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Summary. The singular mechanical and electric fields in a three-dimensional piezoelectric ceramic strip 
containing a penny shaped crack under in-plane normal mechanical and electrical loadings based on the 
continuous electric boundary conditions on the crack surface are considered here. The potential theory 
and Hankel transforms are used to obtain a system of dual integral equations, which is then expressed as 
a Fredholm integral equation. All sorts of field intensity factors of Mode I are given, and numerical 
values for PZT-6B piezoelectric ceramic are graphically shown. 

1 Introduction 

Piezoelectric materials have been widely used in the devices such as sensors, transducers, and 
actuators for the reason of its interesting electro-mechanical nature. I f  piezoelectric materials 
have micro defects, the initiation and the propagation of cracks due to the stress concentra- 
tion caused by mechanical and electrical loads may lead to the failure of these materials, 
Therefore, to prevent failure during service and to predict the service lifetime of piezoelectric 

components, the fracture mechanics of piezoelectric materials has been paid more attention 
to, and a lot of significant works are given. Pak [1] obtained the closed form solutions for an 
infinite piezoelectric medium under anti-plane loading by using a complex variable method. 
Park and Sun [2J obtained the closed form solutions for all three modes of fracture for an infi- 
nite piezoelectric medium containing a center crack subjected to combined mechanical and 
electrical loadings. Shindo et al. [3], [4] obtained the solutions for the infinite strip parallel or 
perpendicular to the crack under anti-plane loading using an integral transform method. 
Kwon and Lee [5] obtained the solutions for piezoelectri c rectangular media with a center 
crack under anti-plane shear loading using an integral transform method. 

In the piezoelectric fracture problems, how to impose the electrical boundary conditions 
on the crack surface is controversial. The impermeable boundary condition along the crack 
surface has been widely used in the previous works such as Pak [1], Park and Sun [2], Sosa [6]. 
As was pointed out by Zhang and Tong [7], Gao and Fan [8], Chen and Shioya [9], the results 
under impermeable conditions show a non-physical singularity around the crack and disagree 
with experimental results. Recently, Gao and Fan [10] suggested that the normal components 
of electric displacement and the tangential component of the electric field should be continu- 
ous across the crack surface because real cracks in piezoelectric media are filled with vacuum 

or air. 
Because a three-dimensional cracks, such as a penny-shaped crack and an elliptical crack, 

exists in real media frequently~ the fracture analyses for a three-dimensional crack in the 
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piezoelectric material has been done recently. Wang [11] got the solution for an elliptical 
crack in infinite piezoelectric media using Fourier transform method. Wang et al. [12]-[14] 
suggested the general solutions to be expressed by the potential functions of three dimensional 
piezoelectric media. Kogan and Hui [15] gave the closed form solutions for a spheroidal piezo- 
electric inclusion in an infinite medium. Zhao et al, [16], [17] obtained the fundamental solu- 
tions for the unit concentrated displacement and electric potential discontinuity and the stress 
intensity factor for a circular crack in a piezoelectric solid. But all previous works were treated 
for unbounded media. 

In this paper, we consider the penny shaped crack in a three dimensional piezoelectric 
ceramic strip under both in-plane mechanical and electrical loads. The continuous electric 
boundary condition on the crack surface proposed by Gao and Fan [10] is adopted. The 

potential theory [18], and Hankel transforms [19] are used to obtain a system of dual integral 
equations, which are then expressed by a Fredholm integral equation of the second kind. 
Numerical results for the various field intensity factors are given for PZT-6B piezoelectric 
ceramic. 

2 Problem statement 

Consider a piezoelectric strip of thickness 2h containing a center penny-shaped crack of dia- 
meter 2a subjected to the combined mechanical and electrical loads as shown in Fig. 1. The 
cylindrical coordinates (r, 0, z) are set at the center of the crack. The piezoelectric layer is 

transversely isotropic with hexagonal symmetry, and the z-axis is oriented in the poling direc- 
tion. The strip is subjected to a constant normal stress ~r0 or a constant normal strain e0 at the 
edges, and the electrical boundary condition of a uniform electric displacement or a uniform 
electric field for the piezoelectric layer is considered [1]. Because of the symmetry in geometry 
and loading, it is possible to consider the problem for 0 < r < oc, 0 < z < h. 

