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A NEW FAMILY OF ROUTH 
APPROXlMANTS* 

Chyi Hwang 1 and ling-Chin Lee 2 

Abstract. Based on the combinatorial Routh a - / ~  and ), - 3 expansions of a stable transfer 
function, a new energy decomposition tree for linear systems is developed. The pertinent 
properties to the energy decomposition tree are investigated, and an algorithm is derived 
for synthesizing transfer functions from the tree. The synthesis process naturally leads to a 
new family of Routh approximants to the system. It is indicated that the selection of Routh 
approximants based on the values of impulse-response energy is often inadequate because 
there may be a number of different Routh approximants with the same order and the same 
impulse-response energy. In such cases, an additional performance criterion, such as the 
integral of squared error of impulse response or unit-step response, has to be used to select 
a suitable Routh approximant. 

1. Introduction 

The Routh approximation method uses the Routh stability-test algorithm to gen- 
erate reduced-order models  for linear, time-invariant, continuous-time systems. 
Since it was originally proposed by Hutton and Friedland [5], the Routh approxi- 
mation method has received considerable attention [6], [14], [15], [17], [23], [24], 
[26]-[28], [30], [31], [33]. It has also been recognized as one of  the most significant 
and popular  stable model-reduction methods. The significance and populari ty of  
the Routh approximation method are mainly due to the low computational burden 
for obtaining a set of  stable models  with different orders and the ability to guar- 
antee a stable reduced-order model  that preserves the first time moments and/or 
Markov parameters of  the original stable system. Another useful capabil i ty of  the 
Routh approximation method is that it produces in the reduction process the val- 
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ues of impulse-response energy of the Routh approximants, which often serve as 
a criterion for selecting the order of a reduced model. 

The advantages of Routh approximation have encouraged several authors to 
extend the method to obtain stable reduced-order models for other types of sys- 
tems. Bistritz [1], Hsieh and Hwang [4], Hwang and Hsieh [11], and Hwang and 
Shih [12] have applied the Routh approximation method along with bilinear trans- 
formation to derive stable reduced-order models for linear discrete-time systems. 
By using the matrix Routh algorithm, Hwang and Guo [9] and Ramakrishnan et 
al. [22] have developed the matrix Routh approximant technique for obtaining 
reduced-degree matrix-fraction descriptions for linear multi-input multi-output 
systems. Recently, Guo et al. [2] have extended the Routh approximation method 
to the model reduction of two-dimensional (2-D) separable-denominator discrete 
systems. 

In parallel with the study of extending the Routh approximation method to a 
broader class of systems, considerable effort is devoted to improve the quality of 
Routh approximants. Because the Routh approximants derived from the Routh 
y - ~ expansion [27] fit only the initial time moments of the original systems, 
they may not produce a good approximation in the portion of transient response. 
Besides, as indicated by Rao [24], the pole zero cancellations in a high-order 
original system can affect the approximation quality of Routh approximants. To 
overcome these potential disadvantages, several modified Routh approximation 
methods have been proposed [3], [7], [8], [10], [13], [16], [18], [32], [34]. Basi- 
cally, these modifications combine the use of a Routh stability-test array to generate 
the denominator polynomial with other criteria, such as the minimization of the 
integral of squared error of time responses [7], [8], [10], [13], the matching of 
more time moments [18], [34], and the fitting of both time moments and Markov 
parameters [3], [29], [32], to yield the numerator polynomial of a reduced-order 
model. Recently, Hsieh and Hwang [3] have proposed a modified Routh approx- 
imation method that combines, in a balanced fashion, both the Routh ot - / 3  and 
y - 8 expansions for obtaining stable reduced models. Because a Routh a - / 3  
approximant retains the high-frequency or transient characteristics and a Routh 
y - 8 approximant retains the low-frequency or steady-state characteristics of the 
system, this modified Routh approximation method can, in general, give accurate 
and satisfactory reduced-order models. However, the advantage of associating the 
impulse-response energy of a modified Routh approximant with the combined 
Routh ot - / ~  and y - 8 parameters has not been explored yet. 

In this paper, the impulse-response energy approximation technique [19]-[21], 
[25] is generalized to obtain Routh approximants that retain various combinations 
of the ot - 13 and y - 8 energy parameters of the system. The generalization is 
based on combinatorially using the Routh ot - / 3  and y - 8 expansions to peel 
off the energy components of a linear system described by its transfer function. 
This decomposition procedure allows one to build a energy decomposition tree 
for the system. Some interesting properties associated with the tree are identified. 
In addition, a synthesis procedure is presented to transform the energy decompo- 
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sition tree to a tree of Routh approximants. It is also remarked that in a Routh 
approximant tree there are several Routh approximants with the same order and 
the same impulse-response energy. This fact indicates that the selection of a Routh 
approximant to the system based on the value of impulse-response energy is inad- 
equate. Therefore, an additional performance criterion of model reduction, such 
as the integral of squared error of impulse or unit-step response, should be also 
evaluated for selecting a proper Routh approximant. 

2. Impulse-response energy decomposition 

Consider a stable system described by the nth-order transfer function 

bo + bls + . . .  + bn-ls n-1 ~x B(s) 
G n ( s )  = = (1)  

ao + als + . . .  + a,s n A(s) 

Denote the impulse response of the system by 

gn(t) = L-a{Gn(s)} �9 (2) 

The impulse-response energy of the system, Gn (s), is defined by 

f0 ~ I f  j~  = - -  Gn (s)Gn ( - s )  ds (3) In A g2(t) dt ---- 2rrj joo 

where j = qrL---f. In the following subsections, the Routh ot - fl and y - 8 
expansions are applied to decompose the transfer function Gn (s) and its impulse- 
response energy In. 

2.1. Routh y -- 6 expansion. 

The denominator polynomial, A (s), of the transfer function G n (s) may be decom- 
posed as 

A(s) = Al(S 2) + sA2(s 2) (4) 

where 
ni 

AI(S 2) ~ E aa,ksZ~ = ao + a2 s2 + . . .  + a2nl s2nl (5a) 
k=0 
n2 

AZ(S 2) ~ E a2,kS2k = al + a3 s2 - t - . . .  -[-a2n2+l S2n2 (5b) 
k-----O 

and ni is the integer part of (n + 1 -- i)/2. Substituting the even-odd decomposition 

(4) for A(s) and letting Bl(s) ~ bl,o + bins + . . .  + bl,n-lS "-1 = B(s), we can 
expand the transfer function Gn (s) as 

B1 (s) ~ Bz (s) 
Gn(s )  = ~ --  s "~- a2(s 2) (6) 

AI(S2) 1 "2i- Yl sA3(s 2) 
1 + sA2(s2 ) ~- -21- A2(s2) 
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where 

AI(0)  al,o 
Y1 - -  - -  - -  ( 7 a )  

