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Abstract. In this paper we are concerned with optimal control problems
governed by an elliptic semilinear equation, the control being distributed in
Q. The existence of constraints on the control as well as pointwise constraints
on the gradient of the state is assumed. A convenient choice of the control
space permits us to derive the optimality conditions and study the adjoint
state equation, which has derivatives of measures as data. In order to carry out
this study, we prove a trace theorem and state Green’s formula by using the
transposition method.
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1. Introduction

In the last 10 years several papers dealing with optimal control problems with
pointwise state constraints have appeared: [1], [6], [7], [15], and [16] for linear
equations and convex control problems, [8] and [9] for linear equations and
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Técnica (Madrid).
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control in the coefficients, and [3]-{5] for semilinear equations. Bermidez and
Martinez [2] and Luneville [14] have considered this type of problem in connec-
tion with some realistic problems. However, only two of the previous papers have
included the study of optimal control problems with pointwise constraints on the
gradient of the state: Mackenroth [16] derived the optimality conditions for a
control problem governed by a linear elliptic equation assuming the constraint
on the gradient only in a compact subset of Q and taking controls in the Sobolev
spaces H'(Q) in the case of a distributed control or H3*I') in the case of a
boundary control; Bonnans and Casas [3] considered a semilinear elliptic equa-
tion and constraints on the gradient in ), but the adjoint state equation was not
studied nor properly formulated.

This paper deals with optimal control problems of semilinear elliptic equations
subject to control constraints and pointwise constraints on the gradient of the
state, The control is distributed and it is assumed to belong to L/ () for some
r > n. Thus we avoid taking H*(Q) or other Sobolev spaces as the contro] space,
which is not very realistic.

We begin studying a control problem of a system governed by a Dirichlet
problem in Section 2. The optimality conditions (enounced in Section 3 and proved
in Section 5) ameliorate those obtained in the previous papers in two aspects:
more general state constraints are treated and a simpler Lagrange multiplier
(associated with the state constraints) than in [3] and [16] is achieved. Also, we
deduce some regularity results on the optimal control. A detailed study of the
adjoint state equation is carried out in Section 4. Finally, in the last section, we
show briefly the results corresponding to the Neumann case.

2. Distributed Centrol for the Dirichlet Problem

Let Q be an open bounded subset of R” (n > 2) with C*-* boundary T {see, for
example, [12]). Let us consider the following boundary-value problem:

{Ay + @(y) = u inQ,
y=20 onT,

with u e L'(Q), for r > n, and

Ay = — 3 0.(a;{x) 0, y(x)) + ag(x)y(x),
i,j=1
a;€ C>M(€) and g, L),

Im>0  suchthat Y a(x)&¢& = miéf?, VEeR", VxeQ, {2.2}

i,j=1

ag(x) =0 ae. xef)

¢:R—R is an increasing function of class C* with ¢(0) = 0. 2.3)
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We consider the following control problem:
@) Minimize J(u)
ueK and Vy,e(C,
where J: U — R is defined by
1 2 N G
Jw) =73 | |yx) = ya¥)|* dx + — | [u(x)]" dx,
o o Ja

y, being the solution of (2.1), y, given in L*(Q), 6 (1, + 00), N > 0, and U = LY(Q),
with 1 = max{g, r}; K is a nonempty convex closed subset of U; C is a closed
convex subset of C(X)" with nonempty interior, X being a compact subset of (.
Furthermore we assume that one of the following hypotheses is satisfied:

Hl. K is bounded in L'(Q), r > n, and ¢ <.
H2. N>0ando>r>n.
Let us give some examples about control constraints that fall into our
formulation:
K = {ue L'(Q): |ullyq < 1},
K={ueL®Q):a<ux)<bae xecQ}
with —o0 <a<b < + 00, and ¢ = 2, which satisfy H1,
K=L'(Q) or K={ueL(Q):ux)>0ae xeQ}

and ¢ = r, that satisfy H2.
Typical state constraints that we can consider are the following:

X=0Q and C={zeC@)" |z(x)] <J;

= Uj,

X=T and C={zeCI): zx) v(x) >4, VxeTl},

VxeQ, 1 <j<n},

or
X<cQ and C={zeCX): |xx) <d, VxeX},

where & and §; are given constants and v(x) denotes the unit outward normal
vector to I at the point x.

In the rest of this section we will see that (P) is a well-posed problem in the
sense that there exists a unique solution y, € C}(Q) for each u € L'(Q); the functional
u—y, is of class C' and there exists at least one solution of (P), under the
assumption of existence of feasible controls (i.e., v € K such that Vy, e C).

Theorem 1. For each ueL'(Q), with r > n, there exists a unique element
y, € W2MQ) n WEM(Q) solution of (2.1). Moreover, there exists a constant C,
independent of u such that

[Vl war@y S C, Hu”L'(Q)' (2.4)
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Finally, if {u} < L(Q) converges to u weakly (or weak* in the case r = + o0} in
L'(Q), then {y,} converges to y, weakly in W*"(Q).

