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Abstract. This article considers the optimal control of the harvesting of a 
prey-predator system in an environment. The species are assumed to be in 
steady state under diffusion and Voterra-Lotka type of interaction. They are 
harvested for economic profit, leading to reduction of growth rates; and the 
problem is to control the spatial distributions of harvests so as to optimize 
the return. Precise conditions are found so that the optimal control can be 
rigorously characterized as the solution of an optimality system of nonlinear 
elliptic partial differential equations. Moreover, a constructive approximation 
scheme for optimal control is given. 
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1. Introduction 

This paper considers the optimal harvesting control of two interacting populations. 
The species concentrations satisfy a prey-predator Volterra-Lotka system under 
diffusion. They are in a steady-state situation with no-flux boundary conditions: 

A u +  u[(a~(x)-f~(x))-b~u-c~vl=O in ~, 

A v +  t)[(a2(x)-f2(x))d-c2u-b2vl : 0 in ~, (1.1) 

~u Ov 
- 0 on ~ .  

Ov Ov 
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The functions u(x), v(x) respectively describe prey and predator population 
concentrations with intrinsic growth rates al(x), a2(x). The functions fl(x), f2(x) 
denote the distribution of control harvesting on the biological species. Such 
problem arises naturally in ecosystems, e.g., fisheries and agriculture, when various 
species are harvested for economic return. The parameters bl, ci, i = 1, 2, designate 
crowding and interaction effects which are assumed constant for simplicity. The 
optimal control criteria is to maximize profit which is the difference between 
economic revenue and cost. This is expressed by the payoff functional 

d(fl, f2) = j~ {K~ufl + K2vf2 - M l f  2 - M2f~} dx, (1.2) 

where K~, K2 are constants describing the price of the prey and predator species, 
and M1, M2 are constants describing the costs of the controlsfl,f2. Here ~ ufl dx 
and ~ vf2 dx represent the total harvest of respectively u, v which depends on fi 
through (1.1). Analogous models appear in, e.g., [-4] and [,-13]. 

For the case of only one species with a single equation under control simplier 
analogous nonlinear and linear problems were studied in [-10] and [,-14]. However, 
there are two species here; and they are under a prey-predator type of interaction 
which is usually more difficult to analyze than the competing or cooperative case, 
because the relation between the species is not symmetric. It requires painstaking 
effort to find explicit conditions for the rigorous characterization of the optimal 
control and for justification of the existence of the solution of the resulting 
nonlinear system of four equations. The conditions on the various coefficients 
are much more elaborate than those given in [,10], and some of them seem 
incompatible with each other. However, Example 4.1 shows that they can all be 
simultaneously satisfied. Our results provide a framework for further investigation 
to consider whether some of the hypotheses can be successively relaxed for 
more practical applications. In Section 4 the optimality system is solved by an 
iterative scheme. The system does not satisfy the conditions in [-8], because the 
nonlinear terms are not really monotonic in each component. Consequently, it 
requires special treatment to find a particular scheme so that an oscillatory 
sequence is obtained for approximating each component. We have assumed that 
the cost in the payoff functional depends quadratically on the control in the form 
M i f  2 in a customary way in (1.2). The condition can certainly be modified to 
obtain a new payoff functional for J(flo fz)- 

We assume ~ is a bounded domain in R n with ~ 6 C2; A and ~/3v denote 
respectively the Laplacian and outward normal derivative. Ki, Mi, b~, and cg, 
i = 1, 2, are positive constants. We make the following assumptions and notations: 

a~(x) >_ 0, fi(x) > 0 a.e. in f~, 

a, ~ L~(n), f i e  L~~ i = 1, 2; (1.3) 

L~(~) = {f[f~L~(~2), f >_ 0 a.e. in f2}, (1.4) 

and 

~(6~, 6z) = {(f~, f2)[0 < f l  < ~i a.e. in n,  i = 1, 2} (1.5) 

for 6~ > 0, i = 1, 2. Finally, we denote an optimal control (if it exists) to be an 



Optimal Control for Diffusive Prey-Predator Systems 221 

(f*,  f*)ecg(61, 62) such that 

J(f•, f*)  = sup{J(f, ,  f2) l(f,, f2) s cg(61, 62)}. (1.6) 

In Section 2 we discuss the existence and uniqueness of positive solutions (1.1). 
Then we show the existence of an optimal control for our problem (1.1), (1.2), (1.6). 
In Section 3 we find stronger conditions which enable the characterization of an 
optimal control in terms of a solution of an elliptic optimality system of four 
equations. Several theorems and corollaries are given with increasingly more 
stringent hypothesis, consequently giving rise to increasingly less-elaborate opti- 
mality systems and results. In Section 4 we construct monotone sequences closing 
in to all appropriate solutions of an optimality system for the last case in Section 
3. If the monotone increasing and decreasing sequences converge to the same 
function, then the optimal control is unique. An example satisfying all the 
hypotheses is given at the end of Section 4. For convenience, we denote ai = 
ess supx~n ai(x), ~ = ess infx~ a ai(x), for i = 1, 2. 

2. Existence and Uniqueness of Positive Solutions, 
Existence of Optimal Control 

We first establish the existence of a positive solution of (1.1) for an arbitrary fixed 
control (fl, f2) e cg(61, 62) in Theorem 2.1, under hypotheses (H1) and (H2). Here, 
the solution may not be unique. Under further hypothesis (H3), Theorem 2.2 shows 
the uniqueness of the solution in the appropriate range, for each given control. 
Theorem 2.3 shows the existence of an optimal control, when solutions are 
uniquely defined for each fixed given control. 

Theorem 2.1. Suppose that ai(x ), bi, ci, and 6 i satisfy the hypotheses: 

(H1) 41 - (c~/b2)(gt2 + c2~1/bl) > 6~ > O. 
(H2) I~ 2 ~ ~2 ~ 0. 

Then for each pair (fl, rE)~ (g(61, ~2), problem (1.1) has a strictly positive solution 
(u, v) = (u(fl, f2), v(fl, rE)), i.e., u, v > 0 in ~, and with each component in W2'p(f~) 
for any p ~ (n, 00). Moreover, the estimate 

I[ u(A, A)112,p, II v(L, A)112,p - constant (2.1) 
is valid uniformly for all (fl, f2)~ C(61, 62). 

