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Abstract. In this paper we are concerned with optimal control problems 
governed by an elliptic semilinear equation, the control being distributed in 
f~. The existence of constraints on the control as well as pointwise constraints 
on the gradient of the state is assumed. A convenient choice of the control 
space permits us to derive the optimality conditions and study the adjoint 
state equation, which has derivatives of measures as data. In order to carry out 
this study, we prove a trace theorem and state Green's formula by using the 
transposition method. 
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1. Introduction 

In the last 10 years several papers dealing with optimal control problems with 
pointwise state constraints have appeared: [1], [6], [7], [15], and [16] for linear 
equations and convex control problems, [8] and [9] for linear equations and 

* This research was partially supported by Direcci0n General de Investigaci6n Cientifica y 
T6cnica (Madrid). 
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control in the coefficients, and [3]-[5]  for semilinear equations. Bermfidez and 
Martinez [2] and LuneviUe [14] have considered this type of problem in connec- 
tion with some realistic problems. However, only two of the previous papers have 
included the study of optimal control problems with pointwise constraints on the 
gradient of the state: Mackenroth [I6]  derived the optimality conditions for a 
control problem governed by a linear elliptic equation assuming the constraint 
on the gradient only in a compact subset of f~ and taking controls in the Sobolev 
spaces Hl(f~) in the case of a distributed control or Hs/2(F) in the case of a 
boundary control; Bonnans and Casas [3] considered a semilinear elliptic equa- 
tion and constraints on the gradient in fi, but the adjoint state equation was not 
studied nor properly formulated. 

This paper deals with optimal control problems of semilinear elliptic equations 
subject to control constraints and pointwise constraints on the gradient of the 
state. The control is distributed and it is assumed to belong to U(f/) for some 
r > n. Thus we avoid taking Hi(f2) or other Sobo!ev spaces as the contro! space, 
which is not very realistic. 

We begin studying a control problem of a system governed by a, Dirichtet 
problem in Section 2. The optimality conditions (enounced in Section 3 and proved 
in Section 5) ameliorate those obtained in the previous papers in two aspects: 
more general state constraints are treated and a simpler Lagrange multiplier 
(associated with the state constraints) than in [3] and [16] is achieved. Also, we 
deduce some regularity results on the optimal control. A detailed study of the 
adjoint state equation is carried out in Section 4. Finally, in the last section, we 
show briefly the results corresponding to the Neumann case. 

2. Distributed Control for the Dirichlet Problem 

Let f~ be an open bounded subset of R n (n > 2) with C 1' 1 boundary F (see, for 
example, [12]). Let us consider the following boundary-value problem: 

Ay + ~o(y) = u in f~, 
y = 0 on F, (2.1) 

with u ~ Lr(f~), for r > n, and 

Ay = - ~ O:~j(aij(x ) O~,y(x)) + ao(x)y(x ), 
i , j = l  

I 
ai~ ~ C O, 1(~) and ao ~ L~(f~), 

3rn > 0 suchthat  i,j=l~ %(x)~i~j > ml~t 2, 

~ao(X) >_ 0 a.e. x s fL 

Vr ~ R n, Vx ~ f~, (2.2) 

~0: R ~ R is an increasing function of class C 1 with (p(0) = 0. (2.3) 
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We consider the following control problem: 

~Min imize J(u) 

(P) ( u s K  and Vyu~C, 

where J: U ~ R is defined by 

Jo J(u) = �89 ly,(x) -- yd(x)] 2 dx + --  ]u(x)[ ~ dx, 
a 

y,, being the solution of (2.1), Ya given in LZ(f~), a s ( l ,  + oo), N > 0, and U = U(f~), 
with z = max{a, r}; K is a nonempty convex closed subset of U; C is a closed 
convex subset of C(X)" with nonempty interior, X being a compact subset of ft. 
Furthermore we assume that one of the following hypotheses is satisfied: 

HI .  K is bounded in U(~), r > n, and a <_ r. 

H2. N > O a n d a > _ r > n .  

Let us give some examples about control constraints that fall into our 
formulation: 

K = { u e L r ( n ) : / l u l l . ~ - <  1}, 
K = {u eL| a < u(x) <_ b a.e. xef~} 

with - oo < a < b < + ~ ,  and a = 2, which satisfy H1, 

K = U ( f l )  or K = { u ~ U ( f l ) : u ( x ) > 0 a . e .  xs f~}  

and a = r, that satisfy H2. 
Typical state constraints that we can consider are the following: 

X = f i  and C = { z ~ C ( f i ) " : l z j ( x ) ] < 6 j ,  Vxs~2, i < _ j < n } ,  

X = F  and C = { z ~ C ( F ) " : z ( x ) - v ( x ) > 6 ,  Vx~F},  

or  

X c ~) and C = {zeC(X)": Iz(x)[ < 5, V x e X } ,  

where 6 and 6j are given constants and v(x) denotes the unit outward normal 
vector to F at the point x. 

In the rest of this section we will see that (P) is a well-posed problem in the 
sense that there exists a unique solution yu e C1(~) for each u e U(fl); the functional 
u--* y, is of class C ~ and there exists at least one solution of (P), under the 
assumption of existence of feasible controls (i.e., u e K such that Vy, e C). 

Theorem 1. For each u eL'(f~), with r > n, there exists a unique element 
y u ~ W E " ( ~ ) n  W~"(E~) solution of  (2.1). Moreover, there exists a constant C1 

independent o f  u such that 

Ily, tlw2.,~a) <- C1 [lullLrta). (2.4) 
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Finally, if {Uk} C U(f~) converges to u weakly (or weak* in the case r = + oo) in 
L'(~)), then {Y,k} converges to Yu weakly in W2"(f~). 

