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Summary-  Zusammenfassung 

A Free Energy Functional for Thermorheologically Simple Materials. A systematic 
procedure developed by CoL~A~ for establishing thermodynamically consistent constitutive 
equations is used to develop the thermomechanical constitutive equations for the stress and 
dissipation functions for thermorheologically simple materials. A comparison is made with 
similar expressions developed using phenomenological model theory. The influence o~ thermo- 
rheologic~lly simple behavior is ilinstrated in the solution of the problem of a solid rod 
undergoing torsional oscillations with temperature dependent properties. 

Eine Darstellung der freien Energie thermorheologisch-einfaeher Werkstoffe. Eine 
yon COLE~IA~ entwickelte systematische Methode zur Aufstellung thermodynamisch kon- 
sistenter ~Verkstoffgleichungen wird zur Bestimmung der Werkstoffgleiehungen ffir Spannungs- 
und Dissipationsfunktion thermorheologisch-einfacher Werkstoffe verwendet. Ein Vergleich 
mit i~hnlichen Ausdrficken ph~nomenologischer Theorien wird durchgefiihrt. An Hand der 
L6sung des Problems eines Torsionssehwingers mit temperaturabh~ngigen Werkstoffeigen- 
schaften wird der Einflug des thermorheologisch-einfachen Verhaltens erliiutert. 

1. Introduction 

The increasing use of viscoelastic materials in applications where significant 
amounts of heat may  be generated due to thermomechanical coupling has created 
an interest in this phenomenon. The mathematical  equations which model this 
behavior must  be developed with the guidance of both the sciences of thermo- 
dynamics and mechanics since the displacement and thermal fields in boundary 
value problems which include heat generation are interrelated. As is often the ease 
in describing material  behavior, the forms of the constitutive equations which 
describe the thermomechanieal behavior have been the objects of much discussion. 
The main concern in this area has been the appropriate form of the "dissipation 
function" for viscoelastic solids with temperature  dependent properties. 

The mathematical  constitutive equation developments in the area of thermo- 
mechanical coupling in viscoelastic solids have mainly followed one of three 
basic approaches; the phenomenological model approach first expounded by 
STAVER~A~ and ScI~w)mzL [1], the theory of irreversible thermodynamics 
described by  BIOT [2], or the concepts of COL~AN [3] which are based upon a 
recognition of how the state variables are related in a topological space. Although 
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these three approaches are very different in concept, they lead to very similar 
results [4]. The approach described by COLEMAN [5] appears to be the more easily 
acceptable from a rational mathematical standpoint although BIOT'S [2] develop- 
ments have been more widely used to the current time. In the developments 
described here, attention will be restricted mainly to the results of Coleman's work. 

Summaries of tentative forms for the governing thermomeehanieal equations 
have been presented by HU!CTEI~ ]6] and PARKUS [7] while significant applications 
of Biot's theory have been made by SCHAPERu [8], [9]. CHRISTEXS]~Zr and NAGHDI 
[10] have derived an expression for the dissipation function for a particular class 
of non-isothermal viscoelastic solids which does not include "thermorheologieMly 
simple" materials and I-ItrANG [11 ] has postulated an expression for the dissipation 
function which employs the concepts used by BIOT [2]. 

A thermodynamically consistent development of the thermomechanical con- 
stitutive equations for "thermorheologieally simple" materials seems to be 
lacking. The purpose of this paper is to demonstrate the usefulness of Coleman's 
procedure for generating specific constitutive relations by developing the thermo- 
mechanical equations for thermorheologically simple viscoelastic materials and 
to compare the form of the thermomeehanical equations with other results based 
upon a phenomenological model theory. Also, the influence of temperature de- 
pendent viscoelastic properties on the heat generated is illustrated in a boundary 
value problem. 

2. Thermomeehanieal Equations for Thermorheologically Simple Materials 

In what follows, the basic constitutive relations for thermorheologieally simple 
materials are developed by using the operators defined by CoT,~A~,. Details 
of the development are included to demonstrate the general technique. The 
method of approach is as follows; an assumption is made for the form of the free 
energy functional and the appropriate operators applied to obtain the constitutive 
expressions for the stresses, entropy, and internal dissipation. If the derived 
stress equation agrees with the commonly accepted stress expressions [12], the 
expressions for entropy and internal dissipation are assumed valid. The develop- 
ment is carried out assuming the spatial gradient of the temperature is small. 
The notation employed is that  of COLEh{AN [3].  

