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Summary. The apparent contradiction between the Eshelby formulation (consideration of a material force on 
the material manifold) and the more usual global-dissipation analysis (essentially, the balance of energy 
about the moving singular point represented by the tip of the crack) of the J-integral and energy-release rate 
in dynamical fracture is resolved in both pure finite-strain elasticity and Galilean-invariant electrodynamics 
of electro-magneto-elastic media. The solution uses the notions of mechanical and electromagnetic 
pseudomomenta (canonical momenta) in finitely deformable continua with cracks. 

I Introduction 

We now know that  there essentially are two ways to compute the characteristic quantity of 
fracture mechanics called the energy-release rate G, i.e., in thermodynamical  terms, the 
generalized force conjugate to the extension of a crack. The first of these is a global-dissipation 
analysis which acknowledges the fact that  the global phenomenon (fracture of a material sample) 
obviously is thermodynamical ly irreversible while the local mechanical behavior of the bulk 
material  may  be fully recoverable (e.g., elastic) - see, e.g., [1, Chapter  7]. The second one is more 
subtle in that, thought  to be "metaphysical"  by some authors, it directly involves the 
computa t ion  of the generalized force of a fictitious (i.e., non-Newtonian) type which is acting at 
the tip of the crack in material  space (i.e., not on an infinitesimal element of matter  but on 
a defect). This is the point of view of the theory of defects (material inhomogeneities) and material  
forces (on singularities) in the spirit of J. D. Eshelby (see [2], [3], and [4] for a synthesis). 
Mathematically,  these two points of view can be summarized in the following formulas; per unit 
thickness of the sample and considering a straight through crack, either 

�9 = Gi__>0, G -  
al ' 

or 

(1.1) 

= ~ .  q / >  0, G = el " o~, (1.2) 

where, I being the length of the crack C at time t, ~4:(I) is the total potential  energy of the body 
B\C, iis the rate of extension of the crack in direction el in matter  at time t, and q/is the (material) 
velocity of mat ter  with respect to the crack, o~ is the material  force, and �9 is the dissipation 
resulting from fracture. "~K depends on l through the evolving integration volume. In most  cases 
the analyses are carried out in the quasistatic f ramework (e.g., in brittle fracture), whence ~K and 
Y involve only the strain energy function W. 
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The question naturally arises of the extension of the above-recalled expressions to dynamical 

fracture. This last field has indeed become an active field of research and applications [5]. On  the 

conditions that both time rates and stress levels remain reasonable, the elasticity framework can 

still be envisaged for such a dynamical generalization. Using a direct thermodynamical approach 

basing on the first law of thermodynamics in physical space favored by G. R Cherepanov [6], [7] 

- see also Cherepanov's historical statement in [8] - many authors have straightforwardly 

shown that the strain energy function W in (1.1) was to be replaced by the total energy density 

- that we call here the Hamiltonian density ~ in the spirit of field theory - i.e., the sum of the 
potential and kinetic energy [9]-[1311: 

1 
= W -[- ~ ~o/12 (1.3) 

per unit undeformed volume. The celebrated path-independent J-integral of fracture (e.g., [1, 

Chapter 7]) then reads 

G = Jr  = ~ ( W N 1  - u , l"  T d) d r ,  (1.4) 
F 

where ,1 denotes the space derivative along el, N1 = N .  el i fNis  the outward unit normal to F, 
T d is the traction at F, and F is a path encircling the tip of the crack in the counter clockwise sense, 

starting and ending on the traction-flee lips of the crack C. The contour integral in elasticity is 

independent of F and J r  is none other than the energy-release rate G to be ultimately compared 

to a critical value Gc if one desires to apply a criterion of extension to the crack. 

