a slight complication introduced by traces independent
of some overlap of u.

Lemma 4.1. Suppose R = { (u, v) } is a rewriting system on M(A, I) for which u is
connected and I(u) C_ COM(v). Let

CP(u, v) = { (pzv, vzq)lu -- ps = sq with p, q, s nonempty and s _1_ z}.

The system R is strongly confluent if and only if every pair in CP(u, v) is strongly
joinable.

On Confluence of One-Rule Trace-Rewriting Systems 351

P r o o f If (pzv, vzq) E CP(u, v), then pzu --~ p z v and pzu - pzsq =_ pszq -
uzq ~ vzq; hence i fR is strongly confluent, then in particular every pair in CP(u, v)
is strongly joinable.

The reverse implication follows from the analyses done by Diekert [10], [11]
and by Otto [21] of critical pairs for multirule trace-rewriting systems. In this
simpler case it can also be seen directly, as follows.

For strong confluence, we must show that ifxlux2 ~ yluy2, then, for x = XlVX 2
andy = ylvy2, either x _= y, or one of x, y reduces in one step to the other, orx andy
have a common one-step descendant. It is clearly sufficient to show this when Xl, Yl
have no nonempty common prefix and x2, y2 have no nonempty common suffix;
from the Division Property, it follows that Xl is independent of Yl, and x2 is
independent of y2, and hence ~l/(Xl) : ffff(Y2) and X~/(X2) : - tx~(yl). A projection
argument then establishes that xau = uy2, ux2 - y lu , and alph(xl), alph(x2), and
alph(u) - alph(XlX2) are pairwise independent. Up to this point, no assumptions
about u and v have been needed. Now, however, since u is connected, we have (by
symmetry) two cases: either alph(u) is disjoint from alph(xlx2) or
alph(u) C_ alph(xa). In the first case u is independent of xlyax2y2, so xa - y 2 ,
x2 = Yl, Xl andx2 commute with v, and hence x = XlVX2 - ylvy2 : y. In the second
case x2 is independent of u, so x2 = Yl and x2 commutes with v. Therefore,
x = (xlv)x2 a n d y = ylvy2 = x2vy2 ~ (vy2)x2 , and we may restrict attention to XlV

and vy2. Since alph(u) c_ alph(xl) a n d x l u =_ uy2, the Division Property implies that
u -- p s = sq, xl = pz, Y2 -- zq for some traces p , q, s, z such that s _k z and
alph(s) c_ alph(p). I f s is empty, then Xl --- uz, y2 - zu, and so XxV and vy2 have
the common one-step descendant vzv. If s is nonempty, then so must p and q
be, so (XlV, vy2) = (pzv, vzq) belongs to CP(u, v) and, by assumption, is strongly
joinable. []

The following theorem presents three properties that are equivalent to con-
fluence for certain one-rule trace-rewriting systems {(u, v)}. The third property
means that either every proper overlap of u is an overlap of v, or v splits into a
proper overlap of u and a part independent of u (and the other overlaps of u are
restricted). The fourth property is a description of a set of critical pairs for
confluence of the system, which (as is the case for Thue systems) is a finite set
determined solely by the overlaps of u.

Theorem 4.2. Suppose R = { (u, v) } is a rewriting system on M (A , I) f o r which u
is nonempty and connected. Let t be the maximum proper overlap o f u. I f
I (u) C COM(v) , then the fo l lowing statements are equivalent.

(1) R is confluent.
(2) R is strongly confluent.
(3) Either (a) t OIL(v) or (b) traces x # e, y ana z, and integer k >_ 2 exist such

that z I u, u ==--xky, v = y z , and OIL(u) = OIL(y) U {~y[1 < i _< k}.
(4) Every pair in the set { (pv, vq)[u =- ps -~ sq with p, q, s nonempty) is joinable.

352 c. Wrathall and V. Diekert

Proof Write u - p o t - tqo ==-p'~+lr where (as in Lemma 2.4) r is the minimum
conjugator of (P0, q0).

Clearly, (2) implies (1), and (1) implies (4).
That (3) implies (2) follows from Lemrna 4.1, since we are given that

I(u) c_ COM(v). To see this, suppose that (pwv, vwq) E CP(u, v) with u - ps =- sq
wherep, q , s are nonempty ands _1_ w. I f s E OVL(v) with, say, v - vxs = sv2, then
pwv and vwq have the common one-step descendant vwvz - VlWV. I f s ~ OVL(v),
then necessarily clause (3b) holds with s E O V L (u) - O V L (v) : therefore
v = yz, z _1_ u, u - xJ'y, and s =- xiy for some i, 1 < i < k - 1, and hence (using
u =_ ps --- sq) p = x k-i and py =_ xk-iy - yq. From the form of s, we see that
alph(s) = alph(u), so u _1_ w and therefore w commutes with v; a simple calculation
now shows that pwv = vwq.

