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Summary. Melan's classical shakedown theorem for continuous media considered as a problem of 
mathematical programming with constraints is reformulated and reduced to a solution of a certain min-max 
problem. A similar approach is presented for the structural theory described in terms of generalized variables. 
A distinction is made between alternating plasticity and incremental collapse modes in the analysis of 
structures with nonsandwich cross-sections. 

1 Introduct ion 

In the last thirty years the classical shakedown theory, concerning elastic-plastic structures 
subjected to quasi static variable repeated loads has been well established [2], [7], [9], [11]. On the 

other hand, theoretical developments were not followed by a similar progress in numerical 
analysis. In recent years only few methods have been proposed, solving shakedown problems 
with nonlinear yield condition [10], [12], [14], [15]. 

In this contribution a new formulation of shakedown analysis is studied, which allows to 
investigate new numerical techniques for determination of the shakedown load multiplier. It  
transforms the classical problem based on the method of mathematical  programming to the 

following one: 

Z~h = min max f(a~(x, t) + Oi;(x))/k(x) (1) 
QO x , t  

where 

k(x) 

f(.) 
o~( ~, 0 
o,j(X) 

plastic modulus, 
shakedown load multiplier for the given load domain, 
arbitrary yield function of stress, homogeneous of degree one, 
elastic stress tensor for given time-variable load, 
residual stress resulting from plastic strain tensor. 

It  was Hill [1], who introduced a similar concept of extremal field, applicable in the limit 
analysis. Next Zwolifiski and Bielawski [10] used this kind of formulation in a numerical 
procedure in order to obtain shakedown multiplier. 

The objective of this paper  is to provide a theoretical background of such an approach for 
both continuous media and structural theory described in terms of generalized variables. 
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2 Bas ic  re lat ions  

Let the material  be elastic-plastic and the total strain tensor ~ij be additively decomposed within 
small strain theory into elastic e~j and plastic e~ parts 

eij = e~ + e L. (2) 

The elastic strain tensor is related to the stress tensor by Hooke 's  law via a positive definite 
elasticity tensor Eijk~, with its usual symmetry properties 

O'ij -~ EijklS~l. (3) 

The stress tensor is bounded in the stress space by a convex yield function homogeneous of 
degree one in stress 

f ( ta i j )  = I t l f ( - a i j ) ,  and f (~i j )  = f ( - a O ,  (4) 

whereas the plastic strain rate tensor is given by the associated flow rule. Active and passive 
plastic loading processes are defined by 

~ij = J~ r , f (al j )  <= k,  )~ >= O, )~[f(aii) - k] = 0 ,  , ~ f =  0.  (5) 
ooij 

The total stress tensor consists of elastic and residual portions 

a~j(x, t) = a/~(x, t) + Oij(x, t) (6) 

where the elastic stress tensor is obtained for purely elastic response of the structure subjected to 
external loads: body forces J~ and surface tractions t~ 

o-E. ,~,~ +J~ = 0 in V, (7.1) 

afjjnj = tl on S t ,  (7.2) 

ui ~ = 0 on S v .  (7.3) 

The residual stress tensor is in equilibrium with vanishing load 

& j , j = 0  in V, 
(s) 

~ijnj = 0 o n  ST,  

and results directly from the plastic strain tensor ~ 

.olj = E~jk,(ef. -- efl), 

1 
ei5 = ~ (u[j  + u~.i), (9) 

ui r = 0 o n  So .  

Practical engineering problems usually involve loads depending on more than one parameter.  
Such a load may vary arbitrarily within some prescribed limits, which can be described by means 
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Fig. 1. Ranges of possible variation of loadsjl, t~ andf~ ~, t~" for # = 1.5 

of a finite number  of t ime-dependent load multipliers fl 

f~ = ~ tim(t)/i(~ ti = ~ ri~ ti(~ 
z=l  Z=l (10)  

a(t) < fi(o < b(Z), l = 1 . . . . .  r, 

where a (z), b (~ are the specified lower and upper limits, r is the number  of independent load 
systems. 