Proof. For every positive integer k let us consider the functions ¢,: R -+ R defined

by
»(0) if [0]<k

ol0) = {o(+k) if 0> +k,
o(=k) if 0< —k

Let .of,: HY(Q) — H™Y(Q) be the operator defined by
(yy, 2 = aly, 2) + J o Y(x)z(x) dx,
o

where a: H(Q) x H(S2) — R is the bilinear form associated with the operator 4:

n

a(y, 2)= ) f a;{x) 0, ¥(x) 0, 2(x) dx +j. ao(x)y(x)z(x) dx.
o

iLj=1 Q

It is easy to verify that .« is a bounded, hemicontinuous, strictly monotone, and
coercive operator, therefore .o is bijective; see [13].
On the other hand, since r > n, the linear form F: H}(€}) — R given by
r

(F,z) = j u(x)z(x) dx

Q

is continuous. Therefore there exists a unique element y, e H}(Q) such that
4y, = F, ie., y, is the unique solution of the problem

Ay + o(y)=u  inQ,
y=20 onT.

Now let us take

¥i(0) = |o0) 0u(0) and  z4x) = Y (yal)).

Since r > n>2 and y, is a Lipschitz function, with (0) =0, we have that
z, € HY(Q); see, for instance, [19]. Moreover,

Vi) = (r — Diedd)I" *oil6) 2 0,

hence

lodyl e < Z U yi))ai(x) 0., yu(x) O, yidx) dx

Li=1 JQ

+ J‘Q ag(x)yx)z,(x) dx + f Oy Nz(x) dx

Q

= <%yk5 Zk> = <F9 Zk> = j‘ u(x)zk(x) dx
Q

< Hu”LF(Q)“zki]L’(ﬂ) = H““er)“(Pk(J’k)nir_(é)a
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where 1/r + 1/s = 1. From the previous inequality it follows that
ledydlie < lullg- 2.5)

Taking f, = u — @, (y,), it is obvious that y, is the unique solution of the
Dirichlet problem

Ay = f, inQ,
y=0 onT.

From the regularity results for boundary-value problems (see [12]) and using (2.5),
we obtain that y, € W2"(Q) and the following estimate is satisfied:

I yilwargy < €1l fill oy < 2¢4 1l gy (2.6)

with ¢, independent of k. Since W?7(Q) is included in C(Q), the inclusion being
continuous, we deduce from (2.6) that there exists a constant ¢, > 0 independent
of k such that

HYkHC(n) <65

Hence, ¢(y,) = ¢(y,) for every k > ¢,, which means that y, is a solution of the
Dirichlet problem (2.1). The uniqueness of the solution of (2.1) in

W2r(Q) A Wh(Q)

is an immediate consequence of the properties of 4 and ¢. Therefore every
Yi» With k > ¢,, is equal to this unique solution and (2.6) implies (2.4).

Finally, the continuous dependence of y, with respect to u follows easily from
inequality (2.4) and the compact inclusion W2r(Q) = C(Q) (see [17]), which allow
us to pass to the limit in the state equation. O

The differentiability of the relation between the control and the state can be
readily deduced from the implicit function theorem:

Theorem 2.  The mapping G: L'(Q) » W"(Q) n W{"(Q) defined by G(u) = y, is of
class C' and for every u, v e L'(Q) the element z = DG(u)- v is the unique solution of
the Dirichlet problem

{Az +o(y)z=0v inQ,

2.7
z=10 onTl. @7)

Taking a minimizing sequence and arguing in the standard way, we obtain
the existence of a solution for the optimal control problem (P):

Theorem 3. Under the hypotheses assumed in Section 2 and assuming the existence
of a feasible control (i.e., a control ue K such that Vy, € C), then problem (P) has at
least one solution. Moreover, if @ is linear, then the solution is unique.
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3. Optimality Conditions

Hereafter we use the following notations: M(X) denotes the space of real regular
Borel measures in X, that is, the dual space of C(X) (remember that X is a compact
subset of Q). The norm in M(X) is given by

lall e = 1l(X) = Sup{f y du: ye C(X) and |yfl, < 1}, ERY)

X
where | u| is the total variation measure; see [18]. Hence, M(X)" is the dual space
of C(X)" too. Obviously every element pe M{X)" can be decomposed as a sum of
two measures p = jio + Wy, B and p being regular real Borel measures in §,
concentrated in Q ~ X and I’ n X, respectively.

The next theorem establishes the optimality conditions for (P).