For the final implication, suppose that (4) holds. If t is empty, then it belongs to
OVL(v), so suppose that t r e. Consider the pair (pov, vqo) where, again,
u =-pot =- tqo --p~+Ir; by assumption, pov and vqo have a common descendant.
I f~ (v) >_ ~(t) , then (from Lernma 3.2) t E OVL(v), so suppose ~(v) ~ k~(t). Both
pov and vqo must then be irreducible, so pov =- vqo. Since r is the minimum
conjugator of (P0, q0), it follows that v =- yz with z _k u andy --- P/0r for somej >_ 0;
also j _ < m - 1 since otherwise ~ (v) > _ ~ (t) . Thus, for k = m + l - j _ > 2 ,
u =- p~y, v =_ yz, and z _1_ u, and certainly OVL(y) U {p~y[1 < i < k} C_ OVL(u).
For the reverse inclusion, it is enough, from Lemma 2.4, to show that any nonempty
proper overlap of por =- rqo belongs to OVL(y). This is clearly true if j > 0,
so suppose j = 0, that is, v =- rz. If por =- p l s =- sql with Pl and s nonempty,
then u =- (p~pl)s =-s(qlq'~), so, by assumption, p'~plv and vqlq'~ have a
common descendant. If either pt~plV o r vqlq~ is reducible, then
f f f f (p~plV) -~- qd(vqlq~) > ~(u) so ~P(plrz) > ~(por) and hence (since z -l-por)
fit(P1) > ~(P0). It follows that ~(r) > ~(s) , so, since r and s belong to OVL(u),
s E OVL(r) = OVL(y). I f p ~ p l v and vqlq~ are irreducible, then p~plv =- vqlq'~
and so p~plr =- rqlq~. We have plp~+lr =- p lu =- plrq~ +1 =- plsqlq~ =-
porqlq~ =P0- m+lplr, so plP0m+l _= p~+lpl. Since P0 is primitive andpl is nonempty
with alph(pl) C_ alph(u) = alph(p0), the tracepl must therefore be a positive power
of p0, so again ~(Pl) > ~(P0), ~(r) > ~(s) , and s E OVL(r). []

In the situation treated in Theorem 4.2, the system {(u, v)} is confluent if and
only if it is confluent as a system on the submonoid of M (A , I) generated by
alph(uv). This equivalence is not true in general when I(u) ~= COM(v). Theorem
4.2 (and the following corollaries) do apply to some nonterminating systems; for
example, when ab C D, the system with rule (ab, bbaa) is (strongly) confluent, but
it is not terminating since abb ~ bbaab ~ bb(abb)aa.

The following fact can b e easily derived from Theorem 4.2 and Lemma 3.4.

Corollary 4.3. Suppose R ---- {(u, v)} is a rewriting system on M(A, I) for which u
is nonempty and connected. Let t be the maximum proper overlap o f u.

A. When 9(v) > ~(t) and u is not a factor of v: the system R is confluent i f and
only if l(u) C_ COM(v) and t ~ OVL(v).

On Confluence of One-Rule Trace-Rewriting Systems 353

B. When ~(v) ~ ~(t): the system R is confluent i f and only i f I(u) C COM(v)
and traces x ~ e, y and z, and integer k > 2 exist such that z I u, u - xky,
v - y z , and OVL(u) = O/,'L(y) U {x/y]l < i < k).

A series of results [2], [23], [15] (summarized in [26]) has led to a char-
acterization of confluence for all one-rule Thue systems. That characterization for
systems with a nonempty left-hand side is given in the following corollary; it is an
immediate consequence of Theorem 4.2, as is the fact that confluence and strong
confluence are equivalent for one-rule Thue systems.

Corol lary 4.4. Suppose R = {(u, v)} is a Thue system on A* with u ~ e, and let t
be the longest proper overlap o f u. The system R is confluent i f and only i f either (a)
t E OVL(v) or (b) string x # e and integer k > 2 exist such that u = xkv and
OVL(u) = OVL(v) U {x/v[1 < i < k}.