Proof. Define constant functions: 

~1(x ) _  21 1 ( c2fi1~ 
bl ,  ~'2(x) - b2 ti2 + bl ,]' 

1 c~ 

and 

a2-a +< al-g  b,/ al (2.2) 
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for all x in ~. It is clear from (HI)  and (H2) that  ~0i, (0i, i = 1, 2, are strictly positive 
in ~. It  can be readily seen that  

A~kl + ~kl[(a1(x) -- f l (x))  -- b1~1 -- clv] 

= b--~ [(al(x) - f , (x))  - ~ - Cl/) ] ~ 0 (2.3) 

for all (02 < v < ~kz, x E ft. Moreover ,  we have 

A(0i + (01[(al(x) - fl(x)) - b1(01 - clv ] 

= (01(ai(x) - fix) + (31 - fl(x)) + Clb ;  1(a2 + c2~ i lb l  1) - e ly  ~ 0 (2.4) 

for all (02 -< v <_ 02,  0 _ f l  -< 61, x e ft. Similarly, we obtain 

AO2 + O2[(a2(x) - f2(x)) - b202 + c2u] < O, (2.5) 

A(02 + (02[(a2(x) - A(x))  - b2(02 + ezu] > O, (2.6) 

for all (01 < u < ~1, 0 < fz  < 62, x ~ ft. 
Let X~ = {w e C(~), (0i < w < ~bl}, i = 1, 2. Define the map  T:  X 1 x X2 

X 1 • X 2 as T(yl ,  Y2)= (zi, z2) for (yx, y 2 ) e X 1  • X2 ,  where zl, z2eW2'V( f t ) ,  
p > n, and (z 1, z2) is determined uniquely as the solution of  the following: 

AZl - Qzl + y i[a i (x)  - f l (x)  - b l y l  - c ly2]  + Qyi = 0 in ft, 

Az2 - Qz2 + y2[a2(x) - f2(x) + c2ya - b2y2] + Qy2 = 0 in fl, 

~zl Oz2 
- - 0 on 6ft. 

Ov ~v 

Here Q > 0 is a constant.  Using (2.3)-(2.6) and the max imum principle for the 
W2'p(fl) solution with N e u m a n n  boundary  condi t ion we can show as in Theorem 
3.1 in [91 that  (z i, z2)e X 1 x X 2. Using Theorem 15.1 in [1], we can obtain a 
uniform bound  for the W2'V(ft) n o r m  of z l, z 2. Fol lowing the p roof  in [9], we can 
then use such a bound  to show T is compact  and eventually obtain a fixed point. 
Such a fixed point  is a solution of  (1.1) in X 1 x X 2, and the uniform bound  for the 
W2'V(ft) n o r m  gives precisely (2.1). Fo r  more  details, see [91. [ ]  

Theorem 2.2. Assume hypotheses (HI)  and (H2). Let  

~of f iF el _ c2~1"~- i 
- - - -  a 2 +  

(a2 - 62)bl(filb2)- l~. (2.7) 
) 

Suppose further that 

(H3) cic2(blb2)-I  < S 4 

is satisfied. Then, for  each pair (fl ,  rE) e r 62), problem (1.1) has a unique solution 
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(U, /)), U, V �9 W 2 ' p ( ~ )  for any p �9 (n, oo), with the property that 

~)1 ~ U(X) ~ ~11, ~2 ~ l)(X) ~ ~2 in ~. 

Here c~i, ~i, i = 1, 2, are given in (2.2). 

(2.8) 

Remark 2.1. Hypotheses (H1) and (H2) imply that S is positive. Hypothesis (H3) 
is readily satisfied if c 1 or c2 is reduced to being sufficiently small. 

Proof. 

and 

For convenience, let 

G l = b ' b 2 1  51-b-2 gt2+ bl ] - 6 1  g t 2 + ~ - l )  

A0 + O[(ax(x ) - fl(x)) - b l 0 ]  = 0 in fl, 

c2a l  - -  b2 l~r] = 0 AI? + 17[(a2(x ) -- f2(x)) + ~ - 1  

G 2 .~. (52 --  62) - lb{ l{qb 2 . 

We now define O(x), 17(x), O(x), and 17(x) to be respectively solutions of the scalar 
problems: 

dO 
- -  = 0 o n  O ~ ,  ( 2 . 9 )  
Ov 

in f~ ,  - -  = 0 o n  Of~,  
Ov 

AO + O[(al(x ) - fl(x)) - blU - -  ClV(X)]  = 0 in f~, 

AI7 + 17[(az(x ) -- f2(x)) -- b217] = 0 in f~, --OV = 0 
0v 

Using the constant functions ?q/bl and (l/b0[51 - 6 1 ]  

(2.10) 

~t7 
- 0  on~fL ~v 

(2.11) 

on dl), (2.12) 

as upper and lower 
solutions for (2.9), we can readily obtain, by means of monotone iterations from 
the upper solution as in [7] and [8], a unique solution 0 of (2.9) in W2'V(l)) for 
any p e (n, ~) ;  and (1/bl)(51 - 61) < 0(x) < al/bl for all x e ~. Similarly, we obtain 
the unique positive solutions in W2'V(f~), 

( bz 1(52 - 62) < V'(x) < b~ 1 g~2 + b--~-,]' 

b ;  1 51 - ~1 - ~ a2 + bl ,/J < O(x) < b?~(5l - 61), 

b ;  1(~2 - ~)  <_ 9(x) <_ b ;  1~2, 

respectively for (2.10), (2.11), and (2.12). We thus have the comparison, 

O(x) <_ G2 V'(x), ~'(x) < G~g(x) in ~. (2.13) 
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We next inductively define u~,/)~ to be strictly positive functions in Wz'P(f~), 
starting with u = O, vl satisfying 

A v l  + vl[(a2(x)  - f2(x))  + c2U(x) - b2vx] = 0 in f2, ~V_~l'~ = 0 
gv 

on Of~, 

and ui, v~, i = 2, 3 . . . . .  satisfying 

Aui + ui[(al(x)  - f l ( x ) )  - b lul  - c l v i -  1] = 0 in fl, 

A/)  i -t- vi[(a2(x) - f2(x))  + C2U i -- b2vJ  = 0 in f~, 

t3u-2 = 0 on aft, 
Ov 

(2.14) 

O/)~ = 0 on Of~. 
Ov 

Using the max imum principle, we can deduce as in Sections 5.2 and 5.3 in [8], 
that  we have, for all x e ~,  

(2.15) 

Using Green's  identity and (2.14), we obtain, for i > 1, 

= f (U2i + 2Au2i + 1 - -  u2i + 1Au21 + 2) 0 dx  

= - - ~  u2i+lU2i+2[bl(u2i+2 - u2 i+ l  ) -t- c1(v2i+1 - v2i)] dx, 
dn 

(2.16) 

0 = ff~ /)2i/)2i+1[C2(U2i- U2i+l  ) q'- b2(v2i+l - v2i)] dx, (2.17) 

0 = fC~ u2iu2i+l[bl(U2i -- u21+1) -t- c1(/)21_ 1 --/)2i) ']  dx, (2.18) 

0 = fa  1)2i-1/)2i[Cz(U2i- U2i-1)  d- b2(/)2i_ 1 - v2~)] dx. (2.19) 

Using (2.16), (2.17) and (2.13), (2.15) we deduce that  

(u2~+1 - u2~+2)u2i+lu21+2 clx = b--~ (v2~+1 - v2~)u2~+lu2~+2 dx  

- b~ 6~(v2~+1 - v2~)v2~v2~+l clx 

C I C 2 f ~  
= G~ bl ~ (,2,§ - ,~,)~2,~2,+i dx. (2.2O) 
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Then we use (2.18), (2.19) and (2.13), (2.15) again to obtain 

( u 2 , - ,  - uzDu2,u ,+ 1 d x  = - v i)u ,uz + d x  

c, fo < b~ 1 G 2 ( v 2 i _ l  - v2i)l)2i_ 1/)2, d x  

C 1 C 2 ~ 
= G2 ~ b2 (u2,_, - Uz,)V2,_ ~vz, dx. (2.21) 

