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A NEw FAMILY OF RoUuTH
APPROXIMANTS*

Chyi Hwang' and Ying-Chin Leé®

Abstract. Based on the combinatorial Routh & — 8 and y — 8 expansions of a stable transfer
function, a new energy decomposition tree for linear systems is developed. The pertinent
properties to the energy decomposition tree are investigated, and an algorithm is derived
for synthesizing transfer functions from the tree. The synthesis process naturally leads to a
new family of Routh approximants to the system. It is indicated that the selection of Routh
approximants based on the values of impulse-response energy is often inadequate because
there may be a number of different Routh approximants with the same order and the same
impulse-response energy. In such cases, an additional performance criterion, such as the
integral of squared error of impulse response or unit-step response, has to be used to select
a suitable Routh approximant.

1. Introduction

The Routh approximation method uses the Routh stability-test algorithm to gen-
erate reduced-order models for linear, time-invariant, continuous-time systems.
Since it was originally proposed by Hutton and Friedland [5], the Routh approxi-
mation method has received considerable attention [6], [14], [15], [17], [23], [24],
[26]-{28], [30], [31], [33]. It has also been recognized as one of the most significant
and popular stable model-reduction methods. The significance and popularity of
the Routh approximation method are mainly due to the low computational burden
for obtaining a set of stable models with different orders and the ability to guar-
antee a stable reduced-order model that preserves the first time moments and/or
Markov parameters of the original stable system. Another useful capability of the
Routh approximation method is that it produces in the reduction process the val-
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ues of impulse-response energy of the Routh approximants, which often serve as
a criterion for selecting the order of a reduced model.

The advantages of Routh approximation have encouraged several authors to
extend the method to obtain stable reduced-order models for other types of sys-
tems. Bistritz [1], Hsieh and Hwang [4], Hwang and Hsieh [11], and Hwang and
Shih [12] have applied the Routh approximation method along with bilinear trans-
formation to derive stable reduced-order models for linear discrete-time systems.
By using the matrix Routh algorithm, Hwang and Guo [9] and Ramakrishnan et
al. [22] have developed the matrix Routh approximant technique for obtaining
reduced-degree matrix-fraction descriptions for linear multi-input multi-output
systems. Recently, Guo et al. [2] have extended the Routh approximation method
to the model reduction of two-dimensional (2-D) separable-denominator discrete
systems.

In parallel with the study of extending the Routh approximation method to a
broader class of systems, considerable effort is devoted to improve the quality of
Routh approximants. Because the Routh approximants derived from the Routh
y — & expansion [27] fit only the initial time moments of the original systems,
they may not produce a good approximation in the portion of transient response.
Besides, as indicated by Rao [24], the pole zero cancellations in a high-order
original system can affect the approximation quality of Routh approximants. To
overcome these potential disadvantages, several modified Routh approximation
methods have been proposed [3], [7], [8], [10], [13}], [16], [18], [32], [34]. Basi-
cally, these modifications combine the use of a Routh stability-test array to generate
the denominator polynomial with other criteria, such as the minimization of the
integral of squared error of time responses [7], [8], [10], [13], the matching of
more time moments [18], [34], and the fitting of both time moments and Markov
parameters [3], [29], [32], to yield the numerator polynomial of a reduced-order
model. Recently, Hsieh and Hwang [3] have proposed a modified Routh approx-
imation method that combines, in a balanced fashion, both the Routh & — B and
y — & expansions for obtaining stable reduced models. Because a Routh ¢ — 8
approximant retains the high-frequency or transient characteristics and a Routh
y — & approximant retains the low-frequency or steady-state characteristics of the
system, this modified Routh approximation method can, in general, give accurate
and satisfactory reduced-order models. However, the advantage of associating the
impulse-response energy of a modified Routh approximant with the combined
Routh @ — B8 and y — § parameters has not been explored yet.

In this paper, the impulse-response energy approximation technique [19}-[21],
[25] is generalized to obtain Routh approximants that retain various combinations
of the « — B and y — & energy parameters of the system. The generalization is
based on combinatorially using the Routh @ — 8 and y — § expansions to peel
off the energy components of a linear system described by its transfer function.
This decomposition procedure allows one to build a energy decomposition tree
for the system. Some interesting properties associated with the tree are identified.
In addition, a synthesis procedure is presented to transform the energy decompo-
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sition tree to a tree of Routh approximants. It is also remarked that in a Routh
approximant tree there are several Routh approximants with the same order and
the same impulse-response energy. This fact indicates that the selection of a Routh
approximant to the system based on the value of impulse-response energy is inad-
equate. Therefore, an additional performance criterion of model reduction, such
as the integral of squared error of impulse or unit-step response, should be also
evaluated for selecting a proper Routh approximant.

2. Impulse-response energy decomposition

Consider a stable system described by the nth-order transfer function
bo+bis+---+b,_15" 1 o B(s)
ag+ais+---+ast = A(s)
Denote the impulse response of the system by
8:(0) = L7HG,(5)} . )
The impulse-response energy of the system, G, (s), is defined by

Gn(s) = €y

A o] ) 1 joo
A / g0dt=5- [ G0)Gu-5)ds 3
0 2nj J-joo
where j = +/—1. In the following subsections, the Routh « — 8 and y — &
expansions are applied to decompose the transfer function G, (s) and its impulse-
response energy I,.