The second avenue basing on material forces acting on singularities - here the tip of the 

crack in its own right - here presents an apparent difficulty which either was remarked upon by 

some authors without offering a definite answer (e.g., Eischen and Herrmann [15] and Eshelby 

himself [16]) or completely ignored by others, by mere error in fact ([5, p. 267], see below). Indeed, 

it seems that the dynamical generalization of (1.2) - according to the analyses of [15] and [3] 

should be 

G = J r  = ~ ( e l "  b" N) dT, (1 .5 )  
F 

where b is the so-called Eshelby stress (mixed material) tensor given canonically by 

b = - ( ~ I R  - F T. OL#/OtD, (1.6) 

where F is the finite-deformation gradient between the configurations YR and gut, la  is the unit 
dyadic in gfa and 5r is the Lagrangian density per unit volume in S•, i.e., 

1 
= ~- Q0[32 -- W = - - ~  ~- Qo 02, (1.7) 

ifv is the physical velocity. How can the two approaches be reconciled as (1.4) certainly is the right 
answer? This is the problem that we address below in Section 3 in pure mechanics after having 
recalled some fundamental notions of Eshelbian mechanics in Section 2. Sections 4 and 5 are 

1 We cite Nilsson [14] for completeness only as his Laplace-transform formulation for elastodynamic 
fracture is irrelevant here. 
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devoted to the solution of the same paradox but in a rather complex situation, that one that 
prevails in the Galilean electrodynamics of finitely-strained elastic bodies. Section 6 concludes on 

the case of inelasticity, i.e., for ductile fracture. 

2 Elements of Eshelbian mechanics 

These elements were given in [3] and will only be briefly reviewed. We consider inhomogeneous 
anisotropic hyperelasticity (energy-based nonlinear elasticity) in the absence (neglect) of thermal 
effects and applied body forces. At any regular point X at time t, the balance of linear (physical) 

momentum is given by 

~ p R  x &  - diVR T = 0, (2.1) 

where the physical momentum PR and the first Piola-Kirchhoff stress (a two-point field) T are 

defined by 

PR = Qo(X) v(z(X, t), t), T = JvF  ~ " ~, (2.2.1, 2) 

where the direct motion is x -- z(X, t) between the reference configuration ~ffg of matter density 
~0(X) - inertial inhomogeneities - and actual configuration Xt, and ~ if the Cauchy stress in St. 

Obviously, 

v =  & x F =  = Ox t' J F = d e t F > O .  (2.3) 

In the nondissipative isothermal, but inhomogeneous, nonlinear and dynamic case, we can write 
(a superimposed dot denotes the material time derivative; tr = trace, T = transpose) 

1 
5f  = 5~(v, F; X) = ~ Oo(X) I)2 - -  W(F; X)  (2.4) 

and 

- W + t r { r t 3  - o .  (2 .5)  

Equations (2.4) and (2.5), respectively, define a Lagrangian density and reproduce Gibbs' 
equation for isothermal evolutions. We have 

T = (~?W/~F) T, f i ,h  = (~/0X)expl. (2.6) 

The latter is a covariant material vector which is the explicit material gradient of the Lagrangian 
density: it is the material inhomogeneity force such that 

finh=(VR~o)(lv 2) - -  ( ~ W / O X ) e x p  1. (2.7) 

It thus captures both inertial and elastic inhomogeneities. 
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By left multiplication of (2.1) by F r and integration by parts while accounting for the following 
obvious kinematical compatibili ty condition: 

& / = VRV, (2.8) 

it is shown that there holds the following unbalance of pseudomomentum [3], [4]: 

"~ X = flnh, ~- - diVR b (2.9) 

where we have defined the material  (covariant) pseudomomentum ~ and the Eshelby (material 
mixed) stress tensor b by 

= -Qo  F r -  v = 0o~"  V, (2.10.1, 2) 

b = -(s + F r i 0 .  (2.11) 

Equation (2.10.2) holds on account of the definition of the Green finite-strain tensor IE and of the 
material  (contravariant) velocity V by 

112 = FrF,  V = ~Z-1/&Ix, (2.12) 

and the demonstrable relationship (through the chain rule of differentiation) 

v + F .  V = 0. (2.13) 

