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S u m m a r y -  Zusammenfassung 

Jump Conditions and Boundary Conditions for a Multi-Continuum Theory for Com- 
posite Elastic Materials. The jump conditions for mass, momentum and energy across a 
propagating singularity surface are derived for a theory of mixtures developed for application 
to bonded composite materials. The jump conditions provide equations necessary for the study 
of shock and acceleration waves, and are also used to deduce the boundary conditions for the 
theory. 

Sprung- and Randbedingungen einer Kontinuumstheorie elastiseher Verbundwerk- 
stoffe, Die Sprungbedingungen fiir ]r Impuls und Energie an einer sich ausbreitenden 
Singularit~tenfliiche einer, zur Anwendung auf Verbundwerkstoffen entwickelten Theorie yon 
Gemischen werden abgeleitet. Die Sprungbedingungen liefern zur Untersuchung yon Stog und 
Besehleanigungswellen ben6tigte Gleichungen, und sic werden zur Herleitung der Rand- 
bedingungen verwendet. 

1. Introduction 

In  reference [1] a continuum theory of mixtures has been developed for 
application to bonded composite materials. Field equations were developed and a 
simple constitutive theory for elastic transversely isotropic materials was pro- 
posed. 

In  this note, the field equations of [1] are rederived in a way which also 
yields the jump conditions for mass, momentum and energy across a propagating 
singularity surface. These jump conditions are used to deduce the boundary 
conditions appropriate for the theory and also provide an extension to the mixture 
theory of composite materials of the equations necessary for the analysis of 
shock and acceleration wave propagation. In  obtaining the latter equations, an 
interesting result is that  the theory leads to a distinct shock surface for each 
composite constituent. Fundamental assumptions from [1] are reviewed, only 
Cartesian tensor notation is used, and results required from field theory are 
presented in an appendix. 

2. Preliminaries 

Consider a mixture of materials modeled by N superimposed continua. If  
these superimposed continua are to represent a bonded composite material, the 
stress-lree, equilibrium temperature state of the mixture is of special importance, 
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and will be called the reference configuration. Points in the reference configuration 
can be specified by  vectors X having components Xtr in a Cartesian reference 
coordinate system. I f  the superimposed continua are permit ted to have individual 
motions, the subsequent motion of the composite material will carry the material 
particles originally located at  X into various spatial positions specified by  vectors 
x(s), ~ --~ 1, 2, ..., At, having components x(~)~ in a Cartesian spatial coordinate 
system. For simplicity, the two coordinate systems can be taken as  superimposed. 
The individual motions can be expressed functionally by 

x(~)k : Z(~)k(XK,  t) (2.1) 

where the vector valued function Z(~) is called the motion. The velocity of the ~th 
constituent is defined by 

~;/(e)e (-XK" t) l . (2.2) 
v(~)k = St [xK 

The set of material particles, one for each constituent, located at  X in the 
reference configuration are called congruent particles. A closely coupled mL, cture 
is then defined as one in which mechanical and thermal interactions occur only 
between congruent particles. As discussed in [1], this definition is motivated by  
the nature of the interactions in bonded composite materials. 

The method in this note has been widely applied to single continua and can be 
applied to a broad class of continuum theories. The results are obtained by  
applying the balance and conservation postulates for mass, momentum and 
energy to a material volume containing a discontinuity surface. This procedure 
yields the usual field equations and also the jump conditions at  a discontinuity 
surface, thus extending the shock and acceleration wave equations to a closely 
coupled mixture. Further,  by identifying the discontinuity surface with a bound- 
ary, the boundary conditions for the mixture are obtained. 

The principal tools required are the generalized Green-Gauss theorem and the 
rate of change of a tensor quanti ty in a material volume containing a discontinuity 
surface. These classical results [2], [3] are presented in the appendix. 

3. Analysis 

Consider a volume V in the reference configuration which is intersected by a 
surface Z. The subsequent motions of the continua will carry the volume V into 
material volumes v(~), ~ --~ 1, 2, ..., 25, and will carry the surface X into surfaces 
a(e), ~ = 1, 2 . . . .  , N, as shown in Fig. 1. In  the analysis to follow, the surfaces a(s) 
will be assumed to be discontinuity surfaces. 

This introduction of multiple discontinuity surfaces may at first seem puzzling. 
I t  will be found in the derivations to follow tha t  this concept arises naturally. 
However, it is also well motivated physieMly. Because of the way they are defined, 
the surfaces ~(~) are imbedded in congruent particles. Since these are the particles 
between which interactions occur in a closely coupled mixture, constituent inter- 
actions resulting from a discontinuity surface naturally occur between the sur- 
faces a(~). Finally, there is some experimental evidence that  a shock wave in a 
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Fig. 1. A set of materiM volumes and surfaces 
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composite material  propagates in the form of discrete, but  interacting, waves in 
the individual constituents [4]. 