2.1. Routh y — & expansion.

The denominator polynomial, A(s), of the transfer function G, (s) may be decom-
posed as

A(s) = A1 (s?) + 5Ax(5%) 4
where
n1
AsD) 2 Zal,kszk =ag + as* + - - - + @z, s (52)
k=0
A
A 2 ares™ =ay +ass’ + o + agny 15 (5b)
=0

and n; is the integer part of (n 41 —i)/2. Substituting the even-odd decomposition
(4) for A(s) and letting By (s) A bio+b11S+ -+ byp 15" = B(s), we can
expand the transfer function G, (s) as

B, (s) 2 By (s)
AGD + 55
G,,(S) — $Az(s%) s Az(s?) (6)

A T o1 sAGh
I+Ze 1+3+%s
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where
_ A0 aip
"= A0)  axg (72)
n3 1
A3 2 Y a3es™ = (A1) — 1) (7b)
k=0
B1(0)  bio
—_— Tc
' A2(0) azp 79
Ba(s) = sz kst = —(31 (5) — 8142(s%)) . (7d)
k=0
By iteratively performing the expansions
A;(s?) 1 sAit2(s%)
=Vt V> (8a)
sAi1(s?) s Ait1(s?)
Ai(0) 4,0
= O g0 8b
W) aiy1,0 (8b)
itz
A2 2 aiaps™ ——mu);mmw» (8¢)
k=0
and
B;(s) 1 Biy1(s)
T s Y 9a
sAi11(s?) s Aipa(s?) Ga)
B;(0) bi,
= = 2 9b
Ai1(0)  ait10 o0)
n—i—1
,Hm>—§:hﬂw==43m—amﬂmn (9)
i=0

fori =1,2,...,n, we can finally expand G, (s) into the following Routh y — §
form [27]: :

n 6 i
Gn(s) =Y =[] War(s) (10)
im1 S k=1
where 1
Wn,k(s) = _)_/f_ 1
1
s Vie+1 4= a1
s ..
Yo
s

fork = 2,3,...,n. As for W, 1(s), the first term in the preceding expansion is
1+ % According to the Routh stability criterion, the transfer function G,(s) is
asymptotically stable if and only if ;0 fori =1, 2,..., n. Given the coefficients
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y;and §; fori = 1,2,..., n, the impulse-response energy of the system G, (s) can
be evaluated by
n 82
I, = - 12
; > (12)

2.2. Routh o — 8 expansion.
Alternatively, the denominator polynomial, A(s), of the transfer function G, (s)
can be split into
A(S) = (ans" + an—an—z + - ) + (an—lsn_1 + an-—SS"—3 +-- )
= A1(s) + Aa(s) (13)

"4

where

Ai(s5) & Zal kS

o on n-2 ., ais forn odd
= a,S" + ap_2s""° + + [ 4o forn even (14a)
Axs) = Zaz ks
k=0
_ n—1 n=3 . ay fornodd
= @187 O3S A e { a;s for n even. (14b)
Let B(s) be written as
B(s) = Bi(s) = Zb asTE (15)
Then the transfer function G, (s) can be expressed as
By(s) hos
s 4
Guls) = —— =20 6)
Ais) +Axs) 1+ :‘2’;
Performing the long divisions
A' S AA,' S
; i(5) =a,-s+A+—2() (17a)
Airi(s) Aina(s)
A; a;
;= lim —i&)__ di0 (17b)
§0 5 A;41(8) i 41,0
Riy2
Aiga(s) =Y diags" % = Ay(s) — aisAis(6) (17¢)

k=0
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and

AB,-(s) — lfi+1(s) (18a)
Ai+1(S) Ai+1(s)

Bi(s) bio

B = lim — = - (18b)
20 Aia(s)  Gi+1,0

. n—i—1 R ) . R

Biya(s) = Y bigras" 1 = Bils) — BiAia(s) (18¢)
k=0

fori =1,2,...,n, we can expand G ,(s) into the following Routh & — 8 form

5k

n i
Gu() =) _ B [ [ Vaa® (19)
i=1 k=1
where 1
Vo k(s) = -
s + 1
o1 + — (20)
1
TS
fork =2,3,...,n.For V, 1(s), the first term in the preceding expansion is 1+a;ys

rather than ays. Because the transfer function G, (s) is stable, the coefficients «;,
i =1,2,,...,n, of the Routh @« — B expansion are all positive. Besides, the
impulse-response energy of the system G, (s) can be evaluated alternatively from
the o and B coefficients as follows [5]:

n 2
I=;E (21)

2.3. System and energy decompositions.

Let G,—1,0(s) be the (n — 1)th-order decomposed transfer function formed from
the polynomials ﬁz (s), Az(s), and A3 (s) of the first-level Routh o — B expansion
of G, (s) as follows: )

B;(s)
As(s) + As(s)
It is obvious that G,_1,0(s) is stable and its impulse-response energy, denoted by
I, 0, is given by

Gr-1,005) = (22)

A o0 ) 1 joo
Lo 2 f F10@di=5— [ Gr1a®Garo(-5)ds
0 ] J-joo
n 2

=y £ 23)
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where g,_10(t) = £L7{G,-1,0(s)}. Comparing (21) and (23), we have

