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and anisotropy 

Summary. In this paper we study the dispersion equation of Stoneley waves that are travelling in an 
inhomogeneous elastic half-space over an anisotropic homogeneous elastic half-space. 

The phase velocity is calculated as a function of the wave number. The results indicate that the effect 
of anisotropy on such waves is small and can be neglected, while the effect of inhomogeneity is very 
pronounced. The results show that Stoneley waves do not exist after some cut-off value of the wave 
number. 

1 Introduction 

The crust of the earth has three dimensional structures with continuous variation of elastic 
parameters [1]. These variations are caused by long term variation of temperature and pressure 

with depth. Inhomogeneity and anisotropy in the earth are regarded as the origin of attenuation 

and scattering of seismic waves [2], [3]. 

The classical problems of wave propagation in elastic homogeneous media posses a property 
such that they can be formulated in terms of two potentials, each one satisfying a second order 

differential equation. For  problems in inhomogeneous media this is not  always possible. 

Ravindra [4] proved that when the density is constant and Poisson's ratio equals 0.25 (i.e. 2 = #) 
it is possible to have two separate second order wave equations for compressional and shear 

wave potentials. Acharya [5] used the results of [4] to study the reflection from the free surface of 

an inhomogeneous medium. Rao [6] considered the tensorial stress equation in heterogeneous 

media and showed that for plane strain and axisymmetric cases, the stresses are determined by 

a single function satisfying a fourth order differential equation. Rao and Goda  [7] used this 
approach to study Lamb's problem for a class of heterogeneous elastic half-spaces. Also, Rao [8] 

studied the reflection and transmission coefficients from Epstein transition zones in nonhomoge-  

neous isotropic elastic media. 
Approximate theories have, also, been used in dealing with wave propagation in heteroge- 

neous media as the geometrical ray theory. Most  of the applications of ray theory have been 
limited to ray tracing because of some essential instabilities that appear in the numerical 

evaluation of ray amplitude. They are mostly due to the fact that ray theory is an infinite 
frequency method. However, there are several methods that have been proposed to avoid these 
instabilities in ray theory. Chapman [9] proposed to use the WKB method, Chapman and 

Drummond  [10] used the method of Maslov for the calculation of high frequency fields in 
arbitrary heterogeneous media. Farra and Madariaga [11] studied ray propagation in three 
dimensional heterogeneous media. A general formalism based on Hamiltonian theory was used 
so that the results are independent of the coordinate system. 
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The effect of anisotropy on P and SVwaves has not been discussed by many investigators. 
Isotropy is one of the assumptions which people usually make. Such an assumption is not right 
especially in sedimentary layers. Anderson and Harkrider [12] indicated that anisotropy is also 
present in the near surface layers. Abubakar and Hudson [13] studied the dispersive properties of 
liquid overlying an anisotropic half-space and compared the results with the case of an isotropic 
lower half-space. They found that anisotropy has little effect on the results. Sharma [14] discussed 
the propagation of Rayleigh waves in an elastic medium with two horizontal layers overlying 
a semi-infinite elastic medium above which lies a liquid layer. The second elastic layer was 
assumed to have an anisotropic behavior. Keith and Crampin [15] studied the characteristics of 
body wave propagation in anisotropic media and developed a means of calculating the plane 
wave reflection coefficient of body waves for layered anisotropic media. They, also, computed 
theoretical seismograms for the same model. 

In this paper we investigate the effect of inhomogeneity and anisotropy on Stoneley waves. 
We use a model which consists of two half-spaces, the upper one is an isotropic inhomogeneous 
elastic medium, while the lower one is an anisotropic homogeneous elastic medium. We obtain 
the dispersion equation and investigate it for different cases. 