A2(0) a2,o 
n3 

1 
A3(S2) A E aa,kS2k = = ~-'~(Al(S ) -- y1A2(s2)) (Tb) 2 

k=0 
B1 (0) bl,0 

81 . . . .  (7c) 
A2(0) a2,o 
n--2  

1 
BE(S) =A E b2 ksk = - (BI(S) -- 31A2(s2)) . (7d) 

' s k=0 

B y  iteratively performing the expansions 

Ai (s 2 ) 1 sAi+2 (s 2) 
- -  - y ~  + ( 8 a )  

sAi+I (s 2 ) s Ai+l (s 2) 

Ai (0) ai,o 
- - -  - ( 8 b )  

Yi Ai+ 1 (0) ai+l,0 
hi+2 

A "~"~ai+2,kS2k 1 2 Ai+2(s 2) = ~ = -~(Ai(s ) -- yiAi+l(S2)) (8c) 
k=0 

and 

Bi (s) 1 Bi+l (s) 
- -  - 3 i  + - -  ( 9 a )  

sAi+l (s 2) s Ai+l (s 2) 

Bi(O) bi,o 
8i . . . .  ( 9 b )  

Ai+I(0) ai+l,0 
n-i-1 1 

Bi+l(S2) A= E bi+l'ksk = X-(Bi(s) --8iAi+l(S2)) (9c) 
s i=0 

for i = 1, 2 , . . . ,  n, we can finally expand Gn(S)  into the following Routh y - 8 
form [27]: 

G . ( s )  = - -  W . , k ( s )  (10) 
i=1 

where 
Wn,k(s) = yk 

+ 
s 

1 

Yk+l 1 
- -  + ( 1 1 )  

s " .  

s 
for k = 2, 3 , . . . ,  n. As for WnA(s), the first term in the preceding expansion is 
1 + ~ .  According to the Routh stability criterion, the transfer function G ,  (s) is 
asymptotically stable if and only if Yi0 for i = 1, 2 . . . . .  n. Given the coefficients 
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Yi and 8i for i = 1, 2 . . . . .  n, the impulse-response energy of the system Gn(s) can 
be evaluated by 

I .  ~ 2}'/ " (12) 

2.2. Routh ~ - ~ expansion. 

Alternatively, the denominator polynomial, A (s), of the transfer function G ,  (s) 
can be split into 

A ( s )  = (an Sn + an_2 sn-2 + . . . )  + (an_l Sn-1 + an_3 Sn-3 + . . . )  

A Al(s )  + / t 2 ( s )  (13) 

where 
n l  

^ n - 2 k  
dtl(S) Zx E a l , k S  

k=0 

=anS  n + an-2S n-z + �9 . .  + I als  for n odd 
I a0 for n even 

n2 

.A2(s) A ~ ^ ~n- l -2k  = ~ a2,k~ 
k=0 

= an-1Sn-1 "-I- an-3 Sn-3 -t- �9 �9 �9 -Jr- { aO 
al$ 

Let B (s) be written as 

n - - 1  

B(s)  [~l(s) " V ' ~ .  o.-1-k ~ Z ~  Ul'k~ " 
k=O 

Then the transfer function Gn (s) can be expressed as 

~ (s) 
Gn (s) __ ^ J~l (s) __ ~2(s_.______2__) 

At(s )  + A2(S) 1 + 

Performing the long divisions 

t~i(S-______~ ) = OliS "~- /~i+2(S) 

/~i+1 (S) Ai+l (s) 

Ai(S) 
~i = lim 

,-~oo s~i+l(S) 
Ill+2 

t~i,0 

a i+l ,0  

ad~i..F2(S ) ~ ~ ~n- i - l -2k  = : l ' ~  ui+2,k ~ t~ i (S) --  OliSt~i+ 1 (S) 
k=O 

(14a) 

for n odd 
(14b) 

for n even. 

(15) 

(16) 

(17a) 

(17b) 

(17c) 
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and 

ni(s----~) -- /3i -~ ni+l(S)7 

z~iq_ 1 (s) Ai+l (s) 

Bi (s) 
/3i = l im : 

s--~oo Ai+l (s) 
n-i-1 

bi,0 

ai+1,0 

/~i+1(S) E ~" ~ n - i - l - k  = Ui+l,ka = 

(18a) 

(18b) 

ni (s) -/3i2~i+1 (s) (18c) 
k=O 

for i = 1, 2 . . . . .  n, we can expand Gn (s) into the following Routh ot - / 3  form 
[51: 

n i 

Gn(s) = E / 3 i  I - I  Vn'k(S) (19) 
i=1 k=l 

v~,k(s) = 
otkS + 1 

otk+ls + - -  (20) 

where 

1 
OlnS 

for k = 2, 3 , . . . ,  n. For Vn,1 (s), the first term in the preceding expansion is 1 + otis 
rather than ~tlS. Because the transfer function Gn (s) is stable, the coefficients oti, 
i = 1, 2 , , . . . ,  n, of the Routh a - / 3  expansion are all positive. Besides, the 
impulse-response energy of the system G ,  (s) can be evaluated alternatively from 
the ot and/3 coefficients as follows [5]: 

~_~ /3/z (21) /n= ~-~. 
i=1 

2.3. System and energy decompositions. 

Let Gn-l,o(S) be the (n - 1)th-order decomposed transfer function formed from 
the polynomials/~2 (s), -42 (s), and A3 (s) of the first-level Routh ot - / 3  expansion 
of Gn(s) as follows: 

~z(s) 
Gn-l,O(S) : /~2(s) -~- 2~3(s) (22) 

It is obvious that Gn-a,o(s) is stable and its impulse-response energy, denoted by 
In-l,o, is given by 

fo ~ a f_ j ~176 = Gn-1 o(s)G.-1 o(-S) ds In-l,o a gnZ_l,0(t) dt  = ~ j  .ioo ' ' 

= ~  /3? 
i=2 ~ / /  (23) 
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where gn-l,o(t) = s  {Gn-l ,0(s)} .  Comparing (21) and (23), w e  have 

In - + In-l,o. (24) 
2a l  

Similarly, we  can form another ( n -  1)th-order decomposed stable transfer function 
Gn-la (s) from the polynomials  B2 (s), A2 (s2), and A3 (s 2) o f  the first-level Routh 
y - 8 expansion of  Gn(s) as follows: 

B2(s) 
Gn-l,l(S) = Az(S2) + sA3(s2 ) �9 (25) 

The impulse-response energy of  Gn-aA (s), denoted by In-la, is given by 

/o = Gn-l,1 (s)Gn-l,1 ( - s )  ds = In-lA 6 g2n-l'l(t) dt --- 2try joo ~=2= 2yi 

(26) 
where gn_l, l( t)  = • - l {Gn- l , l ( s ) } .  Comparing (26) and (12), we  have 