I = Lt + 110 - 24)

206 '
Similarly, we can form another (n — 1)th-order decomposed stable transfer function
Gp-1,1(s) from the polynomials B,(s), A2(s?), and A3(s?) of the first-level Routh

y — & expansion of G, (s) as follows:

B;(s)
G - 25
110 = D + 545D @)
The impulse-response energy of G,_1,1(s), denoted by I,,_; 1, is given by
o0 joo n 2
A 2 1 8,-
Iiig = f 2 0dt = —— / Gn11()Gror1(—s)ds = Y <
1,1 A 8n-1,1 277 oo 1,1 1,1 2%y,
(26)
where g,-11(t) = L7HG —1,1(s)}. Comparing (26) and (12), we have
62
Li==*+1I1,. 27
2n

According to the results in (24) and (27), we can regard the Routh ¢ — 8 and
y — & expansions as impulse-response energy decomposition schemes. Hence, by
performing combinatorially first-level Routh @ — 8 and y — & expansions on G, (s)
and the decomposed transfer functions, we can develop an energy decomposition
tree as shown in Figure 1. In this tree, the entry G,,_; 11 4 (s) isan (n —i +1)th-order
transfer function that can be generally expressed as

Bix(s)

Griy14(5) = = — (28)
Aii(s) + Air1,£(5)
for the purpose of performing Routh o — B expansion, and as
Bi S
Groinr(s) = +) @9

Aik(8?) +5Ai11,4(s?)

for the purpose of performing Routh y — § expansion. Let the polynomials A ik (8),
Bix(5), Ai x(s?), and B; 4 (s) in (28) and (29) be denoted by

n;

Air(s) = Zﬁi,k,15"+l_’_21 (302)
=0

R n—i . .

Bia(s) =) bijess" (30b)
1=0

B;i(s) = Zbi,k,lsl (30c)
1=0

ni
Aik(D) =) aigss® . (30d)
=0
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/G(S)\
(1,0, B10) (71,0,610)
Ga-10(s) Groia(s)
(0120 ﬂzo (720520) (Crzl ﬁzx "121 ba1)
Gn_20(s) Ga-2.(s) Gn-2( Gn-23(s)

AN ANANYA

(a30,03.0) (73.0.630) (@3.1.011) ‘131511 ) (a32,B812) (ma2.8:32) (a33.833) (v33,633)

Gr-30{3) Ga-1.1(s) Ga-32(s) Gn-31(5) Gaza(s) Gn-15(s5) Ga-36(s) Ga_ 37()

Figure 1. Energy decomposition tree.

Then it is obvious that they satisfy the following relations:

Bix(s) = Bis(s)
ffk(s) forn —i+ 1even
A; 2y _ RS
k(5 {A,-+1,k(s) forn—i+1o0dd
-l'AAi+1,k(S) forn —i + 1even

A. 2 = 5.
i+1.k(s%) { %Ai,k(s) forr —i +1odd.

Now, return to (28) and perform the Routh @ — 8 expansion to obtain

)2
ﬁi + A+1.k(S)

Groiy1.4(s) = 7 '+:(s2)k =
Ait2,kS)
I+es+ 700
where
A;i(s) @i k0
a;r = lim =

9% sA; 1 4(s)  Bit1k0
Ay i(s) = Ajp(s) — i kS Ai1,4(5)
5 lim D B; i (s) biro
ik = =
§—>00 A,_,_l () Bitiko

Bis14(5) = Biy(s) — BisAir14(5) .

(31a)
(31b)

(31c)

(32)

(33a)
(33b)
(33¢)

(33d)

From the Routh & — B expansion of G ,_; 11 x (s) in (32), we can obtain the (n —i)th-

order decomposed transfer function

Al+1 k(s)
Air1x(8) + Aiai(s)

Gn —i, Zk(S)

(34)
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Hence, the polynomials in the general representations

_ Ei+1,2k(f)
Grion(s) = | Ai12x(8) + Aiga e (5)
Bit1.25-1(5)
Air1.26(5%) + sAi 12,26 (5%)

for @ — B expansion

for y — é expansion

are given by
Bir1a(s) = :+1 £(s)
Al+1 2k(s) l+1 k(s)
Aiy221(5) = Apyax(s)
and
Bit1.24(s) = Biy14(s)

A, (sz) _ A,-+1,k(s) forn — i even
LA - A,-H,k(s) for n — i odd.
12 .
=A;05(s) forn —ieven
A; 2 — s ,\l+ y
l+2‘2k(s ) { %AH.]J((S) forn — i odd.

(35)

(36a)
(36b)
(36¢)

(37a)

(37b)

(37¢)

As shown in the preceding subsections, the impulse-response energy of G ;.11 £ (5),
denoted by I,,_;,1 x, can be expressed in terms of that of G,_; 2% (s), denoted by

I,_; 2, and the coefficients o; 4 and 8;  as

2
&

I, z+1k—1—12k+l_'
2(13;:

(38)

Alternatively, we can apply the Routh y — § expansion to decompose the transfer

function G,_;414(s) as

Sik | Biv1.x(s)

S A1 (s?)
Greis1i(s y
n—i+1,k(8) = y, $Air24 (%)
1+ 2+ 2
Air14(s%)
where
— lim l k(Sz) . A k,0

s>0 A1 652 Biy140
A2 i(s?) = gz—(A,-,k(s ) = VikAir1£(6%)

84 = lim 2 Bik(s) _ biko
l
s>0 Ait16(5%)  @iv1ko0

Bij14(s) = ;(Bi,k(s) — 8 kAir1(5%) .