In the axisymmetric problem, displacements and electric fields are independent of 0 such 
that 

> = ~,.(T, ~) ,  ~ = ~ ( T ,  z ) ,  ~0 = 0 ,  (1) 

< : E~(~, ~), E~ : E~(~, ~), E o :  o,  (2) 

where ~ and E~ (k' = r, 0, z) are displacements and electric fields, respectively. 

I T l , :  I 
/Y  

\ , '" r 

1 1 ; 1 ;  
Fig. 1. Infinite piezoelectric strip with 
a penny shaped crack subject to the 
combined in-plane mechanical and 
electrical loadings 
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Define 

00 oo 
Or ' Oz ' 

where r is the electric potential. 
The constitutive equations become 

(a) 

O- r ~ Cl lC  r + C12C0 + C13s - -  e31]~ z , 

O" 0 ~- C12C r @ Cll  "CO @ C13Gz --  r , 

(7 z ~ 513s r -}- Cl3~ 0 + C33gz - -  e33Ez  

(7rz = 2C44grz  - -  e15~r 
(4) 

Dr = 2e~ss~-z + d i r e r ,  

D z = e a : : r + e a : @ + e a 3 ~ z + d a a E z ,  

where ak (k = r, 0, z), c% are normal and shear stresses, Dk (k = r, z) are electric displace- 
ments, (cn,c12,cla,  ca3, c44) are the elastic moduli measured in a constant electric field, 
(dl~, da3) are the dielectric permittivities measured at a constant strain, and (el.5, ea ,  eaa) are 
the piezoelectric constants. 

The equilibrium equations are, 

00-  r O0-,rz 0- r - -  O- 0 

Or ~- -g-z - 4 - O, 
(5) 

Oo-~z &rz + o,.~ __ 0 

Or ~--g2z r ' 

and the equation of  electrostatics is 

OD~ ~ ODz + D ~  O. (6) 
o~ ~ 7 = 

To get the solutions which satisfy Eqs. (3)-(6),  we define the potential in the forms [18]: 

0 r  O@ O@ 
Ur = ~- r '  uz = k: 0--7' 0 = -k2 0-~' (7) 

where @ (r, z) is the potential function,and kl, k2 are unknown constants. 
Putting Eq. (7) into Eqs. (5) and (6), we can get the governing equation in the form 

02r 1 0@ 0a~ 
Or-- s + - r~ (8) ~ +  5-y~ =~  

where 

e44 + (e13 + C44) ]~1 -- (e31 _t_ e51) /~2 

CI1 
caakl - eaak~ eaakl + daak2 

C44]~1 @ C13 -~- C44 --  e lSk2 e l 5 k l  + e15 + e31 -}- d l l k 2  
(9) 

From Eq. (9), we obtain 

A n  3 + B n  2 + C n  + D = O, (lo) 
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where 

A = c44dll + e~5, 

B = (dllC23 - c11c3adll q- 2c13c44dll - cnc44dsa + 2c13e~5 -t- 2clae]se31 

- ~ 4 4 ~  - ~ < ~ < ~ a ) / < ~  , 
(n) 

C - (c33c44dll - -  c~adaa + cllcaadaa - 2c13c44d33 q- c33e~5 + 2caaetsea1 

D = -c44(eaada3 + e~a)/Cil. 

According to Eq. (10), the governing Eq. (8) becomes 

O2~i 1 0 ~  O2~i 
cqr 2 ~--r ~r + ~ = 0 '  ( i = 1 , 2 , 3 ) ,  (12) 

where 
Z 

ze ~7.  s ,~z ,  ( r  (la) 

n~ (i = 1, 2, 3) are the roots of Eq. (10) and qs~ (r, z) (i = 1, 2, 3) is the potential function corre- 
sponding to n~ (i = 1, 2, 3). 

According to superposition, the displacement and the electric potential equations become 

u~. = c % '  u~ = /{1~ 0--~2 ' r : - -  /~2i 0--7' 
i=1  i=1  i = 1  

where/cii and/v2~ (i = 1, 2, 3) are determined from Eq. (9). 
According to the suggestions of Gao and Fan [10] we set up the following boundary condi- 

tions: 

~ ( n  0) - 0 

u~ (r, 0) = 0 

Dz (~,0 +) = D~ (%0-) 

~,. (~, 0 +) = E,. (~, 0-)  

r  = 0  

~,.~ (~, 0) = 0, 

~ (~, h) = 0. 

