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Summary 

Free vibration of a periodically supported (multispan) beam in via a simplified Bresse- 
Timoshenko theory is studied by the Krein's method suggested in 1933 for the Bernoulli- 
Euler beams. Approximate differential equations are utilized with both shear deformations 
and rotary inertia included, but with the term representing the joint action of these effect 
omitted. Detailed analytical and numerical analysis are performed for the r~atural fre- 
quencies of beams with different boundary conditions at their ends. Following Krein, 
the continuity requirements at the intermediate supports are treated as equations in finite 
differences and solved exactly. 

As in the classical Bernoulli-Euler beam, the natural frequencies fall into periodically 
spaced bands, with each band containing a number of frequencies equal to that of spans. 
The shear deformations and rotary inertia shift the classical frequency bands to the left, 
this effect being more pronounced for higher bands. 

Extensive numerical results are reported for three-, five- and ten-span beams. Com- 
parison with previously reported results (obtained by straightforwarded analysis) for a 
three-span beam shows excellent agreement. 

Introduction 

A periodic s t ructure  is one consisting of identical const i tuent  elements (basic 

substructures) interconnected in an identical manner.  Many physical  systems are 
characterized by  spacewise periodicity, the simplest example being the single 
crystal  in which identically arranged a toms form an infinite or semi-infinite 

lattice. Many  engineering systems are also intent ional ly based on this principle 
in order to reduce cost and/or  save time, a typical  example being the par t  of an 

aircraft  fuselage consisting of identical bays joined by  identical circumferential  

frames. Missiles, ships, monorai l  lines, pontoon bridges and the recently proposed 
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floating airfields, may  likewise be regarded as periodic structures. Many mathe- 
matical methods have been developed for treatment of periodic structures. 
Comprehensive reviews of periodic beams, plates and shells were written by Lin 
and Donaldson [1], McDaniel and Henderson [2], Clarkson and Mead [3] and 
Sen Gupta [4]. A complete bibliography is given in the above references and we 
mention here only the papers pertinent to our theme of interest --  vibration of 
periodic beams. One of the first analyses was given in 1928 by Timoshenko [5] 
who wrote down Darnley's [6] finite-difference equations with the serial number 
of the beam as subscript. He investigated numerically a beam on three supports 
and gave a graphical solution for the case of unequal span lengths. For that  equal 
span lengths (the two span periodic beam) he concluded that  its spectrum in- 
cludes that  of basic substructure which is simply supported at both ends. He 
failed, however, to formulate a solution for the general period N-span beam 
(2? being any positive integer). This shortage was remedied in 1933 by Krein [7], 
who considered such a beam under different end conditions, again using Darnley's 
three moment equations. Krein established that  the natural frequencies fall 
into periodically-spaced bands (with the number of natural frequencies within 
each band equal to that  of spans), and derived an interesting corollary -- that  
periodically supported beams with simply supported ends, as well as, those with 
clamped ends, have N-1 common series of natural frequencies. 

As often happened in the history of science, this pioneering paper reached only 
a limited audience (probably because of the relatively obscure periodicalit appeared 
in), and his results were rediscovered by Ayre and Jacobsen [8] and by Miles [9], 
who presented graphical and analytical solutions, respectively, for a multispan 
beam with simply supported ends. In  the first named work a nomograph of 
natural frequencies versus number of spans was presented for one-, two-, three-, 
four- and six-span beams with different boundary conditions; it turned out that  
all natural frequencies of one-, two- and three-span beams are contained in the 
spectrum of a six-span one. In the second work a finite-difference technique 
yielded for a N-span beam with simply-supported ends a frequency equation 
dentical with that  of Krein [7]. Lin [10] generalized both Krein's and Miles' 
approaches for a multispan beam with intermediate elastic supports, charac- 
terized by a displacement spring and torsion spring, and also derived a symmet- 
rical fourth-order difference equation, which reduces to the second-order one of 
Krein and Miles when one of the spring constants tends to infinity. 

More recent developments include the central work of Mead [11] who intro- 
duced the concept of complex propagation constants in the context of infinite 
beam vibration problem. Mead's approach was adopted by Sen Gupta in his 
comprehensive study of periodically subported beams and plates on rigid [12] 
and flexible [13] supports. In the first-named work Sen Gupta also presented a 
convenient graphical method for determination of natural frequencies. 