Combining (2.20), (2.21) and using (2.13), (2.15) we obtain, for i _> 1, 

ff  (U2i+l -- U2i+2)U21+lU2i+2 dx 

_,_,/cl V/c V f. < t i : O i t b l )  t-~2,} (Uzi_ , - u2i)Uzi_lUzi dx. (2.22) 

By means of (2.22), we conclude that if (H3) is satisfied, then 
limi.oo ~n(u21+l - u2i+2)u2i+lu2i+2 dx = 0. By (2.15), the limits 

(def) U* 
l i m u 2 , + l ~ f ) u * > 0  and limu2i+2 = > 0  

must exist. The argument above shows that u* = u.  a.e. in f~. Further, using the 
maximum principle described above and the subsequently modified comparison 
theorem as in Theorem 5.2-1 in [8-1, we can show as in Section 5.2 in 1"8,1 that any 
solution (u, v) of(1.1) with ~ < u _< U, 17 < v < 12 in ~, u, v ~ wz'P(f~), must satisfy 

(def) 
u, < u < u * ,  lim v2i = v, <V<v*(de-~f)limv2i+l, xE~ .  

i--* r i--* oO 

(For more details, see Theorem 5.2-4 in [-9] and Theorem 2.1 in [14].) Since 
u* -- u , ,  we can show that v* and v, satisfy the same equation and again use the 
comparison as above to conclude that v*=  v, (see Theorem 5.2-3 in [-8,1). 
Comparing ~b~, ~k~, i =  1, 2, with the estimates for U, U, V, V, we conclude that 
any solution (u, v) of (1.1) satisfying (2.8) must have u = u* = u , ,  v = v* = v, in 
~. The existence part follows from Theorem 2.1. [] 

Remark 2.2. In Theorem 2.2 uniform 1[ 112.p bound for u, v can be obtained for 
all (fl, f2)~ cg(81, 82), p > n, as in Theorem 2.1. 

Remark 2.3. Under the hypotheses of Theorem 2.2, the functional J(fl, fz) is 
uniquely defined if (u, v) is chosen as the one solution satisfying (2.8). 

Theorem 2.3. Assume hypotheses (H1) and (H2) and that (u(fx, f2), V(fx, f2)) is 
defined uniquely so that (2.8) and (2.1) are satisfied uniformly for all (fl, f2) 6 cg(81, 82)- 
Then (f*, f * ) ~  cg(81, 82) exists such that J(f*, f*) is the optimal control for all 
(f,, f2) ~ cg(8,, 82). 
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Remark 2.4. By Theorem 2.2 and Remark 2.3, the addition of hypothesis (H3) 
to (H1) and (H2) ensures that (u(fi, f2), v(fl, f2)) can be chosen uniquely in the 
way described in Theorem 2.3. Hence, under hypotheses (H1)-(H3), an optimal 
control does exist. 

Proof. The uniform boundedness of (u(fl, f2), v(fl, f2)) for all (fl, f2) ~ (g(61, 62) 
implies that sup{J(fl ,  fz)l(fl, fz)eCg(61, 6z)} < 00. Let (f l , ,  f2,)eff(31, fiz) be a 
maximizing sequence. Then a subsequence, again denoted as (f l , ,  f2,) for con- 
venience, exists so that 

f~, ~ f *  weakly in L2(~),  with (f*,  f*)  ~ (g(6a, r 

and 

Un =- u(fln, f2n) -'~ ~t*~ 
V, -- v(fl,,  f2,) -'+ V*J strongly in W~'2(fl) 

(by using (2.1)). Passing to the limit as n ~ oo in 

fn  (Vu,Vq~ - (al - fi.)u.(o + blu2,q) + ciu.v,q~) = 0 dx 

and 

f (VvnVq~ - (a 2 - fZn)Vnq9 -- C2VnUnq) "3v b2v2cp) = O, dx 

for all ~0 ~ W 1'2(~']) (-) L~(y~), and noting that, for example, 

f a f l . u , q ~ d x ~  fnf*f~*qgdx forall q~eL~176 

we conclude that (~*, ~5") is a solution of (1.1) with (fl, f2) replaced by (f*,  f~). 
Since (u,, v,) are uniquely defined in a certain range of values, hence its limit (~*, O*) 
is within the same bounds. Consequently, (1.1) implies that ][Ul[z,v, []Vl[z,e is 
bounded by the same constant as in (2.1). By assumption, u(f l ,  f2)  is uniquely 
defined so that such properties are satisfied. We thus conclude that (fi*, O*)= 
(u(f*, f*), v(f*, f*)). Finally, the conclusion follows from the semicontinuity of 
J ;  that is, we have J(f*, f*)  = sup{J(fl,  f2)l(fl, f2)e  c~(61, 02) ). [] 

3. Derivation of the Optimality System 

In this section we need stronger assumptions on the intrinsic growth rate functions 
at(x ), i = 1, 2. When (HI) and (H2) are respectively strengthened to (HI*) and (H2*) 
and additional assumptions are made on the interaction rates between the species, 
Lemma 3.1 shows the differentiability of u(fl, f2) and v(fl, f2) with respect to 
(fD f2). The additional assumptions are satisfied, for instance, when the interspecies 
interactions are small compared with the intraspecies interactions. Theorem 3.1 
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gives a characterization of an optimal control in terms of solutions of an elliptic 
system of four equations. The optimal control is related to the solution of the 
systems in terms of various inequalities. Corollary 3.1 shows that under further 
assumptions on the cost and price parameters M~, K,, i = 1, 2, the optimal control 
can be exactly characterized by a solution of the optimality system of four 
equations. 

Lemma 3.1. Assume that 61, 62 exist such that 

(HI*) 0 < 6i -< ~-{2a,  - a l  - (2cx/b2)([t2 + c2gq/bO}, 
(H2*) 0 < 62 < �89 - ~2 - c2al/bl}, 

and that u ( f  l, f2), v(fl, f2) is uniquely defined for all (f l ,  f2) e oK(hi, 62) in the sense 
described in Theorem 2.3. Further suppose 

(H4) cl~q/b I + (c2/b2)(gt 2 + c2?tl/bO < 2 rain{f1, 62, 1}. 

Then the mappings (g(6 l, 62)~ (fl, f2)w+ u(fl, f2), v(fl,  f2)~ Wl'2(fl) are differenti- 
able in the following sense: 

-'~ (~  ~])~ \ ) 
(3.1) 

t iS, ' ) 
componentwise weakly in Wl"2(~) for some fli ~ O, for any given (fl, f2) e (~r 62) 
and f i ,  f2 e L~176 such that (f~ + fl i f l ,  f2 + fl, f2) e ff(61, ~2). Further, (4, q) is a 
solution of 

A~ + [(a~ - fO - 2blu(f~, fz) - clv(f~, fz)]~ - clu(f~, f2)r/ 

= u(fl,  f z ) f l  in f~, (3.2) 

Atl + c2v(fa, fz)~ + [(a~ -- f~) - 2b~v(f  l, fz) + c2u(fl, f2)] t /= 0 in~,  

- 0 o n  3f]: 
Ov Ov 

and (~, O) is a solution of 

A~ + [(al - fO - 2blu(f l ,  f2) - clv( f l ,  f2)]~ - clu(f l ,  fz)O = 0 in f], 

AO + c2v(fl, f2)~ + [(a2 -- f2) - 2b2v(f~, f2) + c2u(fl, f2)]~ (3.3) 

= v(fl, f2)f2 in fl, 

- 0 o n  ~3f~. 
Ov Ov 

Here 4, 11, ~, q are in W 2" 2(f~). 
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Proof. 

