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ON IDENTIFIABILITY AND 
INFORMATION-REGULARITY 
IN PARAMETRIZED 
NORMAL DISTRIBUTIONS* 

Bertrand Hochwald a and Arye Nehorai 2 

Abstract. We describe methods to establish identifiability and information-regularity of 
parameters in normal distributions. Parameters are considered identifiable when they are 
determined uniquely by the probability distribution and they are information-regular when 
their Fisher information matrix is full rank. In normal distributions, information-regularity 
implies local identifiability, but the converse is not always true. Using the theory of holo- 
morphic mappings, we show when the converse is true, allowing information-regularity to 
be established without having to explicitly compute the information matrix. Some examples 
are given. 

1. Introduction 

Two criteria are often used to determine that the parametrization of  a random 
variable 's  distribution is well  behaved. Suppose an unknown parameter 0 is an 
element of  a set | C R p, and y e •m is an observed random variable with 
distribution F ( y ,  0). The first criterion is an identifiability condition. For any 
0'  ~ | different from 0, F ( y ,  0~) ~ F ( y ,  0) for at least one value of  y.  The 
second is an information-regularity condition dependent on the existence of  a 
differentiable density, f (y, 0): The Fisher information matrix of  0, 

FIM(O) ~ E0{(8/80) log f ( y ,  0 ) [ (0 /80)  log f ( y ,  0)] r } ~ ]R p• 

is full rank. 
Satisfying these conditions is generally important. Assuming a collection of  in- 

finitely many independent identically distributed observations is available, Wald, 
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in [7], uses identifiability to guarantee almost sure convergence of a class of 
0 estimates that includes the maximum likelihood estimate. In [8], Wald uses 
information-regularity to prove asymptotic normality of the maximum likelihood 
estimate. 

Verifying information-regularity is troublesome, especially when p is large. 
We show, however, that there is an intimate connection between regularity and 
identifiability when the observations have a normal distribution. The connection is 
exploited to give a useful method, based on the powerful theorems of holomorphic 
functions in several complex variables, to check regularity without computing the 
Fisher information matrix. 

When the identifiability condition holds for all 0 6 19, we call 19 identifiable. 
Elements of | for which FIM(0) is full rank are called information-regular or 
simply regular, and the remaining elements are called singular. 

In the next section we characterize identifiability and regularity for observa- 
tions with a normal distribution. Section 3 presents the main result, Theorem 1, 
which connects the two conditions when the distribution's mean and covariance 
are holomorphic mappings. We conclude with some examples and a summary. 

2. Characterization of identifiability and regularity 

Identifiability has a simple characterization when F(y ,  0) is normal. Suppose 
f ( y ,  0) is a normal density with mean/z(0) and covariance R(O). Define ~o(0) to 
be a vector comprising the distinct elements of /z(0)  and R(O) that are explicit 
functions of 0. Then it is clear that ~o maps ]RP to ]Rq where q < m + m(m + 1)/2, 
and | is identifiable if and only if the map 0 ~ ~0(0) is injective on | 

Suppose ~i, i = 1 . . . . .  q, are the coordinate functions of ~o and there ex- 

ists a set of indices, il . . . . .  ip ~ {1 . . . . .  q}, making the map 0 ~ ~o*(0) 
(~0il ( 0 )  . . . . .  ~ip (0)) injective on | Then we call 19 strongly identifiable and ~o* 
a representative mapping of 19. Strongly identifiable sets are identifiable, but the 
converse is not necessarily true. 

Regularity has the following characterization when ~o(0) is continuously dif- 
ferentiable. FIM(0) > 0, or 0 is a regular point, if and only if 0~o(0)/00 has (full) 
rank p. This result is a direct consequence of Lemma 6.1 of Chapter 9 in [1]. 