All aforementioned studies are concerned with the classical Bernoulli-Euler 
beams. However, as is well known even for single-span beams, the influence of 
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shear deformations and rotary inertia may be paramount for high natural fre- 
quencies and a refined theory is called for. Although there is ample literature on 
the vibration of single-span beams with both of these effects taken into account, 
only two publications were devoted to multi-span beams : the paper by Wang [14] 
and the comment on it by Cowper [15]. Wang derived the three-moment equation 
within the framework of the refined theory and presented numerical calculations 
for three-span beams, and Cowper drew attention to his error in requiring con- 
t inuity of the first spatial derivative of the deflection across an intermediate, 
instead of continuity of the function representing rotation of the cross-section. 
Cowper accordingly put  forward the proper three-moment equation and Wang 
subsequently published appropriately corrected numerical results [16]. 

In the present study, an at tempt  is made to complete Wang's work by present- 
ing a general solution which would yield the natural frequencies for beams with 
an arbitrary number of spans. 

Formulat ion  of Problem - -  Basic  Equat ions  

The classical Bernoulli-Euler equation for vibration of uniform beam reads: 

E I  say A s~y Sx--~ + ~ - ~ = 0 ,  (1) 

where E is the modulus of elasticity, I the moment of inertia of the cross-section, 
A the cross-sectional area, @ mass density of the beam material, y the deflection, 
x the spatial coordinate along the beam axis and t --  time. 

In 1877, Lord Rayleigh [17] refined Eq. (1) by taking into account the rotatory 
movement of the beam elements in addition to translatory ones. This resulted in 
the following equation: 

S4Y S2Y SaY -- 0. (2) 

Timoshenko [18] in 1921 further refined the theory by taking into account the 
shear deformation of the beam, and derived the following set of coupled differen- 
tial equations in terms of the beam displacement y and rotation $ of the cross- 

section : 

S2$ ( S y )  S~$ 
E I  ~ + IcAG -~x -- ~ -- @ I - ~  = 0  

St - -7  - -  \Sx 2 7xx = 0, 

(3) 

(4) 

where k is the shear coefficient and G the shear modulus. Equations (3) and (4) 
are usually referred to as the Timoshenko beam equations. Later  on it turned but, 
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[19] that  an analogous method of taking into account rotary inertia and shear 
deformations was known earlier to Bresse [20]. Accordingly throughout the 
present study Eqs. (3) and (4) are referred to as the Bresse-Timoshenko equations. 
They can be put  in decoupled form as follows: 

~4y O~y ( E )  ~4y m2r2 ~4y 
E Z ~ x  ~ + . ~ - m r  ~ l + k - G  ~ x ~  +kA---5 ~t ~ - - 0  (5) 

E1 Oa~b ~ ( E )  ~ m2r2 ~4~--0, (6) 

where r = (I/A) 1/~ is the radius of gyration, and m = ~A. I t  should be noted that  
the coupling is realized via the boundary conditions. In fact, we will utilize 
Eq. (5) only, since once y(x, t) has been found, ~b(x, t) is determined through 
Eq. (3). 

I t  is instructive to consider first the free vibration of a uniform Bresse-Timo- 
shenko beam simply supported at its both ends. The boundary conditions are : 

y(x,t)=O, at x = 0  and x = a  (7) 

9r (x,t) O, at x 0 and x a, (8) 
~x 

where a denotes the span of the beam. Boundary conditions (7) and (8) are satis- 
fied by setting: 

n y g x  nT~x  
y(x, t) = Be i~ sin - - ,  ~(x, t) = Ce i~t cos - -  (9) 

Substituting Eqs. (9) in Eq. (5) we obtain the frequency equation: 

EI --moo ~ -  mr 2 1 +  ~-~ -~- 0) 2~- ~ w 4 = 0 .  (10) 

This in turn yields 

2 1 { ( E ) ( ~ )  2 
wl, 2=2m2r2/kAG m-~ mr 2 1~- 

(11) 