Ca = 

satisfy 

A~a + 

Aq~ + 

+ 

F rom (1.1), we deduce that 

u(fx + f l f l ,  f2) -- u(fl, f2) v(fl + fi l l ,  f2) -- v(fx, f2) 
/~ ' ,7~ = /~ 

[(al - A)  - blu(A + / t f l ,  f2) - blu(L, f2) - c,v(A, f2)]r 

clu(f~ + f i l l ,  fz)tla = u(fx + f i l l ,  f2) f l  in fl, 

C2/)(f 1 "t- /~fl '  f2)~r 

[(a2 -- f2) - b2v(fl + fi l l ,  f2) - b2V(fl, f2) + c2u(fl, f2)]t/p 

0 in  f t ,  

a{~ - @ a  = 0 on ~ 
Ov ~v 

A. W. Leung 

(3.4) 

(3.5) 

if (fl,  f2) and (f l  + f l f l ,  f2)~cd(61, 62). The lower bounds  in (2.8) imply that  

bl[u(f~ + f l f  x, f2) + u(ft, f2)] - al + f l  + clv(fl ,  f2) 

2cl ( ~2~1~ 
>- 2fix - ~ a2 + b l J  - 261 - al + c1~b2 ~-~ 61 in fi, (3.6) 

where the last inequality follows from (HI*). The first equat ion in (3.5), and (3.6) 
give 

min{61, 1}H~1122 _< Ilu(A +flfl ,  f2)H~ll~pll2[cllltlall2 + llflll2]. (3.7) 

The bounds  in (2.8) and (H2*) also imply that  

b2[v(fl + fi l l ,  f2) + v(fl, f2)] - a2 + f2 - c2u(fl, f2) > 62 in ft. 

The last inequality and the second equat ion in (3.5) give 

min{62, 1} I1 r/a l[ ~,2 < c2 II v(fl + f i l l ,  f2)II ~ II ~p II 2 II ~ II 2. (3.8) 

Since II u(fl + fi l l ,  f2)II o~ -< gq/bl and II v(fl + fil l ,  f2)II oo -< (l/b2)(ti2 + c2gq/bl), 
inequalities (3.7) and (3.8) and (H4) yield 

rain{61, 1} II ~p 112,2 + min{62, 1} II ~a 112,2 

_< k min{61, 62, 1} II ~ 112 II tla 112 -t- constll r 112 (3.9) 

for some k e (0, 2). Inequali ty (3.9) hence leads to 

f~(ll ~a II ~, 2 + II ~ II ~, 2) -< const II ~ II 1,2 (3.10) 

for some/~ > 0. This gives a uniform bound  for II Cp II 1,2 and II ~p II 1, z for all (fl ,  f2), 
(fl  + f l f l ,  f2) e ~,f(61, 62) with f l  fixed. We can thus choose a sequence fli --* 0 such 
that we have a weakly convergent sequence as described in (3.1). 

Since q u ( f  1, f2)q + u(fl, f2) f l  is a function in L2(f~), the first equat ion in (3.2) 
and the results in [1] imply that ~ e W2'2(f~). Similarly, the second equat ion in 
(3.2) implies that  t /e  W 2' 2(f2). 
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Analogously, we obtain the result involving the second part of (3.1) and the 
solution (~, ~/') of (3.3). [] 

For convenience, we denote constants 

2cl ( c241"X 
E1---El(41, Ctl, 42, bl, b2, cl, c 2 ) . = - 2 ~ t 1 - - 4 1 - ~ -  z 42q-~-1 ), (3.11) 

E2 = E2(a2, 42, 41, bx, c2) = 242 - a2 - - -  c251 (3.12) 
bl 

In order to obtain a better characterization of the optimal control of the 
problem, we need to strengthen hypotheses (HI*) and (H2*) to 

(HI**) 0 < 6 1 < m i n  �88 �89 E l + b 2  2 b2 4 2 + ~ S ) ~  ' 

Note that the right-hand sides of (HI*) and (H2*) are respectively �89 1 and 1E 2. We 
are not looking for the best possible sufficient condition for the characterization; 
hypotheses (HI**) an d (H2**) are used because they can be readily satisfied if cl 
and/or c2 are sufficiently small. 

Theorem 3.1. Assume hypotheses (HI**), (H2**) and (H4) and that (u( f  1, f2), 
v(fl,  f2)) is uniquely defined for all ( f l ,  f2)Ec~(fa, 62) in the sense described in 
Theorem 2.3. Suppose ( f* ,  f * )  ~ cg(61, 62) is an optimal control. Then let (u, v, Px, P2) 
be any solution of  

Au + (a 1 - f* )u  - b l  u 2  - C lUV = 0 in ~,  

Av + (a2 - f* )v  + czuv - b2 v2 = 0 in~ ,  

ApI + (al - f*)Pl  - (2bxu + C l v ) p I  + c 2 v p 2  "~ - K l f T  infl ,  
(3.13) 

Ap2 + (a2 - f*)P2 - (2b2v - c2u)p2 - cl upl = - K 2 f *  inf , ,  

~u Ov ~p~ Opz 
- = 0 o n f l ,  

,Or Ov c% ,Or .) 

with u, v, Pl, P2 ~ H 2 ' 2 ( ~ ) ,  satisfying 

c~l <_ u <_ ~l ,  q~2 <- v <- ~2 in~,  

- -441clc2K1(  42 + c241~(blb2E1Ez)-lbl /t - < Pl - < K1 

K 2  
_ 24clKl(blE2)-1  < P2 ~ - -  in 

2 

in f~, 
(3.14) 
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then the control (f*,  f~) must satisfy, for i = 1, 2, 

(K i -- pi(x))ui(x) 
f .*,(x) 2 in {x �9 ~]f*(x)  < ~i} a.e., (3.15a) 

2M~ 

(Ki - pi(x))ui(x) 
f*(x) < in { x � 9  > 0} a.e., (3.15b) 

2M~ 

( K ~  - p,(x))u,(x) 
f*(x) = in { x � 9  < f*(x) < 6i} a.e., (3.15c) 

2M~ 

Here, we denote (u, v) = (ul, u2) for convenience. (Recall r Oi, i = 1, 2, are defined 
in (2.2).) 

Proof. Since hypotheses (HI**) and (H2**) imply (H1) and (H2), Theorem 2.3 
ensures the existence of an optimal control (f*,  f*)  �9 if(61, 62). 

For f l  �9 L~(f~), e > 0, define 

f]=~fl if f*<-6l-~llfxl'o~, (3.16) 
elsewhere. 

Then, for fl > 0 small enough, we have J(f*,  f~) > J( f~  + f l f l ,  f*).  Dividing by 
fl, and letting B tend to zero appropriately as in Lemma 3.1, we obtain 

f n K t f T r  + Klu( f* ,  + K 2 f ~  I - <_ O, (3.17) f*)f~l 2Mx f'~ f~ dx 

where (4, ~/) is a solution of (3.2) with fl ,  f2, f l  respectively replaced by f l ,  f2 ,  f~. 
Let (Pl, Pz) be any solution of 

- A P l  - (al - f*)Pl + (2blu(f *, f*)  + clv(f~, f*))Pl '  
- czv(f'~, f*)Pz = Klf '~ in f], 

--Ap2 -- (a2 -- f~)P2 + (2b2v(f*, f~) c u * * - 2 ( f l ,  fz))P2 (3.18) 
+ clu(f*,  f*)Pl = K2 f*  in f~, 

~Pl ~P2 
- - 0 o n  b f l .  