The finite set o f critical pairs identified in Theorem 4.2 makes it clear that
confluence is a decidable property for the one-rule trace-rewriting systems to which
it applies. The combinatorial characterization gives another avenue for testing
confluence, and, in fact, it can be checked very easily for a fixed trace monoid.

Corol lary 4.5. For a f ixed partially commutative alphabet (A, I), given strings
representing traces u, v with u connected and not a factor o f v, it can be tested in
time linear in [uv I whether the trace-rewriting system {(u,v)} is confluent.

Proof Note first that, given u and v, whether u is connected can be tested by
simply examining the alphabet o f u, and whether u is a factor o fv in M(A, I) can be
tested in time linear in luvl [16].

If u is connected, let t be the maximum prope r overlap of u. Let p, q be strings
such that u - p t -- tq, let r be the minimum conjugator of (t9, q) in M(A, 1), and let
s be the maximum proper overlap of pr. (The trace pr must be connected since
alph(p) = alph(u).) The following statement follows easily from Corollary 4.3:

When u is connected and not a factor of v, the system {(u, v)} is confluent
on M(A, I) if and only if I(u) C_ COM(v) and either

(a) ~(v) _> k~(t) and t is both a prefix and a suffix of v, or
(b) kV(v) ~ 9 (t) , pv - vq, and either p is a prefix of v or Isl ___ Irl.

Given a connected trace u, its maximum proper overlap t can be found in time linear
in [u I [25]. The Parikh image of a prefix y of a trace x determines the prefix,
which can be formed by erasing from x the last [X[a- ~V]a occurrences of
each letter a. Therefore, strings representing p, q, and r can be found easily
from u and t: kO(p) = ~(q) = ~(u) - k~(t) and k~(r) = ~ (t) - m~(p) for
m = min{[Itla/~laJla E A}. The maximum overlap s o f p r can be found in time
linear in lpr I, and Iprl < lul.

As noted in Section 3, whether I (u) is a subset of COM(v) can be tested in

354 c. Wrathall and V. Diekert

constant time once the alphabets of u and v are known. The other functions needed
for the statement above, comparing lengths and Parikh images of strings and testing
whether traces are the same or one is a prefix or a suffix of the other, can also be
performed in time linear in their lengths. []

5. When the Left-Hand Side of the Rule Is Not Connected

The information developed in the previous section for trace-rewriting systems
follows closely the pattern of that for string-rewriting systems. When the left-hand
side of the single rule is not connected, the situation becomes more complex. We
have obtained a characterization of confluence, given in the following theorem, only
in case at least one component of the left-hand side is not a factor of the right-hand
side. When at least two components of the left-hand side are not factors of the right-
hand side, any confluent system must be terminating.

Theorem 5.1. Suppose R = {(u, v)} is a rewriting system on M (A , I) f o r which at
least one component o f u is not a fac tor o f v. Let u = Ul | . . . | Urn, m > 1, be the
decomposition o f u into its connected components with, say, ul not a fac tor o f v. The
system R is confluent i f and only if."

(i) The trace v can be decomposed as v = w @ vl | @ Vm where w A_ u, ul vl
is connected and vl I u2 �9 �9 �9 urn.

(ii) For all i > 2, i f vi ~ ui then there is a letter ai such that ui, vi belong to ai

and, fo r all j such that uj is not a factor o f v, [(uj) CC_ l(ai) U {ai}.
(iii) 1fat least two components o f u are not factors o f v, then there is a letter al

such that Ul, vl E a~ and, for all j such that uj is not a factor o f v,
[(uj) C_ I(al) U {al}.

(iv) For all j such that uj is not a factor o f v, I(uj) C_ COM(w).
(v) The system {(ul,vl)} is confluent.

Although the statement of Theorem 5.1 includes the possibility that the left-
hand side u is connected (m = 1), it gives no new information in that case. Under
the assumptions of the theorem, it can be seen from the proof that the system is
confluent if and only if it is strongly confluent.

Condition (v) in the statement 0nly comes into play when all the components of
u except ul are factors of v; otherwise it is superseded by condition (iii). Condition
(iii), together with the assumption that ul is not a factor of v, implies that a confluent
system in which at least two components of u are not factors o f v must be
terminating: application of the rule reduces the number of occurrences of the letter
al. Otherwise, as in the case of a connected left-hand side, a confluent system need
not be terminating.

P r o o f o f Theorem 5.1. Let N F = {i lui is not a factor of v} be the set of indices of
components of u that are not factors of v; in particular, 1 E NF.