2 Formulation of the problem 

2.1 Model description 

Choose a two dimensional Cartesian coordinate system (x, z) with the z-axis pointing upwards. 
Let two elastic half-spaces be in contact along the plane z = 0. The upper half-space is occupied 
by an isotropic inhomogeneous elastic medium, while the lower half-space is occupied by an 
anisotropic homogeneous medium. We assume that the quantities relating to the upper and 
lower half-spaces are denoted by the the subscripts 1 and 2, respectively. The densities p 1 and 
p2 are constants. Lame's parameter 21,/~1 are assumed to be equal, i.e. Poisson's ratio in the 
upper half equals 0.25. The velocities 0{1 and fil of the compressional and shear wave, respectively, 
are assumed to be functions of depth only. Clearly, as 21 = #1 then 0{ 1 ~--- (3) 1/2 ill- 

2.2 Equations of motion and boundary conditions 

Let S~ = (u j, vj)j = 1, 2 be the displacements in the two half-spaces. According to Ravindra [4], it 
is possible to have separate wave equations for the compressional and shear wave potentials, 
~bl and 01, respectively. The displacement $1 is given by 

(1) & = # l v ( m - l r  + # 1 - 1 v  • (#100  

where the potentials q51 and ~1 satisfy the equations 

~2q~1 

V%1 - 0{1-2(z) 7 7 -  = 0, 

021//1 
v201 -/~1-2(z) ~ 7 -  = 0. 

(2) 

(3) 
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The expressions for the stresses are given by 

( ~2~bl "l- ~24`1Y 
(crl)~ = 01 \ ~ - x  a 2 0x 0~ - 

(o'l)~x = 01 (2 
02q51 0q51 

8x 0~z - g ~ x  + 

where 

#1' 

04'1' 024, _ ) 
g ~ - +  3 V~ J 3g ~ -  3+,g' (4) 

a24`i , 024,1 , 04` , ,  '~ 
OX 2 OZ 2 g ~ Z  4`lYg r) , (5) 

(6) 

0U 2 01) 2 
(O'2)zz = F2 ~-x ~- C2 ~-z (11.1) 

(a2)~x = L2 \ ~ - z  + ~-xJ '  (11.2) 

where exx etc. are replaced by there values in terms of displacements. The equations of motion, 
when Az, Cz, L2 and F2 are constants, are given by 

02U2 02U2 02/A2 02/)2 (12.1) 
P 2 ~ 5 - = A 2  0x ~ + L 2  az ~ + ( F 2 + L 2 )  0z0~ 

02/)2 02/)2 02V2 02U2 
p2 ~5- = L2 ~ + C2 ~ + (F2 + L2) & 0x' (12.2) 

If we substitute 

A2 = C2 = 22 + 2#2, Fz = 22, L2 = kt2, (13) 

Eqs. (12.1), (12.2) are reduced to the familiar equations for isotropic homogeneous elastic 
media [17]. 

' denotes differentiation with respect to z. 4`1 y is the y-component of 4`1. However, 4`1 y is the only 
component which we shall need. For this reason, from this point on, we shall write it as 4`1. 

As for the lower half-space, we assume that the properties of the medium are defined by the 
condition that its strain energy volume density function W2 has the form [16] 

2W2 = A2eZx + C2ez 2 -t- 2Feexxezz + L2e2~. (7) 

Since W2 is a positive definite form, 

A2 > 0, C 2 > 0, L2 > 0 and A2C2 > F22. (8) 

Following [13], we shall further assume that 

A2 > L2 and C2 > L2. (9) 

The stresses can be derived from the strain energy volume density function by the formulae 

~w2 ow2 
(O'2)ij- 0eli and (az)u = geu (no summation). (10) 

Thus we get 
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The b o u n d a r y  condi t ions  are 

(i) con t inu i ty  of the x and  z componen t s  of the displacements  at the surface of interface, 

i.e. at z = 0, 

u ,  = u2 (14.1) 

vl = v2 (14.2) 

(ii) con t inu i ty  of the no rma l  and  tangent ia l  stresses at z = 0, 

(~,)zz = ( ,~ )=  (15.1) 

(O'l)zx = (O'2)zx. (15.2) 

3 S o l u t i o n  o f  the  p r o b l e m  

We assume that  ~1, in the upper  half-space, varies as 

2 (16) cq2(z) = ~ + (C~o 2 - ~ )  e % 

where the subscripts  0 and  oo m e a n  the values of the parameters  at z = 0, z = 0% respectively, e is 

a posit ive cons tan t  which has a d imens ion  of ( length)-*.  