~v ~v 

Replacing K l f *  and K j *  in (3.17) by the left-hand side of (3.18) and integrating 
by parts, we obtain by means of the equation for (4, t/) that 

f f~Eplu(f*,  f*)  - K~u(f*, f*)  + 2M~f*] dx >_ O. (3.19) 

Letting e ~ 0 § (3.19) leads to 

(K1 - pl(x))u(f*, f*)  
f~(x) >_ in {x �9 fllf~'(x ) < ~} .  (3.20) 

2M1 

This proves (3.15a) for i = 1. The rest of the proof for (3.15) for i = 1, 2 is analogous 
to that of Theorem 3.1 in [10], the details are thus omitted here. Comparing (3.18) 
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with (3.13) and  not ing the definition of u(f*, f*), v(f*, f~), we see that  it remains  
to show tha t  (u, v, p~, P2) as described in the s ta tement  of  the theorem actually 
exists. 

The  p roo f  of  the existence of  the solut ion with the range of values as described 
in (3.14) is carried out  as in T h e o r e m  2.1 by  using upper  and lower solutions for 
the system. F o r  convenience,  we denote  

r = -441clc2K~(42 + ~)(blb2EaE2) - ~  3(x) = 

K2 ~,,(x) = -- 2aaclKl(blE2)- 1 
(3.21) 

is true in 
situations, 

Aq~3 + 

provided  

I C142 C 2 (  
C~ 1 < 1 E1 + b2 2 b 2 a2 + 

which is assumed in (HI**).  

(al -- f~)~3  -- (2blU + ClV)~3 + c2vP2 + Kaf* <- 0 (3.22) 

C241~ Kz ] 
b /2K-ZA' 

For  all ~b 1 < u < ~kl, ~b 2 _< v < 4]/2, (b 3 ~ P l  "( 1~3, X ~ ~"~, consider the expres- 
sion 

A~4 + (a2 - f~)~P4 - (2b2v --  g2u)~/4 -- r  + K2f* 

a2K2 K2 
< - -  - 2(42 - 62) - -  

2 2 

a~ K 2 21 ( c2a I _ + c2 ~ --~ + cl ~ 4gqclc2Ka gl2 + --~-l)(blb2EiE2) x + K262" 

for x ~ ~.  Consider,  for all gb 1 < u _< ~x, q~2 -< v _< ~O 2, q~4 -< P2 ~ ~/4, tha t  the 
expression 

A~3 + (al - f*)~b3 - (2bau + ClV)~s + c2vp2 + Kl f*  

<_fi,K1-2 4x-~2 4 2 + - - ~ - J - 6 ,  K, -c1~-2(4:-62)K 1 

c: (  2a1"] 1,:2 
+ a2 + bl / 

[ 2c,( c,a  
C2 / C2t~lX~ K 2 

~,  since ~2-< �89 implies 42 - - ~ 2 - >  42/2- Thus  we have, for such 
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The  above  expression is < 0 provided that  

I~- -- ~t 2 + c2~tl~ + 2321K2 + K14ct2c2c2(d2 + c~l) (b232EtE2)- l  <- O. 

Consequent ly,  hypothesis  (H2**) implies that  

Aq/, + (a2 - f*)q/4 - (2bEy - c2u)q/4 - clupl + K z f ~  <_ 0 (3.23) 

in f~ for the appropr ia te  u, v, p~ described above.  
Fo r  ~bl _< u _< q/l, q52 -< v < q/2, (~4 ~ P2 ~ I//4, X E ~'~, we have 

A~b3 + (al - f*)q53 - (2blu + clv)dp 3 + c2vp2 + K l f *  

( c ~ a l )  
>- -4alc lc2K1 a2 + ~ (blb2E1E2) 1 

- c2 ?t2 + -~l-] '2?hclKl(blE2)-I  

is valid because c5 z < �89 2 implies v >_ (a2 - ~2)/b2 >- ct2/262. Consequent ly,  

A~b3 + (al - f~)d~3 - (2blu + clv)~3 + c2vp2 + Klf~; > 0 (3.24) 

in the described region provided that  

2ca ( c z81~ 82ca E1 Ea ?t2ca 
2fi l <_ 2 ? q - c h - ~ 2  ?t2 + ba J + 262 2 - 2 + 2b z '  

which is clearly true due to (HI**).  
Fo r  ~b 1 _< u < q/a, q~2 --- v _< q/2, q53 < Pl < q/a, x ~ f~, we have 

A~b4 + (a2 - f'~)c~,~ - (2b2v - c2u)~b 4 - clupl + K2f~  { c2aa; aa 
>- 2alcaKa(baEz) -1 - a 2  + 2[a2 - fiz] -- b1--1 J -  ct ~ Ka. 

Hypothes is  (H2**) implies that  62 < Ez/4, and thus 

-~2 + 2[~2 - 62] c2~a [ c2'h] - -  >�89 2 a 2 - a 2  =�89 

Consequent ly,  we have 

Aq~4 + (a2 - f2*)~b4 - (2b2v - c2u)q54 - caupl + Ka f*  

> 2gqcaKa(bxE2 )- 1.�89 - caaa Ka = 0 (3.25) 
bl 

in the region described. 
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Since the first two equat ions  of  (3.13) are independent  of  Pl, P2, we can show 
a o l  + (ax - f*)O1 - blO 2 - clvO1 >- O, Aq~ 1 + (a I - f~ ' ) r  - b l r  2 - clvr  <- 0 
for all r -< v _< ~2, ~ba -< Pl -< ~3, r  -< P2 -< 04, x e f t  in exactly in the same way 
as in T h e o r e m  2.1. Similarly, we show AO2 + (a 2 - f*)O2 + c2u~2 - b2O 2 <- 0, 
A r 1 6 2 1 6 2 1 6 2  2 ->0 ,  for all r  r -< Pi -< ~3, 
~b4 -< P2 -< ~4, x e ft. Then  we follow the same me thod  in the last pa r t  of  the p roof  
of  T h e o r e m  2.1 to construct  a na tura l  m a p p i n g  T f rom X1 x X 2 x X a x X4 into 
itself, where Xi = {w e C(~); ~b i _< w _ Oi}, i = 1, 2, 3, 4. Fol lowing the same argu-  
ments,  the fixed point  of T gives a solut ion of (3.13) with each c o m p o n e n t  in 
H2 '2 ( f t ) .  [ ]  

Corollary 3.1. 