Recall that  the deviatoric and dilatational stress constitutive equations for 
a thermorheologicMly simple material are expressed, respectively, as [12] 

fl o&4(x, ~') ~i~(x, ~) = 2G(~ -- ~') ~ '  d~', ( la) 

o 
and 

~(x, ~) = f 3K(~-- ~') 8[v(x'r176162 (lb) 

o 

where the 8ii and eii are the stress and strain deviators defined as 

1 1 
~ij : ~ij -- y dij ~kk and ~,~ : ?~j -- ~- dij ?kk (2) 
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and #ij and 2ii are components of the stress and strain tensors and di~ denotes 
the Kronecker delta. The mean stress and strain are defined, respectively, as 

1 1 
=-~-~kk and ~ = V ~ k k "  (3) 

In  (1), G (t) and K (t) are the isothermal shear and bulk relaxation moduli, respec- 
tively, ~ is a pseudo temperature  defined as 

T(~,O 

1 ; ~(T') dT', ~o = ~(To) (4) 
o 

where er (T) is the temperature  dependent linear coefficient of thermal expansion 
and To is a reference temperature.  The notation x in (1) denotes the triplet �9 of 
spatial coordinates (xi, x2, x3) and • is a reduced t ime defined in terms of real 
t ime t as 

t 

(x, t) = f ~ IT (x, ~)] d ~ (5) 
o 

where ? [T (x ,  t)] is termed the shift factor [12]. The symbol ~i~(x, ~) is used to 
denote the function resulting from a mapping of the (x, t) space onto the (x, ~) 
space. ~.~ (x, ~) is defined as 

~ij (x, ~) ~ sij (x, t) ~-  sij  [ x ,  g (~)] (6) 

and where g (~) is the inverse of (5). A similar argument  holds for other quantities 
crowned with a egret symbol. 

Utilizing rational mechanics concepts, the basic constitutive assumption for 
a material  may  be expressed in the form of a free energy functional which for 
a thermorheologieally simple material is assumed to have the form 1 

0 0 

1 [3K(~- -  ~ , ~ - -  ~ " ) - - 2 G ( ~ - -  ~ , ~ - -  ~")] 0~' 0}" d~' + - g  . 
o o 

0~' 0~,, (7) 
0 0 

o o 

2 m(~ - -  ~', ~ - -  ~") ~ ~ o~,~ d~' d~", 
o o 

1 This functional represents an extension of the functional expansion described by 
Cm~ISTI~z~SE~ and NAGtn)I [10] .  
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where, by recalling (6), it is understood that  

~P(x, ~) ~ ~ ( x ,  t) = o~[x,  g(~)], (8) 

where T(x ,  t) is the free energy density functional for an isothermal viscoelastic 
material. 

The stress tensor can be obtained from the free energy functional (7) by 
application of the operator D~ as described by COLEMAN [3] where F is the de- 
formation gradient. For simplicity, consider only the components of the stress 
and strain tensors. For this case the stress operator equation (3) reduces to 

a i i =  @D~ ~[F~(s), T~(s)] (9) 

where the operator D2~j is defined as ~ 

~[k~(~), ~,~(~); ~, ~]. (~0) 

As seen in (10), if the strain energy functional is expressed in terms of the past 
histories of the deformation gradient and temperature, the operator D~ becomes 
simply the partial derivative of the free energy functional with respect to the 
present values 6f the deformation gradient tensor components ~ij. 