Theorem 4. Let ii be a solution of problem (P), then there exist a real number 1 > 0
and elements e W2"(Q) n WE'(Q), pe L{Q) for all t < nf(n — 1), and pe M(X)"
satisfying

i+ [/l prey > O, {3.2)
- o - inQ,
{iiy +to@)=a in (33)
y=0 onT,
{A*ﬁ + @ (PP = M) —y) —divp,  inQ, 54)
P =alr onT, .
j (z—Vy) dp <0, VzeC, (3.5)
X
f (p+ AN|@l° %i)u — @) dx >0, Vuek, (3.6)
Q
where A* is the adjoini operator of A,
—v(x) ]
ayx) =———— and v4x) = (a;{x)v(x).
va(x)  ¥(x)
Moreover, if the following Slater condition is verified
Yo, zo) € K x (W2T(Q) n WEQVF + Vzp)e €, (3.7)

where z, is the solution of the following Dirichlet problem
Azg + @'(F)zg = Uy — @ in €2,
2o=0 onl,

then the system (3.3)+(3.6) is satisfied with I=1

This theorem is proved in Section 5. Now let us see whether the previous
optimality conditions can be simplified in some particular cases.
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Remark 1. In the case X < Q, since p is concentrated in X, then p- = 0 and the
adjoint state verifies p = 0 on I'. Consequently, we have that p is an element of
WEHO\X) ¢ CHOQ\X).

Analogously, in case X < I' we have that p, = 0 and therefore p belongs to
Wii(Q) = CHQ).

Remark 2. If ¢ is a linear function, then the Slater condition (3.7) becomes
Ju,e K such that Vy, e c.

Thus, assuming ¢ is linear and
C = {ze C(X)" |z(x)| < 6, Vxe X}, (3.8)

the Slater condition is satisfied for every é > d,, where J, is the first value for
which (P) possesses a feasible control.

This condition allows us to obtain the optimality system (3.3)<3.6) with 1 = 1.
Using Clarke’s terminology [11], the problem is “normal” in the sense that the
functional J to be minimized appears in the optimality system. Sometimes it is
possible to deduce normality of (P) without proving the Slater condition. For
instance, if C is defined as above, then the optimality system is verified with 4 = 1
for almost all e[ J,, + ). The proof of this fact can be done using Clarke’s
result [117; see [3]. ’

When there are no control constraints (K = L'(Q2)), then (P) is always normal:
if 1 = 0 it follows from (3.6) that p = 0 and so (3.4) and (3.5) imply that p = 0, which
contradicts (3.2). Therefore it is sufficient to replace j and p by p/A and p/i,
respectively.

On the other hand, normality has repercussions on optimal control regularity;
see Remark 3.

The following corollary improves the results of Bonnans and Casas [3] and
Mackenroth [16] by establishing that the Lagrange multiplier p associated with
the state constraints can be reduced to one measure in X when the restriction
[Vy(x)| < & is considered.

Corollary 1. Let @ be a solution of problem (P), with
C={zeC(X): |z(x)| < 9, Vxe X},

where || denotes the euclidean norm in R". Then there exist a real number 1 >0
and elements e W2(Q) n Wi*(Q), pe L(Q) for all t <nf(n — 1), and jie M(X)
satisfying

24 1l > 0, (39)
A+ o(P) =1 inQ,
{}_} —0 onT, (3.10)

_ 1
A*D + (PP = M7 — v,) —=div(V- inQ
P+ @ (D =AUV~ y) 5 iv(Vy-fig)  inQ, (.11)

ﬁ = ﬁAﬁr on r)
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¢

J (z(x) = IVI)|) dE <0,  Vze By0), (3:12)
X

J (b + AN|a|" " 2i)u — @) dx =0, Vuek, 3.13)
Q

where By(0) is the closed ball of C(X) with radius 6 and center O and

_ 6\: ¥y (x)
v (%) v(x)’

Balx) =

Furthermore, i is a positive measure concentrated in the set
X" = {xeX: |Vix)] =9}

In particular, if the equality |Vy{x)] =0 is satisfied at a finite set of points
{x;}7=1 = X, then we have

n
= Z Aféxj’
j=1
where ;> 0 and J, is the Dirac measure concentrated at x;.

Proof. Let pe M(X)" as in Theorem 4 and let us consider the measure jie M(X)
defined by

Lo
#—5 V'

f zdji=
X

From Lemma 1, we deduce that j is a positive measure concentrated in X ™ and
n = (1/6)Vy- i1, therefore (3.9) and (3.11) follow from (3.2) and (3.4), respectively.
To complete the optimality conditions, it remains to prove (3.12). Let z € B{0) be
arbitrary and let us take z = (1/8)zVy, which obviously belongs to C. Therefore,
using (3.5), Lemma 1, and remarking that the support of i is equal to that of p,
we get

ie.,

Y f z 0,7 dw,  VzeC(X).
j=1 Jx

Qi | b

{ 1
02[(z~Vi)du=f (Z—lV)"li)gvi’dll
JX X+

- ( (z—|vy|>dﬁ=f(z~|w1)dﬁ. O
+ X

JX

Lemma 1. Let pe M(X)" be a measure satisfying (3.5), with C given by (3.8}, then
i = (1/8)Vy-p is a positive measure concentrated in the set

Xt = {xeX:|Vix)| = &}
Moreover, p = (1/0)Vy- ji.
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Proof. We divide the proof into several steps.