M 1 

M 2 > 

Assume all the hypotheses of Theorem 3.1; and moreover 

Klgq [ l  + 4gqcie2(gt2 + ~ ) ( b a b 2 E i E 2 )  11, (3.26) 
2bl61 

2b262  I~ 2 "~- [ K  2 -t- 2 g t l C l K i ( b i E 2 ) - l ] ,  (3.27) 
1 / 

where 

2 q  ( cegtl"~ 
E1 = 2ill - a i  - ~-2 a2 + b l  ] ,  E2 = 2a2 --  a2 --  - -  

Let (f~,  f * )  e <g(6 i, 62) be an optimal control. Then 

(K 1 --  p l ) u  (K2 --  p2)v 
f *  - , f *  _ , 

2M1 2M z 

where (u, v, Pl, P2) is a solution of the optimality system: 

in ft, 

in D, 

C21~ 1 

bl 

(2biu + elv)p I --~ c2vp2 = 0 in f t .  

[( 1 Au + a I 2M 1 ] blu - exv u = O 

Av -F a 2 2 M 2  / ]  -t- C2U - -  b2v v = 0 

(K 1 --  p l )Zu  
Apl + aapl + 2M1 

( K  2 - -  pZ)2V 
ApE + azp2 + 

2M2 

C~U OV ~Pl t~P2 
. . . .  0 on Oft 

~v Ov ~v ~v 

with u, v, Px, P2 el l2 '2(f~)  satisfying (3.14). 

(2bzv - czu)p2 - c a up i = 0 in ~, 

(3.28) 

(3.29) 

Proof. By T h e o r e m  3.1, ( f • , f * )  must  satisfy (3.15a-c), i =  1,2, where 
(u, v, Pl, P2) is a solut ion of (3.13) with condit ions (3.14). 
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From (3.15a), in the set {xef f l l fT(x)  = O} we have 

(Ki - pl(x))u(x) 
0 = f*(x) > > O. (3.30) 

2M1 

Thus the first equality in (3.28) must hold in this set. From (3.15b), in the set 
{x~ t l l f * ( x )  = 61}, we have 

(K 1 - pl(x)) 
6 i = f*(x) < u(x) 

2M1 

-< ?q2M~bl [ K i  t- 4alclc2Kl(~t2 q- ~ ) ( b l b 2 E 1 E 2 ) - l l  < 61 (3.31) 

due to (3.14) and (3.26). Thus there are no x e ~  where f*(x) = 61. From (3.15c) 
and (3.30), the first equality in (3.28) holds for all x e ~. 

From (3.15a), in the set {xe f~ l f* (x )  = 0}, we have 

( K ~  - p~(x)v(x) 
0 = f*(x) > > O. (3.32) 

2M2 

Thus the second equality in (3.28) must hold in this set. From (3.15b), in the set 
{x ~ ~ l f* (x )  = 6}, we have 

( K ~  - p~(x))  
6 2 = f*(x) <_ v(x) 

2M2 

< a 2 d- [K 2 + 2hlClKl(b~E2)-1] < 62 (3.33) 
- 2M2b 2 

due to (3.14) and (3.27). Thus there are no x e ~  where f*(x) = 62. From (3.15c) 
and (3.32), the second inequality in (3.28) holds for all x e f~. Combining (3.13) and 
(3.28), we conclude that (u, v, Pl, P2) satisfies (3.29). This completes the proof. [] 

If some additional conditions are made, we can show that the solution 
(u, v, P l, P2) of (3.29), which characterizes the optimal control, is actually positive. 

Corollary 3.2. Assume all the hypotheses of  Corollary 3.1 and further 

K 2 bl ~12 1 
(H5) cl < 

K1 b2 til 8M2" 

Let (f~, f~)  e ~(61, 62) be an optimal control. Then ( f*,  f*)  satisfies (3.28), where 
(u, v, Pl, P2) is a solution of  the optimality system (3.29) with each component in 
H2'2(fl) satisfying 

(~1 ~___ U ~ ~1, (~2 ~ /)___ ~2 infl,  

K2 (3.34) 
0 _< Pl ~ K1, 0 ~ P2 ~ - -  in fl. 

2 
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Proof.  In  Coro l la ry  3.1 we show by means  of (3.14), (3.27), and  (3.33) tha t  there 
are no x ~ f~ where f* (x )  = ~52. Applying (3.15a) at  any  character izat ion solut ion 
in Theo rem 3.1, we conclude that  

K2 
f * ( x )  >_ 4 ~ 2  ~b2(x) for all x e ~ .  (3.35) 

Since (HI**)  implies a l  - (cl/b2)(a2 + c2ai/bO - 61 > 0 and  (H2**) implies tha t  
a2 - 62 > ~2/2, hypothesis  (H5) leads to 

K~b~ 
ci < - -  q~2. (3.36) 

4 K I ~ l M 2  

Let  ~3(x) = ~4(x) ---- 0 in f~ and ~ki(x ), i = 3, 4, be the same as in T h e o r e m  3.1. F o r  
all ~b i < u _< @i, ~b2 < v < ~k 2, q~a -< Pl -< ~/3, x E ~,  we can show tha t  

Aq~4 + (a 2 - f*)t~ 4 - (2b2 v - c2u)~ 4 - caup I -b K 2 f *  >_ 0 (3.37) 

by (3.36) and (3.25). 
F o r  all ~b i _< u < ~9 l, ~b 2 _< v _< ~/2' (~3 ~ Pl -~ ~3, X ~ ~'), we can show by 

means  of hypothesis  (H2**) tha t  

A~4 + (a2 - f~)~k4 - (2b2v - c2u)~P4 - clupi  + K z f *  <- O. (3.38) 

F o r  all ~b i < u _< ~9 i, ~b 2 _< v < ~b2, q]4 < P2 -< fig, x e f2, we have 

A~3 + (al - / * ) ~ a  - (2bl u + cav)~a + c2vP2 + K l f *  > 0; (3.39) 

and since 6: < �89 implies tha t  fi2 - 62 > ~2/2, we can use hypothesis  (HI**)  to 
obta in  

A~k3 + (al - f~')~/'a - (2blu + ClV)~3 + c2vp2 + K x f *  < O. (3.40) 

We can then follow the same a rgumen t  as in the final pa r t  of  the p roo f  of  
Theorem 3.1 to conclude tha t  (3.13) has a solut ion (u, v, Pi, P2) satisfying (3.34) as 
well as (3.14). Moreover ,  (3.15a-c) are all satisfied. 

Fur thermore ,  in Corol la ry  3.1, we show that  any  x e f~ where f * ( x )  = 61 or 
f~(x) = 6 2 cannot  exist. At the points  where f * ( x )  = 0 or f~ (x )  = 0, we show that  
equali ty must  hold in (3.30) and (3.32). Thus  for the (u, v, Pl, P2) ment ioned  above,  
(3.28) mus t  hold, and  the system (3.29) is satisfied as well as (3.13). This complete  
the proof.  [ ]  

4. Solution of the Optimality System by a Monotone Scheme 

F o r  simplicity, we always assume all the hypotheses  of  Corol la ry  3.2 in this section, 
so that  a posit ive solut ion of the opt imal i ty  system (3.29) can be found with the 
p rope r ty  (3.34). We further  deduce a construct ive me thod  of approx ima t ing  or 
comput ing  the posit ive solut ion (u, v, Pa, P2) of  the opt imal i ty  system. We construct  
m o n o t o n e  sequences converging f rom above  and below to give upper  and  lower 
est imates for (u, v, Pl, P2)- In  the case where the limits of  the upper  and  lower 
integrates agree, then the op t imal  control  p rob l em is complete ly  solved. 
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and 