To apply the operator Dp,~, the functional ~ in (7) must be expressed in 
terms of the past history of the deformation gradient. The infinitesimal strain 
tensor components Yii are related to the components of the deformation tensor ~"4 
by the expression 

The integrals in (7) may be transformed, by integrating by parts, into integrals 
involving the derivatives of the kernel functions. Since the partial derivatives 

in (10) are taken with respect to the present values of F, the integral terms in (7) 

which involve the histories will not be converted to expressions in terms of 
but instead will be left in terms of the strain components which are possibly 
more familiar measures of deformation. Carrying out these transformations on (7) 
gives 

f ~ , ~ , 
e ~ = f o  + D~j ( 0 ) ( P ~  --  a~,) - -  ~ D~ (~)r~ (~) d ~' - -  ! (0) ~ (~) 

0 

+ - ~  / (~') ~ (~') d ~' 
0 

1 M (0, 0)(/0. 3) ( /~  3) 2 (P .  3) . . . .  p# (~) d ~' +-6- 
0 

+ a~' a~" M(~', ~ (~" )  d~' d~" 
0 0 

2 See equation (3.8a) in COLE~r and GURTmr [15]. 
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+ V T  

f a 2G(0, ~")~ ' ' - 2 ( G  - ~) -~ ~(~ ) d ~  

0 

+ ~,O~,---------~2G(~', y~(~)y#( )d~'d~" 
o o 

~ 0 3 ~ K ( 0 ,  ~')T~(~')d~' - ~ K ( O ,  O ) ~ ( P ,  - -  3) - ( P ,  - -  3) f - y y  
o 

o 

/ q- 0~'o~'" 3aK(~', ~")~'~(~')T~(~")d~'d~" 
0 o 

I 3 - - - ~  (0, o ) ~ - -  2 ~  m(O,~')~'~(~')d~' 
o 

+ o~,e------~m(~', ~ ( ~ ' ) ~ ( ~ " ) d ~ ' d ~ "  . 
0 0 

(12) 

In arriving at (12), it is assumed that all kernels are symmetric with respect to 
their double arguments and that the initial values of the temperature and strains 
are zero. Also, kernel M(~', ~") has been defined, for brevity, to be 

M(~', ~") : 3K(~', ~") -- 2G($', ~"). (13) 

Applying the operator defined in (10) to (12) gives 

~ij D~(0)  + y ~ M ( 0 ,  0)~?kk(~) a__ 6-. "~ ' = - -  ~'k~ (~)  d~' 

o 

f ~ 2G(0, ~ ' )~(~ ' )  d~' -- ~i~ 3~K(0, 0) T(~) + 2G(0, 0) ~ij(~) -- ~ 7  
o 

f ~ 3aK(0~ ~')T~(~')d$'. + ~j ~-~ 
o 

(14) 
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Assuming the initial stress is zero, expressing all terms as a function of the 
kernels K(~) and G(~), where K(0, ~) and G(0, $) are defined, respectively, as 
K($) and G(~), and integrating by parts allows (14) to be expressed as 

f f 
o o 

(15) 

+ ]  

9 

which is the stress equation for a thermorheologically simple material which 
results if (1) and (2) are combined. I t  is concluded tha t  (7) must  be a correct 
form for the free energy functional for a thermorheologically simple material  
since (15) agrees with the stress equations known apriori. 

In  a similar manner, the expression for the entropy can now be derived from 
the free energy functional by application of the operator Dk which has been 
presented by CO~m~AX and GURT~ [14] (Eqn. (3.86)) in the form 

aT 

Application of this operator to the free energy functional (7) and subsequent 
integration by parts results in the expression a 

o~ = 3~K(~  --  ~') - -  d# '  ~- m(~ --  ~') -~7 d~' ,  (17) 

0 0 

where /(0) has been assumed zero to satisfy the requirement of zero initial con- 
ditions. 

Finally, consider the expression for the internal dissipation a* which may  
also be obtained from the free energy functional. The internal dissipation may  
be expressed as 

1 . _ ~o] ( i s )  

The quanti ty a*(t) in (18) is a rate of internal dissipation in terms of real t ime; 
it  can be related to the dissipation in the reduced time variable by the relation 4 

d~ = a* 
~*(t)  = e* (~ )  7 7  ( ~ ) ~ ( T ) .  (19) 

By transforming all of the terms in (18) to reduced time, the internal dissipation 
function becomes 

=- ~ ? ~  - ~ - ~ (20a)  
T 

a This agrees with the entropy expression determined by CtIRISTENSEN and NAO~DI [10J 
who used a different method of derivation, when specialized to the isothermal ease. 

