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Abstract. This article considers the optimal control of the harvesting of a
prey—predator system in an environment. The species are assumed to be in
steady state under diffusion and Voterra—Lotka type of interaction. They are
harvested for economic profit, leading to reduction of growth rates; and the
problem is to control the spatial distributions of harvests so as to optimize
the return. Precise conditions are found so that the optimal control can be
rigorously characterized as the solution of an optimality system of nonlinear
elliptic partial differential equations. Moreover, a constructive approximation
scheme for optimal control is given.
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1. Introduction
This paper considers the optimal harvesting control of two interacting populations.

The species concentrations satisfy a prey—predator Volterra—-Lotka system under
diffusion. They are in a steady-state situation with no-flux boundary conditions:

Au + u[(al(x) —fix)) — bju — clv:l =0 in Q,

Av + v[(az(x) —f2(x) + cu — bzv:I =0 in Q, (1.1

6u_6v_

——=— = Q.
ov Ov on
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The functions u(x), v(x) respectively describe prey and predator population
concentrations with intrinsic growth rates a,(x), a,(x). The functions f(x), f5(x)
denote the distribution of control harvesting on the biological species. Such
problem arises naturally in ecosystems, e.g., fisheries and agriculture, when various
species are harvested for economic return. The parameters b, ¢;, i = 1, 2, designate
crowding and interaction effects which are assumed constant for simplicity. The
optimal control criteria is to maximize profit which is the difference between
economic revenue and cost. This is expressed by the payoff functional

J(fpfz):f {Kyufy + Kyvfs — M, f} — M, f3} dx, (1.2)

where K, K, are constants describing the price of the prey and predator species,
and M,, M, are constants describing the costs of the controls f,, f,. Here [q uf; dx
and (g uf, dx represent the total harvest of respectively u, v which depends on f;
through (1.1). Analogous models appear in, e.g., [4] and [13].

For the case of only one species with a single equation under control simplier
analogous nonlinear and linear problems were studied in [10] and [14]. However,
there are two species here; and they are under a prey—predator type of interaction
which is usually more difficult to analyze than the competing or cooperative case,
because the relation between the species is not symmetric. It requires painstaking
effort to find explicit conditions for the rigorous characterization of the optimal
control and for justification of the existence of the solution of the resulting
nonlinear system of four equations. The conditions on the various coefficients
are much more elaborate than those given in [10], and some of them seem
incompatible with each other. However, Example 4.1 shows that they can all be
simultaneously satisfied. Our results provide a framework for further investigation
to consider whether some of the hypotheses can be successively relaxed for
more practical applications. In Section 4 the optimality system is solved by an
iterative scheme. The system does not satisfy the conditions in [8], because the
nonlinear terms are not really monotonic in each component. Consequently, it
requires special treatment to find a particular scheme so that an oscillatory
sequence is obtained for approximating each component. We have assumed that
the cost in the payoff functional depends quadratically on the control in the form
M;f? in a customary way in (1.2). The condition can certainly be modified to
obtain a new payoff functional for J(f, f5).

We assume Q is a bounded domain in R" with 6Qe C?; A and 8/dv denote
respectively the Laplacian and outward normal derivative. K;, M;, b;, and ¢,,
i =1, 2, are positive constants. We make the following assumptions and notations:

a(x) >0, fi(x)=0 a.e. inQ,

ael®Q), fiel®Q), i=1,2; 13)

L2Q) = {f|fe L(Q), f=0 ae. in Q}, (1.4)
and

Gb1,6,)={(f, IO fi<diaeinQi=1,2} (1.5)

for §; > 0, i = 1, 2. Finally, we denote an optimal control (if it exists) to be an
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(f*, fHe%(s,,d,) such that
J(f1, [3) = sup{J(f1, L)(f1, £2)e%(6:, 6,)}. (1.6)

In Section 2 we discuss the existence and uniqueness of positive solutions (1.1).
Then we show the existence of an optimal control for our problem (1.1), (1.2), (1.6).
In Section 3 we find stronger conditions which enable the characterization of an
optimal control in terms of a solution of an elliptic optimality system of four
equations. Several theorems and corollaries are given with increasingly more
stringent hypothesis, consequently giving rise to increasingly less-elaborate opti-
mality systems and results. In Section 4 we construct monotone sequences closing
in to all appropriate solutions of an optimality system for the last case in Section
3. If the monotone increasing and decreasing sequences converge to the same
function, then the optimal control is unique. An example satisfying all the
hypotheses is given at the end of Section 4. For convenience, we denote @, =
€SS SUP,..q (X), d; = ess inf, o a(x), for i =1, 2.

2. Existence and Uniqueness of Positive Solutions,
Existence of Optimal Control

We first establish the existence of a positive solution of (1.1) for an arbitrary fixed
control (fi, f5) € €(64, 8,) in Theorem 2.1, under hypotheses (H1) and (H2). Here,
the solution may not be unique. Under further hypothesis (H3), Theorem 2.2 shows
the uniqueness of the solution in the appropriate range, for each given control.
Theorem 2.3 shows the existence of an optimal control, when solutions are
uniquely defined for each fixed given control.

Theorem 2.1. Suppose that afx), b;, ¢;, and 8, satisfy the hypotheses:

(H1) &, — (cy/by)a, + cpa,/by) > 6, > 0.
(H2) 4, > 4, > 0.

Then for each pair (f1, f>) € (4, 6,), problem (1.1) has a strictly positive solution
(u, v) = (@W(fy, f2), v(f1, ), ie, u, v >0 in O, and with each component in W *(Q)
Jor any p € (n, ). Moreover, the estimate

lu(fis f)ll2,ps 10(f1s f2) 2, , < constant (2.1
is valid uniformly for all (f1, f,)€ C(6,, 6,).