In = --32 -]- In-1,1. (27) 
2yl  

According to the results in (24) and (27), we  can regard the Routh ot - 13 and 
y - ~ expansions as impulse-response energy decomposit ion schemes.  Hence,  by 
performing combinatorially first-level Routh et - 13 and y - 8 expansions on Gn (s) 
and the decomposed transfer functions, we  can develop an energy decomposit ion 
tree as shown in Figure 1. In this tree, the entry G,-i+x,k (s) is an (n -- i + 1)th-order 
transfer function that can be generally expressed as 

ni,k(S) 
Gn-i+l,k(S) : ~i,k(S ) + t~i+l,k(S) (28) 

for the purpose of  performing Routh t~ - 13 expansion, and as 

Bi,k(S) 
Gn-i+l,k(S) = Ai,k(S2) + sAi+l,k(S2 ) (29) 

for the purpose of  performing Routh y - 3 expansion. Let the polynomials.4i ,k (s), 
Bi,k(s), Ai,k(s2), and Bi,k(s) in (28) and (29) be denoted by 

ni 

.~i,k(S) ~- y~l i ,k , l  Sn+l-i-2l (30a) 
/=0 
n - i  

ni,k (S) y ~  ~" n-i-l  Ui,k,lS 
/=0 
n - i  

(30b) 

Bi'k(S) = Z bi'k'lsl (30C) 
1---0 
ni 

Ai'k(S2) :-- Z ai'k'lS21 " 
l=0 

(30d) 
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(~.o,/Ji.o) 6, o) 
co_,.o(~) 

(c~..o, ~3,o) (~3,o, 63,o) 
G.-3,o(s) G.-3:(s) 

(c,2 ~ :n2~) ( - r~  62 ~) 

G,,-3.~(5) G,,-~.3(s) C.-3:(s) C.-3,~(s) G.-~.6(s) G,,-3,r(s) 

Figure 1. Energy decomposition tree. 

Then it is obvious that they satisfy the following relations: 

Bi,k(S) = ni,k(S) (31a) 

ai,k(S 2) = I ~ i'k(S) (31b) 
I Ai+l,k(S) 

Ai+l,k(S2) = - { ~-4i+l,k(S) (31C) 

Now, return to (28) and perform the Routh ot - / ~  expansion to obtain 

l~i, k .~_ /~i+l.k(s____.._~) 
:-i+1,k(s) Gn-i+1,k(s) = (32) 

1 "~- Ofi,kS "~- /[i+2,k(s.._____~) 
"~i+l,k(S) 

where 

for n -- i + i even 

for n -- i + 1 odd 

for n - i + 1 even 

for n - i + 1 odd. 

Oli, k : lira Ai,k(s) -- ai'k'--------L~ (33a) 
s--too St~i+l,k(S ) ai-I-l,k,O 

Ai+2,k(S)  : Ai ,k (S)  --  Oli,kSAi+l,k(S ) (33b) 

fli,k = lim ~-/~i'k(s) _ __/~/,L~ (33c) 
s- ,~  Ai+l,k(s) &+l,k,o 

J~i+l,k(S) = n i ,k (S)  -- ~ i ,kAi+l ,k (S)  �9 (33d) 

From the Routh ot - /3  expansion of  Gn-i+l,k (S) in (32), we can obtain the (n - i)th- 
order decomposed transfer function 

~i+l,k(s) 
Gn_i,2k(S ) : t~i+l,k(S) + ~i+2,k(S ) . (34) 
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Hence, the polynomials in the general representations 

Bi+l,2k(s) for ~ - / 3  expansion 
G n - i , 2 k ( S )  --~ -/~i-1-1,2k(S) -~-/~i+2,.2k(S) 

Bi+l,2k-1 (S) for y -- 8 expansion 
Ai+l,2k(S 2) -F sAi+2,2k(S 2) 

are given by 

Bi+l,2~(s) = Bi+l,k(s) 

/d[i+l,2k(S ) : Ai+l,k(S) 

Ai+2,2ki S) = t~i+2,kis ) 

i35) 

(36a) 

(36b) 

(36c) 

and 

Bi+l,2k(S) : n i + l , k i  S )  

Ai+l,2k(S 2) = { z~i+2,kiS)2~i+l'kiS) 

Ai+2,2k(S2) : I 
l 

for n - i even 

for n - i odd. 

for n - i even 

for n - i odd. 

(37a) 

(37b) 

(37c) 

As shown in the preceding subsections, the impulse-response energy of  Gn-i+l,k is), 
denoted by I,,-i+l,k, can be expressed in terms of that of Gn_i,2kiS), denoted by 
In-i,zk, and the coefficients ai,k and/3i,k as 

/32 
In-i+l,k --~ In-i 2k q- i,k (38) 

' 2 ~ i ,  k " 

Alternatively, we can apply the Routh y - 8 expansion to decompose the transfer 
function Gn-i+l,k is) as 

8i,k at - Bi+l,k(S) 
S Ai+l,k (s 2) 

Gn-i+l,k(S) : ~'i,~ sAi+zk(s z) (39) 
1 + - 7 +  ~ 

where 

.. Ai  k(S 2) 
Yi,k = n m  ~ .  -- ai,k,o (40a) 

s-->o Ai+l,k(S ) ai+l,k,O 
1 Z 

Ai+z.k (s 2) = -~ (Ai.k (S ) -- Yi.kai+l.k (S2)) (40b) 

3i, k = lim Bi,k(S) -- bi'k'O (40c) 
s->o Ai+l,k(S 2) ai+l,k,O 
1 

Bi+l,k(S) : - (Bi,k(S) -- ~i,kAi+l,k(S2) ) �9 (40d) 
s 
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Let the (n - i)th-order decomposed transfer function associated with the expansion 
(39) be 

Bi+l,k(S) 
Gn-i,2k+l(S) "~- Ai+l,k(S2) a t- sAi+2,k(S2 ) �9 (41) 

Then the polynomials in the general representations of Gn_i,2k+l (S), 

J~i+l,2k+l(S) for ot - fl expansion 
Gn-i,2k+l (S) : /~i+l,2k+l (s) + -4i+2,2k+1 (s) (42) 

Bi+l,2k(S) for y -- 8 expansion 
Ai+l,2k+l (S) q- sAi+2,2k+l (S 2) 

are given by 

/~i-1-1,2k-F1 (S) = Bi+l,k(S ) 

/~i+l,2k+l(S) =- { Ai+l'k(S2) 
sAi+2,k(S 2) 

/~i+2,2k+l(S) = { Ai+I,k(s2)sAi+2'k(S2) 

for n - i even 
for n - i odd 

for n -- i even 
for n -- i odd 

and 

(43a) 

(43b) 

(43c) 

Bi+l,2k+l (S) :-- Bi+l ,k(S)  (44a) 

