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Abstract. This paper presents an improved direct control architecture for the on-line learn- 
ing control of dynamical systems using backpropagation neural networks. The proposed 
architecture is compared with the other direct control schemes. In this scheme the neural 
network interconnection strengths are updated based on the output error of the dynamical 
system directly, rather than using a transformed version of the error employed in other 
schemes. The ill effects of the controlled dynamics on the on-line updating of the network 
weights are moderated by including a compensating gain layer. An error feedback is in- 
troduced to improve the dynamic response of the control system. Simulation studies are 
performed using the nonlinear dynamics of an underwater vehicle and the promising results 
support the effectiveness of the proposed scheme. 

1. Introduction 

The recent interest in highly parallel networks of  simple processing elements 
(neurons) had led to the wide use of such neural networks (NN) for the learning 
control of dynamical systems [3]-[7], [9]-[11], [14],[16],[20]. The capabilities 
of  such networks for efficient generalization and adaptation make them excellent 
candidates for the learning control of linear as well as nonlinear dynamical systems. 
The objective of  an NN controller is to generate the correct control signal to drive 
the dynamics from the initial state to a desired final state through an optimum 
state trajectory. The tracking performance and the ease of  implementation of  a 
neural network controller largely depends upon the learning algorithm chosen as 
well as the control architecture used. The two generally used control architectures 
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Figure la. Indirect control scheme. 
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Figure lb. Direct control scheme. The error eu corresponds to the error at the output of the 
neural network. 

are the direct control scheme and the indirect control scheme. In most of these 
implementations, backpropagation is used as the learning algorithm. 

In the indirect control scheme, the parameters of the dynamical system are 
identified at each instant; these parameters are then used to estimate the controller 
parameters (see Figure la). Thus there is an explicit identification process in this 
approach [9], [8]. The disadvantage of such a scheme is that the identification and 
control are solely based on the error eu, and hence minimization of the output 
error ey cannot be guaranteed [11]. In the direct control scheme, the controller 
parameters are directly adjusted to reduce the output error (Figure lb). Hence it 
is simpler to implement such a scheme [8],[9]. It may be noted that even when 
the dynamics is linear and time invariant, the above approaches result in overall 
nonlinear systems [8],[9]. One of the problems in having a direct control scheme 
using neural networks is that the error at the output of the neural network (network 
error eu), which is needed for updating the network weights, is not directly available 
(see Figure lb). Only the system error ey can be measured at the output of the 
dynamics, and it does not represent the error at the NN output. Three different 
methods have been proposed in the literature to derive the network error from 
the system error measurements. In the first method [11], the dynamics is treated 
as an unmodificable layer of the NN, and the error is backpropagated through 
the dynamics. In the method proposed by Chen et al. [1], the system error is 
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transformed into the network error using an inverse transfer matrix of the dynamics. 
The third method [3] uses a fixed feedback gain stage to generate a transformed 
error signal that is employed for updating the neural networks. In the first two 
methods, the differential gain of the dynamics (forward Jacobian) directly affects 
the network updating. These methods suffer from the fact that an on-line numerical 
estimation of the Jacobian may result in sharp changes in the transformed error 
and hence in the network weights. On the other hand, the third method may be 
able to provide robust results only over a particular range, as the feedback gain is 
fixed [1],[3]. 

In this paper, after a brief review of the above three implementations of the 
direct control scheme using the backpropagation algorithm, we propose a modified 
architecture. The major difference in the proposed architecture is that the network 
interconnection strengths are updated using the system output error rather than the 
transformed error used in the other schemes. The ill effects due to the numerical 
estimation of the Jacobian of the controlled dynamics are moderated by adding 
an extra gain layer between the neural network controller and the system. The 
gain layer is a single layer NN with linear transformation. The gain layer NN 
is initialized to the approximate steady state inverse gain of the dynamics and is 
adapted on-line. An error feedback, similar to the one in Kawato's scheme [3] 
is introduced to improve the dynamic response of the control system. Results of 
simulation studies performed on the nonlinear dynamics of an underwater vehicle 
show that the presented schemes give promising results. In the following sections 
we describe the schemes and the simulation results. In this study, we first develop 
and analyze the schemes for Single Input Single Output (SISO) dynamics for ease 
of explanation and comparison. The schemes are extended to deal with Multiple 
Input Multiple Ouput (MIMO) dynamics. Simulation results are provided for the 
control of both SISO and MIMO dynamics. Also, in the subsequent discussions, 
we use the words controller, NN, and network interchangeably, to refer to the 
neural network controller. 