Proof. Define constant functions:

) 1 .
i(x) = —Z— b =4 (az + 228 )

171, c cya
¢1(x)§b_1l:a1_b_:< 2+ 211>*51:|,

and

11, c, . ¢, [  c,a
¢2(x)sb—2[a2—52+b—j{al—é<az+ le>—51}] (2.2)

N
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for all x in Q. It is clear from (H1) and (H2) that i, ¢;, i = 1, 2, are strictly positive
in Q. It can be readily seen that

Ay + (@) — i) — byy — €40]
=2 [lay) — £i) = & — ¢,0] < 0 23)
1

for all ¢, < v <¥,, xeQ. Moreover, we have

Ap; + ¢([(a,(x) — fi(x)) — b1p, — cyv]
= ¢4(a;(x) — Gy) + (01 — f1(X) + ¢1b3 1@, + c2a:b7 ) —cp =0 (24)

for all ¢, <v <y, 0< f; <J;, xeQ. Similarly, we obtain
AY, + Yo[(ax(x) — fr(x)) — bays + cu] <0, (2.5)
Ady + ¢al(ax(x) — fo(x)) — by + cu]l 2 0, (2.6)

forall ¢, <u<y,,0< f, <6, xeQ
Let X;={weC®), ¢; <w <y}, i=12 Define the map T:X; x X, >

Xy x X, as T(yy, y,) = (21, 25) for (yi, )€ X, x X,, where z;,z, e W»7(Q),
p > n, and (z,, z,) is determined uniquely as the solution of the following:

Azy — Qzy + yila;(x) — fi(x) — by —c1y2] + 0y, =0 in Q,
Azy — Qz; + yolayx) — fo(x) + c2y1 — byy,] + Qy, =0 in Q,
15}

ﬁ=%=0 on 6Q.
ov ov

Here Q > 0 is a constant. Using (2.3)+2.6) and the maximum principle for the
W?2-2(Q) solution with Neumann boundary condition we can show as in Theorem
3.1 in [9] that (z,,z,) e X; x X,. Using Theorem 15.1 in [1], we can obtain a
uniform bound for the W2 ?(Q) norm of z,, z,. Following the proof in [9], we can
then use such a bound to show T is compact and eventually obtain a fixed point.
Such a fixed point is a solution of (1.1) in X, x X,, and the uniform bound for the
W2 P(Q) norm gives precisely (2.1). For more details, see [9]. |

Theorem 2.2. Assume hypotheses (H1) and (H2). Let

= =\ -1
S mindbbr | d;, — M a, + 22) — 6, [(a, + 22
b, by by

(@ — 95)b1(a1bs)~ 1}- 27

Suppose further that
(H3) cicp(bsby)™t < 8*
is satisfied. Then, for each pair (f,, f5) € €(0,, 0,), problem (1.1) has a unique solution
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(u, v), u, ve W*P(Q) for any pe(n, 00), with the property that
$pr=sux)< Yy, ¢, <)<y, inQ (2.8)
Here ¢, ¥, i = 1,2, are given in (2.2).

Remark 2.1. Hypotheses (H1) and (H2) imply that S is positive. Hypothesis (H3)
is readily satisfied if ¢, or c, is reduced to being sufficiently small.

Proof. For convenience, let

c C,a -1 c.da
G,=bh b‘l[ﬁ ——1<a +Ll)—5] (a + 2 ‘>
1 1v2 1 b2 2 b1 1 2 b1

and

Gz = (472 - 52)_1b1_151b2-

We now define U(x), V(x), U(x), and V(x) to be respectively solutions of the scalar
problems:

o~

PR . oU
AU + Ul(a(x) — fi(x)) —b,U]1=0 inQ, 5= 0 on2Q, (2.9
v
PN c,a, . . ov
AV + V[(ay(x) — fr(x)) + o b,V1=0 inQ, Fo 0 on 0Q,
1 v
(2.10)
N o~ ~ ~ . o
AU + Ul(ay(x) — f1(x)) — b, U —c,V(x)] =0 inQ, i 0 on dQ,
v
(2.11)
S . : v
AV + Vl(ay)(x) — fo(x)) —b,V] =0 inQ, e 0 on 0Q, (2.12)
v

Using the constant functions a,/b; and (1/b,)[d; — ;] as upper and lower
solutions for (2.9), we can readily obtain, by means of monotone iterations from
the upper solution as in [7] and [8], a unique solution U of (2.9) in W2 P(Q) for
any p € (n, o0); and (1/b,)(d; — 8,) < U(x) < a,/b, forall xe Q. Similarly, we obtain
the unique positive solutions in W2 ?(Q),

by (3, — 3,) < V(x) < bgl(az + %"—)

1

b;‘[ﬁl -6, — % (52 + c;f‘)] < U(x) < b7 '3, — 6,),
2 1

by @, — 6,) < V(x) < by 'a,,
respectively for (2.10), (2.11), and (2.12). We thus have the comparison,
Ux) <G, 7(x), Vx<6G,0x inQ. (2.13)
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We next inductively define u;, v; to be strictly positive functions in W?'¥(Q),
starting with u = U, v, satisfying

. 0
Avy + 0,[(a(x) — f5(x) + ¢,00) — bw,] =0 in Q, % =0 onoQ,
v
and u;, v;, i = 2,3,..., satisfying
) Ou;
Au; + uf(a,(x) — fi(x)) — byu; — cv;_1]=0 inQ, i 0 ondQ,
y
(2.14)
ov;
— =0 ondQ.