(39

(40a)

(40b)

(40c)

(40d)
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Let the (n—i)th-order decomposed transfer function associated with the expansion
(39) be

B;11,4(s)
Ga_; s) = : . 41
nei2e1$) = T + 5Aiaa D @D
Then the polynomials in the general representations of G,,_; 741 (s),
3 Bi“'z"tli(s) for & — B expansion
Grn-ik+1(s) = i+1’2"+1(;) + Z+)2'2k+1(s) 42)
i+1,2%\8 for y — & expansion
Ait12641(5) + 5Ai12,2%41(5%) 4 *P
are given by
Biy12641(5) = Biyax(s) (43a)
i _ A,-+1,k(s2) forn — i even
Ait12e41(5) = { sA;y21(s?) forn —iodd (43b)
: | sAis2x(s? forn —ieven
Air22641(5) = [ Aiy1x(s?)  fornm—iodd (430)
and
Biy1,2641(5) = Biy1.4(8) (44a)
Ai112641(5%) = Apy14(57) (44b)
Ai22641(5%) = Ai24(5?) . (44¢)

Similarly, the impulse-response energy of G,_;+1 £(s) can be evaluated from that
of G,_; 2k+1(5), denoted by I,,_1 2411, and the coefficients y; ; and &; ; as follows:

_ &
Liivipe = In—ipkern + 57— - (45)
2¥ik

Before ending this section, we note that the energy parameter pairs and the
decomposed transfer functions of G,_; (s) have the following properties:

(i) Forn —i even,

(@i 1,k Bivrk) = @iy2,264015 Biva,2e+1) (46a)
Vitvrko Siv1r) = (Vit2,20, Si2,2¢) (46b)
Groi—2,4k4+108) = G2 4k42(5) . (46¢)
(ii) Forn —i odd,
2 82 52 2
ﬂt-l—l,k + i+2,2k — i+1,k + ﬂt+2,2k+l . (47)

®it1,k Vit2,k Vi1, O 42, 2k+1

A proof of these properties for i = 0 is given in the Appendix.
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3. Derivation of a new family of Routh approximants

By using the energy parameter pairs of the energy decomposition tree in Figure 1,
a tree of Routh approximants to G,(s) can be obtained. The Routh-approximant
tree constructed from the @ — 8 and y — § energy parameter pairs of the energy
decomposition tree is shown in Figure 2. In this figure, the entry G, x(s) is the
mth-order transfer function, which is constructed such that it has the sequence of
energy parameter pairs (u;, v;),i = 1,2,...,m, where

(@irG)> Bikwy) ifdii1=0
0y Pk@) 1 48
Wiray k) i dig=1. (“48)

(ui, vi) =

Figure 2. Routh-approximant tree.

Inequation (48),d;,i = 0, 1,. .., m~1, are the digits of the m-bit binary represen-
tation dy,—1dy—7 - - - didp of the number k, and k(P) is the integer part of k/27+1—%,
As an illustration, we consider the case of m = 4 and k = 5. The 4-bit binary
representation of £ = 5 is 0101, sowe have d; = 0,d; = 0,d; = 0,dy = 0, and
k(1) =0,k(2) =0, k&(3) = 1, k(4) = 2. Hence, the transfer function G4,5 (s) has
the sequence of energy parameter pairs (a0, B1,0), (¥2,0, 82,0), (@31, B3,1), and
(¥3,25 84,2)

_ In what follows, we derive an algorithm for synthesizing transfer function
G i (s) from the sequence of energy parameter pairs (u;, v;),i = 1,2,...,m.
Let

gio+gi1S + - + gij—1s'1
Dio+ Pias + -+ + pist

A 40)

0

&is) =

(49)
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be the ith-order transfer function that has the sequence of energy parameter
pairs (u,v), I = m—i+1, m—i+2,...,m. Then, if (Up—i, Vm—i) =
(Om—i km—i)> Bm—ikm—i))> 8i(s) and g;11(s) are related by

qi (s)

Vm—i +
(pi(s) + pi(=5))/2 ;
-, (i) = i)z forieven
Hm—iS +
. _ qiva(s) ) (pi(s) + pi(—s))/2
8i+1(8) = ——= = 1 (50
Pi+1(s) N gi(s)
" (pi(s) — p(=s))/2 .
et PG = p=5)]2 for i odd.
‘ T (pi(s) — pi(s))/2
Comparing the last two equations gives
. _ 1 1/2vm—i(pi(s) + pi(—$)) + qi(s) fori even
4n() = { 1/29i(pi(s) — pi(—5)) + gi(s) fori odd (G1a)
and
_ | 1/2pm-is(pi(s) + pi(—s)) + pi(s) forieven
Pi1(s) = { 1/24tmi5(pi(s) — pe(—s)) + pi(s) foriodd.  C1P)

Also, if (ttm—is Vm—i) = (Vm—i k(m—i)> Om—i,k(m—i)), the numerator and the denomi-
nator polynomials of the transfer functions g;11(s) and g;(s) are related by

gi+1(s) = 9i1(5)
Di+1(s)
Vm—i gi (S)
s (pi(s) + p(—s))/2
= b, O =2 ©2)

s (pi(s) + pi(—5))/2
Comparing the last two equations, we have
Gi+1(5) = Vi (Pi(s) + pi(—5))/2 + 59:(5) (532)
Pi+1(8) = pm—i(Pi(s) + pi(=5))/2 + spi(s) . (53b)
By using the initial conditions

a1,0B1.0 _
q1(s) _ @ 05+1 ford,-1=0

pits) | vuoduo _
Stac ford,_1 =1

(54

g1(s) =

and using the recursive relations (51) and (53), we can obtain Gm,k (s) = gm(s)
from the sequence of energy parameter pairs in (48).