Step 1: [i is a positive measure. Let B < X be a Borel set and let us consider the
function

Wix) = (1 — xpx)Vi(x),
where x5 is the characteristic function of B. Let us denote by o the positive measure
in X:
" .
o= Iwl,
j=1

where |p/| is the total variation measure of @/, 1 <j < n. Applying Lusin’s theorem
[18] we deduce the existence of a sequence {@,};%, = C(X)" such that

i
olfxe X: @) £ V) < .

Now we define
Pi(x) if |ex)] <4,
Yy (x) = 0
lou(x)|
Then it is obvious that {W}i=y < C and also

q)k(x) if [(Pk(X)i > 5.

1
ofx e X: W) # V) < .
Using the dominated convergence theorem and (3.5) we obtain

iB =23 j 8, 7(x) dwi(x)
B

iq 0, 9(x) dp(x) — f (t = xp(x)) 95, 3(x) duj(X)>
X X

j=1

1 " . £ )
=5 lim ¥ ( f 0, 70 dpitx) — | W) du’(x)>
X

JX

1
=< lim{p, Vj — ;) 20,

k— oo
which proves that ji is a positive measure.

Step 2: W' is absolutely continuous with respect to i, 1 <j<n. For each j=
1,...,n, we can take a Borel function h;: X — R, with |h(x)| = 1, Vxe X, and
d|p!| = h; dp/; see, for example, [18].

Now given a Borel set B = X such that (B) = 0, let us consider the function

Vo) = % 1) 3, ey + (1 = 2V,
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where ¢; is the jth canonical vector of R™ It is obvious that {Y(x}| < 4, Vxe X.
Then we can take a sequence {{5;};°.; < C as in step 1 and obtain

n

S W@ =3 f hy(x) d(x)
i=1 B

i=1

n . ; )
;5@(2 [ w0 = 0, o + | 5 i
=1 JX

v B /

g

= fim G, Wy~ V) + B < 0,

5 ko0

from where p/(B) = 0 for every j = 1,..., n and therefore p/ < fi.

Step 3: w=(1/8)Vy-ii and sup(i) = X*. Since w < ji, we can apply the
Radon-Nikodym theorem to deduce the existence of a function f;e L'(i} such
that dp/ = f; djp, 1 <j < n. Let us denote f = ( Ji¥i=1. Now (3.5} is equivalent to

( f(x)z(x) dia(x) < é J f(x)Vi(x) diKx), Yz € B,(0), (3.14)

JX

B,(0) being the closed unit ball of C(X)".
From the definition of ji we deduce that, for every Borel set B < X,

J 0y, 9(x) dpl(x)
B

i

=5 % f 0,509/ di

il

SR
M=

f dfi = f(B) =

J

in»-—a

Vi(x)f(x) dia(x),

Qq\!—*
w

which implies
% Vi(x)f(x) = 1 ae. [jlxeX. (3.15)
From here we obtain with the aid of relation Vj(x)e C, ¥x € X, that
-1 VY(x)f(x) <z W)’(x)i o) < fx)]  ae [AlxeX. (3.16)

Let us take g(x) = f(x)/|f(x)| and again apply the Lusin theorem to get a
sequence {Y;}i-, = C(X)" such that

W)l <1 and  j({xeX:n(x) # gx)}) <
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Then from (3.14) and (3.15) it follows that

f f(x)} dii(x) = lim J Ui(x) - f(x) dji(x)
X X

k-

1
<5 J ) Vyx) dii(x) = J dia(x),
X

x
which together with (3.16) implies that
fix) =1 ae. [i)xeX. (3.17)

Therefore

1 1 1
1= SVJ"/(x)f(x) sg [Vy(x)| H(x)] SS IVix)| <1 ae [flxeX, (3.18)

which means that i is concentrated in X*. Moreover, since the balls in R”
for the euclidean metric are stictly convex, (3.15), (3.17), and (3.18) imply that
f(x) = (1/0)Vy(x) a.e. [fi]x € X and hence p = (1/0)Vy- fi. O
Corollary 2. If X < I and the state constraint set C is given by

C={zeC(X)" zx) v(x) = 4, Vxe X},

then the optimality conditions (3.9)-(3.13) are verified with (3.11) and (3.12) replaced
by

r _
A*p+oMp=Uy—y)  inQ
0 3.19
< 5= Hr onT, ( )
v,V
\
and
(z—0,9) diar <0, vzeC, (3.20)
o X

where C is given by
C={ze C(X): z(x) = 8, ¥x e X}.
Moreover, fir- is a negative measure concentrated in

X ={xeX:8,jx)=d}.