:7: ~ Im @ mr2 (l @ E ) (n-~ff )~]2 -- 4EI (n--~ff )~ m2r21 

which indicates two bands of frequencies, denoted by the subscripts 1 (lower) 
and 2 (higher), respectively. Their existence has been demonstrated experi- 
mentally by Barr [21]. Asymptotic representation of the discriminant yields: 

EI(n:~/a) a 
~ol 2 _~ (12) 

m + mr2(1 + E/kG) (nT~/a) 2 
m ~-mr2(1 -f-E/kG)(n~/a) ~ EI(nz~/a) 4 

oJ~ ~ ~-- m~re/kAG + . (13) m + mrS(1 -Jr E/kG) (nu/a) 2 
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Examination of the ratio 6622/661 a will enable us to compare the order of magnitude 
of the two bands: 

6622 [1 -~- (1 ~- E/kG) (n~r/a)2] 2 
- - = 1 +  
661 ~ (E/kG) (n~r/a? 

(14) 

For a beam of rectangular cross-section, made from conventional materials with 
k = 5/6, v = 0.3, we have 

E 
- -  3 . 1 2  (15 )  

kG 

l q - 4 1  
6622 1 q- for n 1 (16) 
o)12 304(r/a) a 

whence 

so that  
662 r 
- - ~ 5 7 6  for - - = 0 . 0 1  
(01 a 

662 r 
- - _ ~ 2 5  for - - = 0 . 0 5  (17) 
6O 1 a 

662 r 
- - _ ~ 8  for - - = 0 . 1 .  
6O 1 a 

I t  should be noted that  Eq. (12) is obtainable directly from Eq. (10) by omitting 
the last term in it. Timoshenko [18] was the first to suggest this omission in the 
characteristic equation due to its negligible contribution, and in Refs. [22] and [23] 
this suggestion was applied to the di//erential equation itself (Eq. (5)). We neglect 
the last terms in Eqs. (5) and (6). These simplified equations: 

~4y ~ y  ( E )  ~4y = 0  (18) E I  ~x a q- m - ~  - mr 2 l q- - ~  ~x 2 ~ 

E1 ~4r ~2~ ( E )  ~4~ 0 (19) 8x---i4 q- m-g-~ -- mr 2 1 q- ~-~ ~x 2 ~t 2 

directly lead on the one hand, to Timoshenko's [18] approximation of the natural 
frequencies, and on the other to the asymptotic representation (12) of an "exact" 
natural frequency (i.e. with the last terms in Eqs. (5) and (6) retained). Equation 
(18) in its simplified form was utilized by Elishakoff and Livshits [22] and by 
Elishakoff and Lubliner [23] in deriving closed-form solutions for vibration of 
beams excited by wide-band random loading. 

In the present study we apply Eqs. (18) and (19) in their simplified form in 
investigating free vibration of a multispan beam with a view to gain an insight 
into the influence of shear deformations and rotary inertia on the natural fre- 
quencies. 
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Vibration Analysis of Multispan Beam Simply-Supported of Both Ends 

Free harmonic oscillation with angular frequency ~o is represented by 

y(x, t) - -  Y(x)  e i~t (20) 

~(x, t) -~ T(x )  e ~'~t (21) 

and substituting the above in Eq. (18) and (19) we have 

where 

d a Y d ~ Y 
dx a + pa(re + b e ) ~ _ p4 Y = O (22) 

d4T dew 
dx--- ~ + pa(r2 + b e) ~ - -  p a t  =- O, (23) 

m o  2 E1 
pa = --E-f ' be = kAG" (24) 

The general solutions of these equations read 

Y(x)  = B1 cosh six + B2 sinh six + B~ cos s2x + B~ sin s~x 

T (x )  = C1 cosh s~x + C~ sinh six + C~ cos s2 x +  C~ sin s~x 

with 
p~(# + b e) 

81 ~ 2 

~_~ P4( re + b e) 
82 

I 2 

1 b2) 2 }1/2 + y [pS(re + § 4pa]m/e 

1 be) e }1/3 + -~- [pS(re + § 4pal lie . 