4 The function a*(t) employed by Cor=E•z=sr [3] is related to the dissipation function A 
employed by C~RIST~;:~SEN and NAG~m [i0] by the relation ~Ta* = A. 
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where 
/ _ d](~) 1 d/(t) (20b) 

d~ qJ(T) dt 

Since the expressions for ~ij and r have already been developed in (15) and (17), 
it remains to calculate W and to substitute into (20a) along with expressions for 
ghe stress and entropy. Performing rhese operations gives the expression for the 
dissipation function as 

o ~ ' ( ~ ) e * ( _ ~ )  = - T 
o 0 

_ 1 f / a~ [2G(~- ~ ' , ~ - - , " ) ]  a,#a~, a'i'a~'' d ~' d~" (21) 
o 0 

-t- / / -f-~ [3aK(~ - ~'' ~ - ''')] apk~o$' aS"a' d, '  d~" 
o o 

o 0 

The linear integral terms which would normally appear in (21) have been 
shown by CI~RIST~XS~X and NAO~m [10] to be zero. With these developments. 
the energy equation for this material can be expressed as 

- - 0 ~  + 0; + 0 ~'e* = 0r162 (22/ 

If  Fourier's law of heat conduction is assumed applicable and (17) and (21) 
substituted into (22), the energy equation, expressed in reduced time, becomes 

+ + f f o o 

f . /  ' a'i~ a'i~ d~" -t- --fl ~-a [2G(~ -- ~e, ~ _ ~,,)] ~ a $ '  oU" d~' (23) 
0 o 

-- -~- [3c~K(~ -- ~', ~ -- ~")] aP~k a~' d~' d~" a~' a~" 
o o 

 ffo 2 -~- [m(~ - ~', ~ - ~")] a~a~ ~ ~S"aT d~' d~". 
o o 
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In  solving boundary value problems, it is desirable to have the energy equation 
expressed in terms of real time. Transforming (23) to the real t ime variable gives 
the energy equation in the form 

l~T i i = m(O)TrT @ 3aK(0)Ti~kk --  or 

t t 

+-C -57 
0 0 

- - 2 G ( ~ - -  ~ ' , ~ - -  ~")] Oyu eykk d t ' d t "  
Ot ~t'" 

t t 

+ -~- ~ [2G(~ --  ~', ~ --  ~")] Oyi~ ~7i____Z tit' d t "  
~t' ~t" 

0 0 

t t 
f j "  a [3o4K(~__ ffl if__ if/t)] O~/k k cgT  dt" - -  - ~  Ot' ~t '~ d t '  

o o 

t t 

2 - ~  [m(~ --  ~', ~ - -  ~")] ~T~t, Ot" ~ dt '  dt  t'. 

0 0 

(24) 

3. Comparison of Theoretical Developments 

The energy equation developed as stated in (24) applies for thermorheo- 
logieMly simple materials. Other statements of this equation have appeared in 
the literature If], [2], [6], [7] and it seems worthwhile to compare the present 
results with those obtained previously. Reeall tha t  the energy equation for a 
linear elastic material is generally of the form 

k T / i  = o c T  q- 3c~KT~k~. --  or (25) 

where the second term on the right hand side of (25) is due to thermomeehanieal 
coupling. By comparing (25) and (24) it is recognized tha t  the first three terms 
of the viscoelastic energy equation are equivalent to the elastic energy equation. 
The only difference being the coefficient of the T term which has been redefined 
in terms of a specific heat quanti ty which linearizes t h a t  term. In  (25) the tem- 
perature variable T in the thermomeehanieal coupling term is often taken to be 
a constant reference temperature and thereby further simplifies the equation. 
If  the first three terms of the viscoelastic energy equation (24) correspond to an 
elastic material, it is apparent  tha t  the remainder of the terms are contributions 
from the viscoelastic effect. Consequently, it is incorrect to refer to the magnitude 
of the thermomeehanieal coupling term in (25) when describing the dissipative 
character of viscoelastic materials. 