(0 _< r < a),  

(o _< ~ < oo), 

(0 < r < a),  

(0 < r < a) ,  

( is)  

(~6) 

(Case 1) ~ (~, h) = ~o, Dz (~, h) = Do, (19) 

(C~se 2) ~z (~, h) = ~o, E~ (~, h) = Eo ,  (20) 

(Case S) <, (% h) = ~o, E~ (~, h) = Eo, (21) 

(case 4) ~ (~, h) = ~o, Dz (% h) = Do, (22) 

edge as follows: 

where ao, eo, Do and E0 are the uniform applied stress, strain, electric displacement and elec- 
tric field, respectively. 

There may be four possible cases of combined mechanical and electrical loadings in the 

(17) 

( is)  
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3 Solution procedure 

Applying Hankel transform of order 0 to Eq. (12), we can get the solution 

/ 1  
~i (r, zi) = ~ [Ai (~) c o s h  (~zi) + Bi (~) sinh (~zi)] Jo ( @ )  d ~ ,  

o 

(23) 

where Ai (~) and Bi (~) (i = 1, 2, 3) are the unknown functions to be determined by boundary 
conditions. 

The field equations are obtained in the forms: 

3 oo 
u~ = - E f [A~ (~) cosh ({z~) + Bi ({) sinh (~zi)] J1 (@) d{, 

i= i  0 

/=1 0 
3 

d) = - ~ k2~si 7 [Ai (~) sinh (~zi) + B~ (~) cosh (~z~)] Jo (@) d~ - boz, 
i=l 0 

7 Cz = ~ klisi 2 ~ [Ai (~) cosh (~zi) + Bi (~) sinh (~zi)J Jo (@) d~ + ao, 
i=i  0 

3 
~--~r : -- E ]~2iSi 7 ~ [ Ai (~)  sinh (~zi) 2v J~i (~) c o s h  (~zi ) ]  ,]I (~T) d ~ ,  ( 2 4 )  

i= i  0 
3 

Ez = ~ k2isi 2 of ~ [Ai (~) cosh (~zi) + t3i (~) sinh (~zi)] J0 (@) d~ + b0, 
i=1 0 

~ = ~ Fli ~ [Ai (~) cosh (~zi) + Bi (~) sinh (~zi)] J0 (~r) d~ + co, 
i=1 0 

3 
ar~ =- - E F3i 7 ~ [A~ (~) sinh (~zi) + Bi (~) cosh (~z~)J Jl (@) d~, 

i~1 0 
3 oo 

D~ = ~ F2i f ~ [Ai (~) cosh (~zi) + Bi (~) sinh (~zi)] Jo (~r) d~ + do, 
i= i  0 

where 

F~i = ( c 3 3 k l i  - e 3 3 k 2 i )  s i  2 - c 1 3 ,  

F2~ = (e33kl,~ + d a 3 k 2 i )  s i  2 - e a l  , 

/~3i = [C44 (1 + ]Qi) --  e15]~2i] 8i, 

(i = 1, 2, 3) (25) 

and a0, bo, co = c33a0 - e33b0 and do = es3ao + d33b0 are unknown constants to be determined 
from edge loading conditions. 

By applying edge loading conditions, Eqs. (19)-(22), the following equations are 
obtained: 

3 
Gli [Ai (() cosh ((sih) + B~ (() sinh (~sih)J = 0, (26) 

i=1 

3 
E G2i [Ai (~) cosh (@ih) + Bi (~) sinh (@ih)] = 0, (27) 
i=l 
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where 

GI~ = (ca3kl~ - ea3k2~) s~ 2 - cla, 

]~1i8i 2 

(Case 1, 3),  

(Case 2, 4) 
(i = 1, 2, a ) ,  (28) 

G2i = (eaakli + daak2d s ]  - eal,  

]~2i 8i 2 

(Case 1, 4) 

(Case 2, 3) 
(i = 1 ,2 ,3) ,  (29) 

and ao, bo are evaluated as follows: 

d33cro -k eaaDo c33D0 - e33cro 
(Case 1) a o -  , b o -  , co=c~o, d o = D o ,  (30) 

e33d33 -~ e23 c33d33 + e~3 

(Case 2) ao = eo, bo = E 0 ,  CO = e33so - -  e a a E o ,  do ~- e33c0 q- daaEo, (31) 

~o+ea3Eo eaaao+(eaada3+e~a) Eo 
(Case 3) a o - - - -  , b o = E o ,  c o = ~ o ,  d o -  

C33 C33 
(32) 

Do - eaaeo co = (caadaa + e~a) eo - e%Do do = Do. (33) (Case 4) ao = eo, b o -  daa ' d3a ' 