Conservation o] Mass. I f  it is assumed tha t  mass transfer between constituents 
does not occur, then the total  mass of each constituent material  volume v(~) must  
be constant. I f  @(~) is the partial  density of the @th constituent, 

d--t Q~) dv(~) = 0. (3.1) 
v(D 

Using Eq. (A. 3), this is 

[--~-~ + (~(~)v(~)~),k dv(,) + ~(~) (v(~)k -- v~(~)k)~ n(,)~ ds(~) -~ O. (3.2) 

New notation introduced in (3.2) is described in the appendix. Since v($) can be 
chosen arbitrarily, (3.2) gives 

Oe(~) + (~(~)v(~)~),k = 0. (3.3) 
St 

Then choosing a(~) arbitrarily leads to 

[9(~) (v(~)k - -  vS)~) ~ n(5)~ = 0. (3.4) 

These equations are identical to the usual result for a single continuum, and apply 
to each value of ~ = 1, 2, ..., N. Eq. (3.4) is the jump condition tha t  must  be 
satisfied a t  a propagating discontinuity such as a shock or acceleration wave. I f  
the discontinuity a(~) is a boundary,  the constituent velocity v(~)k and the dis- 
continuity velocity v~)k will be identical and (3.4) is satisfied identically. Eqs. (3.3) 
and (3.4) apply both to closely coupled mixtures and to ordinary mixtures. 

Balance o[ Linear Momentum. Since interactions between constituents occm" 
between congruent particles, the linear momentum postulate for a closely coupled 
mixture is tha t  the rate of change of the total  linear momentum of a set of material  
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volumes v(e), ~ = i ,  2, . . . ,  N ,  consisting of congruent particles of the mixture 
(see Fig. 1) is equal to the force exerted on the set by the partial stresses t(~e i of 
the constituents and by the constituent external body forces/(e)~ 

v(o 8($) v(D 

(3.5) 

Using (A. 3) on the first term in (3.5) and (A. 2) on the second term, this becomes 

f [+ (O($)V(~)k) § (O($)V(~)kV($)]),j] dv($) 

vS)+v~) 

8 

aC) 

$ , -  , + ~ a(~) 

(3.6) 

§ Z f 
v(~)§ 

Expanding the first term and using (3.3), (3.6) can be written 

~Y" f [e(~)a($)k -- t($)k~,j --  Q(~)/($)k] dv(s) 
v (D +v~) 

+ 2 f - - t($)k;] n = 0 
6(0 

av($)k @ v($)j v(~)k J .  where a($)k ~ St 

(3.7) 

The usual next  step in derivations of this kind is to conclude that  the inte- 
grands vanish by noting that  the volume of integration is arbitrary. However, 
in (3.7) the volumes v($) are not arbitrary since they are a set of material volumes 
made up of congruent particles and thus cannot be chosen independently. This 
difficulty was resolved [1], [5] for the first term in (3.7) by changing the inte- 
grations over v(~) into integrations over the single material volume V in the 
reference configm:ation by the transformation 

dv($) = J(s) d V (3.8) 

where J($) --~ def ax($)k [6]. The material volume V can then be chosen arbi- 

trarily. For the same reason, the second term in (3.7) must be transformed into 
integrals over a single surface X in the reference configuration. Thus, the jump 
conditions at a singularity in a closely coupled mixture can only be derived for 
surfaces a(t) imbedded in congruent particles. 
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The  t r ans fo rma t ion  of the  area integrals  can be carried out  b y  writ ing 
n(%)ids(~ ) ----da~(~)i, where da~(~)i is the  const i tuent  area  vector  in the  current  
configuration,  and  then  t ransforming the  const i tuent  area vector  to the  reference 
configurat ion b y  the  usual  t r ans fo rmat ion  [6] 

da~(~)i -~ J(~)X(~)~,~ dAK (3.9) 

~X~ 
where X(~)~,i - -  and dAK is the  area vec tor  in the  reference configuration.  

x(~)i 
Complet ing the  t ransformat ion ,  we write dAK ~--NK z dS ,  where NK z is the  
uni t  no rmal  to the  surface X. Wi th  these t ransformat ions ,  (3.7) becomes 

7 (3.10) 

where ~(~)~ --~ X(~)~,iNK z. Note  t h a t  ~ ) i  is no rmal  to a(~), a l though it  will not  
in general  be a uni t  vector .  Also note  in (3.10) t h a t  J(~)fi~)~ can be eva lua ted  on 
either side of the  discont inui ty  if the  mater ia l  exists on bo th  sides. 