Choose a large constant R > 0 so that the following four expressions: 

_Ia,(x  ) (Kl -- p~)u2Ml blu _ cxv]u _ Ru ' 

- Ia2(x)  (K2 -- P2)O--k 2 b2v] v -  Rv' 

[ (Kt -Px)2U-(2blu+clv )p i+c2vp21-RPD 
- al(x)p , + 2M 1 

I (2b2 v - r - c loPs  ] - R p 2  
(K2 pE)2V ] 

- -  a2(x)p  2 + 2 M  2 

are decreasing respectively in the four corresponding variables u, v, p,, P2 for all 
XE~'), 41 ~ g ~ @1, (]~2 ~ /) ~ ~/2, 0 ~ Pl  ~ K1, 0 ~ P2 % K2/2,  when the other 
three variables are fixed. (Recall the definitions of qb i, ~i, i =  1, 2, in (2.2).) For 
convenience, let 

H0 ~--~ ~1 , U - - I ~  ~/1; V0 -~" (~2, /3_1 ~ ~/2; 

K2 (4.1) 
Pt,0 ~ 0, P l , - I  = K1; P2,0 -- 0, P2,-2 -- 2 

We can readily verify that these constant functions satisfy 

Au_x-Ru_~ <_ -u_,Iai(x)  (Kl-pl'-Ou-~-2M1 blu_ 1 - ClVo] 

and 

- R u _ l  in f~ (4.2) 

Auo - Ruo >- --uo[al(x) (Kl - Pi)U~ blu~ - clv] 

- Ruo in f~ (4.3) 

for each v,p, respectively in the intervals [Vo, V_~], [P~,o,P~,-~]. The last 
inequality is true because 

al(x) 
(K1 - pl)uo 

2M1 

K 1 
b~uo - clv >_ a, - f ~ l  (b, - bi~bl -- ci~2 

t~ 1 ~ 
- - > a l - - - - a l - - a a  +6~ > 0  

al  

by using (3.26). Moreover, we have 

> - v _ f a z ( x )  (K2 - p2)v-1 
A v -  1 R v _  1 

- L 2M2 

- R v _  1 in f~ 

+ C2U ~ b2v_ll 
(4.4) 
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for each u, P2 respectively in the intervals [Uo, u_ 1], [.102,0, P2. - 1], since 

(K2 -- P2) v-  1 
a2(x) 

2M2 

On the other  hand,  

Av o -- Rv o >_ --vo[az(x ) 

+ c2u - bzv_ i <_ az(x ) + r - -  b2~ 2 

= a 2 ( x  ) - d  2 ~ 0 .  

(K 2 - p2)Vo 

2M2 
+ c 2 u - - b 2 v o l - R v  0 

for each u e [Uo, u_ 1], P2 E I-P2,0, P 2 , -  1], since 

a2(x) 

in fl  (4.5) 

(K 2 - pz)Vo 

2M2 

K 2 
+ c2u -- b2vo >_ a2(x) -- ~ (a 2 -- b2(a z + C2t~I 

K 2 1 ( Clal~ 

> a2(x/ fMz l;2 + 'h + 62 
> a2(x) - -  t~2 - -  (~2 "~ 62 ~ 0. 

(Here, we have used the hypothesis  (3.27).) Fur ther ,  we verify 

Apl,_ 1 -- Rpi,_ 1 

I (Ki - -Pl ' - l )ZU (2b iu~176  < -- al(x)Pl,-1 + 
2M1 

-- Rpi , -  1 in f~ (4.6) 

for each u e [Uo, u_ 1], v e [Vo, v_ 1], Pz e [P2,o, P2,- 1], since 

(K1 -- P l , -  l) 2u 
aa(x)pl-1 + -- (2bluo + Clvo)pl,-1 + czvp2 

2M~ 

--<K1 t i l - Z a l + 2 6 i + ~ -  2 a z + ~ ) - ~ 2 j  

c2 ( c2 , K2<0" 
+b22 a 2 +  bl j 2 - 

The  last inequali ty is true due to hypothesis  (HI**).  We also have 

Apl,o - Rpl,o > - al(x)pl,o + 2M 1 u - (2bau + clv)pi, o + c2vP2 

- R p l , o  in f~ (4.7) 

for each u E [Uo, u_ 1], v e Iv o, v_ i],  Pz ~ [P2,o, P2,- 1], since 

- -  K~u o 
(K1 Pl '0)2U (2biuo -[- ClVo)Pl, 0 -'k c2vP2 ~ ~ > 0 in fl. ai(x)pl,o + 2 M  i 
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For  the last component ,  we have 

Ap2.- 1 - R p 2 , -  1 

(K2 -- P2,- 1) 2 
<-- -- a2(x)p2,-1 + 2M 2 

- -  R p 2 , -  t i n  

for each u �9 [u o, u_ 1], v �9 [v o, v_ 1], since 

(K2 -- P2,- 1) 2/) 
a2(x)p2,-1 4- - -  (2b2vo -- Cztt)p2,-1 - CtuoPl,o 

2M2 

a2K2 K2 62 ~il K 2 
< 4-  K212 4-  K2 62 4-  C2 - -  - -  < 0 .  

2 2 2 bl 2 

In the last line, we use hypotheses (3.27) and (H2**). Moreover ,  we have 

Ap2,o - Rp2,o 

-1 
V -- (2b2v 0 - c 2 u ) p 2 - 1  -- CxuoPl,oJ 

(4.8) 

-- Rp2,o in ~ (4.9) 

for each u e [Uo, u_ a], v �9 [Vo, v _ 1], Pl �9 [Px,o, P l , -  1], since 

(K 2 -- pz,0)2V 
a2(x)p2,0 + (2b2v - c2u)p2,0 - caupl  

2 M 2  

> K~  2 K t ~ x C l  K l g q  
-- 2M 2 (~2 - -  C1~1K1 > barb ~ q~2 - c1r  - bl ci > 0 in ft. 

(Here, we use (HI**), (H2**), and (H5), see (3.36).) 
We now inductively define sequences of functions Uk(X), Vk(X), pl,k(X), pZ,k(X) in 

fl, k = 1, 2 , . . . ,  as solutions of  scalar problems as follows: 

AU k -- RUk = - -Uk-2  al  2 M  1 -- b lUk-2  -- r 

- -  R U k -  2 in ff~, 

(K2 -- P2,k-2)Vk-2 
Ark -- RVk = -- Vk- 2 a2 2M 2 

- -  RVk-  2 in fl, 

Apa,k -- Rpl ,k  

( K  1 2 - -  Pl,k-2) Uk 
= -- a lP l , k_  2 4- 2 M  1 

+ C2VkP2,k-2[ -- R p l , k - 2  in D, 
A 

4- C2U k -- b2Vk_21 

(4.10) 

(4.11) 

-- (2blUk- 1 q- ClVk-1)Pl ,k-2 

(4.12) 

I -- P2'~ 1 >_ -- a2(x)p2, 0 4- (K2 2M 2 (2b2v - c2u)p2,0 - c l u p l  
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Ap2,k - -  Rp2,k 
( K  2 2 