First, assume that R is confluent. Taking u I = u2 �9 �9 - urn, we have uu ~ ~ vu ~ and
u d - utu ~ dv . Both v d and u~v are irreducible (since Ul is not a factor of v)

On Confluence of One-Rule Trace-Rewriting Systems 355

so vu' -- u'v. Using projection and Proposition 2.3, it follows that
v = v' @ v2 | "-'. @ Vm where v' A_ u ~ and each vi (i > 2) is a power of the root
of ui. Examination of the components of alph(ulv ~) allows us to split v' as
v ~ = w @ Vl with alph(ulvl) connected and w _1_ u. This establishes property (i). I f
INFI > 1, then an analogous argument shows that, in addition, Vl is a power of the
root of ul. In any event, Vl ~Ul since Ul is not a factor of v.

To see that properties (ii)-(iv) and also 1(Ul) c_ C O M (v l) hold, first consider
any index i such that vi ~ ui and N F contains an index other than i (which will in
particular be true if i > 2), and any letter a E alph(ui). The traces uiav and vaui are
then irreducible but have the common ancestor uiau ~ uaui, so uiav =- vaui. From
the form established in the previous paragraph for v, this implies that uiavi --- viaui.
Since in this situation vi, ui are different powers of a common root and a occurs in
ui, it follows that ui, vi E a*. Thus, when vi ~ ui and N F - {i} is nonempty, the root
of ui is a single letter ai. Now suppose b A_ uj for some j E NF, and let
z = Ul Uj-lUj+l . . . U,n. Then vbz and zbv are irreducible and have the common
ancestor ubz - zbu, so vbz =- zbv. A projection argtmaent then shows that wb =- bw
(establishing (iv)), vjb =_ bvj and, for all k ~ j , vkbuk = ukbvk. The second equation
fo r j = 1 establishes I (u 0 C COM(v l) . I f / = j , then certainly b E I(ai) U {ai}; if
i # j , then the equation vibui - uibvi implies that b commutes with the root ofui, so
b E I(ai) U {ai}.

It remains only to show that the system R1 = { (ul, Vl) } is confluent. (Note that
this is trivially true if some component other than ul is not a factor of v.) Since
I (u 0 C_ C O M (v l) and ul is connected, it is enough (from Theorem 4.2) to show
that if Ul - p s - sq, then the pair (pv l , v lq) is joinable by R1. Ill this situation
p u =- uq so, since R is confluent, p v and vq have a common R-descendant y. Let zc
denote the projection on alph(UlVl); it is easy to see (using induction on the length
of the reduction sequences) that re(y) is a common R1-descendant ofpvl = n(pv)
and v lq = n(vq).

For the reverse implication, we show that the systems are strongly confluent.
Note first that conditions (i)-(v) imply that I(u)C_ COM(v) and that
alph(vi) C alph(u/) for i _ 2.

For 1 < i < m, letBi = D(uivi) = {b E Al(a, b) ~ D for some a E alph(uivi)},
let B0 = A - alph(uvl), and let 1"~ i denote the projection of A onto Bi, 0 < i < m.
The projection IX i sends M (A , I) to the trace monoid determined by B i and
I N (Bi x Bi). Because any two dependent letters belong to a common set Bi, two
easy consequences of the Projection Lemma are that:

(1) x --- y if and only if Hi(x) -- Hi(y) for 0 < i < m.
(2) x is a prefix (or suffix) o f y if and only if Hi(x) is a prefix (resp. suffix) of

IIi(v) for 0 < i < m.

Based on the preliminary analysis in the proof of Lemma 4.1, to establish
strong confluence it is enough to show that each pair (XlVX2,ylvy2) is strongly
joinable when xlu=_-uy2, ux2 =-ylu, the three sets alph(xl), alph(x2), and
alph(u) - alph(XlX2) are pairwise independent, and u is not independent of both
xl and x2. Using a projection argument and the independence relationships, we find
that the components of u can be partitioned into two products u' and u" with

356 C. Wrathall and V. Diekert

u = u ~ @ u" and xlY2U' independent of x2ylut'; further, Xl - p ' i , Y2 ~- z'q',
u I - p ' s I - s l q ' wi th i • s t, and Yl - p " z " , x 2 - - i l q ", u" - p " s " - s " q " w i t h
z " l s". Projecting these equations onto the alphabets o f the components of u,
we obtain overlap relationships ui ~- pisi ~- siqi with ~z tt _1_ si, 1 < i < m. (That is,
if ui is part of u ~, then pi, si, qi are the projections Of p', s ~, q' on Bi, and
IIi(p" s" q") = e; and, similarly, if ui is part of u".) Assume, without loss of
generality, that ul is part o f u'.

