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Unsteady forced convection laminar boundary layer 
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Summary. The unsteady nonsimilar forced convection flow over a longitudinal cylinder, which is moving in 
the same or in the opposite direction to the free stream, has been investigated. The unsteadiness is due to the 
free stream velocity, cylinder velocity, surface temperature of the cylinder and the mass transfer, and 
nonsimilarity is due to the transverse curvature. The partial differential equations, governing the flow, have 
been solved numerically, using an implicit finite-difference scheme in combination with a quasilinearization 
technique. The results show that both, skin friction and heat-transfer, are appreciably affected by the free 
stream velocity distributions and by the cylinder velocity. Also, skin friction as well as heat-transfer are found 
to increase as the transverse curvature or the suction increases, but the effect of injection is just the opposite. 
The heat-transfer is significantly affected by the viscous dissipation and variation of surface temperature with 
time. It is observed that results of this problem are crucially dependent on the parameter c~, which is the ratio 
of the velocity of the cylinder to the velocity of the free stream. In particular, it is found that solutions for the 
upstream moving cylinder exist only for a certain range of this parameter (c0, and they are nonunique in 
a small range of c~ too. 
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Eckert number (dissipation parameter) 
specific heat at constant pressure 
thermal conductivity 
heat transfer rate per unit area 
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transformed coordinates 
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functions of t* 
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Superscripts 

Subscripts 
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oo 

time-dependent cylinder velocity 
ratio of the velocity of the cylinder to the velocity of the free stream 
skin friction and heat-transfer parameter respectively 

derivative with respect to t/ 

conditions at the edge of the boundary layer and on the surface of the cylinder respectively 
conditions on the surface of the cylinder at t* = 0 
initial condition 
derivatives with respect to r, t, t*, x, ~ respectively 
free stream value 

1 Introduction 

Boundary-layer flows over a moving or stretching surface are of great importance in view of their 
relevance to a wide variety of technical applications, particularly in the manufacture of fibres in 

glass and polymer industries. The investigation of drag, heat and mass transfer in such situations 
belongs to a separate class of problems in boundary-layer theory, distinguishing itself from the 

study of flows over static surfaces. The first and foremost work regarding the boundary-layer 
behavior on moving surfaces in a quiescent fluid was considered by Sakiadis [1]. Subsequently, 

several investigators [2] - [13] have worked on the problem of a moving or stretching surface (flat 

plates) under different situations. Simultaneous studies on boundary-layer flows over moving 
cylindrical surfaces alone have also been considered by various researchers. The work of Sakiadis 

[14] who restricted his study only to momentum transfer in the boundary-layer on a continuous 
cylindrical surface was extended by Bourne and Elliston [15], to include heat-transfer also. The 

Karman-Pahlhausen integral technique was adopted in their analysis. The accuracy of their 

integral solutions was tested by Karnis and Pechoc [16] who obtained exact solutions of the 
boundary-layer equations on a continuous isothermal cylinder for Pr >< 1 by a power series 

method. Choi [17] has considered the boundary-layer flow on a moving longitudinal cylinder, 

taking into account the effect of the variable properties of air. The solution has been obtained by 

both, the momentum integral method and the finite-difference scheme. All the aforementioned 

studies [14] -  [17] are related to moving cylinders in a fluid at rest. Recently, Pop  et al. [18] have 
studied the problem of steady forced convection boundary-layer of non-Newtonian fluids on 
a continuously moving cylinder, using the box method due to Keller and Cebeci [19]. The 

problem of a longitudinal cylinder moving in a fluid having a time-dependent free stream, has not 
been considered so far. 

The aim of the present analysis is to study the unsteady nonsimilar laminar and 
incompressible forced flow over a moving longitudinal cylinder when the free stream velocity, 
cylinder velocity and surface temperature of the cylinder vary arbitrarily with the time. The 
cylinder is assumed to move in the same direction (c~ > 0) or in the opposite direction (~ < 0) to 

the free stream. The transverse curvature of the cylinder brings nonsimilarity into the flow. The 
influence of mass transfer and viscous dissipation has been included in the analysis. It may be 
noted, that here the cylinder is moving as a rigid boundary. The partial differential equations, 
involving three independent variables governing the flow, are solved using an implicit 
finite-difference scheme in combination with a quasilinearization technique. The results are 
found to be dependent on the parameter c~, which is the ratio of cylinder velocity to the free stream 
velocity. 
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2 Analysis 