The range of possible admissible variation of load multipliers is defined as a domain f~ in the 
r-dimensional space of parameters  ft. We can also consider the load, which is proport ionally less 
or greater than the given one, Eq. (10) 

f," = #f~, ti" = #tl, (11) 

and for which the load multipliers are contained within load domain f~, (Fig. 1). For  this load the 
following static and kinematic shakedown theorems read: 

Theorem 1: Melan's shakedown theorem 
I f  for an elastic-plastic structure subjected to external agencies #f~, and #t~ there exists a statically 
admissible time-independent residual stress field Ov(x) satisfying Eq. (8) such that for all possible 
load variations within prescribed limits, Eq. (10), the following condition holds: 

f(#cr~(x, t) + Ou(x)) _-< k(x), (12) 

then the structure will shake down in any load program contained within these limits. 
If we are interested in the maximal  multiplier # for which shakedown occurs it is necessary to 

solve the following optimization problem of mathematical  programming:  

#sh = max #, 

f(#o-~(x, t) + ~,Ax)) _-< k(x), 

~ou. J = 0 in V, 
(13) 

~i j f l j  = 0 o n  S T . 
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Depending on the form of the yield function, the problem can be regarded as a linear or 
nonlinear one. 

Theorem 2: Koiter's shakedown theorem 
The structure will shake down to the load #fi, #tl, if for all load paths ~(l)(t) and for all kinematically 
admissible strain rate fields g~ (i.e. which result in compatible strain increments) 

t2 1 

z ~ j ( x )  -- ~ ~(x ,  t) dt = ~ (~,j(x) + 5j,i(x)) in V, ~r = 0 on Sv, (14) 
t l  

the following inequality holds." 

t2 t2 

~ #C(x, t) ~ dVdt <_ S ~ D(~O dVdt. (15) 
t l  V t l  V 

Kinematical formulation of shakedown problems (Theorem 2) allows us to distinguish the 
following main phenomena of collapse: 

(i) incremental collapse 
(ii) alternating plasticity 

(iii) mixed mode with both incremental and alternating plastic strain components. 

Definition 1: Incremental collapse occurs if the plastic strain increment components in 
each load cycle are of the same sign, and, after sufficient number of cycles, the total 
strains become so large that the structure departs markedly from its original form and 
becomes unserviceable. 

Definition 2: Alternating plasticity occurs if the plastic strain increments change sign during 
each cycle, so that the total plastic increments after each cycle become equal to zero at every point in 
the structure. 

3 Alternative shakedown theorem 

Let us assume a slightly different problem than the classical one, Eq. (13). Instead of 
enlarging the initial load domain, Eq. (10) proportionally to the multiplier #, we keep it all 
time constant 

# = 1 (16) 

and consider only the initial load domain described by f~, ti. We introduce an alternative 
multiplier 2 which will be connected with changes in magnitude of the yield stresses. Considering 
this multiplier it will be possible to answer whether the shakedown takes place. 

Definition 3: For a given statically admissible time-independent residual stress field ~oi~(x), the 
maximal multiplier 2 obtained from the equality 

/(cri~(x, t) + ~oij(x)) = 2k(x), (17) 

valid at every point x ~ V, is defined as the statical alternative multiplier 2~t 

2~t = max )o(x, t, 00  = max f(o-i~(x, t) + ~o~j(x))/k(x). (18) 
x,t x,1: 
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Theorem 3: Alternative static shakedown theorem 

I f  from all statically admissible time-independent residual stress fields 01j(x), we can f ind that one, 
which minimizes the alternative multiplier 2~t 

2~t = min 2~t(Oij(x)), (19) 
eli(x) 

then the load obtained by multiplication of the initial load fi, ti by the inverse of alternative 
shakedown multiplier (2~t) -1 is the shakedown load 

fish = f~ hsh= t~ (20) 
2~h ' 2~h " 

Proof: Let shakedown alternative multiplier 2~h correspond to the time-independent residual 
stress field &j(x). According to Definition 3 the inequality 

f(cr~(x, t) + 0ij(x)) < 2~hk(X), (21) 

holds at any point x of the structure and any time t. 
Let us define a shakedown multiplier #,h 

#,h = 1/2~h. (22) 

Multiplying inequality (21) by #sh in view of homogeneity of degree one of the yield function, we 
arrive at the following relation: 

f(#,hai~'(X, t) + #,hOij(X)) < k(x). (23) 

Because the inequality is valid for the time-independent residual stress field #,h01j(x) at any time t 
and at any point x ~ V, then, according to the Melan's shakedown theorem, the structure will 
shake down, for a load being in equilibrium with elastic stresses 

= #sha~, ~sh~,~,j(x) + A  = 0,  
(24) 

~ =/~sht~, #,haij(x) E n~ = ?~. 