We distinguish two cases.

(1) For some i, si ~ OVL(vi). In this case we will see that XlVX2 - ylvy2.
I f s i is not an overlap ofvi, then vi ~ ui and ui, vi cannot be powers of a single

letter with ui shorter than vi; therefore ui is not a factor o f v, and, by symmetry, we
may assume that Sl ~ Ol/L(vl). From (i) and (v) and the representation given in
Theorem 4.2, it follows in this case that a l p h (v l) c a lph(Ul)= alph(Sl) and
ply1 - v l q l . Hence, in addition, ztz" I ul and so z' and z" commute with w
and with all ai such that i >- 2 and ui ~ vi.

To verify that XllJX2 ~-y lvy2 , it suffices to check their projections onto the
alphabets Bo,BI , . . . ,Bin. First, HO(Xl VX2) =-- H0(p'ztwvlv2 " '" Vrn~' q tt) -~ IIo(~/w~/')
and H0(ylvy2) ~ H0(~tw~), and these projections are the same trace because
w commutes with z t and z", and z ~ l z ". Next, Hl(XlVXE)_=l-Ii(plVl)~
Hl(Vlql) -- Hl(ylvy2). Finally, for i >_2, the problem reduces to showing that
PigiVi ~-Viziq i where z i I si. (That is, if, for example, ui is part of u", then
I-[i(XIVX2) -~ H i (v i i ' q ") and Hi(ylvy2) ~ Hi(pHztlVi), and z i : Hi(zIt).) If
ui -- vi, then Pigivi -~ PiZiui ~- pigisiqi ~_ pisigiqi ~- uigiq i ~ vigiq i. I f ui ~ vi, then
the traces ui, vi ,pi , and qi all belong to a~, pi = qi, andz i connnutes wi th ai, so again
PiZiVi ~- 1)iziqi.

(2) For all i, si E OVL(vi). In this case XlVX2 andylvY2 have a common one-step
descendant.

We will find that XIVX2 ~- UO~ andylvy2 -- flu for some ct, fl with v~ - fly; from
the remarks above, it is again sufficient to work with the projections of the traces on
the alphabets Bi. To avoid doing the case analysis twice, the two demonstrations are
given simultaneously.

Write vi - risi ~ Siti, 1 < i < m.
For the projection on B0, we have Ho(xlvx2) - H0(z~wz ") - II0(~t) -- II0(u~)

and H0(ylvy2) - II0(z"wz') - IIo(fl) - II0(flu). Since z" is independent of Ul, it
commutes with w, so Ho(v~) - IIo(wz'wz") - IIo(z"wz'w) - Ho(flv).

For the projection on B1, first note that, since x2yl / Ul,
Hi(x2) ---- Hx(yl) - IIl(Z") and z r commutes with Vl and hence with r! (and
/1)- Therefore IIl(XiVX2) ~- IIl(PlgtVl gO) ~--- IIi(PlZrSlt l glt) ~-- I I l (p lSlgt t l gO)
II1 (UlZttl zn) =-- 1-I1 (Ula) and 1-I1 (ylvy2) = IIl(ZC'VlZlql) _ I I l (zg tr l~ul) = 1-I1 (flUl).
Then II1 (v0~) ~ 1-[1 (VlZt t l~ t) -~ IIl (rlslz ' fiz/') =- II1 (rlz' Sl tlZ") -- II1 (rlZ/Vl zn)

l I 1 (Z~ -~ 1~ 1 (flV).
Now, suppose i > 2 and ui is part o f u ~. Then x 2 y l Z u i v i , so

IIi(xllPX2) m_ IIi(piztVi) ~- IIi(piz'sit,) -- II,(uiz~t,) ==- Hi(u,a) and IIi(ylvY2) -~
I I i (v i f qi) ~- 1-li(riz~ui) ~ n i (f lu i) ; and then Hi(voe) -- I[i(vizgti) -~ IIi(ris,z~t,) =--
r ,(rfv,) _= ni(v).