When p is large, both O~o(O)/O0 and FIM(0) are often cumbersome and have 
ranks that are difficult to compute. There is, however, a simple way to find singular 
points of 0 without computing either matrix. If 0~o(0)/00 has rank p, then there ex- 

ists a set o f p  indices, jl . . . . .  jp ~ {1 . . . . .  q}, and a mapping, 9** & (9jl . . . . .  9j~) 
of 19 into R p, such that ~0"*(0)/~0 is full rank. The inverse function theorem then 
implies that there exist open neighborhoods U of 0 and V of ~o**(0) on which 
~o** : U --~ V is a bijection. Hence, ~o** is a representative mapping of U, and U 
is strongly identifiable. We restate the result in a more useful form. 
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Proposition 1 . / f 0  ~ 19 is a point having no strongly identifiable open neighbor- 
hood in ]~P, then 0 is a singular point. 

We illustrate this result with a simple example, to which we will also refer later, 
that shows that the condition in Proposition 1 is not necessary to the proposition's 
conclusion. 

E xample  1. Consider y ,v A/'(0 k, 1), where k is a positive integer. Then ~0 (0) = 0k; 
i fk  is even, | = ]~+ is identifiable, and i l k  is odd; O = 1~ is identifiable. For any 
0 # 0 there exists an open subset of  ]~ containing 0 such that 9(0)  is injective. 
This is not true, however, when 0 = 0 and k is even. Hence, by Proposition 1, 
0 = 0 is a singular point whenever k is even. But note that FIM(0) ----- k20 ~'-2, 
and therefore 0 = 0 is a singular point for all k > 1, which Proposition 1 fails to 
notice when k is odd. A remedy is proposed in the next section. 

3. Main result 

Proposition 1 does not necessarily find all the singular points of  | In this section 
we present a method for finding all the singular points by examining ~o as a function 
of complex arguments. In Example 1 with k > 1, as a holomorphic function of 
z ~ C, 9(z)  does not map open sets containing z = 0 injectively. As we will show, 
this will allow us to conclude that z = 0 is a singular point. 

The reward for viewing the parametrization in complex variables is a near 
converse to Proposition 1. We assume f2 C Cp is a set chosen so that | C f2, and 
we carry over from the previous section the notions of  identifiability and regularity 
to points of  f2. That is, f2 is identifiable if the map z ~ ~o(z) is injective on f2, 
and z ~ f2 is regular if Og(z)/Oz has full rank. Theorem 1 is the main result. 

T h e o r e m  1. Let  ~o(z) e C q be a holomorphic mapping of  z ~ [2 C U ~ A  [2~, 
where for  each ot in an index set ,4, f2, C C p is open. (a) Suppose z E f2 is a 
point  having no strongly identifiable open neighborhood in Cp. Then z is a singular 
point. (b) Conversely, suppose that for  each ot there exists a representative mapping 
9* : f2~ -+ C p, making f2~ strongly identificable. Then every point o f  ~2 is regular. 

Proof.  Assertion (a) follows exactly as in Proposition 1, from the inverse mapping 
theorem for holomorphic mappings [3, Theorem C6]. Assertion (b) comes from 
the following powerful lemma, which has no counterpart for real mappings. 

L e m m a  1 [4, Corollary El0] .  f f  zr : U -+ V is a bijective holomorphic mapping 
from an open set U C C p onto a subset V C C p, then V is necessarily an open 
subset o f  C p and Jr is a biholomorphic mapping. 
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A biholomorphic mapping is, by definition, a holomorphic mapping admitting 
a holomorphic inverse. It follows from z = ( r ro  zr-1)(z) that (Orr(z)/Oz) -1 = 
aJr-1 (z) /az ,  so On (z ) /az  is nonsingular; a biholomorphic mapping has a full-rank 
Jacobian matrix. 

Let z ~ f2. Then z ~ ~2,~ for some o~ ~ .,4. By assumption, there exists a repre- 
sentative mapping ~o* (z) : ~2~ --. V C C p, where ~2~ is open. As a consequence 
of Lemma 1, O~o~(z)/az is full rank, and because a~o~(z)/az is a submatrix of 
~o(z) /az ,  the latter also has full rank. Therefore, z is regular. (~ 

In the special case when q = p and ~ is open, we may take f2,~ = f2. We then 
have the corollary that identifiability and regularity coincide on f2. 