Ai+l ,2k+l(S  2) : A i+l ,k (S  2) (44b) 
Ai+2,2k+l (S 2) : Ai+2,k(S 2) �9 (44c) 

Similarly, the impulse-response energy of Gn-i+l,k (S) cai1 be evaluated from that 
of  Gn-i,2k+l (S), denoted by In-1,2k+l, and the coefficients Yi,k and 8i,k as follows: 

82 i,k 
ln - i+l ,k  : ]n-i,2k+l + - -  (45) 

2yi,k 

Before ending this section, we note that the energy parameter pairs and the 
decomposed transfer functions of Gn-i (s) have the following properties: 

(i) For n - i even, 

(Oli+l,k, fli+l,k) : (O/i+2,2k+1, /~i+2,2k+1) 

(~/i+l,k, 8i+1k) = (~i-F2,2k, 8i+2,2k) 

Gn- i -2 ,4k+l (S )  : Gn- i -2 ,4k+2(S)  �9 

(46a) 

(46b) 

(46c) 

(ii) For n - i odd, 

~i2.Fl,k 2 ~2 i~2 _{_ 8i+2,2k = i+l,..__~k _~_ i+2,2k+1 
Odi-Fl,k Yi+2,k ~/i+l,k 0ti+2,2k+1 

(47) 

A proof of  these properties for i = 0 is given in the Appendix. 
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3. Derivation of a new family of Routh approximants 

By using the energy parameter pairs of  the energy decomposition tree in Figure 1, 
a tree of  Routh approximants to Gn (s) can be obtained. The Routh-approximant 
tree constructed from the ot - fl and y - 8 energy parameter pairs of the energy 
decomposition tree is shown in Figure 2. In this figure, the entry Gm.k(s) is the 
mth-order transfer function, which is constructed such that it has the sequence of 
energy parameter pairs (tzi, vi), i = 1, 2 , . . . ,  m, where 

I (Oli,k(i)' 1~i,k(i)) if d i_  1 = 0 
(t.s I) i ) (48) / (Yi,k(i), ~i,k(i)) if d i_  1 = 1 . 

d0.0(.~) 

C~.o(s) 

~.~/ "~> 7 ~  ~ ~. 

O~,o(~) r 03,2(~) O3,~(~) d~,~(~) r 

d,.,(~) 

\"  "07 

C22(s) 

i 

Figure 2. Routh-approximant tree. 

In equation (48), di, i = 0, 1 , . . . ,  m - 1, are the digits of  the m-bit binary represen- 
tation dm-ldm-2"'" dido of the number k, and k(i) is the integer part of  k /2  m+l-i. 
As an illustration, we consider the case of  m = 4 and k = 5. The 4-bit binary 
representation of k = 5 is 0101, so we have d3 = 0, d2 = 0, d l =  0, ~ = 0, and 
k(1) = 0, k(2) = 0, k(3) = 1, k(4) = 2. Hence, the transfer function Gn,5(S) has 
the sequence of energy parameter pairs (Oil,0, ill,0), (Y2,0, 82,0), (a3,1, fl3,1), and 
(Y4,2, 84,2)" 

In what follows, we derive an algorithm for synthesizing transfer function 
Gm,~(s) from the sequence of energy parameter pairs (tzi, vi), i = 1, 2 , . . . ,  m. 
Let 

g i ( s )  = qi,o n t- qi, lS - t - ' ' "  n t- q i , i - 1 S i - 1  

Pi,o -}- P i , l S  "4- "t- . .  i �9 �9 �9 p , , , s  

A qi(s) 
= (49) 

Pi (S) 
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be the ith-order transfer function that has the sequence of energy parameter 
pairs (/zl, vl), l = m - - i  + 1, m - - i  + 2  . . . . .  m. Then, if (lZm-i, Vm-i) = 
(Olra--i,k(m-i), ~m-i,k(ra-i)), gi (S) and gi+l (S) are related by 

qi(s) 
Pm--i "~- 

(pi (S) "q- pi ( - s ) ) / 2  for i even 
(Pi (s) - Pi (--s)) /2  

1 + ]s S -]- 
qi+l (S) (Pi (S) + Pi ( - s ) ) / 2  

gi+l(S) -- - -  -- (50) 
Pi+l (S) qi (S) 

Pm--i -~ 
(pi (s) -- p ( - - s ) ) / 2  for i odd. 

(Pi (s) - p ( - s ) / 2  
1 "~- lZm_iS -~- 

(p i ( s )  - p i ( s ) ) / 2  

Comparing the last two equations gives 

1/2Vm-i(Pi(S) + pi(--S))  + qi(s) 
qi+l(S) = 1/2Vm-i(Pi(S) -- pi(--S))  + qi(s) 

and 

I 1/2tZm-iS(p i(s) + pi(--S))  + pi (s )  
pi+l (s) 1 1/21Zm-iS(pi (S) -- Pi (--s)) + Pi (S) 

for i even 
for i odd (51a) 

for i even 
for i odd. (51b) 

By using the initial conditions 

{ Otl'0~l'0 for dm_ 1 = 0 
ql(s) _ ~ (54) (s) gl 
p i t s )  /'1,0ol,0 for din-1 = 1 s+yL0 

nator polynomials of the transfer functions gi+l (S) and gi (s) are related by 

qi+l(s )  
gi+l(S) = 

Pi+l(S) 
Pm--i qi (s) - - +  

= s (pi(s)  + p ( - s ) ) / 2  (52) 
lZm--i (Pi (s) -- Pi (--s)) /2  " 

1 +  + 
S (Pi (S) + Pi (--S))/2 

Comparing the last two equations, we have 

qi+l (S) = Pm-i (Pi (S) + Pi ( - s ) ) / 2  -t- sqi (S) (53a) 
Pi+l (s) = tZm-i (Pi (s) + Pi ( - s ) ) / 2  + spi ( s ) .  (53b) 

and using the recursive relations (51) and (53), we can obtain Gm,k(S) = gm (S) 
from the sequence of energy parameter pairs in (48). 

We have completed the derivation of synthesis formulas for constructing a tree 
of Routh approximants to Gn(s) from its energy parameter pairs in the energy 
decomposition tree. Some interesting properties of the Routh approximant tree in 
Figure 2 are now outlined as follows: 

Also, if (tZm_i, Pm--i) = (Ym-i,k(m-i), ~m-i,k(m-i)), the numerator and the denomi- 
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(i) The impulse-response energy of the mth Routh approximant Om,k(S ) i s  given 
by 

= v? (55) imk ~ fY~176  i 
' 2:rj  d-joo /=1 

(ii) The impulse-response energy [m,* satisfies the following relations: 

/m+l,~ = [m,k "~- ~/52m'k (56a) 
2~m,k 

Zfm+a,2k+l = [m,k + 82"-'--'-~k (56b) 
2ym,k 

(iii) If the number of l ' s  in the m-bit binary representation of kl, denoted by 
p(m, kl), is equal to that ofkz, p(m, k2), then 

ira,k1 = ira,k2 �9 (57) 

Hence, there are only m + 1 different values of impulse-response energy for the 
family of 2 m mth-order Routh approximants Gm,k(S), k = O, 1, . . . ,  2 '~" - 1. 