(25) 

(26) 

(27) 

(2s) 

The relations between the coefficients in Eqs. (25) and (26) are obtainable by 
substituting the latter two in the governing set, (3) and (4) bearing in mind 
Eqs. (20) and (21). The resulting relationships are as follows: 

C1 = e lba ,  C~ = elB1 (29) 

C~ = e~/~,, C~ = e~B3 (30) 

sl 2 + p4b2 s2 ~- _ p~b 2 
el - -  , e2 - -  (31) 

81 82 

Equations (25) and (26) must satisfy the continuity requirements 

(32) 

(33) 

(34) 
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Xl -I ~ x2 = Xk ~ Xk+l XN 
No 

l~ig. 1 

with regard to the deflections (which are zero), slope and bending moment.  (For 
a discussion of boundary conditions appropriate to Bresse-Timoshenko beams the 
reader may  consult Refs. [15] and [16].) 

In  Eq. (32) a denotes the span length in the x-direction so that  the total  length 
of the beam is N a ,  N denoting the number  of spans (see Fig. 1), and 

x ~ = - x - - ( ~ - -  1) a (35) 

is the coordinate in the local frame of reference associated with span number  a. 

We now rewrite the general solution given by  Eqs. (25) and (26) for each span 

Y ( X a )  = B1 (z) cosh 81x a ~- B2 (a) sinh SlX~ -[- B8 (") cos s2x~ ~- B~ (~) sin s2x: (36) 

~(x~) = eiB2 (~) eosh 81x~ ~- elB1 (~) sinh e~x~ ~ e2B~ (~) cos s2x, - -  e2B8 (~) sin s2x,.  (37) 

Applying the continuity conditions to Eqs. (36) and (37) we obtain: 

B1 (") cosh s~a ~- B~ (") sinh e~a ~- B3 (~) cos s2a ~- B4 (~) sin s2a -= 0 (38) 

B~ ("+1) ~- B~ (~+1) = 0 (39) 

eiB2 (") cosh s~a ~- elB~ (") sinh s~a ~- e~B4 (~) cos s~a 
(40) 

- -  e2B~ (~) sin s~a = elB~ (~+a) ~ e~B4 ("+1) 

elslB~ (") sinh ela ~- elSlB1 (~) eosh 8~a - -  e2s2B~ (") sin s2a 

- -  e2s2Ba (~) cos e~a = els~B1 (a+l) - -  e282B3 ("+1) 
(41) 

Equations (38)--(41) are equations in finite differences with respect to B1 ("). 
Therefore, the solution for Bj (~) is sought as follows 

B i  (~) = Bi~  " -1 .  (42) 

For the particular case ~ = 1 we obtain Bi(1) ~ B~ and accordingly the integration 
constants in each span are related to those on the first span as 

B1 (~) --~ B~(1)2 ~-1 . (43) 
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Subst i tut ing (43) in (38)--(41), and omit t ing the common term containing 

powers of ~, we arrive at  

(44) 

B~ (1) @ Ba (~) = 0 (45) 

Bl(1)D~e~ + B~(1)e~(C~ --  2) - -  B a ( 1 ) D 2 e 2  -~- B,(1)e2(U~ - -  2) = 0 (46) 

B~(~)e~sl(C1 - -  2) + B~(1)e,SlD1 --  B~(1)e2s~(C2 - -  2) - -  B~(i)e~s~D~ = 0, (47) 

where 

C~ - -  c o s h  8 1 ~  

D~ ~ sinh s~a 

C 2 ~ cos  8263 

(4s) 

D~ -~ sin 82a. 

The nontr iv ia l i ty  requirement  of the set, (44)--(47) st ipulates:  

~ 1 DI U2 D2 

0 1 0 

Die1 (C1 - -  2 )  el --D2e2 (C2 - -  2 )  e~ 

s~(C~ --  ~) e~ saD~el --s~(C2 - -  2) e~ --s2D2e~ 

or, s imply 

with 

whence 

= 0 (49) 

~ - - 2 U ~ +  1 = 0  (50) 

G2Dle2 - -  C1D2el 
U = (51) 

Die2 - -  D2el 

2 ~ =  U + [ U  z -  1] ~/2, 22 = [ U - -  U 2 -  1] ~/2. (52) 

Bearing in mind Eq. (52), the general solutions of Eqs. (36) and (37) can be 
wri t ten as (B4 (1) ~ B4) : 

Y(x) ---- B4,~21:-l[F~,~ cosh s~x + F2,~ sinh six + F3,~ cos s~x -[- sin s2x] 