Applying now objectivity to W, we obtain, e.g., 

1 
W =  17V(IE; X), E = ~- (t12 - 1R), (2.14) 

b = - - ( ~ l R  + 112" SE) ,  S E = F -1  �9 T r = OIYV/OlE, (2.15.1,  2) 

where S e is the second Piola-Kirchhoff (symmetric, material, contravariant) stress tensor. In 
both Eqs. (2.10.2) and (2.15.1) we see that  ~ plays the role of a material (deformed) metric to build 
covariant or mixed geometric objects from contravariant  ones (e.g., V and SE). In, and only in, 
elasticity can Eq. (2.9) be also obtained alternately either by (i) applying Noether 's  theorem for 
X-translations to a variational formulation in which one varies directly the direct mot ion 
(keeping X fixed) or (ii) direct variation of the inverse mot ion Z- 1 (keeping the actual placement 
x fixed) [3]. We have called Eshelbian mechanics the consideration in continuum mechanics of 
fully material balance (or unbalance) laws such as (2.9) on the material  manifold -M 3 and not in 
physical space - which is still the case of Eq. (2.1) in spite of it being often referred to as 
a "material  form". For  completeness we recall the two forms of the balance of angular 

momentum:  

F T  r = TF r, bC = l12b r, (2.16) 

of which the second can be verbally expressed as "b is symmetric with respect to the metric C". 
For  further use we also notice that Eq. (2.9) reads in full: 

(~-~-)expl = V R S ~ + d i V R ( F r ~ W )  + & ( - ~ ) x '  (2.17, 
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as it is readily checked that 2 '  is also written as 

1 
~e = ~- ~o(X) v -  r  v - w(F;  x) .  
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(2.18) 

3 Application to dynamic fracture 

Assume now that Eq. (2.9) holds at any point inside the material volume V deprived of 

a disk-shaped thicknessless region S of regular edge ~Z. For  further purpose we want to evaluate 

the global quantity 

~inh(y--~) = f f i n h d V :  f (~t x--divRb) dV- 
V-I? V-~ 

(3.1) 

In order to transform the two contributions to the last integral we need appropriate 

generalizations of the so-called Reynolds (transport) and Green-Gauss (divergence) theorems. 
Indeed, whereas no specific problem arises for the applications of such theorems in a simply 

connected region where all fields are assumed to behave regularly everywhere, potential theory 

and vector analysis [16] tell us that for a nonsimply connected region such as V-Z one should 

anticipate on the singular behavior of fields at OZ to write down correct generalizations of the 

sought theorems. In the present case Z is supposed to be a mathematical crack in the sense that 
the elastic displacement u is assumed to be discontinuous across the two (traction-free) faces Z § 

and S -  of Z, and these two faces cannot solder back although they coincide mathematically. 

Furthermore, the crack S may expand and move so that (remember we are in material space) we 

call q/ the material (contravariant) velocity of matter with respect to the crack. Finally, let Sx(OZ) 
a local orthogonal cross section to 6Z and r a radial coordinate in that section with origin at 3Z 

(later on, the tip of the straight through crack). Then the local behavior of the fields depends on 

the solution of the problem, that we do not know, and that solution depends itself on the material 

behavior considered. For  elastic materials u goes like ~ and the stress like 1/]//r as one 

approaches aS in Sx(OS). For  other (in particular, or in fact, dissipative) behaviours, see for 

instance [1, pp. 259-261] .  Assuming that the elastic solution is the most drastic one from that 

viewpoint and calling F a circuit in Sx(3S) in the counter clockwise sense around OZ, starting and 
ending on Z -  and Z +, and [A] = A + - A -  the jump in A(X, t) across Z, where A § and A - are the 

uniform limits of A in approaching Z on its two faces along the normal, and Nbeing  that normal 

oriented from the minus to the plus face, we simply record here without proof  the required 
generalizations of the transport and divergence theorems: 
Generalized Reynolds theorem: 2 

f ~ x  ~ f 
~ ,iV = S; e ( V -  Z) - ~(~ " ~ dA 

V- ~ r)V- V~ 

(3.2) 

In [1] whose applications concern quasi-static fracture, the last contribution in (3.2) was overlooked. 
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Generalized Green-Gauss  theorem: 

S (divRb) dV= N~(V- X ) -  S [ b ] ' N d A -  ~ dL {lim o!b"  NdA}, (3.3) 

where we have defined the following global quantities: 

P ( V -  Z) = ~ ~ dV, (3.4) 
V-Y, 

N~(V-  Z) = ~ b" N dA, (3.5) 
OV-$ 

and assumed that N, which is quadratic in the basic kinematic fields, behaves like 1/r as goes to 
zero in Sx(aN). 