Proof. For  every positive integer k let us consider the functions q~k: R ~ R defined 
by 

(q)(0) if 101 < k, 
(Ok(O) = ~0(+ k) if 0 >_ + k, 

(q~(-k) if 0_<-k .  

Let d k :  Hol(f~)~ H - t ( f ] )  be the opera tor  defined by 

<d y, z> = a(y, z) + q k(y(x))z(x) dx, 

where a: H~(f~) x H~(f2) --, R is the bilinear form associated with the opera tor  A: 

a(y,z)= f adx) O ,y(x) O ,z(x) dx + fn ao(x)y(x)z(x) dx. 
i , j= t  

It is easy to verify that  S~k is a bounded,  hemicontinuous,  strictly monotone,  and 
coercive operator ,  therefore ~ is bijective; see [13]. 

On the other  hand, since r > n, the linear form F: H~(f~) ~ R given by 

t" 

(F, z> = ~ u(x)z(x) dx 
d 

is continuous. Therefore there exists a unique element yke Hl(f~) such that 
SJkYk = F, i.e., Yk is the unique solution of the problem 

Ay + q)k(Y) = U in f~, 

y = 0 o n F .  

Now let us take 

Ok(O) = [Ok(0)[~- 2(pk(0) and Zk(X) = Ok(yk(x)). 

Since r > n > 2 and Ok is a Lipschitz function, with ~gk(0 ) = 0, we have that 
z k e H01(fl); see, for instance, [19]. Moreover ,  

~ (0 )  = (r - 1)l(pk(O)]~-2~o~,(O) _> 0, 

hence 

ilq~k(Yk)t[~r(n) < ~ | O'k(Yk(X))aij(X) 3x, yg(X) ~jyk(X) dx 
i , j = l  

+ fa  ao(X)Yk(X)zk(x) dx + fa  q~k(yk(x))zk(X) dx 

= <~yk ,  Z~> = <F, Zk> = ~ U(X)Zk(X) dx 
Ja 

[ < HullLr(n)l~zkjlv(a) , r-~ = tt u 11Lr(n)Jt q'k(Y~)IILr(a, 
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where 1/r + 1/s = 1. From the previous inequality it follows that 

II(Pk(Yk)HLr(n) ~ I[UHL~(n). (2.5) 

Taking fk = U - -  q)k(Yk), it is obvious that Yk is the unique solution of the 
Dirichlet problem 

Ay  = fk in f~, 

y = 0 onF.  

From the regularity results for boundary-value problems (see [12]) and using (2.5), 
we obtain that Yk ~ W2'~(f~) and the following estimate is satisfied: 

11YkHw2.,(n) < c 1 H fk]lLrtn) _< 2C 1HU[ILr(n), (2.6) 

with c a independent of k. Since WZ'~(f~) is included in C(•), the inclusion being 
continuous, we deduce from (2.6) that there exists a constant c 2 > 0 independent 
of k such that 

!lYkltC(~) <-- c2. 

Hence, ~Ok(Yk) = @(Yk) for every k > c2, which means that Yk is a solution of the 
Dirichlet problem (2.1). The uniqueness of the solution of (2.1) in 

w2,~(n) ~ Wo~,~(n) 

is an immediate consequence of the properties of A and ~o. Therefore every 
Yk, with k >_ c 2, is equal to this unique solution and (2.6) implies (2.4). 

Finally, the continuous dependence of y, with respect to u follows easily from 
inequality (2.4) and the compact inclusion W2'~(O) c C(~) (see [17]), which allow 
us to pass to the limit in the state equation. [] 

The differentiability of the relation between the control and the state can be 
readily deduced from the implicit function theorem: 

Theorem 2. The mapping G: L"(~) ~ W2'~(~)) n W~'~(fl) defined by G(u) = y .  is o f  
class C 1 and for  every u, v ~ U(~)  the element z = DG(u)" v is the unique solution o f  
the DirichIet problem 

Az  + q/(y,)z = v in f~, 
(2.7) 

z = 0  onF.  

Taking a minimizing sequence and arguing in the standard way, we obtain 
the existence of a solution for the optimal control problem (P): 

Theorem 3. Under the hypotheses assumed in Section 2 and assuming the existence 
of  a feasible control (i.e., a control u ~ K such that Vy ,  ~ C), then problem (P) has at 
least one solution. Moreover, i f  q) is linear, then the solution is unique. 
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3. Optimality Conditions 

Hereafter we use the following notations: M(X)  denotes the space of real regular 
Borel measures in X, that is, the dual space of C(X) (remember that X is a compact 
subset of f~). The norm in M ( X )  is given by 

where t#l is the total variation measure; see [18]. Hence, M(X)  ~ is the dual space 
of C(X) ~ too. Obviously every element tt e M ( X p  can be decomposed as a sum of 
two measures Ix = Itn + Itr, Ita and Itr being regular real Borel measures in ~, 
concentrated in f~ c~ X and F c~ X, respectively. 

The next theorem establishes the optimality conditions for (P). 