Proof. It is enough to apply Theorem 4 by taking fir = v-pr, defined by

n
j zdjpr =Y J zv; dpf-.
T j=1 X
To prove this let us remark that we can decompose each canonical vector ¢; in

the way
e; = V(%) v(x) + t{(x), Vxel,
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where t(x) is a tangent vector to I" at x and hence
0y, J(x) = Vji(x) €; = v{x) 0, J(x) + O J(x) = v{{x) 3, ¥(x),

the last equality being a consequence of the fact that =0 on I
Now taking z = z-v, with ze C, we have that ze C and furthermore using
(3.5) we deduce

f (z — 9,)) ditr = i f (z = 0,3)v; dnf = J (z—Vy)dpr < 0.
x X b ¢

j=1

Arguing as in Theorem 3 of [7], we deduce from (3.20) that ji;- is a negative
measure concentrated in X . 0

Remark 3. From (3.6) we can deduce some qualitative properties of optimal
control i. For example, if N =0 or A = 0 and

K={uel*Q):a<sux)<bae xeQ}, (3.24)

then @ has the behavior of Bang-Bang type. More precisely, d(x) = a if p{x) > 0
and a(x) = b if p(x) < 0.

However, if NA # 0, then i can possess additional regularity properties. Thus
if there is not any constraint on the control, then from (3.6) it follows that

-1
0 = e P9I VB,

where ¢ is greater than or equal to ¥ > n, by virtue of (H2). Hence # is continuous
in the points where p is continuous. If C is given by (3.8) and we suppose y, € L'(€)),
then (3.11) and Lemma 1 imply that p belongs to WX} = C1(X,), where

X, = {xeX:|Vjx)| < é}.

Therefore, i is continuous in X, and it is of class C* at the points x belonging to
X \Z(p), where

Z(p) = {xeQ: p(x) = 0}.

If K is the set of positive controls, the situation is very similar, because in this
case

—1 )
0. Gyt PO )

When K is given by (3.21), then o can be taken equal to 2 and we have

i(x) = max{

—1
ux) = Proj[a,m(]—vj ﬁ(x))-

Thus we can again deduce continuity of u at the points where the state constraint
is not active.

Obviously, additional regularity can be obtained for & when X < I'. For
instance, i € C(Q) n CHQ\Z(p)) if there is not any constraint on the control. If K
is defined by (3.21) and ¢ = 2, then i is a locally Lipschitz function in €.
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4. Study of the Adjoint State Equation

In this section we use the transposition method to prove that (3.4) has a unique
solution in LYQ) for every 1 < t < n/(n — 1). First we prove a trace theorem which
gives sense to the boundary condition of (3.4). We begin by introducing some
notation: for every 1 <t < n/(n — 1), V{€)) denotes the space

ViQ) = {pe L(Q): A*pe Cy(Q))},
endowed with the norm

1Py = 1Pl Lo + ”A*P“qg(gy,

that turns into a Banach space. Here C(Q) is the space of the C* functions in Q
which, together with all their partial derivatives of first order, vanish on I'. In
CL(Q) we consider the usual norm

12l gy = max|z(x)] + ). max|d, z(x)|.
xeQ j=1 xeQ
Co(Q) denotes the Banach space formed by the continuous functions on Q
which vanish on I', endowed with the supremum norm.
Using the identity M(Q) = C,(£), it is possible to characterize the dual space
of C&Q):

Lemma 2. The dual space CL(Y is isometrically isomorphic to the Banach space
consisting of those distributions T € D'(Q) satisfying

T=po— ) Oyu;  forsome peM@Q), j=0,1,..,n “.1)
i=1
normed by
1Tl qyey = inf{ Z el aeeeny: (Koo - - - » ) satisfies (4-1)}- (4.2)
i=0

Now let us prove a trace theorem and Green’s formula.

Theorem 5. There exists a unique linear and continuous mapping

y: VIQ) » W H(T)

satisfying
and
Hp), 0,,2> = CA*p, 27q — J pAz dx, (44)
Q

for every ze W2Y(Q) n WY(Q), where 1/t + 1/t =1,
9,,2(x) = Vz(x) v /(x)
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and
o
<A*pa Z>§2 = Jv Z dﬂ() + Z i aij d.uja

Q j=1J0
assuming that

k3
A*p = o — 3, Oyuy;

ji=1
see Lemma 2.

Proof. We begin by remarking that the linear continuous functional
Oy WHT(Q) N WHT(Q) - WHEH(ID)

is surjective. The proof of this fact, given in [10], utilizes in an essential way the
Lipschitz continuity of coefficients a;; and the C 1.1 regularity of T'; see [12] for the
case v, = v. Using the open mapping theorem, we deduce the existence of a
constant ¢, depending only on 4, ¢, and Q such that
inf{ || 2] 2eqy: 05,2 = g9} < cilglwney- 4.5)
Now, given ge WY*¥(I), let us take ze W>*(Q) ~ W§*(Q) verifying that
d,,z = g and define

<'.V(p)a g> = <?(p)a @“Z> = <A*p9 Z>Q - f pAZ dx.
Q

Prove that y(p) is well defined as an element of W™ “YI") = (W'¥(I)). First,
from the inequality ¢ < n/(n — 1) it follows that ¢ > n and therefore
W) = CY(Q),

thus the term on the right-hand side of (4.4) makes sense. Moreover, i z,,
2, e W' Q) n WE(Q) and 0,2z, = 8,2z, = ¢, then we must prove that