On account of (3.2) and (3.3) we find that (3.1) yields 

~ i n h ( v - -  X) ~-~ ~ e ( v - -  Z) -- ~ E ( V - -  Z) ~- [~dyn] " N dA + dL f ( b a r . "  PC) clF , 
F 

where 
(3.6) 

~E(V-- S )  = ~ bay  n �9 NdA, bay  n = b - ~ | q/. (3.7) 
OV-~ v 

Equation (3.6) provides the expression of the global material force due to material  inhomogenei- 
ties and acting on the regular volume V -  N in the presence of the finite crack Z. But our aim here 
is to find the expression of a material  force which pertains to Z in an otherwise homogeneous 

material  body. Following [3], to arrive at this result we shall let V itself (or a region V' of 
V containing the disk-like crack) shrink to Z. One could then think that  the result of this 
procedure is none other than zero. But the crack is a material  inhomogeneity in its own right and 
the shrinking procedure shows that all contributions disappear with the exception of the one 
pertaining to aS. Thus in the limit we capture a material entity which characterizes the crack 
through the singular behavior of fields in the immediate vicinity of its edge. We have thus: 

= {lim ~ f  ".yo ' 0  % (3.8) 

which is the essential result in the spirit of Eshelbian fracture mechanics. For  a straight through 
crack with traction-free faces, aS becomes a straight infinite line and we estimate ~-(Z) per unit 
thickness of the sample. We call ~,~(aZ) this elementary material  force which is nothing but 

. ( a z )  = ! (bayo dr.  (3.9) 

The projection of this force onto the unit direction el of possible extension of the crack is 

~ l (aZ)  = el �9 ~ ( a S )  = lim ~ el. (b - ~ | o~). NdF. (3.10.1, 2) 
F-~O F 
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It remains to evaluate the integrand in the last integral. We recall that  

bayn = - ( & a i r  + ~ | OR + FrT) = --(~C~ + ~ | OR + C"  S~), (3.11) 

with &a given by Eq. (1.7) and ~ by Eq. (2.10). We note that 

- e l  �9 bayn �9 N = 5~(e l  " N)  + (el  " g~) (OR" iV) + e l .  112. S ~ . N ,  (3 .12)  

and 

= --OO(1R + VRU)'U, (3 .13)  

ifu(X, t) = x -- Xis  the displacement field. We shall assume (elasticity) that both S e and/ /behave 

like 1/ l / r  so that 

lim j (e~. N E- N) dr  = 0, lim J QoU(OR �9 N) dF = O. 
F ~ O  F F ~ O  F 

(3.14) 

For  our crack extending in the direction ex with velocity -~  with respect to matter (see Fig. 1 

where both direct and inverse motion descriptions are given), we have OR = - iel while terms like 
A will give (compare [17]) 

A ~- i(el. ~) A. (3.15) 

This allows one to rewrite the relevant critical contribution - the second one - in Eq. (3.12), 
anticipating the nil contribution in (3.10.2), as ([ 4= 0) 

( e l '  ~) (OR-N)  ~ {i- 'QoaZ} - { - i ( e l .  N)} = -~ot/2(el .N) (3.16) 

while, anticipating on (3.10.2), the relevant contribution to the last term in (3.12) shall be 

e l  �9 t12. S t .  N -  2 e l  " ]E .  S ~ . N =  (e l  �9 VR) U" ( S  t "  N ) .  (3.17) 