On Confluence of One-Rule Trace-Rewriting Systems 357

Finally, suppose i > 2 and ui is part of u", so xly2 _L uivi. If ui =-vi,
then II i(xlvx2) :- IIi(vix2) ~__ ~Ii(uio 0 and IIi(ylvy2) ~ I~i(~ivi) ::__ IIi(flui) and
Hi(VO~) ~--- IXi(uix2) ~- IXi(pisizttqi) ~- IXi(Pizttui) ~-~ ~Ii(flv). I f ui ~ vi, then all the
traces ui, vi, s i ,pi : qi ~md ri = ti belong to a* and z a~ commutes with ai, SO
rli(x vx2) - 17i(viz" -- IIi(sitiz" qi) - IIi(siqitiz") - l i(Uit) a n d 1-Ii(YlVY2) ~-
IIi(Pig'risi) = IIi(z"riPiSi) = IIi(flui) and IIi(v~) = rl , (v , t ,z") =_ rl;(z"rm) =

This completes the proof. []

In the hope of making the rather complicated statement of Theorem 5.1 more
understandable, we present the form to which it reduces when no component of the
left-hand side u is a factor of the right-hand side v. In particular, every component of
u is a power of a single letter and those letters commute with precisely the same
subset of A, placing severe restrictions on u.

Corollary 5.2. Suppose R-----{(u,v)} is a rewriting system on M (A , I) for
which u is not connected and no component o f u is a factor o f v. Let
u = Ul @. ." @Um,m > 2, be the decomposition o f u into its connected compo-
nents. The system R is confluent i f and only if"

(i) V = W @ V l @ ' ' ' @ V m with wJ_u.
(ii) For all i, 1 < i < m, there is a letter ai such that ui, vi E a~. (with vi shorter

than ui) and I(a,) C_ COM(w).
(iii) COM(al) = COM(a2) COM(am).

Corollary 5.3. For a f ixedpartial ly commutative alphabet (.4,1), given strings
representing traces u, v, where u is not connected and at least one component of
u is not a factor o f v, it can be tested in time linear in luvl whether the trace-
rewriting system { (u, v) } is confluent.

Proof Finding the decompositions ofu and v and Performing the tests required for
conditions (i)-(iv) of Theorem 5.1 can all be done in time bounded by a constant
multiple of luvl when the partially commutative alphabet is fixed; most of this work
depend only on the alphabets ofu and v, and the rest involves such tasks as checking
whether two traces are equal or whether one is a factor of another. (Note that the
number of components of a trace is bounded by its alphabet size.) Condition (v) can
also be tested in linear time, as shown in Corollary 4.5. []

6. When the Left-Hand Side of the Rule Is Empty

The results in the previous sections do not apply to a one-rule trace-rewriting system
in which the left-hand side of the rule is empty (except for the trivial system
{(e, e)}). Of course, such a system will not be terminating, but it might or might not
be confluent. For a string-rewriting system with empty left-hand sides, there is no
question about confluence: the system is necessarily strongly confluent. The
additional complexity introduced by allowing partial commutations is especially

358 C. Wrathall and V. Diekert

noticeable in this case, since, as Otto has recently shown [22], it is possible for a
trace-rewriting system of the form {(e, v)} to be confluent but not strongly
confluent.

The following proposition gives a characterization of strong confluence for
one-rule trace-rewriting systems with an empty left-hand side; the condition asks
whether some pair of independent letters can be connected by a path in the
dependence relation through the alphabet of the right-hand side.

Proposition 6.1. A trace-rewriting system {(e,v)} is strongly confluent on
M (A , I) i f and only if, f o r every pa ir (a ,b) E I, the letters a and b lie in different
components o f alph(abv).

P r o o f Both sides of the statement are clearly true i fv is empty, so suppose v ~ e.
For the implication from right to left, it is sufficient to show that, for any traces

s, t such that s • t, there is some w such that svt ~ w and tvs ~ w. Since s is
independent of t, the condition in the statement implies that no component of
alph(stv) contains both a letter from s and a letter from t. It follows that v --- x | y
with sx • ty. Therefore, svt = sx | y t = y t • sx ~ yty | xsx = xsx | y ty and
tvs = xs �9 ty ~ xsx ~ yty.

Now suppose the system {(e, v)} is strongly confluent. I f there is any pair of
independent letters connected by a path in the dependence relation through alph(v),
then there is some (possibly different) pair of independent letters both of which
are dependent on some letter in v; and this latter condition will lead to a
contradiction. Assume, therefore, that (distinct) letters a, b, e exist such that
c E alph(v), (a, b) E I, (a, c) E D, and(b, c) E D. Let n be any integer larger than
21v[a+2]vlb, and consider the pair of reductions a n b " ~ a n v b " and
anb " - - b n a " ~ bnva n. Since the system is strongly confluent and application
of the rule increases length in increments of Iv[, either anvb n =_ bnva n, or the
traces anvb n and b"va n have a common one-step descendant. The first case leads
immediately to a contradiction: the projection of v on { a , c } cannot commute
with an.