( i v )  I f n  - m is even and p(m, kl) = p(m, k2), then Gm,kl(s) = Gm,k2(s). In this 
case, there are only m + 1 different ruth-order Routh approximants. 

(v) The mth-order Routh approximant Gm,k(s) fits Gn(s) at s = 0 by: 

d i-1 ^ d i-1 ^ 
d'~_lGm,k(O) = ds--~_lG(0) , i = 1 , 2 , . .  ~p(m,k) fo rn ,  m even 

" ' 1 3 1 ( m , k )  fo rn ,  m o d d  
(58) 

where rl (m, k) (resp. 30 (m, k)) denotes the maximum number of leading l ' s  
(resp. O's) in the m-bit binary representation of  k. Moreover, Gr~,k(s) fits 
Gn(s) a ts  = oo by 

m - p(m, k) for n, m even 
2Qm,k,i = Mn i , i = 1, 2 . . . .  (59) 

' ' 30(m, k) for n, m odd 

where AIm,k,i and Mn,i are, respectively, the coefficients of the negative power 
series of r and Gn(s); i.e., 

oo 

Gm,k(S) = ~ JVlm,k,i S-i 
i=1 

oo 

G n (S) = E gn ' i s - i  " 
i=1 

(60a) 

(60b) 

It is noted that properties (i) and (ii) follow obviously from the results derived in 
Section 2. Properties (iii) and (iv) can be proved by using the relations (46) and 
(47) of the energy decomposition tree. Moreover, the Pad6 fitting properties in (58) 
and (59) can be verified by a direct calculation. 
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Finally, it is remarked that if n - m is odd, then all the 2 m mth-order Routh 
approximants, Gm,k(S), k = 0, 1 , . . . ,  2 m - 1, are distinct. However, there are only 
m 4- 1 different values of  impulse-response energy among these 2 m m-th order 
Routh approximants. This fact indicates that the selection of  Routh approximants 
based on .the impulse-response energy is inadequate. Hence, another criterion has 
to be used to select the optimal prespecified-order Routh approximant. 

4. Examples 

To illustrate properties of  the new family of  Routh approximants, we provide two 
examples in this section. 

Example  1. Consider the stable fourth-order transfer function 

81.6103s 3 + 506.6497s 2 4- 99.84328 4- 5 
a 4 ( s )  = 

S 4 4- 105.28 3 4- 521.01S 2 + 101.05S + 5 

The first four terms of  the negative and positive power series of  G 4 ( s )  a r e  given 
by 

G 4 ( s )  = 1 - -  0.24136s 4- 2.00583s z - 2 0 . 1 0 5 5 s  3 4 -  . - .  

G 4 ( s )  = 81.6103s -1 -- 8078.75s -2 4- 807464.9s -3 -- 80744445s -4 4- " '" �9 

Using the energy decomposition algorithm of Section 2, the energy parameter pairs 
and decomposed subsystems of  the energy decomposition tree are computed and 
given as follows: 

(1) i = 1 

(2) i = 2 

(t~l,0, ill,0) = (0.009506, 0.775763) 

506.65S 2 + 21.4523S + 5 

G3,0(s) = 105.28 2 + 502.049s 2 + 101.05s + 5 

(Y1,0, 81,0) = (0.049480, 0.049480) 

81.6103s 2 + 501.44s + 99.8432 

G3'I(S) = s 3 4- 105.282 4- 515.805s 4- 101.05 

(ore,0,/32,o) = (0.202288, 0.974233) 

21.4523s + 0.128832 
G2,0(s) = 502.049s z + 100.039s + 5 

(Y2,0, 82,0) = (0.049480, 0.049480) 

501.444s + 21.4523 
G2,1(s) = 105.28 2 + 514.844s + 101.05 

(or2,1,/32,1) = (0.009506, 0.775763) 



(3) i = 3 

(4) i = 4  

ROOTH APPROXIMATION 

G2,2(s) = G2,1(s) 

(Y2,1, 82,1) = (0.195908, 0.193568) 

81.4167s + 501.444 
G2,3(s)  = s2 + 105.004s + 515.805 " 

(0/3,0,/33,o) = (5.198490, 0.314440) 

0.128832 
G3,o(S) -- 

100.039s + 5 

(Y3,o, 83,0) = (0.049981, 0.001288) 

21.4523 
G3,1 (s)  = 

520.049s + 100.039 

(0/3,1,/33,1) = (0/3,2,/33,2) = (0.204334, 0.973973) 

21.4523 
G1,2(s)  = GI ,a (S)  = 

514.844s + 101.05 

(Y3,1, 83,1) = (Y3,2, 83,2) = (0.196273, 0.041668) 

501.444 
G1,3(s)  = G1,5(s)  = 

105.2s + 514.844 

(0/3,3,/33,3) = (0.009523, 0.775367) 

501.444 
G1,6(s)  = 

105.004s + 515.808 

(Y3,3, 83,3) = (4.912234, 4.775474) 

81.4167 
G1,7(s) -- 

s + 105.004 

(0/4,o, f14,0) = (20.00771, 0.02577) 

(~/4,o, 84,0) = (0.049980, 0.001288) 

(OtaA,/34,1) = (5.198490, 0.214440) 

(YaA, 84,1) = (0.192363, 0.041250) 

(0/4,2,/34,2) = (0/4,4,/34,4) = (5.094944, 0.212294) 

(Y4,z, 84,2) = (Y4,4, 84,4) = (0.196273, 0.041668) 

(0/4,3,/34,3) = (0/4,5,/34,5) = (0.204334, 0.973973) 

(Y4,3, 84,3) = (Y4,5, 84,5) = (4.893955, 4.766581) 

(0/4,6,/34,6) -~- (0.203573, 0.972159) 

(Y4,6, 84,6) = (4.912233, 4.775474) 

(0/4,7,/34,7) = (0.009523, 0.775367) 

(~/4,7, 84,7) = (105.0041, 81.416732).  