From the conditions of Eqs. (16)-  (18), the following equations are obtained: 

3 
E ~s~B~ (4) = o, (34) 
i=1 

3 

E Fa~B~ ( 0  = 0,  (35) 
i=l 

3 
Fa [Ai (~) sinh (@~h) + B~ (~) cosh (@ih)] = 0. (36) 

i=1 

From Eqs. (34) and (35), the relations between the coefficients, Bi (~)(i  = 1,2,3),  are 
obtained in the forms 

~2 (4) = MiB1 (~), 

Ba (4) = M2B1 (~), (37) 

where 

F31k2as3 - F33k~181 F32k21sl - Fa  k22s~ 

Mt  = Faak=s2 - F32k2a.sa ' M~ = Fa3k22s2 - F3~k~3sa (38) 

From Eqs. (26), (27) and (36) using Eqs. (37) and (38), the relations between the coefficients 
are obtained as following: 

& (4) = M41(~)Bl(~),  

& ( 4 )  = M42(~)B~(r 

& ( 0  = M~3 (~)B~(4), 

(39) 
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where 

M~I(~) : 

>h~(~) = 

{ [liAr32 (~) G12 G33 

§ (~)023G32 

§ (~)~13~22 

{[Mal(()G~lGaa 

§ 

+[~/-33 (~) Gl1(723 

M43(~) : 
-}-[M33 ({) GI2r 

- -  M 3 1 ( r  cosh ((s2h) sinh ({s3h) 

- }fa~(~)G,aG3~] cosh ({s3h) sinh ((s2h) 

~(~) 

- M.31(~)G23G31 ] cosh ({83h) 8inh (~slh) 

- M33 (~)~13G21]cosh (~81 h) cosh (~83h)} 
zx(~) 

- M31(~)~C3~] cosh (~s,h) sigh ( ~ h )  

- Ma2(~)Gt2Ga] cosh (@~h) sinh (@~h) 

- M3a(~)r cosh ( ~ )  cosh (~h )}  
~(V) 

(4o) 

A([) = ( GllG22G33 - G~2G21G3a) costl (@lh) cosh (@2h) sinh (@3h) 

+ (G13G21G32 - GI~G2aGa2) cosh (~s,h) sinh ((,~h) cosh (@3h) 

§ (GI2G23G31 - GI3G22G31) sinh (~slh) cosh ((s2h) cosh (~s3h), 

Ma(( )  = Gn sinh (@~h) + M~G12 sinh (@2h) + M2G13 sinh (@3h), 

)VI32 (~) = G21 sinh (@,h) + M1G22 sinh (@2h) + MgG23 sinh ({s3h), 

~a3(~) : c3~ cosh (~<h) + M~G32 cosh (~,~h) + M2Caa cosh (~s3h), 

G3i -- F3i 

Prom Eqs. (15), (37) and (39), a system of dual integral equations is obtained as follows: 

OO 

?%o 
0 (41) 
OO 

f B , ( ~ ) 4 ( ~ ) < :  0, (~ _< ~ < o~), 
0 

where 

N(~) = [FllM4t(g) § F12*~dr42({) § FlaMa3(~)]/no, (42) 

nO :- --IF]. 1 J- V12.~I1 § F13/~/-2] , (43) 

and J0 ( ) is the zero-order Bessel function of the first kind. 
Equations (41) may be solved by using the new function ~(c~) defined by 

6b 

B,(~) : f r  sin (~ )  d~. (44) 
0 

Inserting Eq. (44) into Eq. (41), we obtain a Fredholm integral equation of the second 

kind in the form 

1 
~(~) + I~P(H)L(.~, H)dH = Z ,  (45) 

o 
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where 

0 

jNf (~) : -- FI] J]/f41 (~) -I-F11 _L~12 J~f42 (~) -FfP12M1 _~_ fP13~f 2~1:3M43 (~) 
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(46) 

(47) 

_ _ rr n,o ~b(ce) ~P(H) - rr no ~(j(fl) (48) 
CL g 

4 Field intensity factors 

Each kind of intensity factor is obtained in the form 

K ~ = Kj  = lim 2 x / ~  - a) ~z (r, 0) = -2 ~ c 0 k ~ ( 1  ) (49) 7"--+eL § 7I- 
&~ + F22M~ + F2aM2 

K D = li_m+ ~ a) Dz (r, O) = , / ~  Fll + F12M1 + FlaM2 c0k~(l) , (50) 

A re = lira 2 ~  - a) ez (r, 0) = _2 v / ~  kiisl  u +/~12822M1 @/~13832M2 c0~(1) (51) 
r ~ a  + 71" F l l  @ F 1 2 M 1  @ FlaM2 ' 

K ~ = lira ~ - a) E,z (r, O) = _2 ~ ~21<2 + k22s22M~ + ~2asa~'M2 Co~(1) (52) 
. . . .  7r h i  + Fj2M~ + FlaM2 ' 

where K ~, K D, K c and K E are the stress intensity, electric displacement intensity, strain inten- 
sity, and electric field intensity factor, respectively. 

