Acta Mechanica 17, 191—199 (1973)
@© by Springer-Verlag 1973 -

Jump Conditions and Boundary Conditions for a
Multi-Continuum Theory for Composite Elastic Materials

By
A. Bedford, Austin, Texas
With 3 Figures

(Received December 1, 1971, revised March 29, 1972)

Summary — Zusammenfassung

Jump Conditions and Boundary Conditions for a Multi-Continuum Theory for Com-
posite Elastic Materials. The jump conditions for mass, momentum and energy across a
propagating singularity surface are derived for a theory of mixtures developed for application
to bonded composite materials. The jump conditions provide equations necessary for the study
of shock and acceleration waves, and are also used to deduce the boundary conditions for the
theory.

Sprung- und Randbedingungen einer Kontinuumstheorie elastischer Verbundwerk-
stoffe. Die Sprungbedingungen fir Masse, Impuls und Epergie an einer sich ausbreitenden
Singularititenfliche einer, zur Anwendung auf Verbundwerkstoffen entwickelten Theorie von
Gemischen werden abgeleitet. Die Sprungbedingungen liefern zur Untersuchung von Sto8 und
Beschleunigungswellen bendtigte Gleichungen, und sie werden zur Herleitung der Rand-
bedingungen verwendet.

1. Introduction

In reference [1] a continuum theory of mixtures has been developed for
application to bonded composite materials. Field equations were developed and a
simple constitutive theory for elastic transversely isotropic materials was pro-
posed. )

In this note, the field equations of [1] are rederived in a way which also
yields the jump conditions for mass, momentum and energy across a propagating
singularity surface. These jump conditions are used to deduce the boundary
conditions appropriate for the theory and also provide an extension to the mixture
theory of composite materials of the equations necessary for the analysis of
shock and acceleration wave propagation. In obtaining the latter equations, an
interesting result is that the theory leads to a distinct shock surface for each
composite constituent. Fundamental assumptions from [1] are reviewed, only
Cartesian tensor notation is used, and results required from field theory are
presented in an appendix.

2. Preliminaries
Consider a mixture of materials modeled by N superimposed continua. If

these superimposed continua are to represent a bonded composite material, the
stress-free, equilibrium temperature state of the mixture is of special importance,
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and will be called the reference configuration. Points in the reference configuration
can be specified by vectors X having components Xy in a Cartesian reference
coordinate system. If the superimposed continua are permitted to have individual
motions, the subsequent motion of the composite material will carry the material
particles originally located at X into various spatial positions specified by vectors
®, £€=1,2,..,, N, having components z; in a Cartesian spatial coordinate
system. For simplicity, the two coordinate systems can be taken as superimposed.
The individual motions can be expressed functionally by

Zeye = 2w (Xx, 7) 2.1)

where the vector valued function ¥, is called the motion. The velocity of the &th
constituent is defined by

oxew (Xst)
Ve = —————Z(g)kat = X (2.2)

The set of material particles, one for each constituent, located at X in the
reference configuration are called congruent particles. A closely coupled mixture
is then defined as one in which mechanical and thermal interactions occur only
between congruent particles. As discussed in [1], this definition is motivated by
the nature of the interactions in bonded composite materials.

The method in this note has been widely applied to single continua and can be
applied to a broad class of continuum theories. The results are obtained by
applying the balance and conservation postulates for mass, momentum and
energy to a material volume containing a discontinuity surface. This procedure
yields the usual field equations and also the jump conditions at a discontinuity
surface, thus extending the shock and acceleration wave equations to a closely
coupled mixture. Further, by identifying the discontinuity surface with a bound-
ary, the boundary conditions for the mixture are obtained.

The principal tools required are the generalized Green-Gauss theorem and the
rate of change of a tensor quantity in a material volume containing a discontinuity
surface. These classical results [2], [3] are presented in the appendix.

3. Analysis

Consider a volume V in the reference configuration which is intersected by a
surface 2. The subsequent motions of the continua will carry the volume ¥ into
material volumes v, £=1,2,..., N, and will carry the surface X into surfaces
oy, £=1,2,..., N, asshownin Fig. 1. In the analysis to follow, the surfaces o,
will be assumed to be discontinuity surfaces.