15 
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From the preceding results, it can be verified that the properties in (46) and (47) 
are: 

(}"2,0, •2,0) = (}/1,0, ~1,0) 

(~2,1, #2,1) = (0/1,0, #1,0) 

(]/4,0, ~4,0) ~-- (Y3,0, (~3,0) 

(0/4,1, #4,1) = (0/3,0, #3,0) 

(~/4,2, r~4,2) : (}/3,1, ~3,1) 

(0/4,3, #4,3) ----" (0/3,1, #3,1) 

(~/4,4, ~4,4) : (Y3,2, (~3,2) 

(0/4,5, #4,5) : (0/3,2, #3,2) 

(~/4,6, (~4,6) : (}*3,3, ~3,3) 

(12/4,7, #4,7) ----- (0/3,3, fl3,3) ,-  

From the energy parameter  pairs of  the energy decomposit ion tree, we construct 
the Routh approximant tree. In the following, we list the whole family of  Routh 
approximants and their impulse-response energy, the integral of  squared error of  
impulse response, denoted by J0, and the integral of  squared error of  unit-step 
response, denoted b y  ./1. Also,  the negative and positive power series of each 
Routh approximant Gm,k(s) are included to demonstrate the partial Pad6 fitting 
properties (58) and (59). 

(1 )  m = 1 

81.6103 
G1,0(s) = 105.2 + s 

= 0.775763 - 0.007374s + - . .  

= 81.6103s -1 - 8585.404s -2 + . . .  

#z 
[1,o = 1,0 = 31.65514 

20/1,0 

3"o = 0.152136 

a,1 (s) = 0.0494805 

0.0494805 + s 

= 1 -  20.21s + . . -  

= 0.4948s -1 - 0.002448s -2 + . - .  

[1,1 = 31,o = 0.024740 
2yl,o 

J0 = 33.93220 

J1 = 9 .76757.  
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(2 )  m = 2 

5 0 6 . 6 4 9 7  + 8 1 . 6 1 0 3 s  

{~2 '~  = 5 2 0 . 0 4 9 4  + 1 0 5 . 2 s  + s 2 

= 0 . 9 7 4 2 3 4  - 0 . 0 4 0 1 4 8 s  + 0 . 0 0 6 2 4 8 s  2 + - - -  

= 8 1 . 6 1 0 3 s  - a  _ 8 0 7 8 . 7 5 s  - 2  + 8 0 7 4 4 3 . 5 s  - 3  + . . .  

~2 
[2,o = il,o + 2'----L = 34.0011 

2 a z o  

Jo  = 8 . 8 4 8  x 10 - 5  

5 . 2 0 5 3 4 4  + 8 1 . 6 1 0 3 s  

G 2 ' l ( S )  = G 2 ' 2 ( s )  = 5 . 2 0 5 3 4 4  + 1 0 5 . 2 s  + s 2 

= 1 - 4 . 5 3 1 8 2 s  + 9 1 . 3 9 6 0 4 s  z + . - .  

= 8 1 . 6 1 0 3 s  -1  - 8 5 8 0 . 1 9 8 s  - 2  + 9 0 2 2 1 2 . 0 s  - 3  + - - .  

32 
& l  = [1,o + 2,___~_o 

2y2,o 

~2 
= fl,O + 2,1 _ [2,2 = 3 1 . 6 7 9 9  

2~2,1 

Jo  = 0 . 1 4 7 7 2 1  

J1  = 0 . 4 3 8 1 7 0  

G 2 , 3 ( s )  = 0 . 0 0 9 6 9 4  + 0 . 1 9 3 5 6 8 s  

0 . 0 0 9 6 9 4  + 0 . 1 9 5 9 0 8 s  + s 2 

= 1 - 0 . 2 4 1 3 6 s  - 9 8 . 2 8 3 0 s  2 + . . . .  

(3 )  m = 3 

/•,3 = 

J o =  

J1 = 

0 . 1 9 3 5 6 8 s  -1  - 0 . 0 2 8 2 2 8 s  - 2  + 0 . 0 0 3 6 5 4 s  - 3  + - - .  

32 

[1 1 + 2'---L-1 = 0 . 1 2 0 3 6 8  
' 2y2,1 

3 3 . 7 4 5 9  

2 . 3 8 0 6 0  

9 9 . 0 5 8 5 6  + 5 0 6 . 6 4 9 7 s  + 8 1 . 6 1 0 3 s  2 

(~3,o(s)  = 1 0 0 . 0 3 8 6  + 5 2 1 . 0 0 0 s  + 1 0 5 . 2 s  2 + s 3 

= 0 . 9 9 0 2 0 4  - 0 . 0 9 2 4 3 3 s  + 0 . 2 5 5 8 8 6 s  2 - -  1 . 2 4 5 3 5 s  3 + - . -  

= 8 1 . 6 1 0 3 s  - 1  - -  8078 .754s  -2  + 8 0 7 4 6 5 s  - 3  - -  8 0 7 4 4 4 4 4 s  - 4  + . . .  

t~ 2 
[3,0 = [2,0 "[- 3,0 _ 3 4 . 0 0 5 6  

293,0 

Jo = 3 . 1 9  x 10  - 6  
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2 0 . 8 3 3 7  + 5 0 6 . 6 5 0 s  + 8 1 . 6 1 3 0 s  2 

t~3,a(s)  = 2 5 . 9 9 2 5  + 5 2 0 . 2 9 7 s  + 105 .2 s  2 + s 3 

= 0 .80153  + 3 . 4 4 7 8 0 s  - 6 9 . 1 1 9 5 s  2 + 1 3 6 9 . 6 0 s  3 + . . .  

= 8 1 . 6 1 0 3 s  -1  _ 8 0 7 8 . 7 5 s  -2  + 8 0 7 4 4 4 s  -3  _ 8 0 7 4 1 9 0 2 s  -4  + . . .  

82 
[3,1 = [2,0 + 3,0 = 34 .0011  

2y3,O 

Jo  = 1 .106 x 10 -3  

4 5 . 2 3 7 0  + 5 0 1 . 4 4 4 s  + 8 1 . 6 1 0 3 s  2 
~ 3 , z ( s )  = 

2 5 . 4 7 4 7 +  5 1 5 . 0 8 6 s  + 105 .2 s  2 + s 3 

= 1 .77576  - 1 6 . 2 2 1 0 s  + 3 2 3 . 8 5 2 s  2 - 6 4 8 1 . 2 1 s  3 + . . .  

= 8 1 . 6 1 0 3 s  -1 - 8 0 8 3 . 9 6 s  -2  + 8 0 8 4 4 1 s  -3  - 8 0 8 8 6 1 7 8 s  -4  + . . .  

~2 
[3,2 = [2,1 + 3,1 = 34.0011 

243,1 

Jo  = 1 .465 x 10 - 2  

1 .81424  + 4 . 3 8 3 4 3 s  + 8 1 . 6 1 3 0 s  2 

G a , a ( s )  = 1 . 02167  + 2 0 . 6 5 7 6 s  + 105 .2 s  2 + s 3 

= 1 .77576  - 3 1 . 6 1 4 6 s  + 5 3 6 . 2 6 3 s  2 - 7 5 8 9 . 3 9 s  3 + . - -  

= 8 1 . 6 1 0 3 s  -1  - 8 5 8 1 . 0 2 s  -2  + 9 0 1 0 3 9 s  -3  - 9 4 6 1 2 1 5 0 s  -4  + . . .  