Av; + vil(ay(x) — fo(x)) + cou; ~ o] =0 inQ, P

Using the maximum principle, we can deduce as in Sections 5.2 and 5.3 in [8],
that we have, for all xeQ,

u4£u6"‘Su5£u3Su1£U, (215)

<
IA
IA

U
0, <V <vs<vy<v, <V,

<t
IA
IA

Uy

Using Green’s identity and (2.14), we obtain, for i > 1,

0= J(Uzi+2A“2i+1 — Upi 41 AUp; ) dX

= —L Uapg 1o a[D1(Uai 0 — g ) + €1(Ug;4 1 — v3)] dx, (2.16)
0= fﬂ UaiUzi 4 10Co(U0; — Un;0 1) + by(vg; 11 — 023)] dX, 2.17)
0= L Upthait (LD 1(Ua; — Uair 1) + €1(V2; 1 — v,))] dx, (2.18)

2.19)

0= J Vai—1U2[€o(Ua; — Uai— 1) + DoV — v2)] dx.
Q
Using (2.16), (2.17) and (2.13), (2.15) we deduce that
Cq
(Ui 1 — Uniy Upiyqlinisp dX = — (V2141 = VaJUais 1Mais 2 dX
o) by Ja
Cq 2
< f G054 1 — V2005511 dX
by Ja

¢, c
=G} Fl f J (541 — Up)U202; 4 dx. (2.20)
102 Jo
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Then we use (2.18), (2.19) and (2.13), (2.15) again to obtain
Cq
(Ugi—y — Ui 1 dx == | (V2i—q — VpUpithysy 1 dX
Q by Jo
Cy 2 i
<= | Givai-1 — 02V 10 dx
by Jo
= G2 ﬂ C_Z

* by by Jo
Combining (2.20), (2.21) and using (2.13), (2.15) we obtain, for i > 1,

(Ugi—1 — Up)Vp;— 1Vy; dX. (2.21)

f (U141 — Upig2Upit1Upit 2 dX
Q

a4 €1 2ea\?
< G367 A (Upi— 1 — Ui qup; dx. (2.22)
1 2 o

By means of (222), we conclude that if (H3) is satisfied, then
im; o foltais s — Uais 2)ais 14gi 42 dX = 0. By (2.15), the limits

lim u,;, ““Lu*>0 and lim u2i+2(d=ef)u* >0

i— o i~
must exist. The argument above shows that u* = u, a.e. in Q. Further, using the
maximum principle described above and the subsequently modified comparison
theorem as in Theorem 5.2-1 in [8], we can show as in Section 5.2 in [8] that any
solution (u, v) of (1.1) with U < u < U, ¥ < v < V in Q, u, v € W??(Q), must satisfy

U, <u<u*, lim vz,.(d;f) v, < U< v ““ lim Uyiv1,  XeQ.
(For more details, see Theorem 5.2-4 in [9] and Theorem 2.1 in [14].) Since
u* = u,, we can show that v* and v, satisfy the same equation and again use the
comparison as above to conclude that v* =uv, (see Theorem 5.2-3 in [§]).
Comparing ¢,, ¥;, i = 1, 2, with the estimates for U, U, ¥, V, we conclude that
any solution (u, v) of (1.1) satisfying (2.8) must have u = u* =u,, v=0v* =y, in
Q. The existence part follows from Theorem 2.1. |

Remark 2.2. In Theorem 2.2 uniform | ||,,, bound for u, v can be obtained for
all (fy, f5)€%(6,, 9,), p > n, as in Theorem 2.1.

Remark 2.3. Under the hypotheses of Theorem 2.2, the functional J(fj, f,) is
uniquely defined if (u, v) is chosen as the one solution satisfying (2.8).

Theorem 2.3. Assume hypotheses (H1) and (H2) and that (u(f, f5), v(f1, f5)) is
defined uniquely so that (2.8) and (2.1) are satisfied uniformly for all (f,, f,) € (34, 6,).
Then (f%, f%)e€(d,, 6,) exists such that J(f%, f%) is the optimal control for all
(f1, f2)€€(6y, d2).
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Remark 2.4. By Theorem 2.2 and Remark 2.3, the addition of hypothesis (H3)
to (H1) and (H2) ensures that (u(fy, f5), v(f1, f2)) can be chosen uniquely in the
way described in Theorem 2.3. Hence, under hypotheses (H1)}-(H3), an optimal
control does exist.

Proof. The uniform boundedness of (u(f;, f,), v(f;, f3)) for all (f;, f5) € €(J,, 6,)

implies that sup{J(f;, /)|(f1, o) € €(d,, 9,)} < 00. Let (fi,, f2,) €€, 5,) be a
maximizing sequence. Then a subsequence, again denoted as (f},, f2,) for con-
venience, exists so that

fw— f¥  weakly in L*(Q), with (f%, f$) e %(6,, 6,),
and

u,= u(fln’ f2n) — u*
b, = U(flm f2n) - v*

(by using (2.1)). Passing to the limit as n — oo in

} strongly in W3(Q)

L (Vu, Vo — (ay — fiJun® + byuje + cquyv,0) dx =0
and
f Vo,V — (a; — fonou® — C20,Un + by070) dx =0,
Q
for all ¢ e W1(Q) n L*(Q), and noting that, for example,
J Jintp® dx —>J fHa*p dx for all ¢ e L®(Q),
Q Q

we conclude that (ir*, 5*) is a solution of (1.1) with (f, f,) replaced by (f%, f%).
Since (u,, v,) are uniquely defined in a certain range of values, hence its limit (i2*, 7*)
is within the same bounds. Consequently, (1.1) implies that [ull, ,, o], , is
bounded by the same constant as in (2.1). By assumption, u(f%, f%) is uniquely
defined so that such properties are satisfied. We thus conclude that (@*, 7*) =
W(f¥, 1%, o(f%, f%). Finally, the conclusion follows from the semicontinuity of

J; that is, we have J(f¥, f%) = sup{J(f1, /)I(f1, ) € €(8;, 6,)}. O

3. Derivation of the Optimality System

In this section we need stronger assumptions on the intrinsic growth rate functions
afx),i = 1,2. When (H1) and (H2) are respectively strengthened to (H1*) and (H2*)
and additional assumptions are made on the interaction rates between the species,
Lemma 3.1 shows the differentiability of u(f;, f,) and o(f;, f,) with respect to
(f1, f2)- The additional assumptions are satisfied, for instance, when the interspecies
interactions are small compared with the intraspecies interactions. Theorem 3.1
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gives a characterization of an optimal control in terms of solutions of an elliptic
system of four equations. The optimal control is related to the solution of the
systems in terms of various inequalities. Corollary 3.1 shows that under further
assumptions on the cost and price parameters M;, K;, i = 1, 2, the optimal control
can be exactly characterized by a solution of the optimality system of four
equations.