Collecting terms from (3.16) and (3.17) we thus obtain 

- - e l  �9 bdyn" N = ( s162  - -  00t i  z) ( e l  " N )  + ( e l  " VR) U" T a. (3.18) 

y 

a 

f-- 

\ 
\ 
\ 

Fig. 1. Straight through crack: a direct- and b inverse-motion descriptions 

X 

b 
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On substituting from this into Eq. (3.10), we finally reach the remarkable result 

NI(SE) = lira Jr ,  (3.19) 
F ~ O  

where Jr is the dynamic path-independent integral defined in Eq. (1.4). This is the solution to the 
apparent paradox of passing from the Lagrangian to the Hamiltonian in the dynamic J-integral 

deduced from the Eshelbian-mechanics framework. According to Freund [10], this was 
"hypothesized" (quotation marks mine, G.A.M.) by Atkinson and Eshelby [9] - who in fact 
worked along Cherepanov's line. To be fair, however, a real proof close to the above-given one is 

sketched out in Eshelby [16] although Eshelby himself refers to his sketchy derivation as a rather 
"metaphysical one" in which the "elastic field is transported rigidly" along the e~-direction 
(compare Part b in our Fig. 1). Two ingredients are central to the above-given derivation: (i) some 
a priori knowledge of the singularity of the involved fields is required and (ii) taking account of 
the pseudomomentum contribution is a necessity. When the latter is discarded, passing from the 
Lagrangian to the Hamiltonian in J r  is strictly impossible 3. In the following two Sections we shall 
generalize our proof to the rather difficult case of the electrodynamics of continua in the Galilean 

framework. 

4 Reminder on the eleetrodynamics of continua 

In order to proceed to the dynamical electromagneto-elastic case, we need some elements of 
electrodynamics reformulated in the material framework. Such elements are developed at length 
in several treatises [19]-  [21] to which we refer the reader for details. Here we recall the strict 
minimum compatible with a good understanding. Only a Galilean invariant approach is 
considered and obviously is more than sufficient for engineering purposes. Let E, B, D and H be 
the classical electromagnetic fields in the laboratory frame RL at time t in the actual configuration 
Xt. Still in 5(tt but in a co-moving frame Rc(x ,  t), the electromotive (field) intensity ~, the magnetic 
field JY and the magnetic induction N are defined by (c is the velocity of light in vacuum) 

1 1 1 
g = E +  - - v x B ,  ~ = H -  - - v x D ,  N = B -  - - v x E .  (4.1) 

C C C 

Material fields are introduced by convection (pull) back to YFR (the transformation formula 
depends on the "tensorial variance" and "nature" of the geometrical object): 

= J r F  -1 " B ,  ~ = J r F  -1 �9 D,  

1 
~ = E F ,  ~ = g . F = ~ - - - V x ~ ,  

C 

1 (4.2) 
~ = H . F ,  5 = J~(C ' -F=g+ --  V x  ~ ,  

C 

1 
~3 = J r F -  l . N , N = J v F -  i . B = ~3 + ~ g x @, 

3 Thus, Freund's claim in [5, p. 267] that his Eq. (5.6.9) follows from his Eq. (5.6.8) is blatantly wrong as 
pseudomomentum is discarded altogether. 
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where V indeed is the material velocity defined in (2.12). At any regular material point X of 
a nonconducting but magnetized and electrically polarized body in motion, Maxwell's equations 
then read 

1 023 x V R x e +  ~ - ~  = 0 ,  Vg- 23 = 0, (4.3.1,2) 

1 0 ~  x VR x ~ - ~ ~ = 0, VR" ~3 = a : ,  (4.3.3, 4) 

where ~ :  is the free charge density per unit volume in ~lR. Contrary to Eq. (2.1), Eqs. (4.3) are 
directly written in a completely material form [say, like Eq. (2.9)]. The first couple (4.3.1), (4.3.2) 
obviously implies the existence of material electromagnetic potentials ~b (scalar electric potential) 
and 91 (magnetic vector potential) by 

( 1091 ~, 
e = - VRc~ + ~ ~ t  xJ 23 = VR x 91. (4.4) 