2. Direct control schemes 

Consider a time-varying dynamical system represented by a set of nonlinear dif- 
ferential equations, k = f ( x ,  u, t), y = h(x, t), where x denotes the state vector, 
y the system output, and u the input. If we represent the input to the dynamics 
u as a nonlinear function o fx  and t, i.e., u = ~b(x, t), then k = f [ x ,  alp(x, t), t] 
represents the closed loop system dynamics. The objective of an on-line learning 
controller is to generate the control signal to drive the dynamics to a state x* at 
each instant in time so that the e r r o r  ey(t) between the desired output yd(t) and 
the actual output y(t) asymptotically tends to zero. 

In an NN based on-line learning control scheme the objective of the neural 
network is to generate the control input u by mapping the nonlinear function 
~b(x, t). As indicated previously, to use the backpropagation learning algorithm, 
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the error at the output of the network has to be estimated in order to update the 
neural network interconnection strengths. 

2.1. The network error and the system error 

Figure lb shows the basic direct control scheme. The NN learns the inverse char- 
acteristics of the dynamics implicitly and generates the correct control signal u 
to drive the system state y to the desired state Yd. Defining the squared error at 
the system output as the objective function to be minimized by the controller, we 
have: 

1 
Ey = ~(Yd -- y)2. (1) 

If (Yd -- Y) is defined as ey, the gradient of the error with respect to the network 
interconnection strength w is: 

OEy Oy 
Ow = -ey  ow (2) 

Oy Ou 
(3) 

= -eY Ou Ow" 

The above equations can be generalized to the case when w is a vector. The term 
~Y corresponds to the forward gain of the dynamics and is an important factor in Ou 
determining the stability of the overall system [19]. The term ey OO-~u represents the 

transformation of the total error ey with a transformation factor ~ .  If  we define 

J(u) = oy equation (3) can be rewritten as 

OEy Ou 
O w -  eyJ(u)-~w" (4) 

2.2. Backpropagating the error through the dynamics 

If we consider the system dynamics as an additional layer of the NN controller, 
having interconnection strength J (u) with no updating, equation (4) represents the 
backpropagation of the system error ey through the dynamics. This approach, orig- 
inally proposed by Psaltis et al. [11] and termed the "specialized learning scheme," 
is an effective way for the direct control of dynamical systems using neural net- 
works. It is used in a number of later studies in different forms [4],[16],[20]. We 
review the network updating equations here for comparison with the other schemes 
discussed in this paper. 

Following the notations in [12, pp. 327-330], let us define Aw p as the change 
in weight wji connecting neuron i in the (p - 1)th layer to the neuron j in the pth 
layer. Let ~ be the derivative of the error at the layer p, say Ep, with respect to 

the summed input to the sigmoid transformation (net f )  at neuron j,and o ] as the 
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output of the neuron. Then the updating equations for any layer can be shown to 
be [12]: 

w~(n + 1) = w~(n) + Aw~/(n) (5a) 

where 

and r~ is the learning rate of the NN. 
Using equation (4), we can get 8; for the output layer of the network as 

3; = J(u)eyfj'(net p) (6a) 

and for any other layer as 

SiP = fi'(netiP) Z 8;wJi (6b) 
J 

where f /denotes  the derivative of the sigmoidal transformation function j~ which 
is given by 

f~(netP) = [1 - exp(-netP)] 
[1 + exp(-netiP)]" (7) 

The differential gain J (u) (or instantaneous forward Jacobian) can be estimated on- 
line from the changes in y and u over two consecutive time instants. Alternately, the 
dynamics can be modeled using a neural network and can be used for transforming 
the error e r to eu, the equivalent error at the NN output (see Figure lb) [6]. Troudet 
et al. discusses such a scheme for flight control application in [16]. 