Theorem 4. Let  fi be a solution of  problem (P), then there exist a real number 2 >_ 0 
and elements ~ ~ W2"(f~) c~ W~"(f~), p ~ Lt(f~) for  all t < n/(n - 1), and It ~ M(X)" 
satisfying 

i + Ilitltutx). > 0, (3.2) 

A y + cp(y) = fr in ~, 
(3.3) 

y = 0 onF,  

A*/5 + qr = 2(y - Ya) - div Ita in fL 
(3.4) 

p = otaitr on F, 

fx(Z - Vy) dit < O, e Vz C, (3.5) 

f a  @ 2Nl~i[~-2ti)(u ~i) dx >_ O, V u e K ,  (3.6) + 

where A* is the adjoint operator o f  A, 

-v(x) 
�9 a(x) - and va(x) --- (%(x))v(x). 

vA(x)'v(x) 

Moreover, if the following Slater condition is verified 

3(Uo, Zo) ~ K x (W2'r(f~) n WI'r(f~))/(V.f + Vzo) ~ (~, (3.7) 

where z o is the solution o f  the following Dirichlet problem 

Az  o + cp'(~)z o = u o - ~ in f~, 

z o = 0 on F, 

then the system (3.3)-(3.6) is satisfied with 2 = 1. 

This theorem is proved in Section 5. Now let us see whether the previous 
optimality conditions can be simplified in some particular cases. 
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Remark 1. In the case X c f~, since 1 a is concentrated in X, then lar = 0 and the 
adjoint state verifies i0 = 0 on F. Consequently, we have that/3 is an element of 
W ~ ( f ~ \ X )  ~ C~(~\X) .  

Analogously, in case X = F we have that It,  = 0 and therefore iO belongs to 
W?ocr(~'~) ~ Cl(~'~). 

Remark 2. If ~o is a linear function, then the Slater condition (3.7) becomes 

3u o ~ K such that VY.0 E C. 

Thus, assuming ~o is linear and 

c = {z~ c (x)" :  Iz(x)l _ 6, Vx e x } ,  (3.8) 

the Slater condition is satisfied for every 6 > 6 0, where 6o is the first value for 
which (P) possesses a feasible control. 

This condition allows us to obtain the optimality system (3.3)-(3.6) with ]. = 1. 
Using Clarke's terminology [11], the problem is "normal"  in the sense that the 
functional J to be minimized appears in the optimality system. Sometimes it is 
possible to deduce normality of (P) without proving the Slater condition. For 
instance, if C is defined as above, then the optimality system is verified with ). = 1 
for almost all 6 e [6o, + m). The proof of this fact can be done using Clarke's 
result [11]; see [3]. 

When there are no control constraints (K = Lr(f~)), then (P) is always normal: 
if2 = 0 it follows from (3.6) that p = 0 and so (3.4) and (3.5) imply that It = 0, which 
contradicts (3.2). Therefore it is sufficient to replace p and It by p/2 and ~/2, 
respectively. 

On the other hand, normality has repercussions on optimal control regularity; 
see Remark 3. 

The following corollary improves the results of Bonnans and Casas [3] and 
Mackenroth [16] by establishing that the Lagrange multiplier !1 associated with 
the state constraints can be reduced to one measure in X when the restriction 
IVy(x)] <_ 6 is considered. 

Corollary 1. Let  ~ be a solution o f  problem (P), with 

c = {z~ C(x)": Iz(x)l <_ 6, Vx~X}, 

where ]'[ denotes the euclidean norm in R". Then there exist a real number 2 >_ 0 
and elements ~ e W 2""(~) c~ W~"(~) ,  p e Lt(~) for  all t < n/(n - 1), and f~ e M ( X )  
satisfyin9 

+ II~IIM~x~ > 0, (3.9) 

A p + q~( ~) = (t in ~ ,  
.y: = 0 on F, (3.10) 

1 
A*p + ~o'(p)p = ,~(~ - Yd) - ~ div(Vy- #n) in ~ ,  

fi = fl.4f~r on F, 

(3.11) 
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r 

J x(Z(X) - IVy (x )D dfi <_ O, Yz e Ba(O), (3d2) 

fa(/5 + I ~- - ~i) _> 0, e K, (3.13) i N  lfi 2U)(U dx Vu 

where Ba(O ) is the closed ball of C(X) with radius 6 and center 0 and 

- < y ( x )  
f l a x )  - 

6vAx) 'v (x)  

Furthermore, fi is a positive measure concentrated in the set 

x + = { x e X :  IVy(x)l = 6}. 

In particular, if the equality IVy(x)I = 6 is satisfied at 
{x J)"_-I c X, then we have 

j = l  

where ).j >_ 0 and 6~, is the Dirac measure concentrated at xj. 

Proof. Let ~ e M(X)" as in Theorem 4 and let us consider the measure f ie  M(X) 
defined by 

1 

i.e., 

a finite set of points 

Lemma 1. Let ~ ~ M(X)" be a measure satisfyin9 (3.5), with C given by (3.8), then 
fi = (1/6)Vy.~ is a positive measure concentrated in the set 

x + = { x e X :  [Vy(x)l = a}. 

Moreover, tt = (1/6)Vy'fi. 

z d# = ~ z ~ , y  dW, Vz ~ C(X). 
j = t  

From Lemma 1, we deduce that fi is a positive measure concentrated in X ~ and 
la = (1/6)Vy'fi, therefore (3.9) and (3.11) follow from (3.2) and (3.4), respectively. 
To complete the optimality conditions, it remains to prove (3.12). Let z ~/~(0) be 
arbitrary and let us take z = (1/6)zV~, which obviously belongs to C. Therefore, 
using (3.5), Lemma 1, and remarking that the support of fi is equal to that of ~, 
we get 

o _> t (z - vy)  dr = (z - IVY l) ? Vy d~t 
JX + 

: fx+(Z - [Vyl) dP : fx(z - }Vy}) dP" 
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Proof. We divide the p roof  into several steps. 