This introduction of multiple discontinuity surfaces may at first seem puzzling.
It will be found in the derivations to follow that this concept arises naturally.
However, it is also well motivated physically. Because of the way they are defined,
the surfaces o(¢ are imbedded in congruent particles. Since these are the particles
between which interactions occur in a closely coupled mixture, constituent inter-
actions resulting from a discontinuity surface naturally occur between the sur-
faces 6. Finally, there is some experimental evidence that a shock wave in a
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Fig. 1. A set of material volumes and surfaces

composite material propagates in the form of discrete, but interacting, waves in
the individual constituents [4].

Conservation of Mass. 1f it is assumed that mass transfer between constituents
does not occur, then the total mass of each constituent material volume » ¢, must
be constant. If g is the partial density of the £th constituent,

d
7 f@(f) dvgy = 0. (3.1

)

Using Eq. (A. 3), this is

2 . , :
G (ogeyviam)a | dogey + [ Lo @een — vig)] nfop A5y = 0. (3.2)
gt

Yo .
YT Ve “)

New notation introduced in (3.2) is described in the appendix. Since v can be
chosen arbitrarily, (3.2) gives

Ié]
2O 1 (o) v e = O. (3.3)

Then choosing o(;, arbitrarily leads to

Loy weeye — Vi) ] niee = 0. (3:4)

These equations are identical to the usual result for a single continuum, and apply
to each value of £ =1,2,..., N. Eq. (3.4) is the jump condition that must be
satisfied at a propagating discontinuity such as a shock or acceleration wave. If
the discontinuity o, is a boundary, the constituent velocity v, and the dis-
continuity velocity v,y will be identical and (3.4) is satisfied identically. Eqs. (3.3)
and (3.4) apply both to closely coupled mixtures and to ordinary mixtures.
Balance of Linear Momentum. Since interactions between constituents occur
between congruent particles, the linear momentum postulate for a closely coupled
mixture is that the rate of change of the total linear momentum of a set of material
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volumes vy, §=1,2,..., N, consisting of congruent particles of the mixture
(see Fig. 1) is equal to the force exerted on the set by the partial stresses f); of
the constituents and by the constituent external body forces f .,

d
7Zfe(f>v(s>kdv(s) =;ftw)ki”(swd%)+§f@<s)f@>kd7f(s>- (3.5)
&

L¢3) $(8) Vs

Using (A. 3) on the first term in (3.5) and (A. 2) on the second term, this becomes

0
2 f [at (9ceyven) -F (008 Vo v(eg), }dv(s

£
— .t
BN

- 4; f Locer veer (Beery — fon] 2l dsce
O(H

(3.6)
=X [ tewide +Zf[[t(s)k;:ﬂ”( a1 98

1
7»(:)1—7)(5) (€]

TZ f ol dvg).
R
Expanding the first term and wsing (3.3), (3.6) can be written

2 f[Q(sﬂl i — b — o fiowl dv

vy Hog

+ 2 f[[Q(é)”(f (e — Vo) — Lomil Wi A8 =

0(&)

(3.7)

v
where sy = T - Ve Yok -

The usual next step in derivations of this kind is to conclude that the inte-
grands vanish by noting that the volume of integration is arbitrary. However,
in (3.7) the volumes v are not arbitrary since they are a set of material volumes
made up of congruent particles and thus cannot be chosen independently. This
difficulty was resolved [1], [5] for the first term in (3.7) by changing the inte-
grations over v, into integrations over the single material volume V in the
reference configuration by the transformation

ClU(E) = J(g) dV (38)

where J; = det %%i‘_ [6]. The material volume V can then be chosen arbi-
K

trarily. For the same reason, the second term in (3.7) must be transformed into
integrals over a single surface X in the reference configuration. Thus, the jump
conditions at a singularity in a closely coupled mixture can only be derived for
surfaces o(; imbedded in congruent particles.
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The transformation of the area integrals can be carried out by writing
Ny 35y = dafy;, where dag,; is the constituent area vector in the current
configuration, and then transforming the constituent area vector to the reference
configuration by the usual transformation [6]

d“fsgi = J 5 X(5)x,; d Ak (3.9)

o . . . .
where X ;x; = p Xx and d Ay is the area vector in the reference configuration.