In the second case consider first any one-step descendant t of anvb n. From the
definition of reduction, traces x, y exist such that anvb n - xy and t =-- xvy. Applying
the Division Property to the equation anvb n-= xy, we find that, for some
i , j , x =_ an- iv lb / ,y ==- aiv2b n-j, and v ~- VlV2, with Vl • a i and v~_ • b i. Since
Iv[c>0, either Iv~[c>0 or IV2[c>0. If IVl]c>0, then i = 0 and
t ==_xvy =_ anvlb/vv2b "-j, so an is a prefix of t. Also, since vl and v contain
occurrences of the letter c, the longest prefix o f t in b* has length at most [Vl [b < n,
and the longest suffix of t in a* has length at most IVV2[a < n. If [v2[c > 0, then

j -~ 0 and t - an-ivxvaiv2b n, so b n is a suffix of t, the longest prefix of t in b* has
length at most [vlv[b < n, and the longest suffix of t in a* has length at most
IV2la < n. Summarizing these remarks:

(1) Either a n is a prefix of t or b n is a suffix of t.
(2) b n is not a prefix of t and a" is not a suffix of t.

On Confluence of One-Rule Trace-Rewriting Systems 359

Interchanging the roles of a and b, if s is a one-step descendant of bnva n, then:

(1") Either b n is a prefix of s or a n is a suffix of s.

Since conditions (2) and (1") cannot hold simultaneously, anvb ~ and bnva n can
have no common one-step descendant. []

The technique used in the proof of Proposition 6.1 only applies when an a
priori bound is known for the length of reduction sequences to join pairs with a
common one-step ancestor; for strongly confluent systems, the bound is 1. It is not
diffficult to show that i f independent letters a, b belong to the same component of
alph(abv) but neither belongs to alph(v), then the system {(e, v)} cannot even be
confluent: for a sufficiently large integer m, every descendant ofavmb must have the
a before the b and every descendant of bvma must have the b before the a.

7. Remaining Cases

The results in the previous sections leave open some questions concerning
confluence of a one-rule rewriting system R = {(u, v)} on a trace monoid M(A, I).

When the left-hand side u is empty, we have characterized strong confluence
but not confluence, and, as Otto has shown, there are confluent systems of this type
that are not strongly confluent.

When u is nonempty and connected, we have shown that confluence and strong
confluence of R are equivalent and characterized the confluence property based on
the structure o fu and v, except when u is a factor ofv and some letter independent of
u fails to commute with v. In particular, the characterization applies to all
terminating systems of this type. Within the exception to this characterization,
both confluent and non-confluent systems are possible.

Example 7.1. Let A = {a, b, c}.

(i) For I = {ab, ac}, the rules (a, ab) and (a, abe) give rise to strongly confluent
systems. (Clearly, a is a factor of both ab and abe; also, I(a)=
{b, c}, COM(ab) = {a, b}, and COM(abc) = {a}.)

(ii) For I = {at}, the rule (a, abe) gives rise to a nonconfluent system. (For this
independence relation, I(a) = {c} and COrn(abe) = ;ZJ.)

When the left-hand side u of the rule (u, v) is not connected, we have shown
strong confluence to be equivalent to confluence and obtained a structural
characterization of confluence, except when every component of u is a factor
of v. Again, the exception permits both confluent and nonconfluent systems.

Example 7.2. Let A = {a, b, c}.

(i) For I = {ab, ac}, the rule (ab, abe) gives rise to a strongly confluent system.
(ii) For I----- {at}, the rules (ac, abe) and (ac, acb) give rise to nonconfluent

systems.

360 C. Wrathall and V. Diekert

In Exampl e 7.2(i), the left-hand side of the rule is a factor of the right-hand side;
we have no examPle of a confluent system of this type in which every component
of u, but not u itself, is a factor of v. Note also that in Example 7.2(ii), the first
rule determines a terminating system, and the second rule determines a non-
terminating one.

The remaining specific questions about confluence are thus in two groups. First,
under what circumstances can a one-rule trace-rewriting system be confluent but not
strongly confluent? Second, when is a one-rule trace-rewriting system (u, v) in
which every component of u (or u itself) is a factor of v confluent or strongly
confluent? More generally, while the characterizations presented here give rise to
linear-time algorithms for deciding confluence when they apply, the question of
whether confluence is a decidable property for one-rule trace-rewriting systems
remains open.