We consider the unsteady, laminar boundary-layer forced flow of a viscous incompressible fluid 
over a long thin longitudinal cylinder of radius/~, moving axially with a time-dependent velocity 
uw(t) (see Fig. 1). We assume that the free stream velocity, the surface temperature of the cylinder 
and the surface mass transfer vary arbitrarily with time. The free stream temperature is taken to 
be constant. We also assume that the radius of the cylinder is large compared with the 
boundary-layer thickness, so that the boundary-layer curvature can be neglected. Under the 
foregoing assumptions, the boundary-layer equations, governing the flow, can be expressed as 

(ru),r + (rv)r = 0 (1) 

ut + uux + vur = (v/r) (ru~), + (Ue)t (2) 

Tt + ug~ + vgr = Pr-* (v/r) (rTr), + (#/0%) (u~) e. (3) 

The relevant initial and boundary conditions are given by 

u(x, r, O) = ui(x, r), v(x, r, O) = vi(x, r), T(x,  r, O) = Ti(x, r) (4) 

U(X, R ,  t) = uw(t  ) = UwoO(t*),  v(x, 1~, t) = vw 

g(x ,  R, t) = T~(t) = T~o + (T~o - Too) R(t*) (5) 

hi(X, 00, t) = !Ae(l, ) = U(9( t*) ,  T ( x ,  o% t) = To~. 

Here ~b(t*) and R(t*) are arbitrary functions of t*, representing the nature of the unsteadiness in 
the free stream velocity (cylinder velocity) and in the surface temperature of the cylinder, 
respectively. 

Applying the transformations 

= (4//~) (vx/U) ~/2, r I = (U/vx)  1/2 [(r 2 -/~2)/4/~], 

r  r, t) = R (v U x )  1/z O(t*) f (~ ,  th t*) 

G(~, r h t*) = ( T -  T~o)/(T~ - Two) 

F = f '  

t* = (v//~ ~) t (6) 

(7) 

(8) 

(9) 

ue(t), To~ �9 ~ ,~ = Tr, v 

�9 0 

Tw 
Fig. 1. Physical model and co-ordinate system 

~X,U 

~U w 
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t o  

respectively, to 

(1 + ~r/) F"  + (4 + ~bf) F ' -  (r [Ft, + ~b-'~b,,(F - 2)] = ~(o(VF~ - f c F ' )  

Pr -* (1 + it/) G" + (4 Pr -~ + qSf) G' - (~2/4) G,, + (1 + ~r/) Ec ~b2(F') 2 

= ~ ( F C ~ - ~ a ' ) ,  

where 

Eqs. (1)--(3), we find that Eq. (1) is identically satisfied and Eqs. (2) and (3) reduce, 

(lO) 

( i i )  

u = (O~/r) = U~b(t*) F(~, r/, t*)/2 (12) 

v = -(Ox/r) = -R(o(t*) (vU/x) 1/2 { f  + ~fr - r/F}/2r (13) 

f(~, r/, t*) = S F d r /+ fw  (14) 
0 

fw = -(/~/2v~b~) S ~.vw d~ (15) 
0 

Ec = U2/[4cp(T~- Two)]. (16) 

The boundary  conditions (5) are accordingly transformed to 

F = a ,  G = 1 - R ( t * )  at r / =  0 
(17) 

F ~ 2 ,  G ~ I  as r / o o Q  

for ~ > 0 and t* __> 0, where ~ = 2(Uw/Ue). 
The flow is assumed to become unsteady only if t* > 0, and being steady at t* = 0. Thus, the 

initial conditions for F(~, r/, t*) and G(~, r/, t*) at t* = 0 are given by the steady flow equations 

obtained by putting 

O(t*) = R(t*) = 1, 4t* = Ft, = G,, = 0 (18) 

in Eqs. (10) and (11). Consequently, the initial conditions can be written as 

(1 + ~r/) F " +  (r + f )  F '  = ~(FFr - f~F ' )  (19) 

Pr -1 (1 + ~r/) G" + (~ Pr -1 + f )  G' + (1 + Cr/) Ec (F') 2 = ~(FGr - f cG ' ) .  (20) 