ItUNT~R [6] and P~RKvs [7] have both presented tentative forms of the 
energy equation for thermorheologieally simple solids which were derived by con- 
sidering spring dashpot models. I t  is not clear that  manipulations with such 
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models satisfies the principles of irreversible thermodynamics. The energy 
equation (24) represents a slightly more general form than those of H v ~ T ~  [6] 
and P~RI(vs [7] but  agrees in concept. The arguments of Hunter 's  [6] kernel 
functions are of the form ( 2 ~ -  ~ ' - - ~ " )  instead of ( ~ -  ~', ~ -  ~") which 
suggests an exponential function kernel must be used in the phenomenological 
model equations. Since the bulk viscoelastic behavior of most polymers is small, 
these terms are not thought to have much effect. Furthermore, for the approaches 
of BlOT [2], CoL~A~ [3], and STAV~R~rA~ and S o ~w ~zL  [1] to be exactly the 
same, the kernel function m (t) in (24) must be defined as 

m (t) = -- 9 a 2 K (t) (26) 

where K (t) is the bulk modulus. If  this is correct, then the terms having m (t) 
as a kernel will probably be small for most polymers. 

4. Torsional Oscillations oi a Solid Cylinder 

To demonstrate the influence of thermorheologically simple behavior on the 
heat generation phenomenon, consider a finite length cylinder of radius a and 
length 1 undergoing cyclic torsional oscillations as shown in Fig. 1. For the special 

, Z "i 

�9 - - Z  

, ,\ 

Fig. 1. Circular cylinder subjected to ~orsional oscillations 

case when the deformations are cyclic, the dissipation function assumes a special 
form ancl it  becomes convenient to work with a cycle-averaged dissipation function 
defined as 

2s 
t-I---  o~ 

71 = ~ ; ~ST~s dr' (26) 

t 

where co is the frequency of oscillation. The expression (26) is consistent with 
the previous definition for the dissipation function in (18) if it is assumed that  
the heat flux or heat generation is sufficiently low so that  the term V T can be 
ignored and if it is realized the net energy stored per cycle is zero such that  
averaged over a cycle is zero. Using (26) the cycle-averaged energy equation (24) 
for the cylindrical geometry in Fig. 1, takes the form 

{~2T 1 aT ~-T~ aT (27) 



162 T.L. Cos~: 

where the term ~o r has been assumed zero. I f  one end of the circular rod is assumed 
fixed and the other twisted with a periodic motion, shearing stresses and strains 
are induced in the cylinder 5. I f  the cylinder is oscillated at  a frequency below the 
fundamental  frequency of the system, inertia effects may  be ignored and the 
displacements and strains determined simply from a knowledge of the imposed 
displacement boundary conditions. Specifically, if one end of the rod is subjected 
to the displacement 

O(t) = 0o sin ~ot, (27) 

then, assuming plane sections remain plane, the only non-zero strain component 
is the component 7o~, which can be assumed constant along the length of the 
cylinder and, consequently, can be expressed as 

=lOot 1 7o, \ 21 ] sin ~ot, (28) 

where 00 is the maximum angle of twist of the rod. 
1 

Since the dilatation y -= ~- yi~ is zero for this case, the dissipation function 
contained in (24) reduces to 

t t 

f f ~ [2G(2~ ~' aTOz ~ dt, dt,, A(r, t) • 2 - ~  --  --  ~")] 0t' St" " 
0 0 

(29) 

Because the strain is defined precisely in terms of the prescribed displacements, 
the dissipation function (29) becomes simply a prescribed heat generation term 
in the energy equation (27) and reduces the analysis to the problem of solving 
the heat  conduction equation with a prescribed heat  generation term which 
depends on time, temperature,  and spatial coordinates. The relaxation modulus 
in (29) and, hence, the dissipation function itself depend on the local current 
value of the temperature.  I f  the shear relaxation modulus is assumed to have 
the form 

l - -  
G (t) = Gi e ~' (30) 

i ~ 1  

where the Gi and ~i are material constants, the dissipation function can be ex- 
pressed as 

A(r,t)= --(I)(T)o)2[O~ ~7 G--Le-~ e ~' eosoJt'dt' (31) 
k2~ J ~i i = l  

where ~ (T) is the shift factor and ~ the reduced time as defined in (5). 
Due to the complicated form of the reduced time, the procedure for evaluating 

the dissipation function is not clear. For example, the WLF form of the shift 

Although normal stresses and strains are present also, they are neglected in this analysis 
due to their smallness in comparison with the shearing stresses and strains. 
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factor [16] has been used extensively for amorphous polymers. This relation is 
of the form 

K 2 I T ( x ,  t)  - -  T s ] (32) 
log10 ~v IT (x, t)] = K1 -- K3 § [~v (z, t) -- T~]' 

where K1, K~, and K3 and Ts are material constants determined by curve-fitting 
experimental data. Since the reduced time involves the temperature history, 
it is apparent what difficulties exist in evaluating the integrals in the dissipation 
function. 