Lemma 3.1. Assume that 6,, 6, exist such that

(H1*) 0 <8, < 5{2d; — &, — (2¢,/b)(@; + ¢2,/b1)},
(H2*) 0 < 8, < §{2d, — a, — ¢,a,/by},

and that u(fy, 1), W(f1, f>) is uniquely defined for all (fy, f,) € €64, 9,) in the sense
described in Theorem 2.3. Further suppose

(H4) cya,/by + (co/b )@, + c2d,/by) <2 min{515 02, 1}~

Then the mappings €(31, 3;)3 (f1, f) - ulfy, 1), vlfy, fo) e Wh(Q) are differenti-
able in the following sense:

u(fy + ﬂif_h f2) —u(fi, f2) olfy + ﬂifla Sf2) — olfy, 12)
5. ; 5 - (&m),
_ _ 3.1
u(fi, o+ Bif2) —ulfi, ) W(f1, o+ Bifz) — o(f1, /o) i G
5 ’ 5, - &n

componentwise weakly in W3Q) for some B; — 0, for any given (f;, f,) € 4(3, 6,)
and f1, f,€L*(Q) such that (f; + Bif1, f» + Bif2) € €041, 6,). Further, (&,1) is a
solution of

AL + [(ay — f1) — 2byul f1s f3) — cyu(f1s f2)]E — cqul S, fom

=u(f, i nQ (32)
An + co0(fy, )6 + [(ay — f2) — 2byu(fy, f2) + coulf1, f2)In =10 inQ,
% = @ =0 on 0Q):
dv  Ov

and (¢, ) is a solution of

AE + [(ay — f1) = 2byulfy, f2) — cyolfy, [)IE — caulfy, [ =0 inQ,

Afj + eyl fi, fz)g + [ay — f2) = 2b,u(f1, f2) + coulfy, f2)17f (3.3)
= o(f1, fz)f—z in€Q,

o8 o

5\7 = 5 =0 on 0Q).

Here &, n, &, 7 are in W23(Q).
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Proof. From (1.1), we deduce that

¢ _u(f1 + B1 1) — ulfy, £) _U(f1+ﬁf1’f2)_”(f1,fz) 34
p= ; s Mp= 5 34
satisfy
Alg + [(ay — f) — byulf; + Bfi, f2) — bau(fy, f2) — eyt fy, 12188
— cyulfy + Bf1, fomg = ulfy + Bf1 ) inQ,
A'?ﬁ + ¢ v(fi + Bf_ls fz)éﬂ (3.5)
+ [(ay — f2) — byo(fy + Bf1s o) — bov(f1, o) + coulfy ) ng
=0 inQ,
% = i@ =0 on 0Q
ov ov
if (fy, f») and (fy + Bf1, f,)€%€(6,, 8,). The lower bounds in (2.8) imply that
bylu(fy + Bf1 o) + ulfy, 2] — ay + f1 + cyolfy, fo)
! (az + Cz“‘) 28 —ayteih, 20,  inQ, (.6)
b, b,

where the last inequality follows from (H1*). The first equation in (3.5), and (3.6)
give

min{d,, 1} &30 < lu(fy + BS v ) ol EgllaLeslinglls + 1 fullo)- (3.7)
The bounds in (2.8) and (H2*) also imply that

bylu(fy + ﬁfl, fD)+olfy, )] —a, + fr, — caulfi, ) =2 6, in Q.

The last inequality and the second equation in (3.5) give
min{d,, 1} | g H%z <cllulfy + ﬁfh Iz lngll 2 (3.3)

Since [[u(fy + Bf1, f2)lw < 84/by and [|o(fy + Bf1, £2) o < (1/b)@, + c234/by),
inequalities (3.7) and (3.8) and (H4) yield
min{él, 1} [ f/; ”%2 + min{éza 1} f Ng “%2
< kmin{8,, 85, 13181201, 15 + constl| &1, (39)

for some k € (0, 2). Inequality (3.9) hence leads to

K& 13 2 + np)13.2) < constll gl (3.10)

for somglg > 0. This gives a uniform bound for [ 4l , and |54l , for all (f;, f3),
(f1 + Bf1, [,)e€(6,, 6,) with f fixed. We can thus choose a sequence f; — 0 such
that we have a weakly convergent sequence as described in (3.1).

Since c,u(f;, foln + u(fi, fo)f1 is a function in LX(Q), the first equation in (3.2)
and the results in [1] imply that &e W2 2(Q). Similarly, the second equation in
(3.2) implies that n € W>%(Q).
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Analogously, we obtain the result involving the second part of (3.1) and the
solution (&, ) of (3.3). O

For convenience, we denote constants

2 7
E, = E(a,, 4y, a,, by, b,, ¢y, ¢;) = 24; — a; — % (&2 + cz 1>= (3.11)
2 1

€04

by

E, = Ey(@,, 4, ay, by, ¢3) = 24, — @, —

(3.12)

In order to obtain a better characterization of the optimal control of the
problem, we need to strengthen hypotheses (H1*) and (H2*) to

. cy a ¢ [ ca.\ K
(H1**) 0 < 6, < mln{iEl, %[El + Bi ?2 — i (az + 12)_11) TKZJ}’

8c2c, K c,a
be v d%(‘z +- 1>E;1E;1].
1¥24%2

H2**%) 0< 9, < %[Ez —

1
Note that the right-hand sides of (H1*) and (H2*) are respectively 3E, and 1E,. We
are not looking for the best possible sufficient condition for the characterization;

hypotheses (H1**) and (H2**) are used because they can be readily satisfied if ¢,
and/or c, are sufficiently small.