One of the problems in treating the dynamics as a nonmodifiable layer is that the 
convergence of the NN may be slow [1]. From equation (6a), it can be seen that the 
differential gain of the dynamics directly affects the network updating. An on-line 
numerical estimation procedure using the ratio of the incremental changes in the 
output and input of the system dynamics may generate large variations in the value 
of J(u), causing correspondingly large changes in weights. This problem is more 
evident when the reference command signals are rapidly varying. Also, under 
steady state conditions when the change in inputs and outputs are very small, 
a numerically estimated Jacobian J(u) will be inaccurate. The inverse transfer 
matrix scheme suggested by Chen et al. [1] is a more suitable method under such 
conditions. 

2.3. The inverse transfer matrix scheme 

In the inverse transfer matrix scheme (Figure 2), the error function to be minimized 
is chosen as 

1 
EKy = -~(Kcey) 2 (8) 
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Figure 2. Inverse transfer matrix scheme. 

where Kc represents the inverse transfer relationship of the dynamics. The network 
updating is done by estimating the derivative of the error function with respect to 
the weights, i.e., 

OEK~ _ K2 e Oy 
Ow c y Ow" (9) 

As before J (u) = Oy and equation (9) reduces to: 

OEKy = _KZeyJ(U) Ou 
Ow O-ww" (10) 

When Kc --~ [J(u)] -1, the scheme proposed in [1] is obtained; EKy corresponds 
to the squared error at the NN output. Then 

OEKy OU 
0--~ -- Kcey Ow" (11) 

The updating rules in this scheme remain the same as in Psaltis' scheme, except for 
the output layer weights. For the output layer weights, equation (6a) is modified 
as 

3~. = Kceyf j (net] ' ) .  (12) 

The important difference between the specialized learning scheme and the in- 
verse transfer matrix scheme is that in the first method the system error ey is 
minimized, whereas in the second method the error estimated at the output of the 
NN, eu, is minimized. Comparing equations (6a) and (12), it can be seen that the 
differential gain of the dynamics affects the network updating indifferent ways in 
the above schemes. In the case of the inverse transfer matrix scheme [1], if the 
inverse differential gain Kc is computed off-line, the convergence may be faster 
because the dynamics is not treated as an additional layer of the NN. However, 
the numerical problems associated with the on-line computation of Kc can cause 
large changes in the network weights. Also, for control signals of constant values 
(Ou --~ 0), the on-line estimated values of the inverse differential gain may be 
inaccurate and unreliable. 
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Figure 3. Feedback gain scheme. 

2.4. The feedback gain scheme 

Kawato et al. [3] suggested an error feedback scheme for the direct control of 
dynamical systems, motivated by the voluntary movements in biological systems 
(Figure 3). The feedback gain Kk is estimated off-line and is used for transforming 
the error for updating the network weights as well as for generating the control 
signal u. From Figure 3, we obtain the following expressions for the control signal 
U: 

u = Kkey + v (13) 

where ey = Yd -- Y, as before, and v is the NN output. In terms of the Jacobian of 
the dynamics J (u), the system response y can be expressed as: 

y = [v + Kk(yd -- y ) ]J (u) .  (14) 

Expanding equation (14) and rewriting: 

J ( u ) v  KkJ(U)yd 
Y -- 1 + J (u )Kk  + 1 + J (u )Kk"  (15) 

The scheme in [3] corresponds to the approximation Kk ~-- [J (u)]- l .  Then equation 
(15) reduces to: 

J ( u ) v  Yd 
Y -- T + 2 (16) 

Note that the command signal Yd is directly influencing the system response be- 
cause of the error feedback. 