ey
Completing the transformation, we write dAx = Nx*dS, where Ng® is the
unit normal to the surface 2. With these transformations, (3.7) becomes

fz? Lo e — Yewii — ot Jio dV
v

(3.10)
+f z;: Lo v ey — vey) — bl Sy fiy; 48 = 0
z

where if;; = X(sx,;Ng®. Note that #if,; is normal to ¢(;), although it will not
in general be a unit vector. Also note in (3.10) that J ;,7f,; can be evaluated on
either side of the discontinuity if the material exists on both sides.

Now since V can be chosen arbitrarily it can be concluded from (3.10) that
%‘ low @ — b — enrfenl Jio =0 (3.11)
and then since X' can also be chosen arbitrarily, (3.10) gives
25.7 ey v (Wi — o) — bl () ey = 0. (312)

Eqgs. (3.11) and (3.12) can be written

Loy @ — tiowii — o feond oy = Pl (3.13)

where 3 p(y; = 0, and

Loy ven (wey — viey) — beomid oyl = brene (3.14)
where ) by = 0.

The momentum balance Eq. (3.13) is equivalent to the one derived in [1]
where p(;; is the constituent momentum transfer vector. Here the primary interest
is in the jump condition (3.14). The vector b, can be interpreted as a surface
momentum transfer term. It represents the force interaction between constituents
at a propagating singularity such as a shock or acceleration wave.

For the special case of a shock propagating into the undeformed medium,
J(5)fi%y; can be evaluated ahead of the shock. Since there is no deformation
ahead of the shock, J(;) =1 and #ify; = X(;x ; Ng* = x; Nk¥ = ny;, s0 that
(3.14) has the simple form

Loy ven (Wi — vieg) — Boml i = beey- (3.15)
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To obtain the boundary condition at a material interface or at a free surface,
the discontinuity surface can be identified with the material interface or free
surface so that the discontinuity velocity is equal to the particle velocity,
Vi = V5, and (3.12) becomes the stress boundary condition for a closely
coupled mixture. '

%‘ [teni] J (e in; = 0. (3.16)
If the boundary is a free surface, (3.16) reduces to
52 b (6 iy = 0. (3.17)

For a linearized theory, let 7 ;); represent a linear constitutive functional
which vanishes in the reference configuration, i.e. f s);; has no zeroth order term.
To zeroth order, J ) fify; = nfy;, so that the linearized forms of (3.16) and (3.17)
lead to the familiar boundary conditions

2 [Fewlngy =0 (3.18)
and, at a free surface,
.;Z Eewingn; = 0. (3.19)

Conservation of Energy. The conservation of energy postulate for a closely
coupled mixture is that the rate of change of the total energy of a collection of
material volumes consisting of congruent particles is equal to the rate of work
done by partial stresses, body forces and interaction forces plus the rate of energy
transfer by the constituent heat transfer vectors g(s); and the constituent external
heat supplies % z.

d 1
;ﬁzg‘j f[é’(f)%) +5 9<s>”<s)k”<s)k} dvge,

H6)
=2 [temineivendse + 3 [ owfewven doe (3.20)
¢ s %)
+ 3| Bk gy, — ¥ ey A8 (z) + by dv
. T (&) & B IGVEAS) 52' Qe figey OV
) KO S8 K6

where ¢ is the constituent specific internal energy. Applying (A. 2) and (A. 3)
and using (3.3) and (3.13), this becomes

Deg)
%‘ f [9(5) i b Vo T deomr— 2 lie | Ao
o Tk
. m / o ! ¢ 3.21
+ 2 o 8 Dy — Yon) T 5 0 Ve Ve (Wei— Vi) (3.21)
3 (L
o)