Step 1:/2 is a positive measure. Let B c X be a Borel set and let us consider the 
function 

~(x) = (1 - z~(x))V~(x), 

where XB is the characteristic function of  B. Let us denote by a the positive measure 
in X:  

= ~ IWI, 
j = l  

where IWI is the total variation measure of Ix j, 1 _< j _< n. Applying Lusin's theorem 
[18] we deduce the existence of a sequence {%}2=1 c C(X)" such that 

1 
~({x ~ x :  q,~(x) # q,(x)}) < ~. 

Now we define 

[ ~k(X) if I~k(x)] -< 6, 

* k ( X ) = I ~ R ( X  ) if '~k(X)] > a. 

Then it is obvious that {~k}~=l c C and also 

1 
~({x E x :  ~k(x) # , (x)})  < ~. 

Using the dominated convergence theorem and (3.5) we obtain 

~(B) = - y_, G y ( x )  d~(x) 
6./=1 

= 1 ~ d~tJ(~) - z,,(~)) Gf'(x) d.J(x)) 6,=l(fxaX, y(x) -fx( 1 
f ) = 1 lira ~ ax,~(x) dttJ(x) - @{(x) d~(x)  

t~ k-+m j = l  X 

1 
= - lim (~, V~ - ~k)  >-- O, 

k--+ ao 

which proves that /2 is a positive measure. 

Step 2." la J is absolutely continuous with respect to /2, 1 < j < n. For  each j = 
1 . . . . .  n, we can take a Borel function h f  X + R, with lha(x)l = 1, gx e X, and 
dllt~l = h,i dlxJ; see, for example, [18]. 

N o w  given a Borel set B c X such that/2(B) = 0, let us consider the function 

6 _.n 
, (x )  = ~ z.(x) Z h,{~)ej + (1 - Z.(~))VY{~), 

x/n  j = l  
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where ej is the j th  canonical vector of R". It is obvious that [@(x)t -< 5, Yx ~ X. 
Then we can take a sequence {~k}[=l c C as in step 1 and obtain 

~l llX-/[(B ) - h~(x) dgJ(x) 
j= j = l  

[ , q ~ )  - 0~,~(~)] a~J(x) + 0x, p(x) aW(x)) 
5 j=~ / 

= ~ lira ([a, *k -- V~) + x /n  fi(B) _< 0, 

from where ~J(B) = 0 for every j = i , . . . ,  n and therefore la j ~ ft. 

Step 3." g = ( 1 / 6 ) V y ' f i  and sup(fi) c X  +. Since 8 J ~ f i ,  we can apply the 
R a d o n - N i k o d y m  theorem to deduce the existence of a function f i e  L~(fi) such 
that dg j = f~ dfi, 1 <_ j <_ n. Let us denote f = (fj)~= 1. Now (3.5) is equivalent to 

,~x f(x)z(x) rift(x) <_ ~ f(x)Vy(x) dfi(x), Vze/31(O ), (3.14) 

BI(0) being the closed unit ball of C(X)". 
From the definition of fi we deduce that, for every Borel set B c X, 

aft = fi(B) = ~ J=l 

~ j = 1  

Vy(x)f(x) de(x), 

which implies 

1 
Vy(x)f(x) = I a.e. [ f i ] x~X .  (3.!5) 

F rom here we obtain with the aid of relation VjS(x) e C, Vx e X, that 

1 1 
1 = ~ Vy(x)f(x) _< ~ tVj~(x)[ If(x)j _< ]f(x)[ a.e. [fi]x ~ X .  (3.16) 

Let us take g ( x ) =  f(x)/if(x)] and again apply the Lusin theorem to get a 
sequence {qk}~,= 1 c C(X)" such that 

t 
[Ok(X)l <-- 1 and # ( { x e X :  @k(x) r g(x)}) < ~. 
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Then from (3.14) and (3.15) it follows that 

fxlf(x)' dp(x)= lim fx *k(x)'f(x) 

_< ~ f(x)V~(x) aft(x) = aft(x), 

which together with (3.16) implies that 

If(x)[--= 1 a.e. [ft]xeX. (3.17) 

Therefore 

1 1 1 
1 = ~V~(x)f(x) _< ~ IV2(x)] If(x)i < ~ ]V~9(x)] < 1 a.e. [ft]xeX, (3.t8) 

which means that /2 is concentrated in X +. Moreover, since the balls in R" 
for the euclidean metric are stictly convex, (3.15), (3.17), and (3.t8) imply that 
f(x) = (1/~)V~(x) a.e. [ft]x e X and hence ~t = (1/D)V~.ft. [] 

Corollary 2. If  X c F and the state constraint set C is given by 

C = {z e C(X)": z(x). v(x) _> a, Vx e X}, 

then the optimality conditions (3.9)-(3.13) are verified with (3.11) and (3.12) replaced 
by 

{ ;*-p+q~ VA'-- ftV V on F, inf,, (3.19) 

and 

j x z - ~?v fP) dftr <- O, Vz ~ C, 

where C is given by 

= {z e C(X): z(x) > ~, Vx e X}. 
Moreover, ftr is a negative measure coneentrated in 

x -  = { x e X :  ~ r  = ~}. 