The error function to be minimized in this scheme is the same as that of equation 
(8), and the network updating equations can be derived as before. From equation 
(14) we get 

OY J ( u ) [  Ov 0.~y] (17) 
O--'-w = -~w -- K t o w d 

i.e., 
Oy J (u )  Ov/Ow 

(18) 
Ow 1 + J (u )Kk  
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When Kk --'~ [J(u)] -1 in equation (18) and with Eky defined by be 51 (Kkey)2, we 
obtain 

OEky= _gkeY 8V. (19) 
Ow 2 0 w  

Comparing equations (11) and (19) and using equation (6a), we obtain the weight 
updating equation for the output layer as: 

8 p = K k ~ fj'(netP). (20) 

Comparing equations (20) and (12), it can be seen that the feedback error scheme 
is equivalent to the inverse transfer matrix scheme when J - I  (u) = -~. With off- 
line estimation of the Jacobian, both methods provide similar results for SISO 
dynamics. 

It is to be noted that for good tracking performance over a wide range of 
nonlinear time-varying dynamics, sophisticated estimation of Kk is needed. An 
important aspect of this scheme is the increased speed of learning due to the error 
feedback. The network error directly affects the control input resulting in faster 
learning, whereas in the other schemes, the error is reflected only through the 
network. Note that the network learning rate is usually kept very small when using 
the backpropagation algorithm for control applications, to avoid the possibility 
of divergence [9],[19]. Thus when the error is reflected only through the NN, the 
convergence may be slow. 

3. The gain layers schemes 

In this section, we propose two different architectures for the direct control of 
dynamical systems using neural networks (Figures 4 and 5). The schemes use 
the system error ey directly for updating the weights. The ill effects due to the 
numerical estimation of the differential gain of the dynamics are compensated 
by introducing a gain layer between the NN controller and the system. The gain 
layer is a separate single layer NN with linear transformations. The controller NN 
weights are updated at each iteration, according to the backpropagation algorithm 
using the er ror  ey. A rough estimate of the inverse of the steady state gain of the 
dynamics is used as the initial value of the gain layer NN and its weights are also 
updated at each iteration using the gradient descent approach. 

The objective function to be minimized is chosen as Ey = 1 (Yd -- y)2. The NN 
weights can be updated using the total error ey, provided we have Ey ----- Eo, where 
Ev is the squared error at the output of the NN (see Figure 4). This condition is 
achieved when 

8u ,.~ 8u (21) 
Ov ~y 

or 
g _~ [J(u)] -1. (22) 
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Figure 4. Gain layer scheme. 
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Figure 5. Gain layer scheme with error feedback. 

In practice, the gain layer NN is determined through an adaptation process and 
will serve as an approximation of the inverse Jacobian of the dynamics. The gain 
layer has a role similar to the feedback gain constant Kk of Kawato's scheme and 
the inverse transfer matrix Kc of Chen et al. The weight g in the SISO case is a 
scalar value; it will be a matrix in the case of MIMO systems. 

The NN updating equations are derived as in equations (5) and (6) and the 
output layer updating rule becomes 

3P = ey f j (ne t f ) .  (23) 

In the following section, we outline the procedure for determining the gain layer 
weights. For simplicity, we first consider a SISO dynamics where g is a scalar 
value. 

3.1. Updating the gain layer 

Let g(k) be the gain layer weight at the instant k. The adaptation rule for g(k) can 
be written as 

g(k) = g(k - 1) + Ag(k) (24) 
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where Ag(k)  is the change in g(k) at instant k. Using the gradient descent rule to 
minimize the squared e r r o r  Ey (see equation (1)), we obtain 

OEy(k) 
Ag(k )  = --a (25) 

Og(k) 

where ot is the updating rate for g(k).  Rewriting the above equation using the chain 
rule and dropping the index for brevity, 

OEy OEy Ou 
- -  - -  - -  ( 2 6 )  
Og Ou Og 

OEy Oy 
= - - ( Y d  - -  Y)-~U" ( 2 7 )  

OU 

Assuming that v is a weak function of g and ignoring the implicit effect of g on v 
through network feedback, we make the approximation that ~ = v. Thus equation 
(24) reduces to: 

g(k)  = g(k - 1) + a(yd -- y)v-~--. (28) 
OU 

3.2. Effect o f  the error feedback 

Equation (16) indicates that the error feedback helps to improve the system res- 
ponse. We introduce an error feedback similar to the scheme by Kawato and Figure 
5 shows the modified scheme. 