Theorem 3.1. Assume hypotheses (H1**), (H2**) and (H4) and that (u(fy, f>),
v(f1, 12) is uniquely defined for all (f,, f,)e%(d,,06,) in the sense described in
Theorem 2.3. Suppose (f§, %) € 6(6,, 6,) is an optimal control. Then let (u, v, py, p2)
be any solution of

Au+(ay— fHu—bu? —cuv=0  inQ, )
Av+(a, — [+ couv —bo* =0 inQ,

APy @ = SDpy = @hyutep e = —KufT - n@
Ap, + (ay — f3)p, — (2byw — cou)p, — cup; = —K, f3 in€,
ou ov © 0
,E=_v=—?—l=—£%=0 onQ,
v ov v ov
with u, v, p,, p, € H>%(Q), satisfying
$pr<u<y;, ¢,<v<y, inQ,
_ - cya - .
—4alclczK1<a2 + Z—ll)(blsz1E2) '<p, <K, inQ, (3.14)

K
—2ac, K (b1E,) " < p, < 72 inQ
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then the control (¥, f%) must satisfy, fori=1,2,

(K; — pdx)uyx)

f¥x) = M in {xeQ|f¥x) < d;} ae., (3.15a)
fHx) < (5;2”]\(4’6—)—)“(3‘2 in {xeQ|f¥(x) > 0} ae., (3.15b)
fHx) = (i_TPA(;»L(’Q in {xeQ|0 < f¥x) < 8} ae. (3.15¢)

Here, we denote (4, v) = (u,, u,) for convenience. (Recall ¢;,;, i = 1,2, are defined
in (2.2).)

Proof. Since hypotheses (H1**) and (H2**) imply (H1) and (H2), Theorem 2.3
ensures the existence of an optimal control (1, f%) € 4(8;, 6,)-
For f, e L3(Q), ¢ > 0, define

- f if [¥<6,—¢lfilw
Fo = fi if ff<d,—celfills (3.16)
0 elsewhere.

Then, for § > 0 small enough, we have J(f¥, f¥) > J(f* + Bf3, f%). Dividing by
B, and letting f§ tend to zero appropriately as in Lemma 3.1, we obtain

J K f1E+ Ku(ft, 5+ Koffn —2M, f1]5 dx <0, (3.17)
Q

where (&, ) is a solution of (3.2) with f,, f,, f, respectively replaced by %, f%, f5.
Let (py, p,) be any solution of

—Ap; —(a; — [Py + @byu(fY, f3) + coo(f T, f3)Po)

—co(fT, [P, = K f in Q,

—Ap, —(ay — [P, + @byu(fF, f3) — cou(f1, [P, > (3.18)
+cul(fY, fHp = K, f% inQ,

dpy  Op,

—=—"=0 oQ.

ov ov on J

Replacing K, f¥ and K, f% in (3.17) by the left-hand side of (3.18) and integrating
by parts, we obtain by means of the equation for (&, 5) that

f filpaulft, £3) — Kaul(ft, fH +2M,f{]dx > 0. (3.19)
Q

Letting ¢ » 0%, (3.19) leads to

K, —p, (%, 1% )
Fipy > Koz OMUT B (xeQ|f¥x) < 3,). (3.20)
M,
This proves (3.15a) for i = 1. The rest of the proof for (3.15) for i = 1, 2 is analogous
to that of Theorem 3.1 in [10], the details are thus omitted here. Comparing (3.18)
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with (3.13) and noting the definition of u(f¥, f%), v(f¥, f%), we see that it remains
to show that (u, v, p;, p,) as described in the statement of the theorem actually
exists.

The proof of the existence of the solution with the range of values as described
in (3.14) is carried out as in Theorem 2.1 by using upper and lower solutions for
the system. For convenience, we denote

V=K gy = —4a1c1c2K1(az ¥ "—,jﬁ)(blszlEzrl
1

K (3.21)
Ya(x) = “22, bu(x) = —2a,¢,K, (b E;)"!

for xe Q. Consider, for all ¢, <u<y,, ¢, <v<Y,;, ¢y <p, <y, that the
expression

AYs + (a; — fiW3 — @biu + co)rs + cop, + K, fF

c a 1
<a,K, — 2[&1 — Bl <&Z + 52—1) - 51]1{1 =g (d, — 6,)K,
1 2

G f - c2d,\ K,
+ = — + 3K ,é
b, <a2 * b, ) 2 i

is true in Q, since 8, < 3E, implies d, — &, > a@,/2. Thus we have, for such
situations,

AYs+(ay — W3 — b+ cyv); + cop, + K fF<0 (3.22)
provided

¢, a c i\ K
S SL E +,_1_2___2<‘ +2d1_ 2 ,
. 3[1 b, 2 b\ b, J2K,
which is assumed in (H1**).
Forall o, Su<vy, ¢, Sv=<¥,, ¢35 <p, <¥;, xeQ, consider the expres-
sion
Ay + (ay — [IW4 — b0 — couhy — cyup;, + K, f3

a,K 3 K
< 222—2(%—52)72

a; K a cya
+to 2+ ¢y b—l 4&16102K1(52 + %)(blbzlﬁEz)—l + K39;.
1 1
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The above expression is <0 provided that
L g, + 28 105, K, + K daicde a, + 24 w2, B,E) ! < 0.
2 2b, b,
Consequently, hypothesis (H2**) implies that
Ay + (az — [EWa4 — 2byv — o), — cqup, + K, f3 <0 (3.23)

in Q for the appropriate u, v, p; described above.
For ¢, <u<yy, ¢, <v<y,, ¢y <p, <Yy, xeQ, we have

Aps + (ay — [Ps — 2byu + civ)ps + coop, + Ky fF

a
> —4&16162K1(52 + %‘“}')(blszlE2)_1
1

~ . cf _ Cc,a cqa
S L R R

1 —
— Cy — &2 + ﬂ)'zdlclKl(blEz)_l
b, b,

is valid because §, < 3E, implies v > (4, — §,)/b, = d,/2b,. Consequently,
Ags + (ay — [P — 2bju + cv)p; + coop, + K fT =0 (324
in the described region provided that

€0y a,c, El_.gl a,cy
b, 26, 2 2 2b,°

2
251 _<_2&1 ’—(—11 —’_cl<¢_12+
by

which is clearly true due to (H1**).
For ¢, <u <y, ¢, v <y,, ¢ <p; <Y, xeQ, we have