82 

[3,3 = [2,1 + 3,1 = 3 1 . 6 8 4 3  
2y3,1 

Jo  = 2 .438  x 10 -1 

(~3,4(s) = 2 5 . 4 7 4 7  + 5 0 1 . 4 4 4 s  + 8 1 . 6 5 9 8 s  2 

2 5 . 4 7 4 7  + 5 1 4 . 8 4 4 s  + 1 0 5 . 2 4 9 s  2 + s 3 

= 1 - 0 . 5 2 6 s  + 9 . 7 0 4 5 0 s  2 - 1 9 3 . 9 9 4 s  3 + - - .  

= 8 1 . 6 5 9 8 s  -1  - 8 0 9 3 . 0 2 s  -2  + 8 0 9 7 8 9 s  -3  - 8 1 0 6 5 2 1 8 s  -4  + . . .  

[3,4 = [2,2 + ~2'2" = 34 .0011  
2~3,2 

Jo  = 4 .685  x 10 -5  

1 .02167  + 4 . 3 8 3 4 3 s  + 8 1 . 6 5 9 8 s  z 
~3 ,5 ( s )  = 

2 0 . 6 4 7 9 s  + 1 0 5 . 2 4 9 s  2 + s 3 

-= 1 - 1 5 . 9 1 9 5 s  + 2 9 8 . 6 4 4 s  2 - 4 3 9 6 . 6 0 s  3 + - - .  

= 8 1 . 6 5 9 8 s  -1  _ 8 5 9 0 . 2 6 s  -2  + 9 0 2 4 3 5 s  -3  _ 9 4 8 0 3 6 2 8 s  -4  + . . .  



82 
[3,5 = / 2 , 2  + 3,2 = 31.6843 

2y3,2 

Jo = 2.214 x 10 -1 

J1 = 6.203 
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1.01787 + 20.3254s  + 81.4662s 2 

G3'6(s)  = 1.01787 + 20.5711s  + 105.05s 2 + s 3 

= 1 - 0 .241360s  - 18.2854s 2 - 393.679s 3 + - - -  

= 81.4662s -1 - 8537.88s  -2  + 895272s -3 - 93875933s  -4  + . . .  

~2 
i3,6 = [2,3 -1- 3,3 _ 31.6843 

2t~3,3 

Jo = 1.376 x 10 -1 

J1 = 9.530 x 10 -2  

G3,7(s) = 

~,7  

0.047617 + 0 .950850s + 4 .82495s  2 -~ . . .  
0.047617 + 0 .962343s + 4 .96171s  2 + s 3 

1 - 0 .241360s  - 2 .00582s 2 - 36.3888s 3 + - - -  

4 .82496s  -1 - 22 .9892s  -2  + 109.470s -3 - 521.266s  -4  + . . .  

82 
[2,3 -'1- 3,3 _ 2.44163 

2]/3,3 
J0 = 28.1523 

J1 = 5.778 x 10 -2 . 

Example 2. Cons ide r  the f i f th-order  t ransfer  funct ion  

10s 4 + 262s 3 + 1148s 2 + 2100s + 900 

G s ( s )  = s5 + 20s4 + 147s 3 + 435s  2 + 570s + 300 

w h o s e  impulse2response  energy  is 29.04249. The set  o f  23 = 8 th i rd-order  Routh  

approx imants  G3,k(s),  k = 0, 1 , . . . ,  7, and the pe r fo rmance  measu res  are com-  

puted  to be: 

10s 2 + 262s + 1103.69 

G3,o(S) = s3 + 20s2 + 142.569s + 346.377 

[3,o = 26.1801 

J0 = 0 .792569 

a3,1(s)  = G3,2(s) = G3,4(s) 

10s 2 + 262s + 203.108 

s 3 + 20s 2 + 128.635s + 67.7027 
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I3,1 = 17.8906 

J0 = 3.347263 

J1 = 2.904820 

a3,3(s)  = G3,5(s) : G3,6(S) 

10s 2 + 114.349s + 49.0066 

s 3 + 20s 2 + 31.0375s + 16.3355 

I3,3 = 15.0060 

Jo = 5.536489 

J1 = 0.902978 

9 .47715s2+18.1093s  + 7.76113 

G3'7(s) : S 3 + 3.61034S 2 + 4.91538S + 2.58704 

~,0 = 23.2988 

J0 = 2.200249 

J1 = 0.143134.  

There are only four different third-order Routh approximants. It is seen that 
in this set of  third-order Routh approximants, Ga,0(s) has the largest value of  
impulse-response energy and the least value of  integral of  squared error of  impulse 
response, whereas G3,7(s) has the least value of  integral of  squared error of unit- 
step response. 

Because n - m = 5 - 4 = 1 is odd, there are 16 different fourth-order Routh 
approximants. The values of  impulse-response energy, integral of  squared error 
of  impulse response, integral of  squared error of  unit-step response, and steady- 
state response for the unit-step input for each of  these approximants are listed in 
Table 1. There are only five different values of  impulse-response energy for this set 
of  Routh approximants. Hence, the values of  integral of  squared error of  impulse 
or unit-step response are useful for selecting a proper reduced-order model. 

Model G4,k(S) i4,k Jo 

k = 0 29.03082 0.4363579 

k = l  26.19181 1.565106 

k = 2 26.19181 1.155872 

k = 3 20.74127 4.098899 

k = 4 26.19181 0.6390586 

k = 5 20.74127 3.388695 

J1 G4,k(~X~) 

4.194840 

1.905439 

C~ 4.591816 

4.591816 

Cx~ 2.5 

2.5 

Table 1. The performance evaluations of 16 fourth-order Routh approximants for Exam- 
pies 2. 



ROUTH APPROXIMATION 21 

Model G4,k(S) I4,k Jo J1 G4,k(~) 

k = 6  20.74127 2.670035 c~ 2.5 

k = 7  23.30719 1.863767 ~ 2.5 

k = 8  26.19181 0.6563492 0.3487138 3 

k = 9 20.74127 3.765633 3.066499 3 

k = 1 0  20.74127 2.393686 0.5566352 3 

k = l l  23.30719 1.945676 0.3972896 3 

k = 12 20.74127 2.774710 0.2930052 3 

k = 13 23.30719 1.906522 0.1041621 3 

k = 14 23.30719 3.044335 0.1761163 3 

k = 15 29.03415 0.6527974 0.0039807 3 

G s ~ )  29.04249 0 0 3 

Table 1 continued. 