(3.20) 

Proof. It is enough to apply Theorem 4 by taking ftr = V'gr, defined by 

j=:l 

To prove this let us remark that we can decompose each canonical vector ej in 
the way 

ej = vj(x).v(x) + tj(x), Vx e F, 
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where tj(x) is a tangent  vector  to F at x and hence 

,L,Y(x) = V~(x)" ej = v~(x) ?~y(x) + ,~,y(x) = b(x) ~2,(x), 

the last equality being a consequence of the fact that  y = 0 on F. 
N o w  taking z = z" v, with z e C, we have that  z e C and fur thermore  using 

(3.5) we deduce 

j = l  

Arguing as in Theorem 3 of [7], we deduce f rom (3.20) that /2  r is a negative 
measure  concentra ted in X - .  [ ]  

Remark 3. F r o m  (3.6) we can deduce some qualitative propert ies  of opt imal  
control  ft. Fo r  example,  if N = 0 or  2 = 0 and 

K = {u e L~(f~): a <_ u(x) <_ b a.e. x e f~}, (3.21) 

then t~ has the behavior  of Bang-Bang type. More  precisely, fi(x) = a if IS(x) > 0 
and t~(x) = b if/3(x) < 0. 

However ,  if N2 # 0, then ti can possess addit ional  regularity properties.  Thus 
if there is not  any constraint  on the control,  then f rom (3.6) it follows that  

- 1  
U(X) - -  ( N i ) I / ( ~  - 1) Ip(x) l (z-  ~176 "p(x),  

where a is greater than or equal to r > n, by virtue of (H2). Hence ti is cont inuous 
in the points where/5 is continuous.  If  C is given by (3.8) and we suppose Yes Lr(f~), 
then (3.11) and L e m m a  1 imply that /5 belongs to W~g~(Xo) c Cl(Xo), where 

Xo = { x e X :  IV~(x)l < ~}. 

Therefore,  t~ is cont inuous in Xo and it is of class C 1 at the points x belonging to 
X o \ Z @ ,  where 

z @  = {x e f i :  ~(x) = 0}. 

If K is the set of positive controls,  the si tuation is very similar, because in this 
case 

{ --1,,(X)l(2-cO/(a-1)~(X)}. 
fi(x) = max  0, (Nj.)I/(~_I) 

When K is given by (3.21), then a can be taken equal  to 2 and we have 

fi(x) = Projt,,b I p(x) . 

Thus  we can again deduce continuity of  ~ at  the points  where the state constraint  
is not  active. 

Obviously,  addit ional  regularity can be obtained for ti when X c_ F. :For 
instance, ~ e C(~) n C~(f~kZ(fi)) if there is not  any constraint  on the control.  If  K 
is defined by (3.21) and ~r = 2, then t~ is a locally Lipschitz function in ~, 
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4. Study of the Adjoint State Equation 

In this section we use the transposit ion method  to prove that  (3.4) has a unique 
solution in Lt(fl) for every 1 _< t < n/(n - 1). First we prove a trace theorem which 
gives sense to the boundary  condit ion of (3.4). We begin by introducing some 
notat ion:  for every 1 ___ t < n/(n - 1), Vt(fl) denotes the space 

W(fl) = {p s Lt(fl): A*p e Cg(n)'}, 

endowed with the norm 

IIPHv,(a) = IIPHL,(a)+ [[A*ptIc4(a)., 

that  turns into a Banach space. Here Co~(f~) is the space of the C 1 functions in fi  
which, together with all their partial derivatives of first order,  vanish on F. In 
Col(f~) we consider the usual norm 

ilzllc0~m--- maxlz(x)l + L maxlSxjz(x)l. 
xef~ j =  1 x ~  

Co(O) denotes the Banach space formed by the continuous functions on 
which vanish on F, endowed with the supremum norm. 

Using the identity M(O) = Co(~)', it is possible to characterize the dual space 
of Co~(~): 

Lemma 2. The dual space C1(~) ' is isometrically isomorphic to the Banach space 
consisting of those distributions T ~ D'(~) satisfying 

T = # o -  L 8xj#J forsome #~sM(f~), j = 0 ,  1 . . . . .  n, (4.1) 
j = l  

normed by 

H rl[cd(n)' = inf II~llM(m: (#o . . . . .  #,) satisfies (4.1) . (4.2) 
j= 

Now let us prove a trace theorem and Green's  formula. 

Theorem 5. There exists a unique linear and continuous mappin9 

~: W(n) ~ W -  ~/"t(r) 

satisfyin9 

Y(P) = P Iv, Vp ~ D(fi), (4.3) 

and 
( .  

(7(P), 8,Az) = (A 'p ,  z)a -- Jn pAz dx, 

for every z E W2't'(~"]) ("1 Wl"t'(~r'~), where 1/t + 1/t' = 1, 

~v.z(x) = Vz(x). vA(x) 

(4.4) 
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and 

(A 'p ,  z)n = z d#o + ~ 3~)z d#j, 
j = l  'f~ 

assuming that 

A*p = #o - ~ O~j~; 
j = l  

see Lemma 2. 

Proof We begin by remarking  that  the linear cont inuous  functional 

~vA: W2'"(f~) r~ W~'~'(f~) --, W1/""(F) 

is surjective. The  p roof  of this fact, given in [10], utilizes in an essential way the 
Lipschitz continuity of coefficients a o and  the C ~' ~ regulari ty of F; see [12] for the 
case va = v. Using the open mapp ing  theorem,  we deduce the existence of a 
constant  cl depending only on A, t', and f~ such that  

inf{ [I z I1 w:.,'<n/Ovz = g} < ct llgtl wl,:.,'<r). (4.5) 

Now,  given g e W1/t'C(F), let us take z+ w2'C(f~)c-, W~'t'(f~) verifying that  
O: z = 9 and define 

( .  