Corollary 1. Let  ~o(z) : f2 ~ C p be a holomorphic mapping where f2 C C p is 
open. l f  alI points of  ~2 are regular, then f2 is (strongly) identifiable. Conversely, 
if  ~2 is (strongly) identifiable, then all its points are also regular. 

To apply Theorem 1, one must show that ~o(z) is a holomorphic mapping; that 
is, the coordinate functions ~oi(z), i = 1 . . . . . .  q, are holomorphic on f2. This task 
is made simple by a theorem due to Hartogs. 

Har togs '  Theorem [3, Theorem B6]. Ira complex-valued function is holomorphic 
in each variable separately in an open domain U C C p, then it is holomorphic in 
U. 

Thus we may use standard tools (power series expansions, etc.) to show that each 
~oi (z) is holomorphic in zl  . . . . .  z e separately and, by Hartogs' theorem, conclude 
that ~o(z) is a holomorphic mapping. As with Lemma 1, this theorem is peculiar 
to holomorphic functions and has no counterpart for real functions. 

q)(z) is often holomorphic because, in many applications, a parametrization is 
the result of mathematical analysis of a physical problem, and many functions 
encountered in physics are holomorphic. We present some examples to illustrate 
the results. 

Example  2. In Example 1, ~0(z) = z k, k > 1, injectively maps open sets in C 
containing a if and only if a ~ 0. Thus, by Theorem 1, z = 0 is the one and only 
singular point whenever k > 1. 

The next example demonstrates that strong identifiability, and not just identifi- 
ability, of some open f2 is needed for regularity. 

Example 3. Let [o2] 
y = 03 + e  
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where e ~ ~2 is a zero-mean normal random variable with known covariance. 
In this example, ~o(z) = (z 2, z 3) has an inverse for all z ~ C, implying that C 
is identifiable. Observe, however, that z = 0 has no strongly identifiable open 
neighborhood because neither z 2 nor z 3 can be taken as a representative mapping 
of open sets containing the origin. It follows from Theorem l(a) that the origin is 
a singular point�9 

The final example shows that regularity can be much easier to prove using 
Theorem 1, rather than explicitly computing the rank of ~ 0 ( 0 ) / 0 0  or FIM(0).  

Example  4 (adapted from [2]). Consider the problem of fitting n exponentials 
to m time-samples. The model for the j t h  sample is Yi = ~ , in l  xieaiti + ej, 
j = 1 . . . . .  m, where ai 6 ]R is the ith signal's decay or growth rate, and ej is the 
j th  component of  e 6 R'~, a normal random variable with zero mean and arbitrary 
known covariance. With tl = 0 and integer ti < ta < . . .  < tin, y = A ( a ) x  + e, 
where y = [Yl . . . . .  y,n] r ,  x = [xi, �9 . . ,  xn] T, and 

I 1 1 ---  1 
eCqt2 eCt2t2 . . .  eclat2 

A ( a )  . . . .  . . 

ealtm ea2tm . . .  eC~ntm 

We assume the a i ' s  are distinct and consider two possibilities for the xi's: (i) they 
are unknown deterministic quantities; (ii) they are normal random variables with 
unknown power, uncorrelated with each other and e. In (i), | = ~2~, and in (ii), 
| = ]~n x ]~+n. We are interested in the maximum n for which every point of  19 
is regular. 

(i) In this case 0 = (al  . . . .  , an, Xl . . . . .  Xn) and 

( ~ - ~ ' ~ - ~ ' x i e a ' t z  ~-~" I ~ ( 0 )  ~-  X i  . . . . . .  X i  eetitm �9 

\ i = 1  i=1 i=1 ,/ 

It follows from the nonnegativity of  the exponential function and a determinantal 
result given in [6, p. 126] that A (or) is full rank as long as n _< m. We may therefore 
employ standard results on identifiability [5], [9] to conclude that 19 is identifiable 
if and only if 2n _< m. As we now show, Theorem 1 can be used to prove that 
points of  19 are also regular for all such n, avoiding the cumbersome process of  
computing the rank of Og(O)/O0 ~ ]t~ mx2n or of  FIM(0) ~ ~2nxEn. 