Charge conservation requires that 

0~:/0t  Ix = 0. (4.5) 

The second kind of ingredients we need are the notions of electromagnetic Lagrangian and 
Hamiltonian densities. All interactions with matter are taken care of in the magnetoelastic 
potential energy W(F, ~, 23; J0 - inhomogeneous bodies - which replaces the W present in 
(2.4). The remaining contributions of the "free" field E and B (i.e., those fields which exist 
everywhere including in vacuum) to the electromagnetic Lagrangian and Hamiltonian densities 
thus read, per unit volume of ~R, 

1 1 1 j _123.tF. 23, S ( E ,  B; r (X ,  t)) = J~ . ~ (E 2 - B 2) = -~ SF~ . r  ~ - (4.6) 

and 

1 1 1 
JfF(E, S; F(X, t)) = .IF" ~ ( E2 + S 2) = ~ JF~" 1~-1. (_~ + 2 jF-123.1~.  23, (4.7) 

where, following W. Thomson (Lord Kelvin), we may view the electric and magnetic energies as 
analogs of mechanical kinetic and potential energies, respectively. The transformations yielding 
the second expressions in Eqs. (4.6) and (4.7) are straightforward on account of the definitions 
(4.2). Obviously, 

~/toF = ..~F + JF23 " C" 23 (4.8) 

o r  

~ v  = _ ~ r  + j v ~ .  ~ - ~ .  ~ ,  (4.9) 

where we recognize in the latter relation something akin to the second part of Eq. (1.7). 
The electromagnetomechanical generalization of the motion equation (2.1) reads (cf. [19] 

or [4]) 

0 
& (PR + Pff)[x - divR (T E + T F) = 0, (4.10) 
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wherein 

PR = QO v, pR F = J~(E x B ) / C ,  

T g = (~ W/OF)Tpl  (4.1 1) 

{ 1 } 
T F = J e F -  1.  E | E + B | B - ~ (E 2 -t- B 2) 1 . 

It is readily shown that the latter can also be rewritten as 

T F =  JFIE -1 �9 ~ |  2 3 |  ~ r F - 1  (4.12) 

The reader will find in Chapter 8 of [4] the proof that Eqs. (4.10) and (4.3.3), (4.3.4) follow 

simultaneously from the direct-motion and potential (q5 and 2I) variations of the Lagrangian 

density 

1 
s = s + 2 ~o(X) v 2 - I1v'(F, ~, 23; X) (4.13) 

with the complementary constitutive equations for (material) polarization and magnetization 

given by 

IM = -31Yg/a23, H = -8I?r (4.14) 

so that 

= JFI~ -1 -  ~ q- l ,  5 = J e  1t~" ~ -- ~ (4.15) 

w i t h / / a n d  ]M related to the usual (Eulerian) fields P and M by 

( 1 )  
FI = J F F - 1 .  P ,  N I =  M + ~ v x P " F = J//" F (4.16) 

if (Lorentz-Heaviside E M  units are used throughout) 

D = E + P,  H = B - M .  (4.17) 

Alternately, (4.10) can be written as 

+ PRF) x 
3~ (PR -- divR (T + T INT + T r) = 0, (4.18) 

wherein T is the first Piola-Kirchhoff stress associated with the Cauchy stress in accord with 

Eq. (2.2.1) and we have set 

T INT = H | E -- 23 | J/l + (NI.  23) F 1, (4.19) 

which emphasizes the contribution of polarization and magnetization as representative of 
interactions between free fields E and B and matter. The two-point tensor defined by the sum 
T INT + T/~ is none other than the first Piola-Kirchhoff stress associated with the "Maugin- 

Collet" electromagnetic stress [19] (coinage by Ilyushin [22, p. 272]). 
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5 Inhomogeneities and fracture in dynamical electromagneto-elasticity 