(A*p, 217 — J pAzy dx = (A*p, 2,0q — j pAz, dx.
Q o

To do so, let us consider z =z, — z,e W§'(Q) and a sequence {z,} = D(Q)
converging to z in W37 (Q). We thus obtain

{A*p, z3q — j pAz dx = lim j(A*p, I oo — J pAz, dx} =0,
Q k—w Q
the last equality being a consequence of the derivative definition in the distribution
sense.
The continuity of y(p) and y is deduced as follows:

[<v(p), gol < H.“()HM(Q)HZHCO(Q) + z ”.ujHM(Q)“aijHC(Q) + ”p”L’(Q)”AZHL"(Q)
i=1

J

/ 7 .
< CZKHFOHM(Q) + Z H:uj“M(Q) + |lP”Lt(Q))HZ|| W2 (Q)
i=1
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From (4.2) and (4.5), taking the infimum in (g, ..., #,) and z, respectively, we derive

[<y(®), 921 < creallpllveyligllwine-

From the definition of y and using Green’s formula for regular functions, it
is possible to prove that (4.3) is satisfied. The uniqueness follows from (4.4) and
the surjectivity of the mapping d,, onto W'/"(I'). 0

Theorem 6. Given pe M(QY)", ye L™(Q), and te(1, n/(n — 1)), the problems

Find peVHQ) suchthat
(PD1) <A*p+ ¢'(y)p= —divp, inQ,
P =g onT,

with o, defined as in Theorem 4, and

Find pelXQ) suchthat

(PD2) [ )
plAz + @'(y)z) dx = J Vzdp, Vze W' (Q) n Wi (Q),
o o
are equivalent and have a unique solution.

Proof. First let us prove that problem (PD2) has a unique solution. Following
[12] we know that the linear operator

o WHIQ) n W (Q) - L (Q)

defined by ##/(z) = Az + ¢'(y)z is an isomorphism thanks to the hypotheses on 4
and I'. Hence the adjoint operator

A% LHQ) — (W2 (Q) n W Q)Y

is an isomorphism too. Since.

z—»J Vz dp
)

defines an element of (W2'(Q)n WL (Q), we deduce the existence and
uniqueness of a function p e LQ) verifying

J p(Az + ¢'(y)z) dx = J pAz dx = {A*(p), z) = J Vz du
o o

Q

for all ze W27(Q) n W (Q).
It remains to prove the equivalence between (PD1) and (PD2). If p is a solution
of (PD2), taking z € D(Q) as arbitrary in the previous equality we get

A*p + ¢'(y)p= —divp, nQ, (4.6)
which implies that p belongs to ¥*(Q) and the boundary condition is well defined
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by Theorem 5. From Green’s formula (4.4) and (4.6) we obtain

yp), 0,,2) = CA*p, 2)g — j pAz dx
it}

= j Vz dpg — J Az + ¢'(y)z) dx = ——j Vz dpy. 4.n
[ o

T
Arguing analogously to the proof of Corollary 2, we can decompose each
canonical vector e; in the form
v
! v 4(x) - v(x)

where t(x) is a tangent vector to I" at x and hence for every ze W>"(Q) n W§ ()
we have

d,.2(x) = _v&w 0,
' va(x) v(x)

v4(x) + t(x), Vxel, 4.8

2(x) + 8y 2(x) = —al(x) 0, ,2(x), 4.9)
the last equality being a consequence of the fact that z =0 on I'. Let us remark
that (2.2) implies

V(x) v(x) =m >0, VxeTl,

and so oy € C® (') thanks to the fact that a;; are Lipschitz functions and T is of
class C*'1. Combining (4.7) and (4.9) it follows that

Cnp), 0,,2> = j Oy 20, dpr,  Vze W2H(Q) n W5H(Q),
r

which, together with the surjectivity of 0, provides y(p) = @ ;- and therefore p
is a solution of (PD1).

Finally, let p be a solution of (PD1), then using Green’s formula (4.4), the fact
that p is a solution of (PD1) and (4.9), we deduce

r
J PAz + @'(y)z)dx = {A*p, z)q — {¥(p), 0,,2) + J po'(y)z dx.
Q

Q

{ Vz dp,

=J~ VzduQ-I—J Vz dpr =
Q r JQ

which proves that p is a solution of (PD?2). O

Corollary 3. Let 1> 0, je W2'(Q) n W§'(Q), and pe M(X)" be as in Theorem
4, then there exists a unique solution of (3.4), pe V(Q), for every te[1, nfin — 1)).

Proof. 1t is enough to decompose (3.4) as a sum of the problems (PD1} and

{j*p +o(p=My—y) inQ
=0 onTl,
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and remark that every measure ge M(X) can be considered as a measure in Q
with support in X. |

5. Proof of Theorem 4

Before proving Theorem 4 we need the next abstract result of the existence of the
Lagrange multiplier, whose proof can be found in [10]; see also [3].