References

[1] R. Book, Confluent and other types of Thue systems, J. Assoc. Comput. Mach. 29 (1982), 171-
182.

[2] R. Book, A note on special Thue systems with a single defining relation, Math. Systems Theory
16 (1983), 57-60.

[3] R. Book and H.-N. Liu, Word problems and rewriting in a free partially commutative monoid,
Inform. Process. Left. 26 (1987), 29-32.

[4] R. Book and C. O'Dmalaing, Testing for'the Church-Rosser property, Theoret. Comput. Sci. 16
(1981), 223-229.

[5] M. Clerbout and M. Latteux, Partial commutations and faithful rational transductions, Theoret.
Comput. Sci. 35 (1985), 241-254.

[6] R. Cod and Y. Mttivier, Recognizable subsets of some partially abelian monoids, Theoret.
Comput. Sci. 35 (1985), 179-189.

[7] R. Coil and D. Perrin, Automates et commutations partielles, RAIRO Inform. Th~or 19 (1985),
21-32.

[8] M. Dauchet, Termination of rewriting is undecidable in the one rule case, Proc. MFCS, Lecture
Notes in Computer Science, Vol. 324, Springer-Verlag, Berlin, 1988, pp. 262-268.

[9] N. Dershowitz and J.-P. Jouannaud, Rewrite systems, in Formal Models and Semantics (J. van
Leeuwen, ed.), Handbook of Theoretical Computer Science, Vol. B, Elsevier, Amsterdam, 1990,
pp. 243-320.

[10] V. Diekert, On the Knuth-Bendix completion for concurrent processes, Proc. ICALP, Lecture
Notes in Computer Science, Vol. 267, Springer-Verlag, Berlin, 1987, pp. 42-53.

[11] V. Diekert, Combinatorics on Traces, Lecture Notes in Computer Science, Vol. 454, Springer-
Verlag, Berlin, 1990.

[12] C. Duboc, On some equations in free partially commutative monoids, Theoret. Comput. Sci. 46
(1986), 159-174.

[13] G. Huet, Confluent reductions: abstract properties and applications to term rewriting systems,
J. Assoc. Comput. Mach. 27 (1980), 797-821.

[14] M. Jantzen, Confluent String Rewriting, EATCS Monographs on Theoretical Computer Science,
Vol. 14, Springer-Verlag, New York, 1988.

[15] W. Kurth, Termination mad Confluenz yon Semi-Thue-Systems mit nur einer Regel, Dis-
sertation, Mathematisch-Naturwissensehattliche Fakulth't, Technische Universitit Clausthal,
1990, Kapitel 6.

[16] H.-N. Liu, C. Wrathall, and K. Zeger, Efficient solution of some problems in free partially
commutative monoids, Inform. and Comput. 89 (1990), 180-198.

[17] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.

On Confluence of One-Rule Trace-Rewriting Systems 361

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Y. M6tivier, Calcul de longeurs de chaines de reeeriture dans la monoide libre, Theoret. Comput.
Sci. 35 (1985), 71-87.
P. Narendran and R. McNaughton, The undecidability of the preperfectness of Thue systems,
Theoret. Comput. Sci. 31 (1984), 165-174.
P. Narendran and E Otto, Preperfectness is tmdecidable for Thue systems containing only length-
reducing rules and a single commutation rule, Inform. Process. Lett. 29 (1988), 125-130.
E Otto, On deciding confluence of finite string-rewriting systems modulo partial commutativity,
Theoret. Comput. Sci. 67 (1989), 19-35.
E Otto, On confluence versus strong confluence for one-rule trace-rewriting systems, Math.
~),stems Theory, this issue, pp. 363-384.
E Otto and C. Wrathall, A note on Thue systems with a single defining relation, Math. Systems
Theory 18 (1985), 135-143.
E Otto and C. Wmthall, Characterizations of Overlaps in Free Partially Commuative Monoids,
Intemer Bericht 184/88, Faehbereich Informatik, Urtiversi~t Kaiserslautem, 1988.
E Otto and C. Wrathall, Overlaps in free partially commutative monoids, J Comput. System Sci.
42 (1991), 186-198.
C. Wrathall, Confluence of one-rule Thue systems, in Word Equations and Related Topics
(K. U. Sehulz, ed.), Lecture Notes in Computer Science, Vol. 572, Springer-Verlag, Berlin,
1992, pp. 237-246.

Received June 2, 1992, and in revised form May 14, 1993, and in final form July 7, 1993.