Similarly to the previous considerations, let us consider any other t ime-independent residual 
2,,. According to Eq. (19) stress field ~j(x) and corresponding alternative static multiplier ~" 

2~h _--< 2~,. (25) 

Denoting by/~,t = 1/).~t we arrive at the inequality 

f(fi,,a~(x, t) + s < k(x), (26) 

which is valid for any time t > 0. In this case shakedown takes place for loads/~,tf~, fi,ttl. 
In view of Eqs. (25) and (22) the inequality 

(2~"h) -~ > (2~t) -~ (27) 

is satisfied, so that the loads ~ -~ ~ -~ (2sh) tl are (2,h) Jl, the maximal  loads for which shakedown 
O c c u r s ,  
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Remark. The residual stress field, which ensures the limit shakedown load (2~h)-~f', (2ah)-i tl 
is equal to 

~ou(x ) - 0u(x) (28) 

Let us note that the relation (19) can be formulated in a more convenient form for numerical 
application: 

2~h = rain max f(~r~(x, t) + 0u(x))/k(x). (29) 
Qi) X,t  

A similar formulation (without any derivation) was used in [10] to derive a powerful 
numerical procedure allowing to solve shakedown problems with nonlinear yield condition. 

4 Formulation in terms of generalized variables 

4.1 Description 

Let us introduce at the level of cross-section ~ generalized stresses Q ,  r = 1 .. . . .  n and generalized 
strains qr [7], [9] in such a way that  the virtual work principle employed for these generalized 
quantities is the same as in the case of continuous media 

Qr(r qr(~) = ~ crij(X) e,j(X) dx. (30) 
r 

In order to pass from continuum to the structural theory described at the level of 
cross-section, it is usually assumed that the strain distribution within the given cross-section ( is 
determined by means of a kinematic hypothesis 

eu(x) = / )u (x ,  qr(r = D/~(x) qr(r (31) 

In the classical shell and plate theory opera tor /5  u is usually linear according to the last equality 
in Eq. (31). 

Taking into account Eqs. (31) and (30), we arrive at the definition of generalized stress 

Qr(r = ~ E-j(x) Drj(x) dx = ~p,.(au), (32) 
r 

where qSr is also linear. 
In the case of validity of Hooke 's  law, Eq. (3), the respective relation between the generalized 

stress and strain holds 

Q~ = K, mq,,, (33) 

where 

K~m = ~ D[j(x) EijkzD~(x) dx (34) 
r 

is a symmetric positive definite stiffness matrix of the cross-section ~. 
From Hooke 's  law (3) and kinematic hypothesis (31) we obtain linear dependence between 

elastic stress ~ and generalized stress Qr w defined at the level of cross-section 

~,~(x) = h~j(x) Q~(r (35) 

where 

hi5 = EuktD~(x) Kff~x((). (36) 
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In general, for elastic-plastic material there is no one-to-one relationship between field crij and 
vector Qr [9]. There exists some non-vanishing stress field Sij(x) called pseudoresidual (Fig. 2 b) 
resulting in zero generalized stresses 

Q~r = (or(Sij(x)) = 0. (37) 

In this way the total residual stress field in the structure can be divided into 

~odx) = ~/;'(x) + slj(x), (38) 

where 

~r(Oij es) - ~ -  Qr res =t = O, (39) 

O~(Sij) = O. (40) 

Then the total stress field in the body can be expressed as follows (Fig. 2 b): 

h~j(x) Q~(~) + Sij(x), Q/e~, crij(x) = aij + ~oij = Qr = Qfi + (41) 

where Q E is the elastic generalized stress vector, Q/e~ denotes the difference between the total 
actual vector Qr and the elastic vector Qr ~, Sij is the pseudoresidual stress field resulting in 
vanishing generalized stress vector, cfi Eqs. (39), (40). Let us introduce at the level of cross-section 
the limit locus in terms of the non-dimensional generalized stress (Fig. 2 a) 