In writing down the equations of Section 4 we have assumed the presence of smooth inertial and 
electromagneto-elastic material  inhomogeneities. This applies to a regular simply connected 
material  domain. Like in the pure mechanical case recalled in Section 2, this can be materialized 
by the computat ion of a material  inhomogeneity f o r ce r  inh in the same manner  as in Eq. (2.9), i.e., 

formally 

finh: __&0 ~ t  X -- divR b t, (5.1) 

where ~ t  and b ~ are total pseudomomentum and Eshelby stress acounting for electromagnetic 
effects. However,  as remarked originally by Maugin and Epstein [23] in quasi-statics and 
Maugin, Epstein and Trimarco [24] - [26] in Galilean electrodynamics, the expression (4.6) shows 
that  A ~ cannot  depend explicitly on X, so that  we have the identity (compare to Eq. (2.17)) 

O ~- ~ 0X Jexpl = VR~(~F -- divR FT O F J  + ,~t\OVJlx (5.2) 

at any regular point X in  matter  (and obviously outside). This result is t an tamount  to saying that 
a completely material  formulation such as in (5.1) filters out the "pure" free field contributions or 
that  the material  manifold ~/g3 is mechanically transparent  to free electromagnetic fields. As 
a consequence, as shown in [24], [25], in the local equation (5.1) ~ t  and b t are given by the 
expressions 4: 

1 
Y = Qo(X) a:-  v + n x 23, (5.3) 

C 

( 1 )  
b t= W -  ~ e o  v2 1R--lIT + H | 1 7 4 1 6 2  (5.4) 

if, after imposing objectivity, 

W = llv'(• ~, 23; J0 ,  N E = 017~/01E, /7 = -0I ,V/0~,  IM = -~1~/~23. (5.5.1-4)  

Clearly, the expressions (5.3) and (5.4) contain the free fields only insofar as they combine with 
polarization and magnetization, the latter two being true (thermodynamically extensive) 
material  entities. 

But the above reasoning holds true only at regular points X for the good reason that the 
right-hand side of Eq. (5.2) may  not be integrable (over volume) in the vicinity of a singularity 
such as the tip of a crack (i.e., the limit of the sum of the r. h. s. of (5.2) over a region about  
a singular point is not zero as we shrink that  region to the singular point). That  is, we may  say that  
if a smooth material  manifold is indeed transparent  to the free electromagnetic fields, 
singularities of this manifold may  capture the singularities in the free electromagnetic fields. This 
is the case of what  happens in electromagneto-elastic fracture as unambiguously demonstrated 
by Maugin and Dascalu [27]; this allows one to reconciliate the remark of Maugin and Epstein 
[23] with the quasi-static expressions proposed by Pak  and Her rmann  for electroelastic fracture 

4 The quantity - ( N I .  ~3) - dipole energy - coming from the last contribution in (4.19) has been 
absorbed in l~without loss in generality on account of (5.5.4). 
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[28], i.e., free fields in general remain involved in the J-integral of electroelastic fracture. What 

happens then in dynamical fracture? Had free fields not been involved, the question whether the 
Lagrangian or the Hamiltonian of free fields appears in dynamical fracture would be irrelevant. 
But this is not the case ! Therefore, we must examine the question again in the larger framework as 

it is clear from a global-dissipation analysis in Cherepanov's style (such as proposed by Farat 
[29]) that it indeed is the Hamiltonian which does appear in the relevant J-integral. To envision 
this more general case we must thus consider the full expressions (which include the vanishing 
one of Eq. (5.2)) 

1 F r . ( E x B )  Ca '=  ~ o ( X ) r  (5.5.1) 

and 

~5r F 
b t = - ~ l g  + F T . _  - ~ "  SE + I I @  ~ - -  ~ @ ~r (5.6.1) 

0F 

o r  

1 
Ca' = eo(X) ~ .  v + ~ A ( r  - ~) x m, (5.5.2) 

and 

b t =  - -5 r  F +  ~ ) |  (5.6.2) 

where Y is given by (4.13) with Wdepending now on E rather than on F. We can now proceed to 
the analysis of the material force acting on the tip of a straight through crack in dynamical 
electromagneto-elasticity. It suffices to remark, following the analysis of Section 3, that o~  in the 

direction of el will now be given by 

~ , ( ~ S )  = l im ~ ea " (bt - C at | q l)  " N d r .  
F + O  F 

(5.7) 