Equations (19) and (20), in the absence of viscous dissipation, are precisely the equations 
governing a steady forced convection flow, which have been studied by Sparrow and Yu [20], 
Wanous and Sparrow [21] and Sparrow et al. [22] for a = 0 (i.e., when the cylinder is at rest). It 
may also be noted that Eqs. (19) and (20) for ~ > 0 reduce to those of Abdelhafez [7] if we put 
Ec = ~ = 0, and rep lace r  by (f/2) in them. Abdelhafez studied the skin friction and heat-transfer 
on a continuous flat surface, moving in a parallel free stream. It  may  be remarked here that 
Chappidi and Gunnerson [9] have obtained a closed form solution for the flow and the thermal 
t ransport  from a flat surface (~ = 0), moving through a flowing fluid. They used an integral 
technique with a perturbation procedure. However, the governing equations, considered by 
Chappidi et al. are in integral form. Furthermore,  Eqs. ( 19 ) -  (20), for c~ = 2, are easily recognized 
to be those of Karnis and Pechoc [16], who analysed the thermal laminar boundary-layer  on 
a continuous moving cylinder, neglecting the viscous dissipation. It is noted here, that ~ = 0 
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corresponds to the flat plate case and ~ > 0 represents the transverse curvature effect. Also, it 

provides a measure of the distance along the cylinder. 

The local skin friction and the local heat-transfer coefficients can be expressed as 

Cr = 2(vw/O(ueZ)t.=o) = q)(t*)(Rex) -1/2 Fw'/2 (21) 

Nux = (x/k) (qw/(Two - To~)) = (Rex) a/2 Gw'/2 (22) 

where 

r,v = #(Ou/~?r)w, Rex = (Ux/v)  and qw = -k(OT/c~r)w. (23) 

For  computation, we have considered three unsteady free stream velocity distributions, which 
are given by 

q~(t*) = 1 + ~t .2 (accelerating flow) (24) 

q~(t*) = 1 - et .2,  ~ > 0 (decelerating flow) (25) 

and 

~b(t*) = 1 - a[1 - exp (-ct*2)],  a > 0, c > 0 (exponentially decelerating flow). (26) 

Further, we have taken the surface temperature distribution with time in the form: 

R(t*) = 1 + ~lt*, el > 0. (27) 

We have also considered two types of surface mass transfer distributions viz., v~ = constant or 
v~ = VoX -1/2. Accordingly, the surface mass transfer parameter fw, given in Eq. (15) becomes 

fw = A~/O(t*),  A = -Rv ,~ /4v ,  when vw is constant (28) 

fw = A/~( t*) ,  A = --Vo/(vU) 1/2, when v~ = VoX -1/2 (29) 

where A > 0 is for suction and A < 0 for injection. 

3 Results and discussion 

The partial differential equations (10) and (11), with the boundary conditions (17) and initial 

conditions (19) and (20), have been solved using an implicit finite-difference scheme in 
combination with a quasilinearization technique. Since the method is described in detail in [23], 

its description is omitted here. To produce grid independent numerical results, the step sizes At/, 
A~ and At* have been optimized. For  this purpose, the computed values of physical parameters 
with a step size At/(keeping A~ and At* fixed), are compared with those obtained using reduced 

step sizes viz., (At//2), (At//4) and so on. The percentage of the difference in all these values is less 
than 0.05%. Further, these computed values have been extrapolated 1, using Richardson's 

extrapolation [24], to obtain higher order accuracy. The extrapolated values are again compared 
with those obtained using different step sizes and the percentage of difference is found to be less 
than a maximum of 0.03 %. Consequently, the step sizes A t /=  A ~ = A t* = 0.05 have been used 

1 Tables containing Richardson's extrapolated vatues of skin friction and heat-tralasfer, for various values 
of step sizes, can be obtained from the authors. 
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Fig. 2. Comparison of steady-state results 