We have completed the derivation of synthesis formulas for constructing a tree
of Routh approximants to G,(s) from its energy parameter pairs in the energy
decomposition tree. Some interesting properties of the Routh approximant tree in
Figure 2 are now outlined as follows:
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(i) The impulse-response energy of the mth Routh approximant Gm,k (s) is given
by

- 1 joo A LY
L= — G G —s8)ds = LI 55
=g ) mk(8)Gmi(—s)ds ;2%_ (55)

(ii) The impulse-response energy IA,,,, « satisfies the following relations:

2
~ ~ m.k

Im+l,2k =imk + Zam,k (563)
a a 82
Loy oker = Imp + #mkk . (56b)

(iii) If the number of 1’s in the m-bit binary representation of k;, denoted by
p(m, ky), is equal to that of k;, p(m, k3), then

Ingy = I, - 7
Hence, there are only m+1 different values of impulse-response energy for the
family of 2" mth-order Routh approximants G, x(s), k =0,1,...,2" — 1.

(iv) If n —mis even and p(m, k1) = p(m, k), then é,,,,kl (s) = é,,,,kz(s). In this
case, there are only m 4 1 different mth-order Routh approximants.

(v) The mth-order Routh approximant ém,k (s) fits G, (s) at s = 0 by:

i1 i1

—— G i (0) = —
dsi-1 "‘J‘() dsi—1

A . p(m,k) forn,m even
GO, i=12..., {rl(m,k) for n, m odd

(58)
where 71 (m, k) (resp. to(m, k)) denotes the maximum number of leading 1’s
(tesp. 07s) in the m-bit binary representation of k. Moreover, G, x(s) fits
G,(s) ats = oo by

A~

M = M | i=1,2’.“’{m—p(m,k) for n, m even

to(m, k) for n, m odd (59)

where M,,,, ki and M,, ; are, respectively, the coefficients of the negative power
series of G, 1 (5) and G, (s); i.e.,

o0
Cnp(s) =Y Mppss™ (60a)
i=1
0 -
Gal(s) =) Myss™ . (60b)
i=1

It is noted that properties (i) and (ii) follow obviously from the results derived in
Section 2. Properties (iii) and (iv) can be proved by using the relations (46) and
(47) of the energy decomposition tree. Moreover, the Padé fitting properties in (58)
and (59) can be verified by a direct calculation.
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Finally, it is remarked that if n — m is odd, then all the 2" mth-order Routh
approximants, (A?,,,,k (s),k=0,1,...,2" —1, are distinct. However, there are only
m + 1 different values of impulse-response energy among these 2™ m-th order
Routh approximants. This fact indicates that the selection of Routh approximants
based on the impulse-response energy is inadequate. Hence, another criterion has
to be used to select the optimal prespecified-order Routh approximant.

4. Examples

To illustrate properties of the new family of Routh approximants, we provide two
examples in this section.

Example 1. Consider the stable fourth-order transfer function
81.6103s° + 506.6497s2 + 99.8432s + 5
54 +105.253 + 521.0152 +101.05s +5
The first four terms of the negative and positive power series of G4(s) are given
by
G4(s) = 1 — 0.24136s + 2.00583s% — 20.1055s> + - - -
Ga(s) = 81.6103s " — 8078.75s > + 807464.9s > — 8074444554 + - - -

Guls) =

Using the energy decomposition algorithm of Section 2, the energy parameter pairs
and decomposed subsystems of the energy decomposition tree are computed and
given as follows:

Mi=1
(1,0, B1,0) = (0.009506, 0.775763)
Ganls) = 506.65s> + 21.4523s + 5
’ 105.252 + 502.049s2 + 101.05s + 5
(r1.0, 81,0) = (0.049480, 0.049480)
_ 81.6103s% 4 501.44s 4 99.8432
51() = 337105257 + 515.8055 + 101.05
() i=2

(@2,0, Bo,0) = (0.202288, 0.974233)
Gaols) = 21.4523s + 0.128832
’ 502.049s2 + 100.039s + 5
(12,0, 82,0) = (0.049480, 0.049480)
Gris) = 501.444s + 21.4523
: 105.252 + 514.844s + 101.05
(@21, B2.1) = (0.009506, 0.775763)