Let us note that F L needs not to be a homogeneous function of Q/Qor but follows from 
homogeneous yield function of stress of degree one. The equality sign in Eq. (42) corresponds to 
fully plastic state of the cross-section, and at every point x e ~ the stress tensor is on the yield 
surface 

f \ k--~-J - 1 = 0, x e 4. (43) 

Similarly to the definition of the limit locus an elastic or initial locus is introduced in the space of 

Q/Qo~ (Fig. 2 a) 

FE ( ~  Q ~ ) < 0  (44) 

which ensures purely elastic response of the virgin structure. 
The equilibrium equations for a structural theory in generalized variables assume the form 

Lk[Q,(~, t)] + Pk(~, t) = 0, k = 1, 2 . . . .  (45) 

where Lk denote linear differential operators, Pk are the external load integrals over the 
cross-section ~, which vary in time according to Eq. (10), 

r 

nk(~, t ) =  ~ fiq)(t)Pk(0(~). (46) 
l = l  

The shakedown analysis consists in determination of two load multipliers. One of them 
preserves the structure against alternating plasticity, and the other one against incremental 



212 S. Pycko and Z. Mr6z 

M/M 

Al ternat ing  ~ l 
p l a s t i c i ty  1. 

Shakedd:man 

d ~  

-1 .0  ~ e  

-1 .0  

_•_ Rec tangu la r  
c r o s s - s e c t i o n  

1 0 ~ N / N  ~ 

FE- Elastic locus 

F R- Ra tche t t i ng  locus 

FL- Limit locus 

�9 Limit state 

M/Mo=0.96 M=Me+M res M(S)=O 

N/N o =0.2 N:Ne+N res N(S)=0 

g (M,N) cre(M,N) S(x) 

�9 Ratchetting states 

M/M o = 0.90 M/M o = 0.4 
N/N o =0.17 N/No =0.7 

< M - -  I - - - ' t & I -  
L/_[D 

(M,N) cr (V,N) 

N) 
M 

Fig. 2. a Limit, ratchetting and elastic loci for rectangular cross-section for plane beam b Distributions of 
statically admissible stress within cross-section for limit and ratchetting loci 

collapse (ratchetting). The latter requires the ratchetting locus to be determined. First let us 
define a non-ratchetting domain ~NR in terms of generalized stresses. Namely 

Qr ~ ~N~ (47) 

v ~ f(h[j(x) Q~ + Su(x)) < k, x ~ Ve. (48) 
xz~ Q ~ ' ~  S,~(x) 
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In Eq. (48) we assume existence of an elastic fiber in the cross-section. In fact the ratchetting effect 
will not occur if there is an elastic domain V~, no matter how small within the cross-sectional 
domain, for all stress states associated with the specified loading program. Thus a non- 
ratchetting domain corresponds to the elastic response for x~ Ve, whereas the remaining 
cross-sectional portion undergoes plastic strains. 

On the other hand the ratchetting locus (Fig. 2) is defined as 

F R = D~ NR. (49) 

The specification of a ratchetting domain for a beam of rectangular cross-section subjected to 
cyclic bending moment  and fixed axial force was discussed in [5], [8] for static and kinematic 
approach, respectively. However, it turns out that the ratchetting locus is very close to the limit 
locus. In the case of sandwich cross-section these loci coincide: 

F R = F L. (50) 

For  such a description in terms of generalized variables the separate safety criteria against 
inadaptation (nonshakedown) were derived: 

Theorem 4: 
A given structure subjected to variable loads #Pk(~, t) is safe with respect to incremental collapse 

(Definition 1) i f  there exists a time-independent residual generalized stress vector QFs(~) such that 

for  any instant t the following condition holds: 

F ( ~  #QrE(~' t) + QTes(~)) < 0 .  (51) 
~ o r  

tf.. 
(i) F = F g and F R ~= F L, the maximal multiplier # satisfying Eq. (51) is a lower bound 

multiplier, 
(ii) F = F L and F a ~ F L (the case considered in [9]), the maximalmultiplier # is an upper bound 

multiplier, 
(iii) F R = F L (i.e. the case o f  sandwich cross-section) # is an actual shakedown multiplier 

against incremental collapse (ratchetting). 

A similar theorem can be stated with respect to elastic shakedown or alternating plasticity [9]. 