0.8 I. 

for the computation. The value oft/~ (i.e., the edge of the boundary-layer) has been chosen as 5.0. 
All computations were performed in double precision on VAX-8810, for various values of 
~: ( - 2  < ~ < 2). A typical case takes 1.05 minutes CPU time, when the computation is done 

from ~ = 0 to ~ = 1.5. 
In order to assess the accuracy of our method, particular cases of our results have been 

obtained and these are compared in Fig. 2 with those available in literature. The skin friction and 
heat-transfer results (Fw', Gw'), obtained for the steady case with ~ = A = Ec -- 0, have been 
compared with those given in [20] - [22]. The comparison is shown in Fig. 2 a. The heat-transfer 
result (Gw'/2) is found to be in good agreement with the local nonsimilarity method of Sparrow 
and Yu [20] while the skin friction result (Fw'/2) for ~ > 3.0 differs from corresponding results of 
[20] in the maximum about 1%. The series solution of Wanous and Sparrow [21] and the local 
similarity results of Sparrow et al. [22] differ very much from the present results for ~ _>_ 0.5, 
indicating the inadequacy of these approximation methods. Results for the steady state skin 
friction and heat transfer coefficients [Cf(Rex) 1/2,Nux(Rex) -1/2] have also been obtained for 
a continuous moving flat surface (~ = 0). These are compared with those of Abdelhafez [7]. The 
results, as seen in Fig. 2b, are in excellent agreement. The analogous steady state heat-transfer 
results [Nux (Rex)-1/2], obtained for a moving flat surface (3 = 0), have also been compared with 
those of Chappidi and Gunnerson [9]. The comparison is shown in Table 1. The heat-transfer 
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Table 1. Comparison of Nux(Rex) 1/2 with those of 
Chappidi and Gunnerson [9] (Pr = 0.7) 

R = 1 - e/2 Present results Ref. [9] 

0 0.472 2 0.458 3 
0.2 0.443 4 0.4362 
0.4 0.4120 0.413 2 
0.6 0.377 8 0.387 2 
0.8 0.3385 0.3572 
1.0 0.2922 0.3226 

results of [9] are within 4% of the present numerical solutions for R = 0, where R = 1 - (c~/2) 

(0 _< ~ < 2, 0 _< R < 1). But, as R ~ 1, the percentage of the difference increases to nearly 10%. 

This could be attributed to the fact that the closed form results of [9] are obtained by an 

approximate method. Furthermore, the comparison of our steady state heat-transfer results 

[Nux (Rex)-1/2] for the moving cylinder (c~ = 2) with that of Karnis and Pechoc [16] is shown in 

Table 2. The agreement is good for small curvature, i.e., when ~ ~ 1. However, the series 

expansion results of [16] seem to be inaccurate for higher values of 4. 
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Fig. 6. a Velocity profiles b Temperature profiles (upstream moving cylinder) 

Table 2. Comparison of Nux(R%) -1/2 with those of Karnis and Pechoc [16] 

Pr = 0.7 Pr = 1.0 

Present Ref. [16] Present Ref. [16] 
results results 

0.0001 0.35144 0.352 88 0.44411 0.447 54 
0.0005 0.35290 0.357 36 0.44612 0.45221 
0.001 0.354 34 0.360 70 0.447 61 0.455 70 
0.005 0.362 61 0.374 67 0.45613 0.470 26 
0.01 0.370 54 0.384 99 0.464 27 0.48103 
0.04 0.405 04 0.419 30 0.498 95 0.516 82 
0.05 0.41443 0.42719 0.50817 0.525 06 
0.06 0.423 28 0.434 25 0.516 67 0.532 43 
0.07 0.43158 - 0.52467 0.53915 

The effect of c~ (the rat io of the velocity of the cyl inder to the velocity of the free stream) on  

Ci(Rex) 1/2 and  Nux(Rex) 1/2 in the range 0 _< c~ _< 2 is shown in Fig. 3. This  figure con ta ins  

results for the steady, the accelerat ing as well as for the decelerat ing flows. It  is found,  that  

Ci(Rex) 1/2 decreases when  c~ increases, bu t  Nux (Rex) -1/2 increases. This  is due to the fact, that  
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when c~ ~ 2 (uw ~ ue), the fluid tends to be inviscid. This causes a considerable reduction in skin 

friction. In fact, Ci(Rex) 1/2 vanishes when c~ = 2. On the other hand, the difference between the 

surface temperature  and the free stream temperature  ( T w -  T~o) increases. This results in an 

increase in heat-transfer. 