+ B4,22~-l[F,,2 cosh slx + F2,~ sinh s~x + F3,2 cos s2x + sin s2x] 
(53) 

T(x)  ~- B4,1).~-I[FI,lel sinh 81x + F:,lel cosh six - -  F~,le2 sin s2x + e2 cos s2x] 

+ B4,22~'-l[Fl,2e~ sinh s~x + F2,2el cosh s~x - -  F3,2e2 sin s~x + e2 cos s~x] 

(54) 
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where 

FI,  k ~-  B L J B ~ ,  ~ 

F l , k  = - - F s , k  = - -  

a r e  the modal  ratios. 

( ~ =  1 , 2 , 3 ,  / c :  1,2) 

D2 D2(C1 - -  2k) 

(C2 - -  2k)' F2,~ D1(C2 - -  2~) 

(55) 

Note  tha t  Eqs. (53) and (54) already satisfy all cont inui ty  conditions and par t  

of the boundary  conditions, namely  Y = 0 at  both  x~ = 0 and x~ = a. I n  these 

circumstances, B4,~ and B4.2 must  be such tha t  the remaining boundary  con- 

ditions d T / d x  = 0 at  bo th  xl = 0 and x~ = a are satisfied : 

B4,1(Fl. lelsl  - -  F3,1e2s2) 4- B4,2(Fl,~elsl - -  F3,2e~s2) = 0 (56) 

B4.~211v-I(FI,~e~s~C1 4- F2,1elslD1 - -  Fs,le2s2C~ - -  e2s2D~) 
(57) 

-1- B4,22J-l(F2.~e~s~C1 4- F2.2e~s~D~ - -  F3.~e2s2C~ - -  e~s~Ds) = O. 

B y  the  nontr ivia l i ty  requirement  

D 2 2 ( s l  2 + s22) 2 (22 ~ - -  21iv) 

(c2 - 21) (c2 - 22) 
= 0. (5s) 

This equation has two subclasses of solutions, the first of which is 

This implies 

D~ ~ sin s~a = 0. (59) 

mTg 
s2 - -  , m = 1, 2 ,  3 . . . .  ( 6 0 )  

6b 

where m is a positive integer representing the number  of half waves in the single- 

span mode shape. 

This series, which is invar iant  in N, will hereinafter be referred to as " t r iv ia l" .  

The second subclass is obtained by  zeroing the expression: 

2~ ~ - -  21 ~v = O. (61) 

Subst i tut ing 

U = cos 0. (62) 

Equat ions  (52) become 

and Eq. (61) 

21 = exp (i0),  22 = exp ( - - i0 )  

From Eq. (64), it follows tha t  

(63) 

NO = j~ (65) 

sin NO = 0. (64) 
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] ( ~  N) being any integer indivisible by N. Accordingly U has N -- 1 different  
values 

U j =  c o s ~ ,  ] =  1,2 . . . .  , N - - 1 .  (66) 

Consequently, in addition to the series represented by Eq. (60) this beam has 
N -- 1 other series of natural frequencies, their total number being equal to that 
of spans. In other words the spectrum of a N-span beam contains the spectrum 
of the single-span one. 

For insight into the vibration spectrum, we first consider the simplest multi- 
span case, a two-span beam. Considering the admissible range of ] in this case 
] <> 2, we are left with 

U~ = cos~- = 0. (67) 

Combining Eqs. (51) with (67) we obtain 

C1Dle~ = C1D2el. (68) 

We shall now show that  this transcendental equation is identical to that  
associated with a single-span beam clamped at one end and simply-supported at 
the other. Indeed, for the latter, the boundary conditions are: 

d T  
Y = 0 ,  - - = 0  at x = a  

dx 
(69) 

Y =  0, T = 0  at x = 0  

a being the span of the beam. Under these boundary conditions, we have for 
Y(x)  and T(x)  given in Eqs. (36) and (37), with a ~ 1 

B1 + Bs = 0 

elB~ + e2B4 = 0 

(70) 
B1C1 + B2D1 + B~C2 + B4D2 = 0 

elSlB2D2 + elslBiC1 - -  e2s~B4D2 - -  e~s2B3C2 = 0 

and the nontriviality requirement yields 

C2Dle2 = C1D~el 

which is identical to Eq. (68) as claimed. 
The analytical derivations for a multispan beam clamped at both ends and 

supported at one end and clamped at the other, are presented in Appendices A 
and B respectively. 
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Numerical Results 