The input to the gain g is: 

Z = V "}- ey = v + (Yd -- Y). (29) 

Then, the control input to the dynamics is given by 

As before, defining 

gives on rewriting: 

U = zg. (30) 

y = J (u )u  (31) 

= J(u)g[v  + (Yd -- Y)I (32) 

J (u )vg  J (u)ydg  
Y -- 1 + J (u )g  + 1 + J(u)g"  (33) 

Considering the updating equations of the gain g we have, 

O Ey _ O Ey Oy 
- -  - -  ( 3 4 )  

0g 0y 0g" 

But 
Oy Oy O(zg) 
Og Ou Og (35) 
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As  
O(zg) Oz Oz Oy 

Og -- z + g-~g and Og - Og' ( 3 6 )  

O y = O y [  ( ~ g y )  ] 0g 0---~ z +  - g . (37) 

On rewriting, we obtain: 

Oy (Oy/Ou)z J[v  + ey] 
Og (1 + g(Oy/Ou)) 1 + g J  (38) 

Or 
OEy eyJ[v -t- ey] 
- -  - ( 3 9 )  
Og 1 + g J  

In this case, equation (28) is modified to: 

g(k) = g(k - 1) + aeyJ  Iv + ey]. (40) 
l + g J  

The important differences between the gain layer scheme presented here and 
the error transformation schemes [1],[3],[11] are as follows. In the gain layer 
scheme we use the system error rather than a transformed error. This reduces 
the rapid variations in the NN weights due to the ill effects present in numerical 
estimation of the Jacobian. In our case the Jacobian affects only the gain layer 
weights, and their updating is controlled by a different learning rate. This implies 
that the controller NN can use a larger learning rate to obtain faster convergence. 
Our simulation results support this argument. Also, because of the presence of 
error feedback the system response is faster. The NN time constant plays only a 
secondary role in the dynamical response of the system. Further, the gain layer 
is adaptable and the initial value of g need not be estimated precisely, unlike in 
the feedback gain scheme [3], where the gain is fixed and needs to be estimated 
precisely for better tracking. 

3.3. Extension to MIMO systems 

The proposed gain layer schemes (Subsections 3.1 and 3.2) can be readily extended 
to deal with MIMO dynamics. Figure 6 shows the scheme for a two-input/two- 
output dynamics. For a general n-input/m-output dynamics, the NN will have 
m outputs, and the (n • m)-matrix g will represent a fully connected single layer 
network with mn weights. The Jacobian of the dynamics will be an (m x n)-matrix 
with elements 

Oyi 
Jij = Oui' i = l . . . . .  m and j = l  . . . . .  n. (41) 
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Figure 6. Gain layer scheme for the control of MIMO dynamics. 

The NN as well as the gain layer are updated on-line by minimizing the accumulated 
e r r o r  Ey over all the outputs of the dynamics. That is, 

1 ~ ( Y d ,  -- Yi) z = IIYd -- YII 2. (42a) 
Ey = ~ 1=1 

The weight updating equations for the NN controller are the same as in equations 
(5) and (6) except that the output layer rule becomes 

8~ = (Ydj -- y j )  f ( n e t f ) .  (42b) 

Proceeding as in Subsections 3.1 and 3.2, after some matrix manipulations for 
the chain rule of differentiation [13], the vectorized version of the gain updating 
equations can be obtained for the MIMO scheme. Equation (28) for updating gain 
layer (Figure 4) is extended to 

g(k )  = g (k  - 1) + a J r [ Y a  -- Y ] V  r (43) 

where all the data vectors are assumed to be column vectors of appropriate dimen- 
sions and T indicates the matrix transpose. 

Similarly for the error feedback scheme, equations (33) and (40) are modified 
to 

Y = [In + j g ] - l j g [ V  + Ya] (44) 

and 

g(k )  = g ( k  - 1) + a Jr[Ira + J g ( k  - 1)]-r[Ya - Y][V + Ya - y] r  (45) 

where I,, is the ( m x  m) identity matrix and - T  indicates the inverse followed by 
transposition. The simulation results for such a scheme are given in the following 
section. 
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4. Simulation results 

We applied the proposed gain layer scheme to control the nonlinear dynamics 
of an autonomous underwater vehicle. Assuming that the vehicle is traveling at a 
constant speed, the input-output relationship of the dynamics can be modeled using 
a set of fifth order differential equations having nonlinearities up to a degree of four 
[2]. The objective of the neural network controller is to provide a correct deflection 
angle 8, to the vehicle "stern plane" actuator to maintain a commanded pitch Od 
[2], [15]. The governing equations of the dynamics are given in the Appendix. 