As the other contributions now offer no difficulty on account of the results of Section 3, we need 
concentrate only on the contribution due to electromagnetic pseudomomentum. We thus 
evaluate the quantity 

1 
~- < .  [ J ~ ( r  �9 ~)  • ~1 (~U - U)  (5.8) 

on account of (4.4) and the fact that @ and ~3 may present singularities of the order of 1/1~ at the 
tip of the crack. We notice that 

qg" N =  - lel " N ,  

(el"  VR) 9.1 = i - 1 8 ~ / 8 t  ~ C i - ' ~ ,  (5.9) 

e~ x (VR x 9.I) ~ -(e~ �9 17) ~ ,  
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so that, in the neighborhood of the crack tip (l + 0) 

1 
e~- [J~( r  0 '  ~] (~U.~_-- - J ~ ( ~ .  r  0 (el 'U)-  
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(5.1o) 

Thus 

-5r N) - (ca" Nt) (q/- N) = -s  N) + 0ou2(el �9 N) + Jv(~" r  ~) (ea .N) 

---- W - -  ~- 00 P2 -1- 00IA 2 q- ~ J F ( B  2 -[- E 2) (el . N )  (5.11) 

{ 1 } 
= W+ ~1 ~~ 2 + 21 JF(~" r ~) + ~ JF 1(~. r  ~) (el.  N) = ~f'(e~ - N), 

where W* is the total (matter plus fields and interactions) Hamiltonian per unit volume in ~R. 
Hence (5.7) reads 

~ ( O Z )  = lira J~-", (5.12) 
F~0 

wherein (N1 = e .PC) 

JFem = I {~'N1 - (el" 112). (S~ �9 N) + (el '  ~) (3" N) + (el '  ~) (~3. PC)} dF, 
F 

which is the desired result. This can also be rewritten as 

(5.13) 

Jrem= f{g4~ 
F 

[ ] } -- (r  4 - } - ~ ( e l - ~ ) ( ~ ) . N ) - I - ( e l - 5 ) ( ~ - N )  dr .  

In particular, with el �9 VR = 3/~X for quasi-statics, one obtains the reduction 

(5.14) 

f{[ 1 
Jr em = W +  ~ JF(E 2 

F 

+ B2)] N1- Tr Ou ~r c3~) } �9 0-X - ~ ~ -t- ~ 1 ( ~ "  PC) d r ,  (5.15) 

wherein T r = S g �9 N and Qr = ~ .  N. In the electroelastic case we have the further reduction 

Jr  E = WOE, ~) + ~ J r ~ '  II~-1 N1 . . . .  

F 

Ou ~ 04)) 
OX ~ ~ dF (5.16) 

in agreement with Pak and Herrmann [28] or Parton and Kudryavtsev [30] - although the latter 
authors clearly have - see their Eq. (33.1) in p. 313 -- in their derivation an essentially linear 
view of mechanical and electric behaviors. In the above Eqs. (5.13)-(5.16), the material may be 
anisotropic and nonlinear (allowing thus for piezoelectricity and higher order electroelastic 
couplings [21]), in particular from the electric point of view as may happen in ferroelectric crystals 
or ceramics. 
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6 Conc lud ing  r e m a r k s  

The above-given derivations clearly exhibit the crucial role played by pseudomomentum in 

obtaining J-integrals of dynamic fracture in agreement with those of a global-dissipat ion 

analysis. As a mat ter  of fact, p seudomomentum plays a fundamental  par t  in all dynamical  

processes expressed on the mater ial  manifold. This is part icular ly true of linear and nonlinear  

wave phenomena including electromagnetic optics. Fo r  this subject mat ter  that  extends outside 

the scope of the present paper  we refer the reader  to original works [31] - [33]. As a mat ter  of fact, 

Eq. (2.9) is the balance or unbalance of pseudomomentum while Eshelby's stress and the 

inhomogenei ty  force are but  the flux and source terms associated with it! 
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