(Y(P), g )  = (7(P), 0 ~ z )  = (A 'p ,  z)a - Jn pAz dx. 

Prove  that  V(P) is well defined as an element of W-~/~ ' t (F)= (W~/"C(F)) '. First, 
f rom the inequali ty t < n/(n - 1) it follows that  t' > n and therefore 

w2,,'(n) = c~(fi), 
thus the term on the r ight-hand side of  (4.4) makes  sense. Moreover ,  ~ z~, 
z2 s WZ'*'(f~) n W~'*'(f~) and 0vAzl = 0~Azz = g, then we must  prove  that  

(A*p, z , )n  - f PAz, dx = (A*P, Z2)a - fa  PAzz dx. 

To do so, let us consider z = z 1 - z 2 e  Wo2't'(f~) and a sequence {zk} c D(f~) 
converging to z in W~'t'(f~). We thus obtain  

the last equali ty being a consequence of the derivative definition in the distribution 
sense. 

The continuity of 7(/9) and y is deduced as follows: 

[ ' 1 I(~(P), g)l-< I[~olfM~m[lz]lc0~a)+ ~ [l~j,IMtmll~zllcr IlPltL~a)llAzllv'~m 
j = l  

-< czil[#ollM~a) + ,., [f~filMtm + IlPi]L'~m ItZlIw~,qa~" 
\ j = l  
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From (4.2) and (4.5), taking the infimum in (#o . . . . .  #,) and z, respectively, we derive 

[(y(P), g)l < clczllpllv,(n)ltgllw,/,,,~r). 

From the definition of ? and using Green's formula for regular functions, it 
is possible to prove that (4.3) is satisfied. The uniqueness follows from (4.4) and 
the surjectivity of the mapping 0~ onto WI"C(F). [] 

Theorem 6. Given ~t ~ M(~)", y ~ L ~(~), and t ~ (1, n/(n - 1)), the problems 

fFind e V~(~) such that P 
(PD1) ~A*p + qr = -d iv la  n infL 

with at A defined as in Theorem 4, and 

f Find p~Lt(~) suchthat 

(PD2) C , P 

1 | p(Az +q~(y)z)dx = I Vz dl~, Vz~ W 2,t'(~'~) f~ Wlo "t'(~'~), 

are equivalent and have a unique solution. 

Proof. First let us prove that problem (PD2) has a unique solution. Following 
[12] we know that the linear operator 

d :  W 2't'(n) c~ W 1' c(n) --. Lt'(f2) 

defined by d(z) = Az + q/(y)z is an isomorphism thanks to the hypotheses on A 
and F. Hence the adjoint operator 

d* :  L'(n) (W2,"(n) n WU(n))' 

is an isomorphism too. Since. 

z ~ fn  Vz d~ 

defines an element of (W2't'(fl)n W~'C(fl)) ', we deduce the existence and 
uniqueness of a function p e U(fl) verifying 

fn P(Az + q/(Y)z) dx = fn P~z  dx = (d*(P) ,Z)= fa Vz d~ 

for all z s wZ'C(fl) n W~'t'(fl). 
It remains to prove the equivalence between (PD1) and (PD2). Ifp is a solution 

of (PD2), taking z e D(~) as arbitrary in the previous equality we get 

A*p + ~o'(y)p = - d i v  gn in f~, (4.6) 

which implies that p belongs to Vt(f]) and the boundary condition is well defined 
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by Theorem 5. F rom Green's formula (4.4) and (4.6) we obtain 

(7(P), ~Az,  ' = (A 'p ,  z )n  - f a  pAz dx 

= fn  Vz d~tn - f a  p(Az + ~o'(y)z) dx = - f r  Vz d~r. (4.7) 

Arguing analogously to the proof  of Corol lary 2, we can decompose each 
canonical vector ej in the form 

vj x) 
e~ - vA(x)" v(x) Va(X) + tj(x), Vx ~ F, (4.8) 

where tj(x) is a tangent  vector to F at x and hence for every z e W2't'(f~) r~ W~'((f~) 
we have 

vj(x) O~z(x) + 0tjz(x) = - o ~ ( x )  ~ z ( x ) ,  (4.9) 
 xiz(x) - vAx)" v(x) 

the last equality being a consequence of the fact that  z = 0 on F. Let us remark 
that (2.2) implies 

va(x ) �9 v(x) _> m > 0, Vx ~ F, 

and so ~ s C o, t(F) thanks to the fact that aij are Lipschitz functions and F is of 
class C L ~. Combining (4.7) and (4.9) it follows that 

(];(P)' ~vAZ ) = IF (~'vA Z~ A d~tr' Vz e W2a' (f~) c~ Wlo,t' (~), 

which, together with the surjectivity of 0~,  provides 7(P) = ~ and therefore p 
is a solution of (PD1) .  

Finally, let p be a solution of (PD1), then using Green's  formula (4.4), the fact 
that p is a solution of (PD1) and (4.9), we deduce 

L f p(Az + q~'(y)z)dx = (A 'p ,  z )n  - (y(p), ~, z)  + p(p'(y)z dx 

which proves that p is a solution of (PD2). [ ]  

Corollary 3. Let 2 > 0, ~ W2't'(f~) c~ Wo~'r(f~), and j t sM(X)"  be as in Theorem 
4, then there exists a unique solution of  (3.4),/3 e Vt(f~), for every t e [ t ,  n/(n - t)). 

