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Summary. A boundary layer solution for the heat transfer of an electrically conducting fluid over 
a semi-infinite flat plate in the presence of a transverse magnetic field has been studied. The heat due to 
viscous dissipation and stress work were also included into the energy equation. The governing nonsimilar 
partial differential equations are transformed into ordinary differential ones by means of difference- 
differential method. The temperature profiles and heat transfer coefficient are obtained for various values of 
the parameters entering the problem. 

1 Introduction 

The boundary layer flow of an incompressible electrically conducting fluid over a semi-infinite 
flat plate in the presence of a transverse magnetic field has been studied by many researchers in 

the past. By means of the difference-differential method, Watanabe [1], [2] reduced the 
momentum partial differential equation to an ordinary one and obtained the solution in a form 

of integral equations. In some cases, the application of this method is more convenient than other 
mathematical techniques. However, the thermal field has not been considered in [1], [2]. 

The present research note tries to investigate the thermal boundary  layers in magnetohydro- 

dynamic flow over an isothermal flat plate in the presence of a transverse magnetic field using the 

previous proposed solution for the momentum equation described by Watanabe [1], [2]. The 
analysis includes the viscous dissipation and stress work effects, too. It was shown by Kuiken [3], 

Soundalgekar and Takhar [4], and Ingham [5] that the terms representing viscous dissipative heat 
and stress work are of equal importance in the case of air and hence they should both be 
considered or neglected in the energy equation. The effects of the Eckert number on the 

temperature field and heat transfer coefficient have been discussed for some values of the 
magnetic interaction parameter and Prandtl  number. 

2 Analysis 

Let cartesian coordinates (x, y) be introduced for the description of the steady flow and heat 
transfer of an incompressible electrically conducting fluid over a semi-infinite fiat plate. The plate 

is located in the y = 0 plane, and the oncoming flow Uoo is constant and parallel to the x-axis. 
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A magnetic field with a constant magnetic flux density Bo is applied normal to the plate. The 
temperature of the plate is held at a constant value T~,, which is higher than the ambient 
temperature To. We also assume that the viscous dissipative heat and stress work terms are not 
neglected in the present study. By applying the usual boundary layer approximation, the basic 
equations under these assumptions can be transformed to 
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subject to the boundary conditions 

y = 0 : u = 0 ,  v = 0 ,  T = T ~  

y--* oo : u = U~, T = Too. 
(4) 

Here u and v are the components of fluid velocity in the x- and y-directions, respectively, T is the 
fluid temperature, e, 6, Q, v, and cp are the thermal diffusivity, electrical conductivity, density, 
kinematic viscosity and specific heat at constant pressure of the fluid. 

To seek a solution to Eqs. (1) to (3), we introduce the variables 

= (U~ovx)l/Zf(x, rl), g(x, rl) = (T -- T~)/(T~ -- T~) (5) 

where 

y(V ] 1/2 
" =  k W /  (6) 

and ~ is the stream function defined in the usual way. In view of (5) and (6) these 
equations reduce to 

0, - 5  ~ 0,-5 OX Ot 1 0, ~qq = 0 (7) 

1 0 z g  + ( l f + X ~ x ) O g  Og Of X E c ~  ( 1 -  Of) (02f~  z 
P50rl ---5 ~q -- X OX 0~I ~ + Ec \~ -~ ]  = 0 (8) 

with the boundary conditions 

t / = 0 : ~ q  = 0 ,  ~ f + X  = 0 ,  

0f ~ / ~ o o : ~  = 1, g = O .  

g = l  

(9) 

Here Pr = v/c~ is the Prandtl number, Ec = U o c 2 / [ c p ( T w  - -  Tin)] is the Eckert number and 
X = aBo2x/(QU~) is the magnetic interaction parameter. In Eq. (8), the fourth and last terms 
represent the stress work and viscous dissipative heat, respectively. 
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Solutions to Eqs. (7) and (8) subject to the boundary  conditions (9) are found using the 
difference-differential method as described by Watanabe [1], [2]. The derivative for X at 

X = X, = ih (i = 0, 1, 2 . . . .  ), where h is a constant step size, can be approximated by using a four 
point formula of Gregory-Newton,  for example. In use of this method,  we can transform (7) and 
(8) into the following form of integral equations: 

= i -- E(n ) -E~ dtl dn G ~ )  + E(n) ~ dn dtl 

0 0 0 0 
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where 

1 i 
E(n) = exp - ~- f/ - g 1 lf i  - 18fi- 1 

G(n ) = ~ E(n) dr/ 
0 

(13) 