— b Von T 4o ‘”(k)y dsg) =
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where —D%(;l = %%Q + vy £y, - Transforming the integrals to integrals on V

and X as before, it is concluded that

De
bl [9(5) D(;) — Yoy Visrng T ok — Q(:’)h(f)} Jig =0, (3.22)
<
_ . |
2 H 0@ &) (Wi — Yy) + 5 2 Ve Vo (Wi — ey
IS (3.23)
— U Ve + Qe || o Ay = 0
and these can be written
.D(;‘( ) I ’
[9(5) Df — b V%eki T Qomr — @mh(s)] Jioy = ¢ (3.24)
where 3 ey =0, and
£
T o 1 2 o
e e @i — Y T+ 5 e e Wi — V)
(3.25)

— b Vo T Qg [ Iy By = ¢
where } ¢ = 0.
;

Again, the Eq.(3.24) is equivalent to the energy conservation equation
derived in [1] where ¢( is the constituent energy transfer term. In (3.25), ¢ is a
surface energy transfer term. It represents the energy transfer between con-
stituents at a propagating singularity.

For a shock propagating into undisturbed material, (3.25) becomes

1 2
0 &) (Vo — Yy) + 5 06 Ve (Vi — Yoy)

= _ (3.26)
= b Vo T 9oy ‘ Neyi = (&) -
The boundary condition at a surface, where v); = vjy;. is
4? Lacsi — teomivienl J o figy; = 0 (3.27)

and for a linearized theory, assuming §s; and { ¢, to be congtitutive functionals
of first order and assuming v(;), small, the boundary condition becomes

); La)i] nis = 0 (3.28)
and, at a free surface,
ZE:Q(E)] n‘é—)j =0 . (329)

In summary, Egs. (3.16) and (3.27) constitute the boundary conditions for a
nonlinear theory of closely coupled mixtures, while (3.18) and (3.28) are the
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boundary conditions for a linear theory. Eqgs. (3.4), (3.14) and (3.25) are equiv-
alent to the Rankine-Hugoniot equations for a propagating shock wave in a
closely coupled mixture.

As a final example, the jump conditions will be written for a one-dimensional,
plane shock wave propagating into an undisturbed region of a composite material
in which the only motion behind the shock occurs in the direction of propagation.
This would correspond, for example, to motion resulting from plane excitation in
a direction parallel to the reinforcing of a layered or fibrous material. For this
case, Egs. (3.4), (3.15) and (3.26) become, in scalar form,

Lo @@ — v)] = 0, (3.30)
Lo ve (e — o) + Pl = b, (3.31)
— . ] _
’ (o) + 5 o) e (00 — ¥) + Poyve + de ’ = G (3.32)
where the partial pressure Py = —f;, has been introduced. With the exception

of the transfer terms, the similarity of Egs. (3.30)— (3.32) to the classical Rankine-
Hugoniot equations is apparent.

Appendix

Generalized Green-CGlauss Theorem and the Rate of Change of a
Tensor Quantity in a Material Volume

Consider a volume », with smooth surface s and outward norman n, which is
intersected by a smooth surface o as shown in Fig. 2. Then consider the integral

[ oumy ds (A. 1)
8
where «; is a vector point function which may be discontinuous across ¢. Let n”
be a unit vector normal to ¢ and let s—, v~ and s*, ¥* denote the area and volume

n
~

Fig. 2. A volume intersected by a discontinuity surface

of v behind and ahead of . (‘“Ahead” of o is denoted by the arbitrary positive
direction of m°.) The integral (A. 1) can be written

focknk ds = f o A —}—f{[zxk]] o ds (A. 2)

v—+ot

Ool . . .
where oy = g—i and [Jo]) = oy — o~ is the jump in value of x; across o.
Tk

Eq. (A. 2) is the generalized Green-Gauss theorem.
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Now let v denote a material volume of a continuum and consider the rate of

change of a tensor point function ¢ integrated over v: % f y dv. The volume v

v
at a time ¢ and at a time f -+ d¢ is shown in Fig. 3, where v is the continuum
velocity and o7 is the velocity of the surface o. The rate of change of the integral

f«pdvis

D 2 par= | [%’f’t-ﬂka),k] dot [ [otoe—n)] neds.  (A.3)

v+t

v(t+dt)

A
v(t)

Fig. 3. A material volume intersected by a propagating discontinuity surface
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