Theorem 5: 
A given structure subjected to variable loads #Pk(~t) is safe with respect to the alternatingplasticity 

(Definition 2) ~ for  every ~, there exists such a pseudoresidual stress f ield Sij(x) for  which the 

following is fulfilled: 

f(#hfj(x) Q E(~, t) + Sij(x)) < k(x) (52) 

for  any time t > O. 

4.2 On accuracy o f  the generalized variables approach 

Obviously, the generalized stress and strain formulation involves some approximations, namely 

(i) imposing kinematical constraints (Eq. (31)), the pseudoresidual stress So(x ) does not enter 
the equilibrium condition and constitutes an internal variable (similar to the back stress in the 
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kinematic hardening rule). In the case when F = F L, some forms of incremental collapse may be 

ruled out with respect to a continuum formulation [8]. 
In the case when F = F R the pseudoresidual stress Su(x ) has been taken into consideration at 

the level of cross-section. Let us recall that F R was obtained for arbitrary variation Q~ ~ ~NR. But 
in the real structure a domain of variation of Q~(~, t ) ~ N R  depends on load variation and 

location of the cross-section ~ in the structure and may be much smaller than the considered one. 
Thus the ratchetting locus Fr R may be greater than F R. For  this reason the shakedown multiplier 
determined for F = F R may be a lower bound multiplier. 

(ii) the static variables Q~, Q O satisfy the equilibrium equations in the integral form (45). 
Hence the continuum equations (7.1), (7.2) and (8) are satisfied in an approximate manner.  

Theorem 5 is fully derived from kinematical formulation for continuous media and directly 
transformed to the case of generalized variables. F rom this reason only the second error 
mentioned above may be meaningful. 

4.3 Incremental collapse mode 

Let us consider an alternative approach (Sect. 3) for the load multiplier # = 1 and external forces 
Pk (generalized variable formulation). It is assumed that the function F is expressed in terms of 
generalized variables, Eq. (51). 

Definition 4: For a given statically admissible time-independent generalized residual stress 
vector QTe~(~), the maximal multiplier tl obtained from the equality 

( ~ E t - [ - r e s  e,. (C t_Qr 
F t/Qor(~) / = 0, (53) 

is defined as the alternative multiplier ~ 

t/a(QI ~) = max t/(~, t, Q,~s). (54) 
(,t 

Usually it is possible to solve Eq. (53) with respect to q 

( ~ E t - t - r e s Q r  (4 , )  Q~ 
~(~, t, Qr res) -- F . . . .  (4)'], (55) ) 

and relation (54) can be rewritten as follows: 

tla(Qr res) = max ~e (~!~. (56) 
~-., Qo,(0 ) 

For  such a description it is possible to find the alternative shakedown multiplier t/i"c with respect 
to the incremental collapse. 

Theorem 6: 
I f  fr  or n all statically admissible time-independent residual stress vectors QrreS( ~) we can f ind that one 
which minimizes the alternative multiplier qa 

t/'"c : minr /~(Q"e ' )=  m i n m a x '  ( ~ Q r  "~ OY ,.t Q'~(~'t)+Q"es(~))Qo, ' (57) 
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then the load obtained by multiplication of  the initial load Pk by the inverse of the alternative 
shakedown multiplier (qi,c)-i is the shakedown load with respect to the incremental collapse. 

Pk 
Pk i"c = ~- - .  (58) 

l n c  

Proof: Let the multiplier qi,c correspond to the time independent generalized residual stress 
vector (~Tes(~). According to Definition 4 there is 

1I inc = oa(Qr res) ~ I~(~, t, Ores),  (59) 

and 

1 1 
- -  < - .  ( 6 0 )  

0 a ~/ 

It follows from Eq. (53) that for specified ~re~(~) the inequality 

F 0~ Q-o~-0 ] < 0, (61) 

is satisfied for any ~ and t > 0. 
According to Theorem 4, the structure shakes down with respect to the incremental collapse 

to the load 

1 
fii"cpk = ~ Pk. (62) 

Assume another  arbitrary residual vector Qfe~(~) and the corresponding alternative multiplier 

Similarly to the previous considerations, the structure shakes down to the load 

1 
fiPk = ;1~ Pk. (63) 

In view of Eq. (57) there is 

q i,~ = 0" < ~~ (64) 

and 

fiincpk >= ~tPk, (65) 

SO the theorem is proved. 
Let us notice that the proof  of this theorem does not require any assumption concerning the 

homogeneity of the yield function F. 