The  general  so lu t ion  of Eq. (2) is given by  

(ol = Gl(z) e i(o~t-kx), (17) 

where co is the frequency and  k is the hor izonta l  wave number .  G(z) satisfies the differential 

equa t ion  

d2Gl(z) ( o ) 2 )  
- -  - - -  k 2 = 0.  (18) dz 2 + Gl(z) ~2(z ) 

The solu t ion  of Eq. (18) can  be ob ta ined  by in t roduc ing  the new variable ~, where 

= e -~z. (19) 

The semi-infinite interval  0 < z _< oo will be t ransformed to the un i t  interval  0 < ~ < 1. F r o m  

Eq. (19) we find that  

d 
dz 8~D , (20) 

d 
where D = ~ .  F r o m  (16) and  (19) 

cq = c~(1 -- A~), (21) 

where 

A 1 2 2 = - C~o / c ~ o .  (22) 
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Also, as )~1 = #t then #1 = 31- p lea(1  - A 0  and we find that 

e A( g '  = - - 8  2 A( 
#1' = ~ P~c~2(A(), g = 8 1 -- A~' (1 - A 0  2" 

Equation (18) in terms of ( takes the form 
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solution for GI(0  takes the form 

n=oo 

GI(~)=Qa E a.{"+m, 
n = 0  

where m = ml. 

(30) 

( 1 - A 0 ( D ~ D G I ( 0 + e 2 \ ~ - k 2 ( 1 - A 0  G i ( 0 = 0 .  (23) 

Equation (23) is in a suitable form for solution by using the Frobenius power series method 
around ( = 0, viz, 

GI(0  = ~ a.~ "+".  (24) 
n=O 

Equation (23) gives 

( l - A 0  ~ a . ( n + m )  2 ~ " + " + ~  - k Z ( 1 - A  0 a . (  " + m = 0 .  (25) 
n = 0  n = 

Equating the coefficient of ("+" to zero 

a. ( n + m ) ; + ~ i l . ~ - -  !ca - A a . - i  ( n + m - 1 )  2 - ~  = 0 .  (26) 

Putting n = 0 in Eq. (26) and letting a_ 1 = 0 and ao = 1, we get 

( c2 , 2 
m~,2= + l  1 - c ~ ]  , (27) 

where c = oJ/k is the phase velocity of Stoneley waves and l = k/e. 
The recurrence relation (26) is reduced to 

a.(n 2 + 2ran) - Aa._  1(@ + m - 1) 2 - 12) = 0. (28) 

The general solution for Gi(0  is given by 

n=oo n=oo 

G I ( ( )  = Q 1  E (1) n + m  1 an ~ + I11 ~ an(Z)( "+m~, (29) 
n = 0  n=O 

where a, (1), an (z) are given by Eq. (28) after replacing m by ml and m2, respectively. Q1 and I11 are 
arbitrary constants. However,  for large values of z, i.e. for very small values of ( the only 
important  terms in the series solution are the zeroth terms, from which one can deduce that in 
order to satisfy the radiation conditions at z = o% we have to set Y1 = 0 [7]. Therefore, the 
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Following the same procedures, we find that the solution of Eq. (3) is given by 

gq = T~(() e '(~'-k~), (31) 

where Tl(() is given by 

n=co 
T~(() = H1 ~ b,( "+~. (32) 

n=0 

H1 is an arbitrary constant, b, is given by a similar equation as Eq. (28) after replacing a, by 
b, and m by v, where 

Q C 2 ~J./2 
v = /  1 - ~ j  . 

From Eq. (1) we find that 

a#~1 a~q 
u l -  8x g~' l -  a~' 1)1 = - - g O 1  -~- + ~ X  " 

Substituting for ~bl and ~1 we get (after dropping the term e i('~ 

. . . . . .  ( ) 
Ul = - idQ1  ~ an~ n+m q- ell1 ~ b, A(  ~,+~ 

,=o ,=o - 1 -  A~ + (n + v) 