Considering 9 as a function of complex arguments Zl . . . . .  ZEn, we see that ~0(z) 
is holomorphic in each zi separately (each ~0i is a sum of products of  holomorphic 
functions of  the zi 's). Therefore, by Hartogs '  theorem, 9(z)  is holomorphic in z. 

For every a = (al  . . . . .  an) E R n (ai distinct), A(a )  is full rank. Consequently, 
each a has an open neighborhood N~ C C n, for which A ( a ' )  remains full rank 
when a '  ~ N~. By shrinking N,,, if necessary, we may employ the complex-version 
results of  [5], [9] to conclude that there exists an open identifiable f2,~ C C 2n as 
long as 2n < m; 19 can be covered by such f2,~'s. 
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Because ~o~ . . . . .  ~O2n is a representative mapping of  each f2,~ when 2n < m 
(this too follows immediately from standard identifiability results), regularity for 
points of  | follows from Theorem 1. Conversely, Theorem 1 also implies that 
every point of  19 is singular if 2n > m. 

Remark .  When 2n < m, regularity holds even if the covariance of  e is unknown, 
because ~0(z) can be augmented to include the unknown entries of  R, yielding 
a trivially holomorphic and injective ~o. Verifying this by computing FIM(0) 
~[2n+m(m+l)/2]x[2n+m(rn+l)/2] would indeed be tedious. 

(ii) In this case 0 = (o~ 1 . . . . .  o~n, tr• . . . . .  a2), where a/2 = E x  2, and 

~o(0) = a 2 i . . . . .  e ~ i ( t j + t D , . . . ,  e 2alt" , j ,  k = 1, . . .  , m 
i=1 i=1 / 

excluding terms with nondistinct tj + t~. It follows from the results in [5], [9] that 
| is identifiable for all possible ai and tr 2 if and only if n < m - 1. As in (i), 
9(z)  is holomorphic, and there is a collection of  open identifiable f2,~ covering | 
Because there are at least 2m - 1 distinct tj + t~, we may choose 2n < 2m - 1 
distinct 9i as representative mappings of  each S2,~. Hence the elements of  | are 
regular if and only if n < m - 1. 

3.1. S u m m a r y  

1. In a normal distribution, to show identifiability of  | C ]~P, establish that the 
mapping 9 : O ~ ]~q is injective. 

2. To find the singular and regular points of  the distribution's parametrization: 

a. Establish that ~o(z) is holomorphic for z in some domain f2 C C p, where 
O C ~2. This can be done, employing Hartogs'  theorem, by verifying that 
the coordinate functions ~oi, i = 1 . . . . .  q,  are holomorphic in each variable 
zl . . . . .  z e separately. 

b. To show  singulari ty  at  points:  Locate points z 6 0  having no strongly 
identifiable open neighborhood in Cp. 

c. To show regularity on a set: Select a representative mapping on an open 
subset of  CP; every point of  the subset is regular. If  ~2 can be covered by 
open sets and corresponding representative mappings, then every point of  
~2, and hence | is regular. 

4. Conclusion 

We have presented a way to unify the notions of  identifiability and rgularity using 
the theory of  holomorphic functions of  several variables. Example 4 showed that 
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regulari ty in some models  can be more easily de termined by  examin ing  ~0 as a 

holomorphic  mapp ing  than by  comput ing  the rank of  0~o(0) /00 or FIM(0) .  This is 
of ten true when  p is large, for large models  are often designed by  b r ing ing  together 
the pieces of  m a n y  smaller, wel l-parametr ized models ,  whereas  matr ix  ranks are 
usual ly  cumbersome to compute.  
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