4.4 Alternating plasticity mode 

Let us turn back to the continuum formulation and decompose the load multiplier/~(0(t) into the 
time independent and time dependent parts according to the relations (10): 

fl(o(t) = fl~t) + fl~l)(t), flgl) - a(l) + b(1) I/~g~)(t)l < a(0 - b(l) (66) 
2 ' = 2 

Now the following theorem can be proved: 
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Theorem 7: 
The constant load described by fl~o cannot affect the alternating plasticity condition, which is 
dependent only on the symmetrically varying loads specified by fl~o(t). 

Proof: In fact, since for the alternating plasticity state, the total plastic strain increment over 
a cycle is equal to zero 

t2 

Ag~(x) = ~ ~i~(x, t) dt = 0, x ~ V, (67) 
t l  

for the constant multiplier fl~t) the following integral vanishes: 

~2 P r t2 

Z fi~t) 5 ai~(~ ~(x, t) dt dV = E fi~,) ~ ~(~ 5 ~-(x, t) dt dV = 0. (68) 
t l  I = 1  V 1=1  g t l  

Thus, Koiter's inequality (15) is reduced to the form 

t l  l = 1  V 

t2 r t2 

= ~ Z fl~o(t) ~ aiS(~ ~,~(x, t) dVdt < ~ ~ D(~(x, t)) dVdt (69) 
t l  / = 1  V t l  V 

according to the partition, Eq. (66), so the theorem is proved. 
An alternative proof can be obtained from the partial shakedown theorem stated by Mr6z [5]. 

It is assumed that the alternating plasticity response is associated with the plastic zones Vp and 
the remaining elastic portion V~, If the static load is applied to the structure, so that the statically 
admissible stress state equilibrating this load superposed with the previous elastic one does not 
violate the yield condition beyond Vp and does not change the stress distribution within Vp, it can 
be deduced that the constant load does not affect the plastic behaviour due to the alternating 
plasticity. 

Let us return to the generalized variable approach and consider only the symmetric loads 
specified by the symmetrically varying multipliers fl~o(t) (the constant load specified by fi~0 does 
not affect the alternating plasticity condition) 

r 

#Pk~(~, t) = t~ ~ fi~,)(t) Pk(O(~). (70) 
1-1 

For this load there exist such instants of time [~, [2 for which at every point ~ the stress tensors are 
located on the opposite sides of the symmetric yield function 

f(kthfjQf~(~, [~)) = f ( -~th~Of~(~,  [2)), Qf~(~, [1) = --QrES(~, i2) (71) 

where Q f* defines generalized stress obtained for a purely elastic structure subjected to 
symmetrical loads Pk ~. Let us notice that for this case the pseudoresidual stress field &j(x) which 
ensures the highest multiplier/~, cf. Eq. (52), is equal to zero and Theorem 5 is reduced to the 
following one: 

Theorem 8: 
The shakedown multiplier #,u with respect to the alternating plasticity is obtained from the 

following optimization problem: 

#alt : max #, 
x,t 

f(/zh~(x)~ Q e,(~, t)) <= k. (72) 
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Let us notice that the problem (52) using the pseudoresidual stress field Sij(x) has been 
completely reduced to the pure elastic problem (72). Theorem 8 states that the load domain 
multiplier #, for which first yielding occurs at any point x in the structure, is also the shakedown 
multiplier with respect to the alternating plasticity. For typical shell and plate structures and 
linear kinematical hypothesis (31) it is sufficient to check the external fibers of the cross-section 

instead of each point x e ~. In this way the problem is reduced to the elastic problem considered 
only at the external fibers of the cross-sections. 

Introducing r/E into elastic locus (44) similarly as in the case of limit locus 

0, (73) 

the optimization problem (72) is equivalent to the following one: 

(74) 

4.5 Shakedown multiplier 

To determine the shakedown multiplier within generalized variable approach it is necessary: 

(i) to find the shakedown alternative multiplier t/i"c with respect to the incremental collapse 

(elasto-plastic analysis, Eq. (57)) 

(ii) to determine the alternative shakedown multiplier t f  t with respect to the alternating 
plasticity (elastic analysis, Eq. (74)) 

tlatt = max  ffE Q f ' ( r  , ]2alt = (l~alt) - 1  (76) 

(iii) to find the maximal alternative multiplier which will be responsible for the collapse of the 
structure 

t/sh = max (rli% r f  t) 

and to determine the shakedown loads as 

pksh = #shpk = pk/r]sh, fish = 1/~l~h. 