Equations (66) and (51) are now used (following Sen Gupta [12]) as a basis 
for an extremely simple graphical method for finding the natural frequencies of a 
multispan beam simply supported or clamped at both ends. We plot (arccos U) 
versus the frequency parameter (pa). As ] is increased from 1 to zV for the simply- 
supported case of 0 to N --  1 for the clamped case, in steps of consecutive in- 
tegers, the permissible value of (arccos U) increases in equivalent steps of (x/N). 
Accordingly the ordinate of the (arccos U) vs. (pa) graph is divided into N equal 
intervals, and the sought frequency is directly given by the abscissae of the inter- 
cepts laid off on the graph by  horizontal lines drawn through the points of division. 

The method is illustrated in Figs. 2 and 3, in which a five-span beam, simply- 
supported at both ends (within the first five series) is treated by  the Bernoulli- 
Euler and Bresse-Timoshenko approaches, respectively. I t  is seen that  under the 
latter approach the natural frequencies undergo a relative shift towards the 
origin, which becomes more pronounced as the frequencies increase. 

As an example for comparison with refined theories we consider a standard 
steel profile 16WF96 with E ~ 21000 kg/mm2; G = 8400 kg/mm~; k = 0.279. 

whence E/ka = 9. The radius of gyration being r = ~ / -~ ,  Eq. (24) yields b = at. 
Fig. 4 shows the ratio of refined versus classical natural frequencies (actually 

a correction factor) for a three-span beam simply-supported at both ends. 
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Comparison with Wang's results, roughly reproduced from Fig. 2 of 1%ef. [16], 
reveals extremely good agreement. For the sake of completeness, the same 
ratio for a five-span and a ten-span beam simply-supported at both ends is 
shown in Fig. 5 and 6, respectively. 

Figs. 7--12 show the corresponding sets of the correction factor under bound- 
ary conditions at the beam ends: the first three -- for clamped at both ends, the 
last three --  for one end clamped and the other simply-supported. 

As is seen, all the natural  frequencies of the latter ease are contained in the 
spectrum of 2N-span beam simply-supported at both ends (see Appendix B). 

Appendix A 

Multispan Beam Clamped at Both Ends 

In this ease B4., and B,.2 in Eqs. (56) and (57) must be such as to satisfy 
boundary conditions : 

This yields: 
T = 0  at x l = 0 ,  xzc=a .  (A1) 

B4,121u-l(Fl,le,D1 + F2,1eIC, - -  Fs,~e2D2 ~- e2C~) 
(A 3) 

d- B,.2),2~-l(F1.2elD1 d- F~.~elC1 - -  F 3 , 2 e 2 D 2  2[- e2C2). 

The nontriviality requirement yields 

or  

( D 2 e l  - -  D i e 2 )  2 (2~ - -  22) 
[ ( ~ 2 _  1 ) ~ - 1  + ( ~ 2 _  1 ) ~ - 1 ]  = 0 

4D~(C~ --  2~)(r - -  ;~) 

/~1N-1 -~- 2.2 N-1  : 21N+I -~- ~2 N+I ,  

(A 4) 

(A 5) 

Applying Eq.(63),  we have 

whence 

j being any integer. 

sin (NO) = 0 

NO = ]~ 

(A 6) 

(A 7) 

As for U, it obviously can now have only N -f- 1 different values, namely 

2~ 
U o =  1, U ~ = c o s ~ ,  U ~ = c o s ~  . . . . .  

cos (iV - -  1) 
UN-i = ) Uiv = 1 

iV 

(A S) 

]Tg 
U i = c o s ~ ,  ] = 0, 1,2 . . . .  , N. (A 9) 
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I t  can be shown tha t  the cases Uo = 1 and Ux = --1 represent respectively 
the symmetric and antisymmetric vibration modes of a single-span beam of 

length a Clamped at  both bends. For this purpose, we set the origin of the co- 
ordinate axes at  midspan (so as to take advantage of the symmetry  of the system). 
For the symmetric modes we have. 