Now since V can be chosen arb i t rar i ly  it  can be concluded f rom (3.10) t h a t  

~ '  [@(~)a(~)~ - -  t ( ~ ) ~ i , i  - -  @(~)/(~)~] J(~)  ~-  0 (3.11) 

and  then  since Z can also be chosen arbi t rar i ly ,  (3.10) gives 

(3.12) 

Eqs.  (3.11) and (3.12) can be wr i t ten  

[ff(~)a(~)k - -  t(~)ki,i - -  @(~)/(!)k] J(~) --~ P~)~ (3.13) 

where ~ p~)~ ~ 0, and  

~@(~)v(~)k(v(~)i - -  v~)i) - -  t(~)ki~ J(~)n(~)i ~-- b(~)k (3.14) 

where  ~ b(~)~ ~ 0. 

The  m o m e n t u m  balance Eq.  (3.13) is equivalent  to  the  one der ived in [1] 
where p~)~ is the  cons t i tuent  m o m e n t u m  t ransfer  vector .  Here  the  p r i m a r y  interest  
is in the  j ump  condit ion (3.14). The  vector  b(~)k can be in te rpre ted  as a surface 
m o m e n t u m  t ransfer  te rm.  I t  represents  the  force in terac t ion  between const i tuents  
a t  a p ropaga t ing  s ingular i ty  such as a shock or accelerat ion wave.  

For  the  special case of a shock p ropaga t ing  into the  undeformed  medium,  
J(~) (~)j can be eva lua ted  ahead  of the  shock. Since there  is no deformat ion  
ahead  of the  shock, J(~) ---- 1 and  n~)i ~ X(~)K,I NK ~ ~ ~:i NK~ -~ n(~)j, so t h a t  
(3.14) has the  simple fo rm 

~[e(~)v(~)k(v(~) i - -  v(~)i) - -  t(~)ki~ n(~)i : b(~)k. (3.15) 
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To obtain the boundary condition at a material interface or at a free surface, 
the discontinuity surface can be identified with the material interface or free 
surface so that  the discontinuity velocity is equal to the particle velocity, 
v~)i = v(~)i, and (3.12) becomes the stress boundary condition for a closely 
coupled mixture. 

[t(~)~i~ J(~)n;)i = 0. (3.16) 

If the boundary is a free surface, (3.16) reduces to 

t(~)~i J(~)~(~)~ = 0. (3.17) 

For a linearized theory, let t(~)~'i represent a linear constitutive functional 
which vanishes in the reference configuration, i.e. [(,)~ has no zeroth order term. 
To zeroth order, J(,)~(%)i = n~,)i, so that  the linearized forms of (3.16) and (3.17) 
lead to the familiar boundary conditions 

and, at a free surface, 

Conservation o/ Energy. 

(3.18) 

t(~)k~.n~)j = O. (3 .19)  

The conservation of energy postulate for a closely 
coupled mixture is tha t  the rate of change of the total energy of a collection of 
material volumes consisting of congruent particles is equal to the rate of work 
done by partial stresses, body forces and interaction forces plus the rate of energy 
transfer by the constituent heat transfer vectors q(~)k and the constituent external 
heat supplies h(~). 

d_ 1 ~(~)V(~)kV(~)k 1 dt ~ / [e(~)e.) + -~ dv(~) 
J 

v(~) 

= Z ft(~)k~n(~)jv.)~ds.) + Z  f e(,)t.)~v(,)~v(~) (3.20) 
$ s(D ~ v(D 

+;f o J(~) 
v(o ~(~) v(~) 

where e(~) is the constituent specific internal energy. Applying (A. 2) and (A. 3) 
and using (3.3) and (3.13), this becomes 

v(D Tv(~) 

De(s ) ] 

~(~) e(~) ~v(~)i -- v(~)i ) @ -~ o~(~)v(~)k v(~)k (v(~)i-- v(~)i) (3.21) 
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where De(t) 0s(~) Transforming the integrals to integrals on V . . . .  -~  v(~)k Q~),~- 
Dt  ~t  

and Z as before, i t  is concluded tha t  

[ Ds(~--A - ] 
~(~) Dt t(~)~iv(~)L~-~ q(~)~,~ ~(~}h{~) i ( ~ ) - - ~ O ,  

- -  t(~)k iv(~)~ + q(~)i J(~) ~(~)i ~- 0 

and these can be wri t ten  

(3.22) 

(3.23) 

Ds(~---A - -  ' J ' (3.24) 

' = 0 and where ~ e(~) 

~(~) s(~)(v(~)j - -  v(~)~) q- -~ Q(~)v(~)(v(~)~ --  v(~)~) 
(3.25) 

- -  t(~)k i v(~)k + q(~)i d(~)~(~)i ~- c(~) 

where ~Y7 cr = O. 
5 

Again, the Eq.  (3.24) is equivalent  to the energy conservation equat ion 
derived in [1] where e~) is the const i tuent  energy transfer  term. In  (3.25), c(~) is a 
surface energy transfer  term. I t  represents the energy transfer  between con- 
st i tuents  a t  a propagat ing singularity. 