The output states of the vehicle (the linear velocities along the three coordinate 
axes vx, Vy, and Vz and angular velocities p, q, and r) are obtained at each instant 
by integrating and solving the equations representing motion by integration, using 
a time-step of 0.05 sec. The vehicle pitch (system output) is obtained by integrating 
the angular velocity q, using the same time step. The typical operating range of 
the vehicle pitch is +15 deg to - 1 5  deg. 

4.1. Controlling SISO dynamics 

The controller NN weights and the gain layer are updated at every iteration that 
corresponds to a time step of 0.05 sec. A controller NN of size 2 x 20 x 10 x 1 
is used in all the experiments. The two inputs to the NN are the desired pitch and 
the actual pitch of the vehicle. The size of the controller NN is selected based on a 
rough estimate of the complexity of the dynamics. In earlier studies [17],[18], we 
found that a single hidden layer was insufficient to model the nonlinearity. After 
experimenting with different numbers of neurons in the hidden layers, we found 
empirically that a 2 • 20 x 10 • 1 network provides the best performance. 

Simulation studies are conducted for all the five schemes and the performances 
of the resultant control systems are compared by monitoring the speed of conver- 
gence, tracking error, and stability of the system. The controller NN weights are 
initialized to small random values between +0.1 and -0.1 in all the cases. On- 
line updating of the controller and gain layer weights are continued throughout 
the experiment. All vehicle states are initialized to zero at the beginning of each 
simulation study. 

Figure 7 shows the results of comparison for a commanded pitch of 8.5 deg. The 
results shown are the best ones for each method over a number of trials. Scheme (1), 
which uses transformation of the error by backpropagating it through the dynamics, 
results in slow tracking of the command signal. The inverse transfer matrix scheme 
(2) also suffers from poor tracking as the high value of the numerically computed 
inverse differential gain causes large fluctuations in the transformed error. In both 
cases, the learning rate used as 0.0001; any attempt to increase it further tends 
to create unstable responses. The feedback gain scheme (3) and the gain layer 
schemes (4), (5) were found to provide good tracking performances. The gain 
layer scheme with no error feedback (5) performs significantly better than the 
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specialized learning scheme of [ 11] and the inverse transfer matrix scheme [ 1 ]. The 
gain Kk (see Figure 3) for the feedback gain scheme was found from a linearized 
model of the vehicle dynamics. 

To this end, the linearized system functions of pitch (0) and vertical velocity 
(Vz) were determined at the operating forward speed of 10.16 ft/sec. They are: 

0 -(0.07808s 2 + 0.2311s + 0.0048) 
(46) 

8s 0.5077s 4 + 0.4576s 3 + 0.0780s 2 + 0.0050s + 0.0024 

Vz -(0.4228s 3 + 0.5420s 2 + 0.491s + 0.00799) 

t~"~- ---- 0.5077s 4 -1- 0.4576s 3 + 0.0780s 2 + 0.0050s + 0.0024" (47) 

From equation (46), the inverse of the steady state gain was calculated (=  -0 .5)  
and Kk was set to this value. The gain layer weight g was also initialized to the 
same value and updated on-line using a learning rate of 0.001. Equation (47) was 
used for the MIMO scheme described in the next subsection. The vehicle dynamics 
described by the nonlinear equations (A1) and (A2) (see Appendix) was used in 
all the experiments. It can be seen from Figure 7 that the gain layer scheme using 
the error feedback provided better transient response and smaller tracking error. 
The convergence of the gain g with respect to time is shown in Figure 8. 