Theorem 7. Let U and Z be two Banach spaces and let K = U and C < Z be two
convex subsets, C having a nonempty interior. Let ie K be a solution of the
optimization problem:

®) {Min J(u)
ueK and GuecC,

where J: U = (— 0, + 0] and G: U — Z are two Gdteaux differentiable mappings
at #i. Then there exist a real number A, > 0 and an element e Z' such that

A+ |@lz >0, (5.1)
(i, z—G@) <0, VzeC, (5.2)
GJ'(@) + [DG@*a, u —uy =0, Vuek. (5.3)

Moreover, A can be taken equal to 1 if the following condition of Slater type is
satisfied:

Juge K such that G(@) + DG(ii)- (u, — @) € C. (5.4)

Applying this theorem with U as the control space, Z = C(X)", J the functional
to minimize, G the mapping that associates to each control the gradient of the
corresponding state, which is differentiable (Theorem 2), K the convex subset of
U, and C the convex subset of Z = C(X)" with nonempty interior, we deduce the
existence of 1 and p satisfying (3.2) and (3.5). Now let us take j = y; and pe VY(Q),
the unique solution of (3.4); see Corollary 3. Then it remains to prove inequality
(3.6), which is done by using the corresponding inequality (5.3). For this it is enough
to establish the identity

AJ'(@)- v + ([DG(@)]*p, v) = J (p + ANJa|” 2ap dx, VYoeU.
Q

Let us take ze W27(Q) n WE(Q) as a solution of

{Az +o'(PDz=v inQ,
z=0 onl"
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Then, using Theorem 2, we get

2J'(@) v + [DG@]*p, v)

~ _ r "
=ij(ﬁ—yd)z dx+)uN} li1° ™ 2iw dx+J§ Vz dp
Q o o

jil° % dx = f (B + AN|il° 2@ dx.

Q Q

= f WAz + @'(F)z) dx + AN J
Q

6. Distributed Control for the Neumann Problem

In this section we comnsider the optimal control problem (P} associated with the
following Neumann problem:

fAy+o(y)=u nQ
6, y=g onl,

where ue L'(Q), ge W), r > n,and 1/r + 1/s = 1, while Q, T, 4, and ¢ satisfy
the hypotheses of Section 2 with the following additional assumption:

ag % 0. (6.2)

For the sake of brevity we résumé in the following remark the analogous
resuits of Section 2 corresponding to this case:

(6.1)

Remark 4. 1. Problem (6.1) has a unique solution y, € W2 7(Q) and there exists
a constant C, independent of u and g verifying

vl wary S Cz(”““mm + ligll w'/s-'(r))- (6.3)

It can be obtained, for instance, from Theorem 1 of [10] and the regularity
results of [12].

2. The mapping G: L(Q) — W*"(Q) given by G(u) = y, is of class C* and for
every u, v e L'(Q) the element z = DG(u)- v is the unique solution of the Meumann
problem

{Az + o' (y)z=0v inf

6.4
0,,z=0 onT. (64

\

3. Assume the existence of a feasible control, then problem (P) has at
least one solution. Let us remark that, depending on the state constraints,
the existence of a feasible control can impose certain limitations on g. For
example, if C is given by (3.8) and ' = X, then g must verify the inequality

190G =10,y = |Vyx) va)| < 0ll(afx))],  Vxel.

The optimality conditions for (P) are stated in the next theorem.
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Theorem 8. Let i be a solution of problem (P), then there exist a real number 1. > 0
and elements 5 € W*7(Q), p e L{Q) for every t < nf(n — 1), and p € M(X)" satisfying

A+ Nl sy > O, (6.5)
Ay+o(=u  nQ, 66)
0,,7=¢ onl,

A*p+ @ (PP = UF — y) —divpg  inQ,
" 6.7
0,.p=— ) omt  onT, ©7)
j=1

f z—Vy)de<0, VzeC, (6.8)
X

f (p+ ANl %i)u — i) dx >0, Vuek, (6.9)
Q

where A* is the adjoint operator of A and each t{x) is the tangent vector
to the manifold T at the point x given by

Dy

Y= v

e; being the jth canonical vector of R".

As in Section 3, it is possible to state some normality results for problem (P),
simplifications of the optimality conditions in some particular cases (see Corollar-
ies 1 and 2), and regularity of optimal control.

The proof of Theorem 8 follows in the same way as that of Theorem
4: it utilizes Theorem 7 and the results about the adjoint state equation. Thus the
rest of the paper is devoted to the study of (6.7).