ROUTH APPROXIMATION 15

G22(s) = G21(5)
(72,1, 82,1) = (0.195908, 0.193568)
81.4167s + 501.444

G230) = 7 105.0045 + 515.805 °
(B)i=3
(@30, B3.0) = (5.198490, 0.314440)
Gaots) = 0128832
308) = 100,039 + 3
(730, 83.0) = (0.049981, 0.001288)
21.4523
G —
3.109) = 5350495 + 100039
(@3,1, B3,1) = (32, B3,2) = (0.204334, 0.973973)
G1a) = Gra(s) = 214523
1208) = 01,408) = S s +101.05
(13,1, 83,1) = (¥3.2, 832) = (0.196273, 0.041668)
501.444
=G =
G136) = G1s() = 1555~ S1asaa
(@33, B3.3) = (0.009523, 0.775367)
501.444
G =
160) = 105.0025 + 515.808
(733, 833) = (4.912234, 4.775474)
81.4167
Gy(s) = 14167
1716) = 705,004
4 i=4

(@4,0, Bso) = (20.00771, 0.02577)
(¥4,0, 84.0) = (0.049980, 0.001288)
(@41, Ba1) = (5.198490, 0.214440)
(¥a.1, 84,1) = (0.192363, 0.041250)
(@42, Ba2) = (@44, Ba.g) = (5.094944,0.212294)
(4.2, 84.2) = (Va4 84.4) = (0.196273, 0.041668)
(@43, Ba3) = (45, Bas) = (0.204334, 0.973973)
(¥,35843) = (Va5 84,5) = (4.893955, 4.766581)
(@46, Bas) = (0.203573, 0.972159)
(a6, 8a6) = (4.912233, 4.775474)
(@47, Ba7) = (0.009523, 0.775367)
(4.7, 84.7) = (105.0041, 81.416732) .
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From the preceding results, it can be verified that the properties in (46) and (47)
are:

(72,05 82,0) = (¥1,0, 61,0)
(@21, B2,1) = (a1,0, B1,0)
(74,05 84,0) = (¥3,0, 83,0)
(2,1, Ba,1) = (@30, B3,0)
(¥a,2,842) = (3,1, 83.1)
(04,3, Ba3) = (@31, B3,1)
(V2,4,84.4) = (¥32,832)
(@45, Bas) = (@32, B32)
(v4,6:04.6) = (¥3,3,833)
(@47, Ba7) = (@33, B3.3) -

From the energy parameter pairs of the energy decomposition tree, we construct
the Routh approximant tree. In the following, we list the whole family of Routh
approximants and their impulse-response energy, the integral of squared error of
impulse response, denoted by Jy, and the integral of squared error of unit-step
response, denoted by J;. Also, the negative and positive power series of each
Routh approximant é‘,,,,k (s) are included to demonstrate the partial Padé fitting
properties (58) and (59).

Hm=1
A 81.6103
G = o0
100 = 155255
= 0.775763 — 0.007374s + - - -
= 81.6103s™" — 8585.404s5™> + - ..
;B
L= = 31.65514
Jo = 0.152136
A 0.0494805
G =
1108) = 50494805 1 5
=1-2021s +---
= 0.4948s~! — 0.002448s % + - - -
A 8
fiy = 2% = 0.024740
2v10
Jo = 33.93220

J1 =9.76757 .
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@ m=2
Gaolsy = 06497 + 8161035
’ 520.0494 + 105.25 + 52
= 0.974234 — 0.040148s + 0.006248s% + - - -

= 81.6103s~" — 8078.75s72 + 807443.5s> + . ..

2
ﬁZ,O

Do=1Io+ o= 34.0011

2,0
Jo = 8.848 x 1073

5.205344 + 81.6103s
5.205344 + 105.2s + s2
=1 —4.53182s + 91.39604s% + - - -

G21(5) = Gools) =

= 81.6103s~! — 8580.198s 2 + 902212.0s > + - ..

2
~ A 2,0
L=+ —

2

~ ﬁz 1 A
=ho+ —— =15, =31.6799
1,0 2er1 2,2

Jo = 0.147721

Jy = 0.438170
N 0.009694 -+ 0.193568s
G23(s) =

0.009694 + 0.195908s + 52
=1~ 0.24136s — 98.2830s% + - - -

17

= 0.193568s ! — 0.028228572 + 0.003654s 7> + - - -

2

s 2 52,1 _
Ls=nhL,+ = 0.120368
2y21

Jo = 33.7459
J; = 2.38060

B)m=3
99.05856 + 506.6497s + 81.6103s>

100.0386 + 521.000s + 105.2s2 + 53
= 0.990204 — 0.092433s + 0.255886s% — 1.245355° + - - -

Gso(s) =

= 81.6103s ™" — 8078.754s 2 + 8074655 > — 807444445~ +

2
'83,0

bo=ho+ S = 34.0056

3.0
Jo=3.19x10"°
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20.8337 + 506.650s + 81.6130s>
25.9925 + 520.297s + 105.252 + §3
= 0.80153 + 3.44780s — 69.1195s% + 1369.60s> + - - -

G3a(s) =

= 81.6103s ™! — 8078.755 2 + 80744453 — 807419025 + - ..