Apy + (ay — fHbs — 2byv — cou)py — cyup; + K, f3
2 251C1K1(b1E2)_1{“‘72 +2[d, — 6,] — %} —C e K;.
by by
Hypothesis (H2**) implies that §, < E,/4, and thus

Crd Cra
—a, +2[d, — 8,] — Zl>%l:2&2—[12— Zl]=%E2.
1 1

Consequently, we have

Apy +(ay — f3)dy — (2byw — cou)dpy — crupy + Ky f%

> 2a,0,K,(b,E;) "1 3E, — %)‘iK =0 (3.25)
1

in the region described.
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Since the first two equations of (3.13) are independent of p,, p,, we can show
AYy +(ay — [, —bii — cyfhy =2 0,Ady + (a; — [Ddy — bid] —cvp, <0
forall¢, <v < y,, 3 <p; < Y3, 04 < py < Y,, x€Qin exactly in the same way
as in Theorem 2.1. Similarly, we show Ay, + (a, — fEW, + couf, — by Y% <0,
Ay +(a, — [5)ps + cougp, — b, 0320, for all ¢, <v<y,, ¢p3<p, < 2%
¢4 < py < Y4, x€Q. Then we follow the same method in the last part of the proof
of Theorem 2.1 to construct a natural mapping T from X, x X, x X; x X, into
itself, where X; = {we C(Q); ¢; <w < ¢}, i = 1, 2, 3, 4. Following the same argu-
ments, the fixed point of T gives a solution of (3.13) with each component in
H>%Q). O

Corollary 3.1. Assume all the hypotheses of Theorem 3.1; and moreover

K. _
M,> Mg 4&10102((22 + 2%\ p,b,EE) L, (3.26)
26,0, b,
1 _ C, a4 _ 1
M, > a + [K, + 2d,¢,K,(b,E;)™ 1], (3.27)
2b,0, b,
where
. _ 2¢, {_ C,d . _ c,a
E1=2a1_a1_b_21<a2+ 211>, E2=2a2_a2—2—11.
Let (f%, f%)e¥4(6,, 0,) be an optimal control. Then
(Ky —pyu (K, — pov
* _ , $ =2 P27 3.28
R i Lt 77 (3.28)
where (u, v, py, p,) is a solution of the optimality system:
K, — 3\
Au + [(al - (124Mfﬁy> —bu— clv:|u =0 inQ,
K., —
Av + [(az - (22T52)U> + cu— bzv:lv =0 inQ,
K, —p)u
Ap, +a.p; + M‘IL — (2byu + cyv)py + cyop, =0 inQ, > (3.29)
2M,
K _ 2
Ap, + a,p, + M — (2b,v — c,u)p, — cqup; =0 inQ,
2M,
ou v 0 )
M_CV_P1_%2_ 4 o0
v dv  0Ov ov )

with u, v, p, p, € H>*(Q) satisfying (3.14).

Proof. By Theorem 3.1, (f%, f%) must satisfy (3.15a-c), i=1,2, where
(u, v, p1, p,) is a solution of (3.13) with conditions (3.14).
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From (3.15a), in the set {x € Q| f¥(x) = 0} we have

(K, = po0O)

0= f§x) > M, =

0. (3.30)

Thus the first equality in (3.28) must hold in this set. From (3.15b), in the set
{x€Q|f¥(x) = 6,}, we have

(Ky — ps(x)) u

6= [T <— (x)
1
<O K, + 4dlclc2K1<dZ el (b,b,E,E,)" ' | <6, (3.31)
_2M1b1 b1

due to (3.14) and (3.26). Thus there are no x € Q where f¥(x) = 4,. From (3.15c)
and (3.30), the first equality in (3.28) holds for all x e Q.
From (3.15a), in the set {x € Q| f%(x) = 0}, we have

(K5 — pa(x)o(x) > 0.

0=r130()= M,

(3.32)

Thus the second equality in (3.28) must hold in this set. From (3.15b), in the set
{x e Q| f4(x) = 6}, we have

(K2 = ps9) |

0, = f3x) < (x)

2 2 M,
<1 (a, + 2K, + 28,¢,K(bsEy) 1] < 6 (3.33)
_2M2b2 2 bl 2 1“1 1Wwit2 2 .

due to (3.14) and (3.27). Thus there are no x€Q where f%(x) = 8,. From (3.15c)
and (3.32), the second inequality in (3.28) holds for all x € Q. Combining (3.13) and
(3.28), we conclude that (u, v, p;, p,) satisfies (3.29). This completes the proof. [

If some additional conditions are made, we can show that the solution
(u, v, p1, p2) Of (3.29), which characterizes the optimal control, is actually positive.
Corollary 3.2. Assume all the hypotheses of Corollary 3.1 and further
K3bya, 1
K, b,a, 8M,

(H5) ¢, <

Let (f*, f%)e€%(d,,8,) be an optimal control. Then (f¥, f%) satisfies (3.28), where
(u, v, py, p;) is a solution of the optimality system (3.29) with each component in
H?*2(Q) satisfying

dr<us<y;, ¢,<v<VY, inQ,

K, (3.34)
OSPISKI’ OSPZS—E- inQ.
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Proof. 1In Corollary 3.1 we show by means of (3.14), (3.27), and (3.33) that there
are no x € Q where f¥(x) = §,. Applying (3.15a) at any characterization solution
in Theorem 3.1, we conclude that

K
41\422 ¢,(x) forall xeQ. (3.35)

Since (H1**) implies @, — (c,/b,)a, + c,d;/b;) — 6, > 0 and (H2**) implies that
d, — 8, > d,/2, hypothesis (H5) leads to

K2b
< 2Y1

4K, a,M,

Let (273(x) = <;~S4(x) = 0 in Q and Y(x), i = 3, 4, be the same as in Theorem 3.1. For
all ¢, <u<yy, ¢, <v<y,, ¢;3 <p; < Y3, xeQ, we can show that

Ada + (ay — [H)Ps — (2b20 — Cou)hy — cyup; + K, %20 (3.37)

by (3.36) and (3.25). .
For all ¢, <u<yy, ¢, <v <y, ¢3<p, <3, xeQ, we can show by
means of hypothesis (H2**) that

f30) =

Cy

b,. (3.36)

Ay +(ay — Iy — 2byv — coulpy — cyup; + K, [ <0. (3-38)
Forall ¢, <u <y, ¢y <0<y, ¢y < p, < Wy, xeQ, we have
Ads + (a; — [Dds — @byu + c,0)bs + coop, + K 2 0; (3.39)

and since §, < 1E, implies that d, — §, > a,/2, we can use hypothesis (H1**) to
obtain

Ay +(ay — fTWs — 2byu + cio); + cyop, + Ky fT <0 (3.40)

We can then follow the same argument as in the final part of the proof of
Theorem 3.1 to conclude that (3.13) has a solution (u, v, p,, p,) satisfying (3.34) as
well as (3.14). Moreover, (3.15a—c) are all satisfied.