We begin by proving the existence of a normal derivative with respect
t0 v, in W17 YEYT) = (W 10 X(T)Y for the elements of V{(Q) with t < n/(n — 1):

Theorem 9. There exists a unique linear and continuous mapping

dy,.: Vi) » W17 1bT)
satisfying

3, p)=Vp-ve  VpeDQ), (6.10)
with v 4{x) = (a;{x))v(x) and

$0,,(p), 72)> = ¥(p), 0,,2> — {A*p, 2Dg + f pAz dx, {6.11)
Q

for every ze W2'(Q), where 1/t + 1/t = 1 and y(p) is defined in Theorem 5.
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Proof. Firstly, let us remark that the linear continuous functional
v WZ,t’(Q) — W1+1/t,t’(r)

is surjective, see [12]. Hence, given he W 14 (T'), let us take z in W2 (Q)
verifying that y(z) = h and define

<6v,4;(p)s h> = <?’(P): a\1AZ> - <A*p7 Z>ﬂ + j‘ pAZ dx. (612)

Let us prove that ¢, (p) is well defined as an element of W ™'~ "4
Thanks again to the mclusmn W2 Q) = CH{), the term on the nght—hand side
of (6.11) makes sense. Moreover, if z;, z,€ W2"(Q) and y(z,) = y(z,) = h, then
z = z; — z, belongs to W2 () n W§"(Q) and so, by virtue of (4.4}, we obtain

) 8,2 — (A*p, 250 + J pdz dx = 0,
[o]

which proves that the definition (6.12) is independent of the choice of z.
Now, taking absolute values in (6.12), we deduce

1€0,,.0), IO < 1y lw- 10y 10, 2wy + Htio Iy 2l ey

+ Z Hﬂj“M(ﬂ)“ax,-ZHC(n) + Pl el A2l Loy
j=1

< C1<||V(P)||W—i/r-t(r) + i Il ey + HPHL'(Q)>||Z“W2~"(SZ)'

j=0
Taking the infimum in (g, ..., 4,) and z, respectively, and using Theorem 5
and Lemma 2 we derive

Kam.(P)a hy < Czﬁpuvr(g)“hﬂWHW‘(I“)-

From the definition of 4,,, and using Green’s formula for regular functions,
it is possible to prove that (6.10} is satisfied. Uniqueness follows from {6.11) and
the surjectivity of the mapping y onto W**1/:1("), |

Definition 1. Given a measure ye M(I') and a continuous vector field denoted
by t: I — R” such that t(x) is a tangent vector to I" at the point x, we define d,u
as an element of W1~ 4T) by the formula

(o, b = — J ahdy,  VheWwiruerm),
r

Let us see that d,u is a continuous linear form over W'*1“Y(I"). Given
ze W2¥(Q) with y(z) = h, we have

s

Vz tdul =

Z J 0,,2t; dul
r

Zn: (f |ax,z‘d'#|)”t1”ar) < HM“M(I‘)”t”C(I‘)“Z”C‘(Q)"

< C”Z”W?«l'(n)-
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Now taking the infimum among the elements ze W>"(Q) with trace equal
to h we get the search result

f Och du
r

After this definition and Theorem 9, the boundary condition of (6.7) is correctly
defined. Finally, we state the existence and uniqueness of the solution for problem

(6.7).

S C “h H Wl + l/r,t’(r) .

Theorem 10. Given pe M(Q), ye L®(Q), and t (1, nj(n — 1)), the problems
(Find pe Vi) suchthat

A* (yp = —di inQ,
(PN1) ¢ p+o(yp ivpe  in

avAsp = - Z ax,-ll{“ on F,
\ =1

with t; defined as in Theorem 8, and
(Find peVYQ) suchthat

(PN2) < JQ p(Az + ¢'(y)z)dx + {y(p), 0,,2>

- Z(f ax,zdumf atjzdw;), Vze W2 (@),
L j=t\Ja r

are equivalent and have a unique solution.

Proof. To prove that (PN2) has a unique solution let us take the linear operator
o WHH(Q) » LY(Q) x WiHH(T)

defined by
A(z) = (Az + ¢'(y)z, 0,,2).

Once more, using the results of {127, we get that o/ is an isomorphism. Hence the
adjoint operator

¥ L{Q) x W) —» (W2 (Q)Y

is an isomorphism too. Therefore there exists a unique eclement (p,g)
in L{Q) x W~ Y:Y(T) satisfying

J‘ plAz + ¢'(y)z) dx + {q, 0,,2> = i (f Oy,2 dpd, + f 0yz dp{-) (6.13)

Q j=1 Q r

for all ze W*"(Q). Now taking z € D(Q) as arbitrary in the previous equality we get
A'p+ @(yp= —divpg,  inQ, (6.14)

which implies that p belongs to V(). For every ze W>"(Q) n W¥(Q), it follows
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from (4.4), (6.13), and (6.14) that

p), 6,,7> = <q, 0,,2),

or, equivalently, y(p) = ¢. This, together with (6.13), proves that p is the unique
solution of (PN2).

It is sufficient to choose ze W2'(Q), with 3, z = 0, in (6.11) and utilize {6.13)
and Definition 1 to get that p verifies the boundary condition of (PN1). Therefore,
remembering (6.14), we deduce that p is also a solution of (PN1).

Finally, if p is a solution of (PN1), it follows directly from (6.11) that p is
a solution of (PN2). 0

Corollary 4. Let 1> 0, e W*(Q), and p e M(X)" be as in Theorem 8, then there
exists a unique p solution of (6.7) belonging to VHQ) for every te[1, nf{n — 1).
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