2

- » 839
Iy = Lo+ —=— =34.0011
2y30

Jo=1.106 x 1073

45.2370 + 501.444s + 81.6103s2

G = :
320) = 55 1747 1 515.0865 + 105257 + 57
= 1.77576 — 16.2210s + 323.852s% — 6481.21s> + - - -
= 81.6103s ™! — 8083.965 2 + 80844153 — 80886178s 4 + - ..
2
hy=hi+ 2'23’1 = 34.0011

3,1
Jo = 1.465 x 1072

1.81424 + 4.383435 + 81.6130s
1.02167 + 20.6576s + 105.2s2 + 53
= 1.77576 — 31.6146s + 536.263s* — 7589.39s> + - - -

G33(s) =

= 81.6103s™! — 8581.02s 72 4 90103953 — 946121505 ™* + - - -

2

" " 334 _
La=D;i+ = 31.6843
2y3.1

Jo = 2.438 x 1071

25.4747 + 501.444s + 81.6598s>
25.4747 + 514.844s + 105.249s2 + 53
=1—0.526s + 9.70450s% — 193.994s> + - ..

G34(s) =

= 81.6598s~1 — 8093.02s 2 + 8097895 — 810652185 + - - -

s . B,
La=Dha+ —
2&312

= 34.0011

Jo = 4.685 x 1073

1.02167 + 4.38343s + 81.6598s2
20.6479s + 105.249s2 4 53
=1 - 15.9195s + 298.644s% — 4396.60s> + - - -

Gis5(s) =

= 81.6598s ! — 8590.265 2 + 90243552 — 9480362854 + - ..
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2

> > 52
Ls=10,+—==731.6843
232

Jo=2214 x 107!
Ji1 = 6.203

Goots) o LOVTT +20.32585 + 81.46625>
360 = 101787 + 20.5711s + 105.055 + 53
— 1 — 0.241360s — 18.2854s% — 393.6795% + - - -

= 81.4662s ™! — 8537.88s 2 + 8952725 > — 938759335 + - - -

. . B33
Le¢=hLi+——= 31.6843
2(!313

Jo = 1.376 x 107}
J1 = 9.530 x 1072

. _0.047617 + 0.950850s -+ 4.82495s>
G37(9) = 5047617 + 0.962343s + 49617152 1 55 T
=1 — 0.241360s — 2.00582s% — 36.3888s° + - - -
= 4.824965~1 — 22.98925~2 + 109.470s > — 521.2665 % + - - -

2

- A 833
Ly=5Ls+ = 2.44163
2y33

Jo = 28.1523
J1=5.778 x 1072

Example 2. Consider the fifth-order transfer function

10s* + 262s> + 1148s2 + 2100s + 900
§5 + 20s* + 14753 + 43552 + 570s + 300

whose impulse-response energy is 29.04249. The set of 2> = 8 third-order Routh

Gs(s) =

approximants é3,k(s), k=0,1,...,7, and the performance measures are com-
puted to be:
. 10s? + 262s + 1103.69
G3,0(5) = 3 3
53 + 20s? + 142.569s + 346.377
I3 = 26.1801
Jo = 0.792569

G31(5) = G32(5) = G34(5)
10s% + 262s + 203.108
s3 4 2052 + 128.635s + 67.7027
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I3 = 17.8906
Jo = 3.347263
J1 = 2.904820
G33(5) = Ga5(s) = G 6(s)
10s2 + 114.349s + 49.0066
s3 + 20s2 + 31.0375s + 16.3355
33 = 15.0060
Jo = 5.536489
Ji = 0.902978

9.47715s + 18.1093s + 7.76113
53 + 3.61034s2 + 4.91538s + 2.58704
30 = 23.2988

Jo = 2.200249
J; = 0.143134 .

G31(s) =

There are only four different third-order Routh approximants. It is seen that
in this set of third-order Routh approximants, (;’3,0(s) has the largest value of
impulse-response energy and the least value of integral of squared error of impulse
response, whereas 63,7(s) has the least value of integral of squared error of unit-
step response.

Because n —m = 5 — 4 = 1 is odd, there are 16 different fourth-order Routh
approximants. The values of impulse-response energy, integral of squared error
of impulse response, integral of squared error of unit-step response, and steady-
state response for the unit-step input for each of these approximants are listed in
Table 1. There are only five different values of impulse-response energy for this set
of Routh approximants. Hence, the values of integral of squared error of impulse
or unit-step response are useful for selecting a proper reduced-order model.

Model Gax(s) |  Iak Jo | Ji| Gax(co)
k=20 29.03082 | 0.4363579 | oo | 4.194840
k=1 26.19181 | 1.565106 | oo | 1.905439
k=2 26.19181 | 1.155872 | oo | 4.591816
k=3 20.74127 | 4.098899 | oo | 4.591816
k=4 26.19181 | 0.6390586 | co 2.5
k=5 20.74127 | 3.388695 | oo 2.5

Table 1. The performance evaluations of 16 fourth-order Routh approximants for Exam-
ples 2.
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Model G4x(s) | fax Jo N G 4,1(c0)
k=6 20.74127 | 2.670035 00 2.5
k=17 23.30719 | 1.863767 (o/] 2.5
k=28 26.19181 | 0.6563492 | 0.3487138 3
k=9 20.74127 | 3.765633 3.066499 3
k=10 20.74127 | 2.393686 | 0.5566352 3
k=11 23.30719 | 1.945676 | 0.3972896 3
k=12 20.74127 | 2.774710 | 0.2930052 3
k=13 23.30719 | 1.906522 | 0.1041621 3
k=14 23.30719 | 3.044335 | 0.1761163 3
k=15 29.03415 | 0.6527974 | 0.0039807 3
Gs(s) 29.04249 0 0 3

Table 1 continued.