(77) 

(7s) 

Possible inaccuracies are associated with the generalized stress formulation (cf. Sect. 4.2). 

5 Examples 

Example 1. Determination of alternative multiplier t/with respect to incremental collapse for 
rectangular cross-section 

Let us consider the cross-section of a plane rectangular beam with bending moment 
M and axial force N as the generalized stress variable, and yield function F L written 



218 

in the form 

S. Pycko and Z. Mrdz 

, = + - 1 = 0 ( 7 9 )  

where No, Mo define yielding axial force and yielding bending moment, respectively. Let 
us remember (Theorem 4) that for F = F L we may obtain an upper bound of shakedown 
load. 

Using the definition of the alternative multiplier r/ with respect to the incremental 
collapse 

+ - 1 - - 0  (80) 

and solving this equation with respect to t/we obtain 

t / = ~  + + 4 for r / > 0 .  (81) 

Then in the case of a plane frame with rectangular cross-section of the beam element, the 
min-max problem (57) can be formulated as 

r/i"C = m0in max~.t 21 ( Me(~, t) Mo + Mre*(~' O) 

+ ~(ME(~, t)+---Mre~(~'Mo 0!~2] + 4  (NE(~, t)+_NreS(~,No O!'~2~j] (82) 

where 

M E, M res, N E, N res elastic and residual bending moments and axial forces, respectively, 

specified cross-section, 
0 free parameters (i.e. plastic rotation and elongation in nodes of beam 

elements). 

Example 2. Plane frame under two cyclic loads 
Let us consider a plane frame with a rectangular cross-section (Fig. 3a), subjected to two 
cyclically varying loads P1 and P2 according to the program given in Table 1. 

Let us first determine the shakedown alternative multiplier t/i"c with respect to incremental 
collapse. Our aim is to solve the min-max problem formulated in Example 1, Eq. (82). 

Table 1. Loading program 

Loading Loading 
program 

P~ P2 

I P 0 

II P P 
III 0 P 
IV 0 0 
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Program P1 P2 

I P 0 
It P P 
III 0 P 
IV 0 0 

M/Mo 
t 

1.0 

1.0 1.0 N/N ~ 

-Z 

1/z l/z 

.i 

M/Mo 

1.0' 

-1.0 

N/No 

~7 

0.6 

0 .4  

0.2 

0 .0  
- 0 . 6  

r/(II,2) H/1 0.2 

r/(1,I) T/(4,IH) 

3,I = ~) (2,III) 
r # 2 , I I )  
~(4,I)  = r/(1,III) 

F e s  
- -0 .4  --0.2 0.0 0.2 0,4 0.6 X 

Fig. 3. a Plane frame under cyclic loading b Yield locus for rectangular cross-section c Yield locus for 
sandwich cross-section d Relation of alternative multiplier against incremental collapse t/and residual force 
X res 

To this end, let us analyze the behaviour of r/specified by the formula 

rlinc(~i, t-, X res) = 1 ( M~(~i, tj) +_MreS(~i, X res) 
J ~ Mo l 

+ .Me(~,, tj) ___ (~, !~ NE(~, ti) + N*~'(~, X "~) 
Mo ] + 4  No " 

(83) 
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Table 2. Elastic and residual bending moments and axial forces 

S. Pycko and Z, Mrdz 

Loading Me/PI at node 
program 

NE/P at node 

1 2,3 4 1,2 3,4 

I 13/64 -3/32 -3/64 -3/32 -19/32 
II 10/64 -6/32 10/64 -22/32 -22/32 

III -3/64 -3/32 13/64 -19/32 -3/32 

M ~  N"~ 

0.5X,~,l X~* 1 0.5X~l X ~ x'e~ 

with respect to the vertical redundant force X reS (Fig. 3 d). Each curve t/is determined for one set 

({i, tj), where gi denotes the nodal points in the structure ~i = 1, 2, 3, 4 and t i denotes the time 
instant corresponding to one of the vertices I, II, III ,  IV of load polyhedron. According to the 
theorem stated in [6] for shakedown analysis it is sufficient to consider only the vertices of load 
polyhedron I, II, III ,  IV instead of any load variation in the interior of this polyhedron. 