,= oo A~ ~~ b,~,+~" vl = - eQ1 Z a, + (n + m) - ileH1 Z 
n=O n=O 

Also, from Eqs. (4) and (5) we find that 

3A( (n + m) + (aa)z==#1eZQa,=oZ a, - l  2 + 3 ( n + m )  2 + ~  ( 1 - ~ ( ) 2 J  

+ i#,e2lH1 ~ b. 2 ( n + v ) +  
n=O 

(al)z~ = i#1eBlQ1 ~ a. 2(n + m) + 
n=O 

A( (n + v) + + # # <  ._2 ~ b. - t  - ( .  + + 

As for the lower medium, we seek solutions of Eqs. (12.1) and (12.2) of the form 

U2 = G2(z) e i(c~ 

I)2 = Tz(z) e i(~'~-k~). 

Gz(z) and Tz(z) satisfy the equations 

-pzcoZG2(z) = -kZAzG2(z) + LzGz"(Z) - ik(F2 + L2) T2'(z) 

--p2co2T2(z) = -k2LeY2(z) + CeTB"(z) - ik(F2 + L2) Gz'(Z). 

(33) 

(34) 

(35) 

(36) 

(37) 

(38.1) 

(38.2) 

(39) 

(4o) 
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if we assume 

G2(z) = Pe ksz, T2(z) = Re  ksz, (41) 

where P and R are constants. F r o m  (39) and (40) we find that  P and R satisfy the following two 

equations:  

(A2 -- p2 c2 -- L2s 2) P + is(F2 + L2) R = 0 (42) 

(L 2 - -  D2 C2 - -  C 2  S2) R + is(F 2 + L2) P = 0. (43) 

Clearly, in order to have a non zero solution for (42) and (43), we must  have 

(A2 - -  D2 C2 - -  L2 $2) (L2 - -  132 c 2  - -  C 2  $2)  q- $2(F2 + L2) 2 . (44) 

Using the notat ions 

q = (A2 - -  p2c2),  t" = (L2 -- p2c2), j = (V2 + L2), F = rL2 + qC2 _ j 2 ,  (45) 

Eq. (44) can be written in the form 

L2C2 $4 - Fs  2 + rq = 0. (46) 

This is a quadrat ic  form in s 2. Let sl 2 and s22 be the roots  of (46), then 

s2,2 = {F _+ (F 2 -- 4LzC2rq) l / z } / {2LzC2} .  (47) 

These two roots  are both positive real for elastic media  with slight departure  from isotropic 

media  and when c 2 < Lz/p2  [13]. 

F r o m  (47) the solutions for Gz(Z) and T2(z) which are bounded at z = - o o  are given by 

Gz(Z) = Pe k~z + Ee T M  (48) 

T2(z) = Re k~z + g e  TM , (49) 

where s and 3 are the positive roots  of sl  2 and s22, respectively. E and N are constants. P, R and 

also E, N are not  independent,  as they are related by Eq. (42) and (43). That  is, 

R . q - L2s 2 N . q -- L2c~ 2 
- - = t - - - i t l  and - - = ~ - - - i 7 .  (50) 
P sj E 3j 

Therefore, the displacements in the lower half-space (after d ropping  the term e i(~ 

are given by 

u2 = Q2e k~z + H2e TM (51) 

1) 2 = i(t/Q2 ek~Z + yH2ek~z), (52) 

where Q2 and H 2 are arbi t rary  constants. 

F r o m  Eqs. (11.1) and (11.2) we can obta in  the required stresses, without  the term e ~(*t- k~) in 

the form 

(o-2)zz -- i k Q 2 ( - F 2  + C 2 t / S )  e ksz + i k H z ( - F 2  + C276) e TM (53) 

(a2)~x = LzkQ2(s  + t/) e k~ + LzkH2(6  + 7) ek~ (54) 
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Applying the boundary  condit ions in Eqs. (14.1), (14.2), (15.1) and (15.2) and equating the 

determinant  of the coefficients of Q1, H1, Q2 and H2 to zero, we obtain the dispersion equation for 