I f  the thickness of  the strip, h, reaches infinity, ~9(1) approaches 1, in the case that  the 
stress intensity factor is identical with that of  Kogan  and Hui [15] for an infinite body in 
Case 1. 

We should recognize that the ~ ( 1 ) i n  each case is different due to the difference of N ( t ~ )  

in Eq. (47). In Case 1, the stress intensity factor is dependent on the mechanical load, and the 
electric displacement intensity factor depends on the material  properties and the mechanical 
load, but not on the electrical load. These tendencies are consistent with those of Gao  and 
Fan  [8] in the two-dimensional mixed mode problem. Also field intensity factors are indepen- 
dent of  the electrical loading under constant stress loading, but dependent on it under con- 
stant strain loading, and these results agree with those of Shindo et al. [3], [4], and Zhang and 
Hack  [20] in two-dimensional mode I I I  problem. 

5 Numerical results 

To investigate the changes of  field intensity factors according to the dimensions, Eq. (45) was 
evaluated by Gaussian quadrature formula. The material properties of  PZT-6B ceramic con- 
sidered here are as follows: 

Elastic constants (10 ;~ N/m2): cn = 16.8, C12 = 6 . 0 ,  C13 = 6.0: eaa = 16.3, c44 = 2.71, 
Piezoelectric constants (C/m2): els = 4.6, e a  = - 0 . 9 ,  eaa = 7.1, 
Dielectric permittivity (10 -l~ F/m): dl~ = a6, daa = 34. 
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Fig. 2. Change of the stress intensity 
factor with the ratio between crack 
radius to layer thickness a/h for PZT-6B 
ceramic 
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Fig. 3. Change of field intensity factors 
with the variation of the ratio between 
crack radius to layer thickness a/h for 
PZT-6B ceramic in Case 1 
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Fig. 4. Change of normalized stress 
intensity factor K~/2(a/~r) 1/2 with the 
electrical field E0 for PZT-6B ceramic in 
Case 2 

The normalized stress intensity factors, K~/(2co) (a/7@/2, in every case are shown in Fig. 2. 
It shows that the magnitude and trends of normalized stress intensity factors in Cases 1 and 3 

are similar and those in Cases 2 and 4 are similar. Therefore, we conclude that the normalized 
stress intensity factor is affected more by the conditions of mechanical loadings than by the 
conditions of electrical loadings. 

The variations of the normalized intensity factors according to the ratio a/h are shown in 
Fig. 3 (Case 1). It is shown that the normalized intensity factors increase with the increase of 
the ratio a/h, and that the stress intensity factor and the electric field intensity factor are 
much larger than the strain intensity factor and the electric displacement intensity factor. 

Figure 4 shows the variation of K~/2(a/Tr) 1/2 according to the applied electric field E0 
with various a/h values for a PZT-6B ceramic in case of a crack diameter 2a = 20 mm and 

e0 = 1.0 • 10 -5. It is concluded from Fig. 4 that the stress intensity factor may have negative 
values according to the direction of the electric field. In Case 4, the tendency of the variation 
of the stress intensity factor with the electric displacement is similar to that of the electric field 
in Case 2. 

6 Conclusions 

The field equations and intensity factors for a penny shaped crack in a transversely isotropic 
piezoelectric ceramic strip under in-plane mechanical and electrical loadings are obtained by 
the potential theory and the integral transform method. The continuous electric boundary 
conditions are used on the crack surface. Various field intensity factors are obtained from the 
solution of a Fredholm integral equation of the second kind, The normalized intensity factors 
increase with the increase of the ratio of crack radius to the strip thickness. For the case of 
constant stress loading, the electric field intensity factor and the electric displacement intensity 
factor depend on the material constants and the applied mechanical load, but not on the 
applied electrical load. For the case of constant strain loading, the field intensity factors 
depend on the applied mechanical and electrical loads. 
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