If we consider the special isothermal case then ~v -~ 1 and ~ = t, the ex- 
pression for the cycle-averaged dissipation function (26), becomes 

A (r) -~ -~ c,~G" (o~) (33) 

where G" @) is the shear loss modulus. 
Returning to consideration of the nonisothermal thermorheologically simple 

expression for the dissipation function, it should be noted that  an expression of 
the form s 

(r) ~ -~ (34) 

has been used quite commonly as the expression for the thermorheologicMly 
dissipation function [9], [17]. Use of this equation is equivalent to the approxi- 
mation 

~(x, t) - -  ~(x ,  t') = ~v[T(x,  t)] (t -- t') (35) 

in the expression for the dissipation function (19). This approximation results in 
the dissipation function being overestimated and, consequently, too much heat 
being produced for a given oscillation. However, for purposes of comparison, 
the form of the dissipation function expressed in (34) was used in the analysis 
described here for the thermorheologieally simple case. 

The finite element method has proven to be a powerful numerical technique 
for solving a variety of field problems including structural analysis, seepage flow, 
heat conduction, and dynamic material response [18] problems. I t  appears to be 
a much more useful technique for solving boundary value problems which include 
complex material response and complex geometrical configurations than such 
classical techniques as integral transform methods. 

Implementation of the finite element method can be viewed as an extension 
of the Ritz technique in which determination of a function which minimizes the 
functional [18] 

(36) 
d l a  J d 

V 8 

6 The shift factor ~v used here is that described by 310RLX~D and L~E [12] which is the 
reciprocal of the quantity a T used elsewhere [9], [17]. 
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can be shown to be equivalent to solving the heat  conduction equation 

V. kVT-- - -  oct" -- A, (37) 

which is the Euler equation for this functional. In  (36), V denotes the del operator, 
k the conductivity matrix,  and A the dissipation function. 

The finite element method was used to obtain a solution to the energy 
equation (27) for the circular cylindrical geometry described in Fig. 1 undergoing 
torsional oscillations. To provide a cheek on the accuracy of the solution tech- 
nique, a problem considered by  T a t r c ~ T  [19] was solved which did not include 
temperature dependent viscoelastic material properties and which considered the 
cylindrical surface of the rod to be insulated and both ends of the rod to be 
maintained at a eoustanD temperature T. 

Since, in this special case, the dissipation function is of the form expressed 
in (33), which is independent of time, the energy equation (27) can be put  into 
a dimensionless form which allows the temperature to be normalized with respect 
to the magnitude of the forcing function. A comparison of the finite element 
results and Tauehert 's  [19] Laplace transform results are shown in Fig. 2. The 

0 r_ 

o ~)x/eHezTezlSoZuhoz 

- -  laFlac~ ]7a~Ts/~o,"m Solulmz 

0,/ O,2 ~2 0,~ 0 5  0,~ O7 O,8 O,9 IO 
Xorrnab2ed AXliU Cso/'di)s~le, ~'= z / l  

Fig. 2. Temperature at outer surface of cylinder 

notation A T is used to indicate the normalized temperature increase throughout 
the body at  various dimensionless times r. The results indicate the finite element 
method gives accurate answers for this type problem. 