(14) 

) R ( r / ) = g  1 1 ~ - -  1 8 ~ + 9  d - ~ - -  2 dn , } - ~  + i h  - 1 (15) 
\an 

P(n) = exp - Prf~ -- ~ Pr (llf,. - 18fl- 1+ 9f ,_2-  2f~_3)} an] (16) 

Q(n) = f P(n)an (17) 
0 

s(n) = g P r ( l l g , - 1 8 g , _ l  + 9 g i - 2 - - 2 g i - 3 ) ~  + ihEcPr  1 - d r l / -  EcPr~,~q2J " (18) 

3 Results and discussion 

The numerical integration of Eqs. (10) to (12) is performed by iterative numerical quadratures 
using a Simpson's rule. A full description of this method is given also in [6]-[8]  and it is 
unnecessary to repeat  the details here. 

Since the velocity field is discussed in [1], [2], we shall limit here only to the heat transfer 
characteristics. The temperature profiles for X = 0.2, Pr = 0.733, 1.0 and Ec = 0, 0.5, 1.0 are 
shown in Figs. 1 and 2. It  is seen that  there is a rise in the temperature due to the heat created by 
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viscous diss ipat ion an d  compress ion  work. O n  the other  hand ,  these profiles become, as 

expected,  steeper as Pr increases. 

Once  g(X, ~) is k n o w n  for a set of parameters  X,  Pr, Ec, the local Nussel t  n u m b e r  of our  

p r imary  concern  ma y  be evaluated  from 

Nu = xq~ (19) 
k ( % -  To~) 
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Table 1. Values of Nu/Rex 1/2 
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X Pr = 0.733 Pr = 1.0 

Ec Ec 

0.0 0.5 1.0 0.0 0.5 1.0 

0.0 0.297 55 0.210 75 0.123 95 0.332 06 0.249 04 0.166 03 
0.5 0.356 99 0.282 85 0.208 71 0.402 80 0.30212 0.20144 
1.0 0.383 36 0.305 32 0.228 57 0.43446 0.32519 0.217 27 
1.5 0.399 59 0.319 86 0.24122 0.45413 0.340 05 0.22710 
2.0 0.410 91 0.33011 0.250 22 0.467 98 0.350 52 0.234 01 

where qw = - k(a T/Oy)r = o is the heat flux from the plate and k is the thermal conductivi ty of the 

fluid. Using (5), (6), and (12), we obta in  

(Og)  1 { l + f P ( t l ) f  S(tl) t NulRe~m = - N .=o  - Q(oo) o o p ~  dr /do  (20) 

where Rex = U~x/v is the local Reynolds number.  

The values ofNu/Rex 1/2 as given by Eq. (20) are given in Table 1 for X = 0, 0.5, 1.0, 1.5, 2.0; 

Pr = 0.733, 1.0; Ec = 0, 0.5, t.0. To verify the p roper  t reatment  of the problem, we compare  the 

present solution with known results from the literature. Thus, Ingham [5] has obtained for 

Nu/Rex 1/z the values of 0.3321 for Ec = 0 and Pr = 1.0, respectively, 0.1660 when Ec = 1.0 and 

Pr = 1.0 while our results are 0.33206 and 0.16603, which show an excellent agreement with 

those from [5]. 

Finally, the var ia t ion of Nu/Rex I/z as a function of X is shown in Fig. 3 for Pr = 0.733, 

Ec = 0, 0.5, 1.0 and in Fig. 4 for Pr = 1.0, Ec = 0, 0.5, 1.0, respectively. We notice from Table 1 

and these figures that  the rate of heat  transfer decreases due to heat  created by both viscous 

dissipation and compression work (Ec 4= 0). I t  is also observed that  the heat  transfer increases 
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Fig. 3. Variation of the local Nusselt number 
as a function of X for Pr = 0.733, Ec = 0, 0.5, 
and 1.0 
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Fig. 4. Variation of the local Nusselt number 
as a function of X for Pr = 1.0, Ec = 0, 0.5, and 
1.0 

with Pr, because a higher P r an d t l  n u m b e r  fluid has a relatively lower thermal  conduct iv i ty  which 

reduces conduc t ion  and  thereby increases the variat ions.  This  results in  the reduc t ion  of the 

thermal  b o u n d a r y  layer thickness and  an  increase in  the heat  transfer rate at the wall. 
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