Furthermore, in Corollary 3.1, we show that any x € Q where f§(x) = d, or
f%(x) = 8, cannot exist. At the points where f¥(x) = 0 or f$(x) = 0, we show that
equality must hold in (3.30) and (3.32). Thus for the (u, v, p,, p,) mentioned above,
(3.28) must hold, and the system (3.29) is satisfied as well as (3.13). This complete
the proof. O

4. Solution of the Optimality System by a Monotone Scheme

For simplicity, we always assume all the hypotheses of Corollary 3.2 in this section,
so that a positive solution of the optimality system (3.29) can be found with the
property (3.34). We further deduce a constructive method of approximating or
computing the positive solution (u, v, py, p,) of the optimality system. We construct
monotone sequences converging from above and below to give upper and lower
estimates for (u, v, py, p,)- In the case where the limits of the upper and lower
integrates agree, then the optimal control problem is completely solved.
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Choose a large constant R > 0 so that the following four expressions:

| K, —

—|a,(x)— L-I—p—l)u — byu — cyv [u — Ry,
| 2M,
_ K. _

- _az(x) — % + cu— bzu}v — Ruv,

(Ky — py)u

- Rh(x)h o (2byu + ¢1v)py + c20p, | — Rpy,

| M,
and

[ (K3 — po)*v

—| ax(x)p, + T (2byv — cu)p, — cyvpy | — Rp,
| M,

are decreasing respectively in the four corresponding variables u, v, p,, p, for all
xe€Q, ¢y <u<y,, ¢, <v<y,, 0<p; <K,, 0<p, <K,/2, when the other
three variables are fixed. (Recall the definitions of ¢, V;, i = 1,2, in (2.2).) For
convenience, let

Ug =Py, U =55 Vo =y, U =Yy,

K @4.1)
P10o=0, py - =Ky P2.0=0, Pz,—1572-
We can readily verify that these constant functions satisfy
(Ky —py,-u_
Au_, —Ru_, < —u_l[al(x) — —1‘2]*\/1111*1 —bu_; — ¢
— Ru_, in Q 4.2)
and
(Ky — pyJu
Auy — Rugy = —uo[al(x) — *ﬁf—o —byuy —cyv
—Ru, inQ (4.3)

for each v, p, respectively in the intervals [vy, v_;], [P;,0,P;, —1) The last
inequality is true because

(Ky —pyu K
ay(x) — _Eﬁ — by —ew>a, — 2]\411 d1 — by — 1,
0
>a,——ad,—d; +6,>0
ay
by using (3.26). Moreover, we have
(K; = paJv-

Av_,—Rv_, = —v_l[az(x)— 1—|—c2u---b21)_1}

—Rv_, inQ 4.4)
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for each u, p, respectively in the intervals [uy, u_,], [p, ¢, P2, - 1], since

(Ky — pv_
a(x) — —2 2M-—2 L+ Cou — byv_; < ay(x) + ey — by,
2

=a,(x)—a, <0.

On the other hand,

K, —
Avy — Roy > —vo[az(x) - (—ZzM—IJZ)lLO + cu — b200:| — Ry, inQ (4.5)
2

for each ue[ug, u_,1, p, € [p2,0, P2, 1], since

(K, — py K
ax(x) — 22M2 0+c2u—b21)02a2(x)—-21\/12 G2 — by +cy0,
2 2
K, 1/ ¢a
>a - — — ) —d )
2(%) M, b, (“2 + b, a; + 0,

> ay(x) — 0, —dy + 0, > 0.
(Here, we have used the hypothesis (3.27).) Further, we verify
Apy,-1 — Rpy,—4

(Ky = py,-1)’u
< —| @py, -1+ P — by, + C100)P1,—1 + 20D,
2M,
—Rp;,—;, inQ (4.6)
for each ue [ug, u_ ], ve vy, v_1], p2€[P20, D2, 1], since
(Ky — py,-1)%u
ay(X)py,-1 + : 21\41 - (2byug + c10o)py, -1 + C20P,
1

2 — -
< Kl[&l — 24, + 26, + % (62 N c2a1> _% ﬁ}

2

Cy f _ cd1\ K,
+ = + —<0.
b, (“2 by > 2

The last inequality is true due to hypothesis (H1**). We also have

Ky — P1,o)2

—Rp,, inQ 4.7)

for each ue[ug, u_,1, ve[vo, v-1], P, €[P2,0, P2, 1], since

Apyo — Rpi o= _|:a1(x)P1,o + u—(2bu+ C10)Py,0 + szpz]

(Ky — py10)°u Kiu
142]\4%“ — (2byug + c1Uo)p1,0 + C2U0P2 = 2M:)

a1(X)p1,0 + >0 in Q.
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For the last component, we have

Ap, 1 — Rp,, 4

(K, — Pz,—1)2
2M,

—Rp,, in Q 4.8)

< —[az(x)l’z,—1 + v — (2byvg — Cu)py, 1 — C1“0P1,0]

for each ue[uy, u_,], ve[vy, v_], since

(K2 — Pz,—1)20
2M,

aZKZ KZ 52 ~ dl K2

+—==—K,d, + Ky, +¢c; — =

5 ) 283 2902 2 b, 2

In the last line, we use hypotheses (3.27) and (H2**). Moreover, we have

a)X)py, -1 + — (2byvg — cu)p,, 1 — C1lUoPy 0

< 0.