Stoneley waves in the form 

det A = 0, (55) 

where A = {Aij}, i denotes rows and j denotes columns and 

n = o o  n = o o  

A l l  = - k  ~ a . ,  A 1 2 =  ~ '~, b.7c12 
n=0 n=0 

A 1 3 = - 1 ,  A 1 4 = - 1  

n = ~  n = c c  

A 2 1 = - e  ~ a.rc21, A a z = k  ~ b. 
n=0 n 0 

A23 : q, A24 = 7 

n = o o  n = o o  

A31 = #oe 2 ~,  an7c31, A32 = - - # 0 ~ ; 2 /  2 bnrc32 
n=0 n -0  

A33 = k ( - F 2  + C2rls), A34 = k ( - F 2  + Cz76) 

n = c o  n = o o  

A4t = #0e2/ 2 an7c41, A42 = #0 g2 ~ b,,rc42 
n=o n=0 

A43 = - L 2 k ( s  + rl), A44 = - L 2 k ( 6  + y), 

where #o is the value of #1 at z = 0, 

~12 = - f21  + (n + v), 7r21 = f21 + (n + m), 7c31 = - l  2 + 3(n + m) 2 + 3f21(n + m) + 3f22, 

ic32 = 2(n + v) + f21, =41 = 2(n + m) + f21, =42 = -12 - (n + v) 2 + f21(n + v) + 02 ,  

O I = A / ( 1 - A )  and f 2 2 = A / ( 1 - A )  2. 

4 Numerical study of the dispersion equation 

In this Section we study the dispersion equation of Stoneley waves for four models designated as 

M1, M2, M3 and M4. In all models we have taken Cr = 3, cr = 5 and Pl = 2. F o r  e we 

considered e = 1 for M1 and M2, e = 0.5 for M3 and e = 10 for M4. The elastic constants for the 

lower half-space for M1, M3 and M4 are taken as in [13], viz, 

A2 = 26.94, C 2 = 23.63, F2 = 6.61, L2 = 6.53, P2 = 2.7 

while for M2 we considered 

A 2  = C 2  = 26.94, F2 = Lz = 6.53, P2 = 2.7 

meaning that  the lower half-space in M2 is isotropic. 

Figure 1 for M1 shows that  with increasing the wave number  k, i.e. with decreasing the wave 

length, the phase velocity c decreases indicating a normal  dispersion behavior. The rate of 

decrease in c with respect to k is slow at very small values of k, then it increases with the values 

k until it becomes very sharp around k ~ 1.82. After this value of k, the dispersion equat ion has 

no roots  which means that  Stoneley waves for this model  do not  exist for values o fk  greater than 
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1.82. In other words, this value ofk is a cut-offvalue for the existence of Stoneley waves for M1, we 

denote it by kc. 

The results for M2 are almost the same as for M1 which means that  the effect of anisot ropy is 

very small on the propaga t ion  of Stoneley waves and for practical  applicat ions it can be 

neglected. 

As for M3 we find that  the dependence of the phase velocity on the wave number  has the 

same features as the other two cases. Also, we find that  kc for this model  ~ .906. The results 

for M4 are shown in the same figure up to k = 2, where it is clear that  for this range of k the 

phase velocity of Stoneley waves is nearly constant.  The full results for M4 are given in Table 1. 

Table 1 

k 2 6 t0 14 16 18 18.2 

c 1.55 1.55 1.49 1.4 1.28 0.98 0.82 

Clearly, the general behavior  is still the same and we find that  kc for M4 is about  18.2. 

The compar ison of the cut-off value for M1, M3 and M4 shows that  kc is nearly linearly 

dependent  on 5. Also, we note that  the variat ion in el ,  #1, etc. in the upper  half-space takes place 

over a certain width due to the exponential  variat ion which is given by Eq. (16). The width of this 

t ransi t ion zone depends mainly on e [7]. This means that  the cut-off wave number  depends on the 

width of the transit ion zone. 
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5 Concluding remarks 

In  this paper  we invest igated the effect of i nhomogene i ty  and  an i so t ropy  on  Stoneley waves. We 

found that  the effect of an i so t ropy  is very small  and  it can be neglected, while the effect of 

i nhomogene i ty  is very strong. We found that  for the k ind  of var ia t ions  given in this paper,  

Stoneley waves do no t  exist after a certain value of the wave number .  This value depends  main ly  

on the width of the t rans i t ion  zone. 
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