In Figure 9 we demonstrate the tracking effectiveness of the gain layer scheme 
for fast-varying command signals. A command signal of the form 

yd(k) = 4 sin \ 7 0 0 0 ]  + 2 sin \ 2 0 0 0 ]  + 0.8 sin \ 1000] + 2.8 sin \ 3 0 0 0 ]  

(48) 
was given as the input to the network. The results shown are with a network of 
size 2 • 20 • 10 • 1 trained with a learning rate of 0.008. The controller is able to 
make the system track the command signal closely. The dotted lines correspond 
to the gain feedback scheme with the error feedback. The gain Kk as well as the 
initial value of g are kept the same as in the previous simulation. As in the other 
example, the on-line adaptation in the gain layer scheme drives the system towards 
better tracking. In all the simulation studies, the controller is trained starting from 
random initial conditions. 

4.2. Controlling MIMO dynamics 

We conducted some preliminary simulation studies on the MIMO control by em- 
ploying the gain layer scheme (without the error feedback) to control a single- 
input/two-output vehicle dynamics. The controller generates the control signal 8s 
(stem plane angle) based on the desired and actual values of the system outputs 
(pitch 0 and vertical velocity vz.) The scheme is similar to the one in Figure 6 except 
that there is only one input to the dynamics. The governing equations of the system 
dynamics are detailed in the Appendix. The NN controller of size 4 • 20 • 10 • 2 
has four input neurons corresponding to the desired and actual outputs of pitch (0) 
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and vertical velocity (vz) .  T h e  gain layer g consists of two weights gl and g2. The 
NN and the gain layer are updated at each instant by minimizing the combined 
system error Ey using equations (42) and (49), where 

1 [(On - 0)  2 + (Vz d - Vs)2]. (49) Ey  = -~ 

The results are shown in Figures 10(a and b) for trapezoidally varying command 
signals 0d and Vz,~. It may be pointed out that these signals cannot be chosen 
independently because of the coupled nature of the vehicle dynamics. The network 
learning rate was 0.001 and the learning rate for the gain layer was 0.0001. The 
weights were updated at each time instant (0.05 sec. apart). The NN weights were 
initialized to small random values between -0.1 and +0.1, as in the previous 
simulation studies, and the gain layer weights gl and g2 were initialized tp [-0.5, 
--0.39] corresponding to the inverse of steady state gain determined from the 
linearized vehicle dynamics (equations (46) and (47)). From Figure 10, it can be 
seen that the NN controller was able to provide close tracking performance. 

Conclusion 

The choice of the neural network controller architecture plays an important role in 
obtaining the desired dynamic response and tracking performance. In this paper, 
we have presented an improved neurocontroller architecture for direct control of 
dynamical systems that uses the backpropagation algorithm effectively. The ill 
effects of the controlled dynamics on the on-line updating of the NN weights are 
moderated by including a compensating gain layer. The presented method avoids 
the transformation needed in other schemes and improves the system response us- 
ing error feedback. With some examples, we have shown that this scheme performs 
well and gives better tracking and dynamical responses. Also, the performance of 
the gain layer scheme was studied on the problem of controlling two output pa- 
rameters simultaneously. 
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Appendix 

This section provides the governing equations of the autonomous underwater 
vehicle dynamics employed in the simulation studies [2], [15],[17]. 
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A.1. Pitch angle (0) 

The pitching moment of the vehicle derived from the conventional Euler equations 
of motion is given by 

y ~  MM = Iyil d- (Ix -- Iy)rp -- (p q- qr)Ixy d- (p2 _ r2)lxz q_ (qp _ i.)iy z 

+ m[ZG(iJx -- Vyr -I- Vzq) - xG(i)z - Vxq + Vyp)] (A1) 

where Vx, l)y, Vz, 1)x, and t) z are the linear velocities and their derivatives along 
the three coordinate axes x, y, and z, respectively; p, q, r,/~, q, ~ are the angular 
velocities and their derivatives; and xa, y, and z~ are the location of the center of 
gravity with respect to the global coordinate system. The parameters (Ix and Iy) are 
the moments of inertia with respect to the three coordinate axes; Ixr, Iyz, and lxz 
are the moments of inertia with respect to the planes xy,  yz  and xz,  respectively; 
and m corresponds to the mass of the vehicle. 