- P2,k- z) Vk (2bzvk- 1 + C2Uk)P2,k- a = -- a2P2,k-2 + 
2 M z  

-- C l U k _ l P l , k _ l l  -- Rp2,k_ 2 in fL 
_1 

where 

OUk--OVk--~Pl 'k--~P2"k -- 0 on 8f~. 
8v ~v 8v 8v 

(4.13) 

(4.14) 

Assume all the hypotheses o f  Corollary 3.2. The sequences o f  Theorem 4.1. 
functions Uk(X), Vk(X), pl,k(X), P2.k(X) defined above, satisfy the relations 

Uo < u2 < "'" < u 2 r -  "'" < u2 , -1" ' "  < ul < u - l ,  (4.15) 

V 0 -~ 0 2 m- " ' "  ~--- V 2 r ' ' "  ~--- V 2 r - i  ~ " ' "  ~ Vl ~--- V_ i,  (4.16) 

pi,o <_Pi,2 < " ' < P i ,  2r '"<_pi ,2r_l  < ' " < p i ,  l < p i _ l ,  i =  1,2,  (4.17) 

for  all x e l). Moreover,  any solution (u, v, Pl, P2) of  problem (3.29) with the property 

u o < u < u _  1, Vo < v <_ v _  1, Pi,o <- Pi < Pi,-1, i = 1, 2,  in f~, 
(4.18) 

must satisfy 

U2r < U ~ U2r_ 1~ V2r <~ V <~ V2r_ 1~ 

i = 1 , 2 ,  i n f ' ,  

for  all positive inte#ers r. 

Pl,2r<--Pi<--Pi,2r-1, 

(4.19) 

Proof .  Using the equat ion satisfied by u 1 and inequali ty (4.2), we obta in  
A(U_I - uO - R (u_ l  - ul) < 0 in fL (O/Sv)(u_l -- ul) = 0 on dfs Hence  Ul < u -1  
in ~.  Similarly, using (4.3) and the choice of  R, we deduce that  A(u o - u  0 
- R(u o - u 0 >_ 0 in f2, (• - Ul) = 0 on ~ .  Thus,  we have  

Uo < ul < u_ 1 in f~. (4.20) 

Using the equat ion  for Vl, inequalities (4.4), (4.5), (4.20), and the choice of R, 
we obta in  

A ( V _ I - - V l ) - - R ( v _ I - - V l < _ _ O  i n ~ ,  ~ ( v - l - v 0 = 0  on0f~, 

8 
A(vo - vl) - R(vo - Vl) > 0 i n fL  ~-(Vo - vl) = 0 onSf~, 

Ov 

and 

(4.21) 

Vo < vl -< v_ 1 in f~. (4.22) 
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Again, using the equations for pl and P2, the inequalities above, and the choice 
of R, we deduce similarly that 

P~.o < Pi,1 < Pi,-1, i = 1, 2, 

Next, we show 

in f~. (4.23) 

A(ul - u2) - R(u l  - uz) < 0 in f~, fly (ul - u2) = 0 on 3f~, 

A ( u o - U z ) - R ( u o - u 2 ) > 0  in f , ,  ~ v v ( u ~  onO[~. 

(Here, we use (4.3) at v =/)1, Pl = P l , O ' )  Thus we obtain 

Uo < u2 <_ ul  in f~. (4.24) 

Similarly, comparing the related equations and using the inequalities above, we 
deduce successively that 

/)o </)2 </)~ in f~, (4.25) 

Pl,o <- Pl,2 -< Pl,1 and P2,o ~ P2,2 "< P2,1 in ~. (4.26) 

From the above inequalities we have the validity of the inequalities 

U2n ~--- N2n+2 ~ U2n+l ~ /'/2n- 1, /)2n ~-~ /)2n+2 ~ /)2n+l ~ /)2n- 1 in t~, 

Pl,2, <- Pl,zn+Z <- Pl,2,+l --< Pl,2n- 1, (4.27) 

P2,Zn N Pz,zn+2 <-- PZ,2n+l < Pz,zn-1 in f~, 

for n = 0. We then use the comparison method as above to prove the validity of 
(4.27) for any positive integer n by induction. This proves (4.15)-(4.17). 

To prove the second part of the theorem, we use the comparison method on 
the appropriate equations as above, and proceed by induction on r in proving 
inequality (4.19). For  more details of analogous procedures, see Theorem 5.5-1 in 
[8]. []  

Example 4.1. Let f~ be any domain on the (x, y) plane with C 2 boundary, with 
{(x, y)10 < x < 1, 0 < y < 1} c f2. Consider the system (1.1), with ai(x, y) = 

16 + 2 sin xy,  fit = 18, fit = 14 for i = 1,2, b 1 = 12, b2 = 7.8, cl = 0.35, c 2 = 0.5. 
The problem is to maximize (1.2) with K 1 = 0.5, K 2 = 1, M 1 = 0.5, M 2 = 1, for all 
fi ~ L~(f~) in (1.5), where 61 = 2.079, 62 = 2.308. 

We can verify that the hypotheses (HI**), (H2**), (H3), and (H4) are all 
satisfied, thus Theorem 3.1 applies. Moreover, conditions (3.26), (3.27), and (H5) 
are also valid; hence Corollary 3.1, 3.2, and Theorem 4.1 are all applicable to this 
example. The optimal solution can be characterized by positive solutions of the 
elliptic system of four equations (3.29). Moreover, the approximation Theorem 4.1 
applies. 



Optimal Control for Diffusive Prey-Predator Systems 241 

References 

I. S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic 
partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math., 
12, 623-727, 1959. 

2. H.T.  Banks, Modeling and Control in Biomedial Sciences, Lecture Notes in Biomathematics, 
Vol. 6, Springer-Verlag, New York, 1975. 

3. V. Barbu, Optimal Control of Variational Inequalities, Research Notes in Mathematics, Vol. 100, 
Pitman, London, 1984. 

4. C. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, Wiley, 
New York, 1976. 

5. P. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in 
Biomathematics, Vol. 28, Springer-Verlag, New York, 1979. 

6. G. Ladde, V. Lakshmikantham, and V. Vatsala, Monotone Iterative Techniques for Nonlinear 
Differential Equations, Pitman, Boston, 1985. 

7. A. Leung, Monotone schemes for semilinear elliptic systems related to ecology, Math. Methods 
Appl. Sci., 4, 272-285, 1982. 

8. A. Leung, Systems of Nonlinear Partial Differential Equations, Applications to Biology and 
Engineering, Kluwer, Dordrecht, 1989. 

9. A. Leung and G. Fan, Existence of positive solutions for elliptic systems~degenerate and 
nondegenerate ecological models, J. Math. Anal. Appl., 151, 512-531, 1990. 

10. A. Leung and S. Stojanovic, Optimal control for elliptic Volterra-Lotka equations, J. Math. Anal. 
Appl., 173, 603-619, 1993. 

11. L. Li, Coexistence theorems of steady states for predator-prey interacting systems, Trans. Amer. 
Math. Soc., 305, 143-166, 1988. 

12. J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, 
Springer-Veflag, Berlin, 1971. 

13. A. Okubo, Diffusion and Ecological problems: Mathematical Models, Springer-Verlag, Berlin, 
1980. 

14. S. Stojanovic, Optimal damping control and nonlinear elliptic systems, SIAM J. Control Optim., 
29, 594-608, 1991. 

Accepted 1 October 1993 