The respective elastic generalized forces for any load vertex different from origin and residual 
states are listed in Table 2. 

A solution of the min-max problem is illustrated by a point A in Fig. 3 d and is obtained as an 
intersection of curves 17(2, I1, X r~*) and t/(1, I, X reS) - ~/(4, III,  X reS) plotted in the t / -  X re~ plane. 

Taking into account the yield moduli for rectangular cross-section 

mo = aoH2/4, No = %H,  mo/No = H/4 (84) 

we arrive for the ratio H/l = 0.2 at the following results: 

P 
X reS = -0 .006487 ,  qi~ = 0.200007Pl/Mo, ~incp = = -  = 4.9998Mo/I. (85) 

t~ lnc 

For  comparison, for the sandwich cross-section and the yield locus independent of axial forces 
(Fig. 3 c) (case equivalent to H/l = 0) we obtain 

P 
X re~ = -0 .010417 ,  r/i"~ = 0.197917P1/Mo, #L"~P - - 5.0526Mo/1. (86) 

1~ inc 

It is seen that the difference between Eqs. (85) and (86) is very small. 
To obtain the maximal multiplier with respect to alternating plasticity it is necessary to take 

into account the symmetric load, Eq. (70), and consider the optimization problem (76). The 
equivalent symmetric load, Eq. (70), and resulting elastic states are listed in Tables 3 and 4. 

Let us consider an elastic locus for rectangular cross-section (Fig. 2 a) and the multiplier t/E in 
the following form (cf. Eq. (73)): 

F~ ~ ~ 3 ~ o  rle= P1 ( N  H 3 ~___/) 
= + ~ -- 1 = 0, Moo l -  + g " (87) 

Noting that the optimal solution of problem (76) exists for the following sets of load vertices and 
nodes 

(1, I), (1, III),  (4, I), (4, III)  
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Table 3. Loading program 
for symmetric loads 

Load Loading 
program 

P1 P2 

I ] ? / 2  - P/2 
II e/2 e/2 

IIl  - P / 2  P/2 
IV - P/2 - P/2 

we arrive for H/1 = 0.2 at the value of the alternative multiplier qau, with respect to alternating 

plasticity 

According to Eq. (77), the shakedown multiplier for the plane structure with rectangular 
cross-section is determined for the alternating plasticity mode of collapse and is equal to 

P 
#shp _ -- 4.210 52Mo/1. (89) ~alt 

Let us compare this result with the respective one obtained for sandwich cross-section and 
yield locus independent of axial force (Fig. 3 c). The shakedown multiplier is determined for 
incremental collapse mode and is equal to #shp = 5.052 6Moll. It  is seen that in the case of 
rectangular cross-section the shakedown multiplier (Eq. (89)) results from a quite different mode 
of collapse (alternating plasticity) and is about 16% smaller than that for sandwich cross-section. 

Table 4. Elastic bending moments and axial forces 

Load ME/PI at node Ne/P at node 
program 

1 2,3 4 1,2 3,4 

I 8/64 0 -8/64 8/32 -8/32 
II 5/64 -3/32 5/64 -11/32 -11/32 

III 8/64 0 8/64 -8/32 8/32 
IV -5/64 3/32 -5/64 11/32 11/32 

6 Concluding remarks  

The present paper provides an alternative approach to shakedown analysis by formulating it as 
the min-max problem. Such an approach may constitute a foundation for efficient numerical 
algorithms for an arbitrary nonlinear yield function, which otherwise would require a nonlinear 
programming approach with constraints. The first numerical solutions within this formulation 
indicate good efficiency of such procedures (cf. [10], [16]). 

The generalized variable approach was considered by accounting for two mechanisms, 
namely incremental collapse (ratchetting) and alternating plasticity. The second case was 
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reduced to a certain elastic opt imizat ion problem for a structure under symmetric por t ion of 

external loading with respect to the mean load  value. In this way, the al ternating plasticity mode 

is only a part  of a more general solution with respect to the incremental  collapse. This 

formulation, therefore, provides a uniform treatment  of beam and surface structures with 

arbi t rary  cross-sectional properties. 
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