The summation of all the pitching moments estimated from the vehicle body 
characteristics and the velocities is given by 

Z MM = 0.5plS[Mq(l + M~prp] + 0.5pl4[M~zf)z + Mqvxql 

3 t . 2  t 2 + 0.5pl [M.v x + M;vxVz + M.Av~lVZ~y + VZz] 

+ 0.5pl3[M(~Af~xlf~zl + M ' ~ / I V z ( V  ~ + Vz2)l] 

+ !)c l 
+ + 

[x, 
-- 0.5plCL XVy(X)VFw(t -- r[x])dx 

~' X2 

(A2) 

where p is the density of sea water, 8s is the stern plane deflection (input), and 
l is the length of the vehicle; other parameters such as M' are various hydro- 
dynamic coefficients determined from the vehicle characteristics. The states of 
the vehicle (Vx, v r, Vz, p, q, r) are obtained at each instant by numerically inte- 
grating the equations (A1)-(A2) and (A3)--(A4) (provided below). The vehicle 
pitch 0 is obtained by integrating the angular velocity q. A software package has 
been developed at the Center for Advanced Marine Systems for performing these 
computations [15]. 

The corresponding equations for the vertical velocity relationship are given 
below. 
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A.2. Vertical velocity (Vz) 

The summation of all the vertical velocities acting on the vehicle, according to the 
Euler equations of motion is as follows: 

~_, F z = m[v'  z -- Vxq + Vyp - z c ( p  2 + q2) + xa(rp -- q') + yG(rq + pr)] (AS) 

where the velocities and coordinates of the center of gravity are defined as follows. 

The summation of physical velocities is given by 

Fz = 0.5pl4[Zq(t] + 0.5pl3[Z~zVz + Z'qvxq + Z'vrpVyp ] 

2 t . 2 Ux Vz ] + 0.5pl [Z ,v  x + Z'vz 

+ 0.5pl2[Zi~li&li)zl + Z'o~r ] + vz2)l] 

+ 0 . 5 p / 2 [  , 2 , 2 ( 1 )  ] Z~s v xSs + Zs, o VxSs O - c 

- 0.5Ca [ b ( x ) V z ( X ) r  V2z (x ) dx  

fx x' - -  0 . 5 p l f L  Vy(X)f)FW(t -- r[x])dx. 
2 

(A4) 

As before, the states of the vehicle (Vx, 1)y, Uz, p, q, r) are obtained at each instant 
by numerically integrating the equations (A 1)-(A2) and (A3)-(A4). 

The parameters used in the simulation studies are given below: 

8 = 1.99 

m = 88.79 

l = 2 2  

c = l  

0 = 1 . 0  

b = 2859.3 

Ix = 41.07 Ixy = - 127.05 x6 = -0.92397 

Iy = 2763.3 lxz = 0.0 y~ = 0.0 

Iz = 2764.17 lyz = 0.04 z~ = 0.1 

Ca = 0.741 CL = 1.0 
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M,' = 0 .0  

Mq = - 7 . 7 1 9 4  • 10 -4  

Mq = - 8 . 3 7 3  • 10 -3 

Mro~ = - 7 . 3 3 5 7  • 10 -3 

M~'p = 7 .5103  • 10 -4 

M~. = - 1 . 3 1 0 5 7  • 10 -4  

M ~ = 0 .0  

M'~lvzl = 0 . 0  

M'~o~ = 0.0 

Mjs = - 1 . 0 2 3 2 7  • 10 -2 

Mj,~ = 0 .0  

Zq = - 1 . 7 5 8 1 7  x 10 -2  

' = - 1 . 0 4 2 8  x 10 -2  Zv~p 

Zq = - 1 . 3 1 0 5 7  • 10 -4  

Z "  z = - 1 . 0 7  • 10 -2 

z "  = o . o  

Z'v~ = - 3 . 6 8 3 8  • 10 -2  

Z '  = 0 .0  ]vzl 

Z'vzo~ = 0 .0  

Z ~  = - 2 . 1 5 5  • 10 -2  

Z / = 0 .0  t~sr/ 
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