5. Conclusions 

In this paper, both Routh ot - / 3  and y - 8 expansions are regarded as energy 
decomposition schemes for stable linear systems described by their transfer func- 
tions. By combinatorially applying these two energy decomposition schemes to a 
stable transfer function and the decomposed subsystems, an energy decomposition 
tree for the system is constructed. The leaves of the tree are just the Routh a - / 3  
and y - 8 expansion coefficient pairs. A synthesis algorithm has been developed to 
derive a new family of Routh approximants from the energy decomposition tree. 
The elegant properties of the Routh-approximant family have also been explored 
and have been demonstrated by two examples. It is worth noting that, for a given 
system, there may exist different Routh approximants that have the same order 
and the same value of impulse-response energy. Hence, to judge the goodness of 
a Routh approxmant by the impulse-response energy may not suffice. 

Appendix: Proof of properties (46) and (47) 

Without loss of generality, we prove properties (46) and (47) for i = 0. In other 
words, we shall prove 

(otl,o,/31,o) = (ot2,1,/32,1) (Al.a) 

(V1,0, 81,0) = (Y2,o, 32,0) (Al.b) 
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Gn-2,1 (s) = Gn-2,2(s)  ( A I . c )  

fo r  e v e n  n,  and  
f12 82 82 

1,0 2,0 /32,1 1,0 
- -  + - -  - - -  + - -  ( h 2 )  

20/1,0 2y2,0 o/2,1 2Yl,o 

fo r  o d d  n.  To  this  end ,  w e  app ly  the  R o u t h  ot - / 3  and  y - 8 e x p a n s i o n  a lgo -  

r i t hms  d e v e l o p e d  in  S e c t i o n  2 to o b t a i n  the  f o l l o w i n g  e x p r e s s i o n s  fo r  the  e n e r g y  

p a r a m e t e r  coe f f i c i en t s  Cq,o,/31,o, 2/1,o, 81,o, Y2,o, 82,0, ot2A,/32,1 and the  d e c o m p o s e d  

s u b s y s t e m s  Gn-2,1(s) and  G , - 2 , 2 ( s )  in t e rms  o f  the  coe f f i c i en t s  ai's and  bi's o f  

G. (s). 

(i) F o r  o d d  n,  

Gn- l , I ( s )  = 

an bn-1 
0/1,o - -  , /31,0 - -  (A3 .a )  

an-1 an-1 

ao bo 
Yl,0 = - -  , 81, 0 = - -  (A3 .b )  

a l  a l  

ao bo - / 3 1 , o a o  
Y2,0 - -  , 82, 0 - -  (A3 .c )  

a l  - -  0/1,oao a l  --  0/1,oao 

an bn-1 - 81,oan 
0/2,1 - -  , /32,1 - -  (A3 .d )  

an_ 1 -- ~/1,oan an-1 -- ~/1,oan 

bn-2 Sn-3 -+- [ (bn-3 - fll,0an-3) - 82 ,0(a . -2  - Otl,oan-3)]s n-4 
+ " "  + [(b2 - f l l ,0a2) - 82,0(a3 - Otl,oa2)]s + b l  

an-1 sn-2 + (an-2 -- 0/1,0an-3)s n-3 + Jan-3 -- yz,o(an-2  - -  Otl,0an-3)]S n-4 

+(an-4  --0/1,oan-5)S n-5 +''"-Jc- [a2 - -  Y2,0(a3 --0/1 ,0a2)]s  + (a l  --0/1,0ao) 

(A3 .e )  

Gn-l ,2 (s )  =- 

bn-zS n-3 + [ (bn-3 - 81,0an-z) - fl2,1(an-3 - Yl,oan-z)]s n-4 

+bn-4S "-5 + " "  "t- [(/92 - 81,0a3) - f12,1(a2 - Yl,oa3)]s + b l  

(an-1 -- Yl,oan)S n-2 '}- [an-2 -- 0/2,1(an-3 -- Yl,oan-2) ] Sn-3 

+ ' ' "  + (a4 - -  Yl,Oa5)s 3 + [a3 - -  0/2,1(a2 - -  Yl,oa3)]s 2 -{- (a2 - -  Yl,oa3)s + a l  

(A3.f) 

(ii)  F o r  e v e n  n,  

an bn-1 
0/1,0 - -  , fla,o - -  (A4 .a )  

an-1 an-1 

ao bo 
Y I , o = - - ,  8 1 , o = - -  ( A 4 . b )  

a l  a l  

ao bo 
Y2,o = - -  , 82,0 = - -  ( A 4 . c )  

a l  a l  

an bn-1 
0t2,1 - -  , fl2,1 = - -  (A4 .d )  

an-1 an-1 
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(bn -2  - 32,0an-1)S n -3  + (bn-3  - f l l , 0 a n - 3 ) s  n -4  

+ " "  + (b2 - 32,0a3)s + (b l  - f l l ,Oal)  

a n - l S  n -2  + (an-2  --  Otl,0an-3 --  Y2,0an-1)s  n -3  + a n - 3 S  n -4  

+ ( a n - 1  - -  Otl,0an-5 --  Y2,0an-3)s  n -5  + " "  + (a2 - -  Otl,Oal - -  F2,0a3)s + a l  

(A4.e) 

G n - l , 2 ( s )  = 

(bn -2  - 31 ,0an-1)s  n -3  + (bn-3  - f l2,man-3)s n -4  

+ ' ' "  + (b2 - 31,0a3)s + (b l  - f l2,1al)  (A4.f) 
a n - l S  n -2  + ( a n - z  - -  Y l ,oan-1  - -  Otz, l a n - 3 ) s  n -3  

+ ' ' "  + a3 s2 + (a2 - -  Y1,0a3 --  otz, l a l ) s  + a l  

It is obvious that (A1) follows (A4) immediately. Besides, we have from (A3) 
that 

a n d  

f12 82 f12 (bo fl l ,oao) 2 1,0 2,0 1,0 - -  

2Otl,---"-~ + 2y2---~0 - -  2al----~0 + 2 a 0 ( a i  --  Otl,0a0) 

/~2 (81,o /~l,O~'t,o) 2 1,0 

2Oq,o 2yl,o(1 - Oq,OYl,O) 

= 0tl,032,0 + ~/1,0/~2,0 - -  20tl,0/~l,0Yl,031, 0 

2al,oFt,o(1 - al,oYl,o) 

~2 f12 ~2 1,0 2,1 1,0 (bn-1  - 81,oan) 2 

2yl,O + 2ot2,1 2yl,O 2 a n ( a n - 1  - -  Yl ,oan)  
~2 

1,0 ( / ~ 1 , 0  - -  0/1,031,0) 2 - -  + 

2yl,O 281,0(1 - Oq,oFl,o) 

ffl,0312,0 -~- Yl,0~12,0 --  212tl,0/~l,0Yl,031, 0 

20tl,0Y1,0(1 - -  0tl,0Yl,0) 

Hence, (A2) follows. The proof is now completed. [] 
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