Proof. It is enough to decompose (3.4) as a sum of the problems (PD1) and 

pA*p + p;(y)p = i (y  - Yd) in n ,  

= 0 o n F ,  
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and remark that every measure # ~ M ( X )  can be considered as a measure in 
with support in X. []  

5. Proof of Theorem 4 

Before proving Theorem 4 we need the next abstract result of the existence of the 
Lagrange multiplier, whose proof can be found in [10]; see also [3]. 

Theorem 7. Let  U and Z be two Banach spaces and let K c U and C c Z be two 
convex subsets, C havin9 a nonempty interior. Let ~ e K be a solution of  the 
optimization problem: 

~Min J(u) 

(P) { u e K  and G(u) e C ,  

where J: U --> ( -  oo, + oo] and G: U ~ Z are two Gglteaux differentiable mappings 
at ft. Then there exist  a real number 2 >_ 0 and an element ix e Z'  such that 

i + i[~llz, > o, (5.1) 

(# ,  z - G(~)) _< 0, Vz e C, (5.2) 

(,~J'(O) + [OO(fi)]*fi, u - a )  > 0, Vu e K. (5.3) 

Moreover, ~. can be taken equal to 1 i f  the followin9 condition o f  Slater type is 

satisfied: 

3u o e K such that G(fi) + DG(~)'(Uo -- fi) e C. (5.4) 

Applying this theorem with U as the control space, Z = C(X)", J the functional 
to minimize, G the mapping that associates to each control the gradient of the 
corresponding state, which is differentiable (Theorem 2), K the convex subset of 
U, and C the convex subset of Z = C(X)" with nonempty interior, we deduce the 
existence of 2 and la satisfying (3.2) and (3.5). Now let us take ~ = y~ and p e Vt(f2), 
the unique solution of (3.4); see Corollary 3. Then it remains to prove inequality 
(3.6), which is done by using the corresponding inequality (5.3). For this it is enough 
to establish the identity 

}tJ'(O).v + ([DG(~)]*I~, v) = f ( p  + 3.N[fil~-2O)v dx, Vve U. 

Let us take z e w2'r(~')) ('~ wl'r(~'~) as a solution of 

Az + cp'(~)z = v in ~, 

z = 0 onF .  
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Then, using Theorem 2, we get 

i J ' (~ ) ' v  + ([DG02)]*ltt, v) 

= ~ (y - y~)z dx  + ~N  dx  + Vz  djt 
f~ 

6. Distributed Control for the Neumann Problem 

In this section we consider the optimal control problem (P) associated with the 
following Neumann problem: 

~A y  + (p(y) = u in f~, (6.1) 
~0~A y = g on F, 

where u e U(f~), g a W1/~'"(F), r > n, and 1/r + 1/s = 1, while f~, F, A, and ~0 satisfy 
the hypotheses of Section 2 with the following additional assumption: 

ao ~ 0. (6.2) 

For the sake of brevity we r6sum6 in the following remark the analogous 
results of Section 2 corresponding to this case: 

Remark 4. !. Problem (6.1) has a unique solution y, ~ WZ'~(f~) and there exists 
a constant C z independent of u and g verifying 

It can be obtained, for instance, from Theorem 1 of [10] and the regularity 
results of [12]. 

2. The mapping G: Lr(f~) ~ W2'r(f~) given by G(u) = y ,  is of class C x and for 
every u, v e Lr(f~) the element z = DG(u).  v is the unique solution of the Neamann 
problem 

Az  + p'(yu)Z = v in f~, 
(6.4) 

OvA z = 0 on F. 

3. Assume the existence of a feasible control, then problem (P) has at 
least one solution. Let us remark that, depending on the state constraints, 
the existence of a feasible control can impose certain limitations on g. For 
example, if C is given by (3.8) and F c X, then g must verify the inequality 

Ig(x)l = I , L j . ( x ) l  = IVy . (x )vA(X)[  < 61l(a~(x))]l, V x e r .  

The optimality conditions for (P) are stated in the next theorem. 
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Theorem 8. Let ~ be a solution of  problem (P), then there exist a real number 2 >_ 0 
and elements 35 ~ W2'~(f~), p E U(F2) for every t < n/(n - 1), and p ~ M(X)" satisfying 

2 + [[l~llM<x), > 0, 

{ A35 + q)(35) = ft in f~, 

~vA 35 = g on F, 

A*p + qg'(35)p = i(35 - Ya) - div la n in n ,  
n 

O~.p = - j~= ~ g , ~  on F, 

fx(Z - V35) dlt _< e O, Vz C, 

f J  + V - -  ~) >- ~n]~ 2U)(U dx O, Vu K, 

where A* is the adjoint operator of  A and each 
to the manifold F at the point x given by 

vj(x) VA(X), 
tjx) = ej vAx)'v(x) 

ej being the jth canonical vector of  R ~. 

tj(x) is the 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

tangent vector 

As in Section 3, it is possible to state some normality results for problem (P), 
simplifications of the optimality conditions in some particular cases (see Corollar- 
ies 1 and 2), and regularity of optimal control. 

The proof of Theorem 8 follows in the same way as that of Theorem 
4: it utilizes Theorem 7 and the results about the adjoint state equation. Thus the 
rest of the paper is devoted to the study of (6.7). 