Apy 0 — Rpa o
(K3 — P2,o)*v
2M,

—Rp,o InQ (4.9)

= —|:az(x)l72,o + — (2by0 — cu)py 6 — ‘31”171]

for each ue[ug, u_11, v€[vo, v-1], P1€[P1,0, P1,-1], since

(K, — Pz,o)ZU
2M,
K2 2K, a,¢, K,a,
— Ki>———¢,— K, =——
M, ¢, — YKy b6, ¢z — 11Ky b,
(Here, we use (H1**), (H2**), and (HS), see (3.36).)
We now inductively define sequences of functions u(x), v(x), py i(X), p2 (x) in
Q k=1,2, ..., as solutions of scalar problems as follows:

a,(X)p2,0 + — (2b,v — cou)p, 0 — CUpy

> ;>0 inQ.

(K; — P1,k—2)”k—2

Au, — Ruy, = —“k—z[‘h - — by, — C1Uk—1:I

2M,
— Ru,_,inQ, 4.10)
(K3 = pox—2)Vk—2 ]
Av—Rv=—v_[a— . + ¢yt — by,
k & k—2| 92 WM, 2Uy 2Uk-2
- Rvk__z in Q, (4.11)
Apyx— Rpys
(Ky — pri-2)u
= —laPip-2t L RLEE R (2byuy—1 + 10— )P1 k-2
2M,

+ Cz”kl’z,k—z:l = Rpi -2 in Q, 4.12)
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ApZ,k — Rp,
(Ky = pri—2)’v
= “I:azpz,k—z + ‘_2——252—2“_" —(2byv 1 + C2uP2 -2
- C1uk—1P1,k—1} —Rpyx-» in Q, (4.13)
where
O _ O _ 0Pk _ P2k _ 1o (4.14)

ov o ov ov
Theorem 4.1. Assume all the hypotheses of Corollary 3.2. The sequences of
functions w(x), v(X), p1(x), p21(x) defined above, satisfy the relations
Ug S Uy < S Uy, S LUy - S Uy <U_y, 4.15)
Vg S0, < K0y, S0y S S0 <ULy, 4.16)
PioSPi2= """ SPi2"  SPi2-1<"""=Pi1 Pi-15 i=12 (417

Sor all x € Q. Moreover, any solution (u, v, py, p,) of problem (3.29) with the property

Ug<u<u_y, Vo< VL Uy, Pio <P <Di—1 i=1,2 inQ,
(4.18)
must satisfy
Uy, S UL Uy g, Uz SV LUy, Pi2r S Pi < Dijar-1s
i=1,2 inQ, 4.19)

Jor all positive integers r.

Proof. Using the equation satisfied by u; and inequality (4.2), we obtain
Aw_y —uy))—Ru_; —u) <0in Q, (0/0v)(u_; —u;) =0on ¢Q. Hence u; <u_,
in Q. Similarly, using (4.3) and the choice of R, we deduce that A(ug — u,)
— R(ug — u;) = 0 in Q, (0/0v)Nuy — uy) = 0 on Q. Thus, we have

Ug < Uy < U_y in Q. (4.20)
Using the equation for v,, inequalities (4.4), (4.5), (4.20), and the choice of R,
we obtain
0
AMv_;—v))—R(voy — v, <0 inQ, 5—(1)_1—01)=0 on 9Q,
v

2 (4.21)
Ay —v;) — R(vg —1v,) >0 1nQ, a—(v0 —v,) =0 ondQ,
v

and

vo<v; <v_; InQ. (4.22)
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Again, using the equations for p, and p,, the inequalities above, and the choice
of R, we deduce similarly that

Pio<Pii<Pi-1 i=1,2  inQ (4.23)

Next, we show

é
Auy —uy) — R(u, —uy) <0 in Q, " (uy —u,) =0 on 39,
v

0
A(ug — uy) — R(ug —uy) >0 in Q, En (g — 1) =0 on Q.
v

(Here, we use (4.3) at v = vy, p; = p; ) Thus we obtain
Ug < Uy < Uy in Q. (4.24)

Similarly, comparing the related equations and using the inequalities above, we
deduce successively that

Vo < U, < 0q in Q, (4.25)

P1o<P12<pPiy1 and p,o<p,,<py, in Q. (4.26)

From the above inequalities we have the validity of the inequalities

Upy S Ugppn SUppiy SUpyoy, Uopg S U240 S Vnpyg S g in Q,

P1.20 = P12n+2 S P12n41 S P1an-1 (4.27)
D220 = P2,20+2 S P2,2n+1 = P2,20-1 in Q,

for n = 0. We then use the comparison method as above to prove the validity of
(4.27) for any positive integer n by induction. This proves (4.15)-(4.17).

To prove the second part of the theorem, we use the comparison method on
the appropriate equations as above, and proceed by induction on r in proving
inequality (4.19). For more details of analogous procedures, see Theorem 5.5-1 in

(81 O

Example 4.1. Let Q be any domain on the (x, y) plane with C? boundary, with
{x, M0<x<1, 0<y<1}<cQ Consider the system (1.1), with afx,y) =
16 +2sinxy, a,=18, ;=14 for i=1,2, b, =12, b, =78, ¢, = 0.35, ¢, = 0.5.
The problem is to maximize (1.2) with K; = 0.5, K, = 1, M, = 0.5, M, = 1, for all
;e L*(Q) in (1.5), where 6, = 2.079, §, = 2.308.

We can verify that the hypotheses (H1**), (H2**), (H3), and (H4) are alt
satisfied, thus Theorem 3.1 applies. Moreover, conditions (3.26), (3.27), and (H5)
are also valid; hence Corollary 3.1, 3.2, and Theorem 4.1 are all applicable to this
example. The optimal solution can be characterized by positive solutions of the
elliptic system of four equations (3.29). Moreover, the approximation Theorem 4.1
applies.
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