The variat ion of the skin friction and the heat-transfer [Cs(Rex) 1/2, Nux (Rex)-1/2] with time 

t*, when qS(t*) = 1 + et . 2  (5 > 0), for several values of c~ and for two values of the curvature 

parameter  ~ is shown in Fig. 4. It is observed that  the increase in c~ results in the increase of 

Nu~(Rex) -1/2, but  Cs(Re~) 1/2 decreases. However,  for a given c~, with respect to time, both  

Ci(Rex) 1/2 and Nux (Re~)-l/2 increase considerably. 

The skin friction values for upstream moving cylinders are interesting. I t  may be remarked 

here that Hussaini and Lakin [25] and Hussaini et al. [26] have studied the problem of 

boundary- layer  flow on a flat plate (4 -- 0), which is moving with constant  velocity e* (~* = -c~, 

c~ > 0), opposite in the direction to that  of the free stream. It was found, in their work, that  the 

solution exists only if c~* does not  exceed a critical value c~c*, where ec* = 0.3541. Furthermore,  

the solutions of the problem are found to be nonunique in the region c~c* < c~* < 0. Fo r  our case, 

being identical to that  one of Hussaini and Lakin [25] for ~ = t* = 0 and F(oo) = 1, a similar 

phenomenon is observed in connection with the calculation of the skin friction. The present value 

of the skin friction (Fw') at ec* = 0.3541 was found to be 0.218 5, as compared  to 0.218 0, being 
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reported in [25]. To illustrate the nature of the flow in this noteworthy region of c~c* < c~* < 0, we 
have obtained results for different values of~ and t*. These are presented in Figs. 5 and 6. Figure 5 
shows the representative values of Fw' along with the comparison of our steady state results for 
the flat plate with those of [25]. Dual values of F,j for all values of ~ and t* are easily seen in this 
figure, confirming the existence and non-uniqueness of solutions of our boundary-layer problem 
for c~* < c~* < 0. The relevant velocity and temperature fields have been studied in the range of 
c~* under consideration, corresponding to two values of skin friction (see Fig. 5). The appropriate 
velocity and temperature profiles have been presented in Fig. 6. The profiles, corresponding to 
the upper branch of surface shear stress (I), increase monotonically across the boundary-layer to 
reach their free stream values. On the other hand, profiles corresponding to the lower branch of 
surface shear stress (II), reveal the thickening of the boundary-layer. 

The velocity profiles u/ue (= F/2) and temperature profiles G for an accelerating free stream 
with ~(t*) = 1 + et .2, e > 0, are presented in Fig. 7. These profiles approach the free stream 
values rapidly as the time t* increases. The suction (A > 0) makes the profiles to become steep 
whereas injection (A < 0) does the opposite. The steepness in these profiles is due to the reduction 
of the boundary-layer thickness, caused by mass removal (suction). 

The velocity profiles for a decelerating free stream ~b(t*) = 1 - zt .2, s > 0, are shown in 
Fig. 8. These profiles are strongly time dependent. Further, the profiles exhibit a declining nature 
in the vicinity of the surface. The reason for such a behaviour in these profiles is due to the 
deceleration of the flow. The velocity gradients near the surface become less than those of the 
cylinder velocity before reaching their free stream conditions. However, in the steady flow they 
simply approach to free stream values, since the effect of unsteadiness is absent. 

The effect of the viscous dissipation on the temperature profiles is displayed in Fig. 9 where 
the surface temperature is constant (i.e., R(t*) = 1). If Ec > 0, t* > 0, the temperature profiles 
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exhibit an overshoot and the magnitude of the overshoot decreases with an increase of t*. But 
when Ec --- - 2 . 0  and t* > 1, the profiles show G < 0 near the surface. This indicates that due to 
viscous dissipation, the fluid near the surface heats up and its temperature becomes larger than 
that of the cylinder, although originally the surface of the cylinder was at higher temperature. 
Thus the cylinder is heated instead of being cooled, because the 'heat cushion', provided by the 
frictional heat, prevents cooling. However, when t* = 0 and Ec = - 2 . 0  no such phenomenon is 
observed and the heat is transferred from the cylinder to the fluid. 