For  a shock propagat ing into undis turbed material,  (3.25) becomes 

e 1 2 z ~o(~) q~) (v(~)j - -  v(~)~) + ~ ~(~)v(~) (v(~)~ --  v(~)~) 

(3.26) 
"W7 

t(e)k i V(~)~ + q(~)i l I n(%)~ = c(~). 

The boundary  condit ion a t  a surface, where v(~)i = v(%)~, is 

[[q(~)~ --  t(s)kjv(e)~'J(~)g(%)i ~- 0 (3.27) 

and for a linearized theory,  assuming {(,)~ and ~(s)~i to be const i tut ive functionals 
of first order and assuming v(~)~ small, the  boundary  condition becomes 

~q(~)~ n~)i = 0 (3.28) 

and, a t  a free surface, 

~(~)~ n(%)~ = 0. (3.29) 

In  summary,  Eqs. (3.16) and (3.27) const i tute  the boundary  conditions for  a 
nonlinear theory  of closely coupled mixtures,  while (3.18) and (3.28) are the 
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boundary  conditions for a linear theory.  Eqs. (3.4), (3.14) and  (3.25) are equiv- 
alent  to the  Rank ine -Hugon io t  equat ions for a p ropaga t ing  shock wave in a 
closely coupled mixture .  

As a final example ,  the  jump conditions will be wri t ten  for a one-dimensional ,  
p lane shock wave p ropaga t ing  into an undis turbed  region of a composi te  mater ia l  
in which the only mot ion  behind the shock occm's in the direction of propagat ion .  
This would correspond, for example,  to mot ion  result ing f rom plane exci ta t ion in 
a direction parallel  to the reinforcing of a layered or f ibrous mater ia l .  For  this 
case, Eqs. (3.4), (3.15) and  (3.26) become, in scMar form, 

[e( ,)  (v(,) - % ) 3  = 0,  (330)  

Eo(~) v(,)(v(e) - -  v(~)) 4- P(~)~ = b(s), (3.31) 

- t v~)) (v(~) - -  v ~ ~ (3.32) 

where the par t ia l  pressure P(~) = --t(~) has been introduced.  Wi th  the exception 
of the t ransfer  terms,  the s imilar i ty  of Eqs.  (3.30)-- (3.32) to the  classical Rankinc-  
t tugon io t  equat ions is apparent .  

A p p e n d i x  

Generalized Green-Gauss Theorem and the  Ra te  of Change of a 
Tensor  Quan t i ty  in a Material  Volume 

Consider a vo lume v, with smooth  surface s and ou tward  no rman  n, which is 
intersected by  a smooth  surface a as shown in Fig. 2. Then consider the  integral  

f o~nk ds (A. 1) 
8 

where c~ is a vector  poin t  funct ion which m a y  be discontinuous across a. Le t  n �9 
be a uni t  vec tor  normal  to a and  let s-, v-  and s +, v + denote  the  area and  volume 

rl 

Fig. 2. A volume intersected by ~ discontinuity surface 

of v behind and  ahead of a. ( "Ahead"  of a is denoted by  the a rb i t r a ry  posi t ive 
direction of nq)  The  integral  (A. 1) can be wr i t ten  

s V - + V +  a 

Oak and [cr = c~k + - -  c~- is the j ump  in value of ~k across a. where cik, k ~ -  CqXk 

Eq. (A. 2) is the generalized Green-Gauss theorem. 
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Now let  v denote  a ma te r i a l  vo lume of a con t inuum and  consider  the  r a t e  of 

change of a t ensor  po in t  func t ion  ~0 in t eg ra t ed  over  v : - ~  ~0 dr.  The volume v 

v 

a t  a t ime  t and  a t  a t ime  t ~- d t  is shown in Fig.  3, where  v is the  con t inuum 
ve loc i ty  and  v ~ is t he  ve loc i ty  of the  surface ~. The  ra te  of change of the  in tegra l  

f ~ d v i s  
v 

d-T ~ dv =- -~  ~- (9 Vk),k dv ~- f ~_yJ (vk -- vk~)~ nk~ds. (A. 3) 

V V - @ v  + a 

vO+dt) 

v 

i ~ 

v(t) 

Fig. 3. A material volume intersected by a propagating discontinuity surface 
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