Y(x) = B~ cosh s~x -1- B~ cos s~a 

T ( x )  = elB1 sinh s i x  ~ e2B3 sin s2x. 
(AIO) 

The boundary conditions being 

which yields the frequency equation 

(A 11) 

81a 82a 
cosh-ff-  cos -~-  

e~ sinh sla ~-~ --e~ sin 

= 0  (A12) 

o r  

�9 ~ 816~ 8205 
e, ~ann -~- -~ e2 tan -~- = 0. 

But  

tanh sl__aa _-- cosh s la  - -  1 

2 sinh 81a 

C 1 -  1 D1 

D1 C1 ~- 1 

tan s2--~a = 1 - -  cos 82a 

2 sin s2a 

1 - -  C2 D~ 

D2 G~ -k 1 

which yields finally 

C2Dle~ - -  C1D2el = Die2 - -  D2el 

(A13) 

(A 14) 

(A15) 

which is equivalent to the case U~v ---- 1. 
In  complete analogy, for the ant isymmetric  modes 

Y(x )  = B2 sinh s i x  + B ,  sin s2x 

T ( x )  = e~B2 cosh s~x -b e2B4 cos s2x 
(A 16) 

with boundary conditions as per Eq. (A 10). The frequency equation now reads 

e2 ~ann -~-  - -  el tan -~- = 0 (A 17) 



Application of the Krein's 1VIethod 57 

or, by  Eq. (A 14), 

C~Dle~ - -  C1D~el = - - (Die2  - -  D2e~) 

which is equivalent to the case U~r ---- --1, Q.E.D. 
Consequently, the subspectrum associated with both U0 ---- 1 and Ug = --1 

is the full spectrum of a single-span beam clamped at both ends. I t  is natural 
to count this unified subspeetrum as a single band. Accordingly it follows from 
Eq. (A 9) that  the N-span clamped beam has N --  1 other bands natural fre- 
quencies, their total  number again being equal to that  of spans, as in the case 
of an N-span beam simply supported at both ends. Checking against the results 
for a simply-supported beam at xl = 0 and x jr ---- a, we find N -  1 bands in 
common with the case of a beam clamped at xt = 0 and x~v -~ a. 

Appendix B 

Mul t i ,  span B e a m  S i m p l y  Suppor ted  at One E n d  and  Clamped  at the Other 

In  this case the boundary conditions are 

Y----0 at x ~ = 0  and x~----a (B1) 

dV / 
~ = 0  at x ~ = 0 ,  - - = 0  at x z c - ~ a .  (B2) 

dx 

Condition (B 1) is satisfied by Eqs. (53) and (54). 
Substitution of Eq. (B 2) into Eqs. (53) and (54) yields 

B4,1(F2,1el + e2) Av Ba,~(F2.~el + e~) = 0 (S  3) 

B,, l~l~v- l (Fl , le ls lC1 -k F2,1elslD~ - -  Fs,le~s~C2 - -  e2s~D2) 
(B 4) 

q- B,.,,~,~v-1(Fl,,e~s~C~ -4- F~,2elslD1 - -  Fs,2e,s,C~ - -  e2s,D~). 

The nontriviality requirement stipulates 

(D2el - -  Die2) D2(els~ + e2ss) (21 - -  ~2) [22 zV "~- 21 -'V] 

2D1(C2 - -  ~'1) (~2 - -  Jr2) 

O1' 

which, using Eq. (63), becomes 

where 

----- 0 (B 5) 

NO = (2j - -  1) ~-, i = 1, 2 , . . . ,  N .  (B S) 

cos (NO) = 0 (B 7) 

;t~ ~ + 2~ ~ = 0 (B 6) 
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Accordingly, a beam suppor ted  a t  xl = 0 and clamped at  x~r = a, also has N 

bands  of na tu ra l  frequencies, and the t r ivial  series is absent .  I t  is remarkable,  

t ha t  the na tu ra l  frequencies of a s imply-supported-clamped beam coincide with 

those of a s imply supported beam with double the n u m b e r  of spans, 2N, which 

correspond to the symmetr ic  modes. This is in  perfect analogy with the f indings 

of Kre in  [7] and Pu ja r a  [24] for classical beams. 
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