The variation of Cy(Re~) I/2 and Nu~(Re~) -I/2 with time t* and for several values of the 
transverse curvature and mass transfer (~, A), is shown in Figs. 1 0 - 1 2 .  Figures 10 and 11 show, 
respectively, the results of Cy(Rex) 1/2 and Nu~ (Re~) -1/2, both for accelerating flow as well as 
decelerating flow while Fig. 12 gives the results for exponentially decelerating flow with 
~b(t*) = 1 - a(1 - exp (-ct*2)),  a > 0, c > 0. In the accelerating flow it is observed (Fig. 10), that 
for a given ~ and t* suction increases both: C~(Re~) 1/z and Nu~ (Re~) -l/z, whereas the effect of 

injection is just the opposite. Moreover,  Cs(Re~) 1/z increases rapidly as compared to 
Nu~ (Re,)-~/z with the increase of t*. The reverse trend is observed in the case of decelerating flow 
(Fig. 11). The growth of these coefficients in the accelerating flow is due to the fact that we have 
taken q~(t*) = 1 + et .2 (~ > 0), which corresponds to the accelerating velocity distribution of the 
free stream. On the other hand, the velocity distribution q~(t*) = 1 - ~t .2, (~ > 0) corresponds to 
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Fig. 13. a Surface temperature variation effects on heat transfer b Viscous dissipation effects on heat-transfer 
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a decelerating flow of the free stream, wherein these physical quantities decrease with time. 

Further it is observed that for a given value of A, in the case of an unsteady accelerating 

flow, CI(Re~) 1/2 is more than twice that of Ci(Rex) 1/2 in the steady flow. But the rate of 
heat-transfer in both cases remains to be the same. Indeed, for a fixed value of A, the 
percentage increase in Cf(Rex) 1/2 for an increase in ~ from 0 to 1.5, is 41% for a steadily and 

93% for an unsteadily accelerating flow. Also, for a given value of A and for a fixed value of 
4, the percentage increase in Cs(Rex) 1/2 for an increase in t* from 0 to 2.5 is quite high, but 

in the case of Nux(Rex) -~/2, the percentage of increase is about 13%. On the other hand and 

in the case of decelerating flow, due to the increase in both the momentum and the thermal 
boundary-layer thicknesses, both Cy(Rex) 1/2 and Nux (Rex) -1/2 decrease with increasing time. 
And it is observed that for a fixed value of ~ and A, the percentage decrease in Cz(Rex) ~/z for 

an increase in t* from 0 to 2.0 is 50%, whereas in the case of Nux(Rex) -1/2 it is about 12%. 

The results for exponentially decelerating flow (Fig. 12) show that Cf(R%) 1/2 as well as 
Nux(Rex) -~/2 decrease with time t*. Further it is found that the skin friction and the 

heat-transfer values reach their new steady state values after t = t~*. The behaviour of 
Cs(Rex) l/z, Nux(R%) -1/2 as well as the velocity and the temperature profiles, mentioned 

above for different unsteady velocity distributions, is qualitatively the same, whenever Vw is 

constant or v,~ varies as x -1/2. Only a few selected results have been presented here, for the 
sake of brevity. 

The effects of the variation of surface temperature and viscous dissipation on Nu~ (Rex)-1/2 

are shown in Fig. 13. It is observed in Fig. 13 a, that, when the surface temperature increases, the 

heat-transfer is from the cylinder to the fluid and increases with time t*. But when the surface 
temperature decreases with time, initially Nux (Rex) -x/2 > 0 (i.e., for t* < 0.4) but it decreases for 
t* > 0.4. Further, it can be seen easily in Fig. 13b that Nux (R%) -1/2 ~ 0 according to Ec ~ 0. 

This implies that heat is transferred from the cylinder to the fluid if Ec > 0 and from the fluid to 

the cylinder if Ec < 0. 

4 Conclusions 

The skin friction and heat-transfer results are significantly affected by the time-dependent free 

stream velocity distributions as well as by the cylinder velocity. This increase is due to transverse 
curvature and suction. The effect of injection is found to do just the opposite. In the case of 

a downstream moving cylinder, the skin friction decreases with the increase of the cylinder 

velocity but the heat-transfer increases. Skin friction solutions for the upstream moving cylinder 
exist only for a small range of c~ and further these are found to be nonunique in this region. The 

viscous dissipation and the variation of the surface temperature have a pronounced effect on the 
heat-transfer. The temperature field is strongly influenced by the viscous dissipation. 
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