Considering now the thermorheologieally simple ease where the dissipation 
function is dependent on temperature,  it becomes impossible to nondimensionalize 
the problem under consideration in the same manner T A U C ~ T  [19] used for the 
isothermal problem; specific material properties must  be employed. One common 
material used in many  viscoelastic studies is Solithane ~ 1137, a polyurethane 
rubber whose characterization has been studied in detail by Kxa~rss and 

7 Trademark of Thiokol Chemical Corp., Trenton, New Jersey. 
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MUELLER [20]. Using a col locat ion technique,  the  tensi le  r e l axa t ion  modulus  d a t a  
d e t e r m i n e d  b y  K~.alrss  and  MUELL~I~ was used  to  de te rmine  the  cons tan t s  in  

1 E ( t ) ,  the  cons tan t s  in the  a n  exponen t i a l  series expression.  Assuming  G (t) = -~- 

series express ion for G (t) in (30) were de t e rmined  s and  are given in Table  1. 

Table 1. Relaxation Constants/or Solithane 

i r i (rain) Gi (psi) 

1 1.0 • 10 -12 1653 
2 1.0 • 10 -11 4747 
3 1.0 • 10 -1~ 5539 
4 1.0 • 10 -~ 4701 
5 1.0 • 10 -s 3527 
6 1.0 • 10 _7 858 
7 1.0 • 10 _6 257 
8 co 143 

I n  a s imilar  manner ,  an express ion was ob ta ined  for the  shif t  fac tor  in the  form 
of (32) wi th  K 1 • 0.60, K S = 8.89, K s = 183.5 and  Ts = 89.6~ and  where  
the  reference t e m p e r a t u r e  for ~v is 78~ 

Other  pe r t i nen t  p roper t ies  of Sol i thane  113 employed  in th is  s t u d y  are :  

coefficient of l inear  t he rma l  expansion,  

conduc t iv i ty ,  

specific heat ,  

and  densi ty ,  

= 1.46 • 10-a/~ 

k - -  8.56 • 10 -3 BTU/ in -hr -~  

c = 0.48 BTU/ lbm-~  

~ 0.0361 lbm/ in  a. 

Consider now the  same geomet ry  as before,  b u t  for the  case of thermorheo-  
logical ly  s imple ma te r i a l  proper t ies .  Using the  f ini te  e lement  m e t h o d  and  the  
p roper t i e s  of Sol i thane  113, solut ions were ob ta ined  to  th is  p rob lem for a fre- 
quency  of 1000 cpm and  a m a x i m u m  s t ra in  yoz of 5 %. The  solut ion is i l lus t ra ted  
in Fig .  3 along wi th  the  i so the rmal  p r o p e r t y  solut ion.  Inc lud ing  t e m p e r a t u r e  de- 
penden t  m a t e r i a l  p roper t i e s  is seen to  p roduce  a lower t e m p e r a t u r e  rise in the  
sample  t h a n  if i so the rmal  proper t ies  are included.  

5. Discussion and Conclusions 

I t  has been d e m o n s t r a t e d  t h a t  Coleman 's  app roach  can be u t ihzed  to develop 
a cons is ten t  cons t i tu t ive  t heo ry  for thermorheologica l ]y  s imple mater ia ls .  The  
resul ts  of th is  deve lopmen t  agree concep tua l ly  wi th  the  corresponding equat ions  
deve loped  using a phenomenologica l  mode l  approach .  

I t  should be no ted  in der iv ing  expressions for the  stress, en t ropy ,  and  dis- 
s ipa t ion  funct ion  for thermorheologica] ly  s imple mate r i a l s  using Coleman 's  

s Knauss's data was shifted to a reference temperature of 78~ 
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approach that  the spatial gradient of the temperature was assumed small. This 
allows all points in the region of interest to be considered at the same value of 
reduced time which permits the balance principles to be applicable in reduced 
time. If the spatial gradient of the temperature is large, then the reduced time 
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Fig. 3. Influence of temperature dependent properties on dissipation 

varies from point to point within the region. This seems to prohibit application 
of the balance principles in terms of reduced time. The spatial derivative of the 
temperature complicates the form of the energy equation since the spatial deriv- 
ative becomes 

in the reduced time variable. 
The influence of thermorheologieally simple material behavior on the heat 

generation phenomenon has been shown to be significant. Furthermore, improved 
computational methods are needed to calculate the dissipation function for 
noncyclic loads. 

The utility of the finite element for solving thermomeehanicMly coupled 
problems in complex geometries is apparent from the ease and accuracy with 
which the problem of the oscillating rod described here was solved. 
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