We begin by proving the existence of a normal derivative with respect 
to vA. in W -  1 - 1/t , t(F ) = ( W  1 + 1/t,t'(I~)), for the elements of Vt(f~) with t < n/(n - 1): 

Theorem 9. There exists a unique linear and continuous mapping 

8~.: V~(~) -~ W-I-1/',~(F) 

satisfying 

3~.(p) = Vp" vA,, Vp a D(~)), 

with V A,(X ) = (aji(x))v(x) and 

@,~.(p), ~(z)) = (y(p), c~,Az ) -- (A 'p ,  z)n + j~  pAz  dx, 

for every z ~ W2"t'(Fl), where 1/t + 1/t' = i and y(p) is defined in Theorem 5. 

(6.10) 

(6.tl) 
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Proof Firstly, let us remark that the linear continuous functional 

~): W2"t'(~'~) --~ wi+l/t,t'(r) 

is surjective, see [12]. Hence, given he wi+ln'r(F), let us take z in W2"C(O) 
verifying that ,~(z) = h and define 

r ,  

(dvA.(P)~ h) = (3'(P), 8, z)  - (A'p,  zSn + Jo pAz dx. (6.12) 

Let us prove that 8v,.(p) is well defined as an element of W-I-}#'r 
Thanks again to the inclusion W2'C(f~) c C1(~), the term on the right-hand side 
of (6.11) makes sense. Moreover, if z i, z2~ WZ'C(~q) and 7(zl)= ?(z2)= h, then 
z = z i - z2 belongs to WZ'r'(~) c~ W~'C(f~) and so, by virtue of (4.4), we obtain 

(~(p), O~ z)  -- (A 'p ,  z)n + Jo pAz dx = O, 

which proves that the definition (6.12) is independent of the choice of z. 
Now, taking absolute values in (6.12), we deduce 

[@~Jp), h)l -< llT(p)llw-,/,,,(r)[lS~Ztlw~/,,,'r + tl~oll~cn)llzHc~n) 

j = l  

_< Cl(,,T(p)Hw-.,,,(r) + ~ [I/zj[/M(n) -I- llP'lu(.Ol'z"w~.,'(n). 
j=O 

Taking the infimum in (#o . . . . .  #.) and z. respectively, and using Theorem 5 
and Lemma 2 we derive 

[ @~jp), h) < c2 lip !1 v,~n~ II h [] w, +,,.,'(r). 

From the definition of 8~A. and using Green's formula for regular functions, 
it is possible to prove that (6.10) is satisfied. Uniqueness follows from (6.tl) and 
the surjectivity of the mapping 7 onto W ~ + ~n'~'(F). 

Definition 1. Given a measure # e M(F) and a continuous vector field denoted 
by t: F --, R ", such that t(x) is a tangent vector to F at the point x, we define dr# 
as an element of W- ~ -~n't(F) by the formula 

(Ot# , h )  ~- --iF 8th d#, ghe  W1 + 1/t,r(F). 

Let us see that Ot# is a continuous linear form over Wl+~n'C(F). Given 
z ~ W 2"t'(f~) with 7(z) = h, we have 

<-j=~(frlS~jzld[#l)llt~llclr, < [l#tlMw, lltHctnt!Z'lc'(n, " 

<- cllzlIw~.t,(.~. 
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NOW taking the infimum among the elements z s WZ'C(f~) with trace equal 
to h we get the search result 

3~ Oth d# <_ c]lhllw,+~,.qr). 

After this definition and Theorem 9, the boundary condition of (6.7) is correctly 
defined. Finally, we state the existence and uniqueness of the solution for problem 
(6.7). 

Theorem 10. Given It ~ M(~)", y ~ L *(f~), and t ~ (1, n/(n - 1)), the problems 

Find p ~ V'(f~) such that 

(PN1) ~A*p + qg'(y)p = -d ivJ t  n infl, 

with tj defined as in Theorem 8, and 

rFind p ~ V'(f~) such that 

(PN2) ;n p(Az + qg'(y)z)dx + (?Co), OvA z) 

j= 

are equivalent and have a unique solution. 

Proof To prove that (PN2) has a unique solution let us take the linear operator 

d :  WZ't'(~) ~ L"(n) x WI#'"(F) 

defined by 

d ( z )  = (Az + ~o'(y)z, ~Az). 

Once more, using the results of [12], we get that d is an isomorphism. Hence the 
adjoint operator 

~r L'(fa) x W-  1/'' t(F) --* (W 2' c(f~)), 

is an isomorphism too. Therefore there exists a unique element (p,q) 
in Lt(f~) x W-1/"'(F) satisfying 

d~tJn f r  ~3t/z d,dF) (6.13) 

for all z ~ W 2" e(~). Now taking z ~ D(f~) as arbitrary in the previous equality we get 

A*p + q~'(y)p = - d i v  l~n in f~, (6.14) 

which implies that p belongs to Vt(~). For every z ~ W2"C(f~) • Wlo'"(~), it follows 
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from (4,4), (6.13), and (6.14) that 

(?(p), ~?,Az) = (q, O~z), 

or, equivalently, ,/(p) = q. This, together with (6.13), proves that p is the unique 
solution of (PN2). 

It is sufficient to choose z ~ WZ'~'(f~), with ~?~z = 0, in (6.11) and utilize (6.13) 
and Definition 1 to get that p verifies the boundary condition of (PN1). Therefore, 
remembering (6.14), we deduce that p is also a solution of (PNI). 

Finally, if p is a solution of (PN1), it follows directly from (6.11) ~hat p is 
a solution of (PN2). [ ]  

Corollary 4. Let J, >_ 0, ~ ~ W 2"t'(f~), and It ~ M(X)" be as in Theorem 8, then there 
exists a unique p solution of(6.7) belonging to Vt(~) for every t e [1, n/(n - 1)). 
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