5. Conclusions

In this paper, both Routh & - 8 and y — & expansions are regarded as energy
decomposition schemes for stable linear systems described by their transfer func-
tions. By combinatorially applying these two energy decomposition schemes to a
stable transfer function and the decomposed subsystems, an energy decomposition
tree for the system is constructed. The leaves of the tree are just the Routh & — B
and y — d expansion coefficient pairs. A synthesis algorithm has been developed to
derive a new family of Routh approximants from the energy decomposition tree.
The elegant properties of the Routh-approximant family have also been explored
and have been demonstrated by two examples. It is worth noting that, for a given
system, there may exist different Routh approximants that have the same order
and the same value of impulse-response energy. Hence, to judge the goodness of
a Routh approxmant by the impulse-response energy may not suffice.

Appendix: Proof of properties (46) and (47)

Without loss of generality, we prove properties (46) and (47) for i = 0. In other
words, we shall prove

(21,0, Br,0) = (22,1, Ba,1) (Al.a)
(¥1,0- 81,0) = (2,0, 82,0) (Al.b)
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Gn21(5) = Gp_22(s) (Al.c)

for even n, and

Bo , B0 _pu, B

2010 2y20 Q@21 2010
for odd n. To this end, we apply the Routh &« — 8 and y — 8 expansion algo-
rithms developed in Section 2 to obtain the following expressions for the energy
parameter coefficients o1 0, 81,05 ¥1,0- 81,05 ¥2.0- 62,0, ®2,1, B2,1 and the decomposed

subsystems G,_2,1(s) and G,_22(s) in terms of the coefficients 4;’s and b;’s of
Gn(s).

(i) For odd n,

(A2)

ap bn—l
a0 = , Bo= (A3.a)
an—1 an-1
ag bo
Vio=—, 8 o0=— (A3.b)
a a
ag by — B1,0a0
Yoo =—""—, &= —-"— (A3.0)
a1 — 01,040 ‘a1 — 1,040
an bn—l - 61,Oan
= —, fhy=—— (A3.d)
ap—-1 — Y1,08n ap—1 — Y1,08n

Gp1:1(8) =
Bu—25""2 + [(bu—3s — B1,0an-3) — 82,0(@n—2 — 01,08n—3)]s"*
+ -+ [(b2 — Broa2) — 820(as — g 0a2)]s + by
Ap-15""2 4+ (@n-2 — 01,08r—3)S" "> + [@n—3 — V2,0(@n-2 — @1,080-3)}s"*
+(@n-s — @1,08n-5)s" + - -+ + [a2 — y2,0(a3 — @y,042)]s + (@1 — @1,0a0)
(A3.e)

Gu12(5) =

Bu—25""3 + [(by—3 — 81,08n—2) — P2,1(@n—3 — Y1,08n-2)]s"*
+by_aS" 0 + -+ 4 [(by — 81,083) — Bra(@2 — v1,083)]s + by

(@n—1 — Y1,080)" % + [An—2 — 2,1 (@n—3 — V1,08n-2)]s">
+ -+ (a1 — y1,0a5)s> + [a3 — az,1(a2 — ¥1,083)]5% + (@2 — y1,03)s + a1

(A3.9)
(ii) Forevenn,
a b,_
ao=——, Pro=—— (Ad.a)
n—1 ap-1
a b
V1.0 = =2, d1,0= 2 (A4.b)
a ai
ap by
»o=—, &o=— (Ad.c)
ai ay
b,_
W=, By = 2 (A4.d)
an-1 Qn—-1
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Gp-11(5) =
(bn—2 — 82,085-1)8" 2 + (bn—3 — P1,0an_3)s""*
+--- 4 (by — 82,0a3)s + (b1 — Br0a1)
an-15""2 + (@2 — 01,0853 — ¥2,08n-1)S" > + ap_3s""*
H(@n-1 — Q1,08n-5 — V2,08n—3)S" > + - -+ + (a2 — @t1,081 — ¥2,03)$ + a1
(Ad.c)

Gpo1.2(8) =
(ba—2 — 81,08n-1)"3 + (bu—3 — P2,1dn-3)s""*
+---+ (b2 — 81,0a3)s + (b1 — B2,141)
@n_15""% + (@n2 — V1,081 — X2,18p_3)s" >
+ - +ass? + (a2 — yr0a3 — @2,141)s + a4
It is obvious that (A1) follows (A4) immediately. Besides, we have from (A3)
that

(A4.f)

Bio | 8¢ _ Bio (bo — Bi1,040)*
2010 220 2010  2a0(a; — o1,080)
Bl . (Bro— Bronio)?
T 2010 2y10(1 — a1,0¥1,0)
_ @1,083 o + ¥1,087 o — 201,0B1,0%1,081,0
B 201,0¥1,0(1 — @1,0¥1,0)

and
8o . B3y _ & (by—1 — 81,0a,)*
210 2021 2710 285(@n_1 — Y1,08n)
8o | (Bro—10810)?
C 2p0 281001 — a1 0v10)
_ @1,083 ¢ + Y1087 o — 201,081,0%1,081,0
- 2a1,071,0(1 — a1,0¥1,0) '
Hence, (A2) follows. The proof is now completed. O
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