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Summary  

Following th e granular flow kinetic theory of Lun, Savage, Jeffrey and Chepurniy, 
a moment method is used to obtain the approximate form for the single particle velocity 
distribution function for the ease of smooth, slightly inelastic, uniform spherical particles 
in which the coefficient of restitution e depends upon the particle impact velocity. Con- 
stitutive equations for stress are derived and the theory is applied to the case of a simple 
shear flow. Theoretical predictions of stresses are compared with experimental results. 
The effect of the impact velocity dependent e is to cause the stresses to vary with the 
shear rate raised to a power less than two; this is consistent with the experimental ob- 
servations. On the basis of the present theory and comparisons with experimental data 
it is concluded that  theoretical models which include both surface friction and an impact 
veIoeity dependent e will lead to improved agreement between the theoretical predictions 
and the measurements. 

1. Introduction 

A number  of recent  studies dealing with the flow of granular  materials con- 

sidered the particle mechanics at  the microstructural  level. T h e y  incorporated the 

effects of material  properties such as the coefficient of restitution, which a r e  

necessary to account  for the dissipation of energy  in inelastic grain interactions 

([1]--[8]). All of the above  work except  the numerical  simulation of Wal ton  and  

Braun  [8] has assumed a constant  coefficient of rest i tut ion e for a specific granular  

material.  I-Iowever, f rom physical  considerations, the results of theoretical anal-  
yses of the plastic deformations tha t  occur during a collision, as well as f rom 

experimental  evidence [9], it is apparen t  tha t  e is dependent  upon  the impac~ 
veloci ty  for  a given granular  material.  

I t  is interesting to note  tha t  theoretical models using approaches analogous to 

the kinetic theory  of dilute gases have been a t t empted  in the context  of as t ro-  
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physics and space science ([10]--[13]). Basically, these theories employed a 
modified integrodifferential Boltzmann equation of velocity distribution function 
for  dilute gases which incorporated the effects of inelastic collisions between 
grains to s tudy the formation of the Solar System and planetary rings such as 
Saturn 's  rings. Trulsen [10] and Hameen-Anttila [11] considered the ease of a 
constant coefficient of restitution while Goldreich and Tremaine [12] assumed e to 
depend in a simple way upon the root mean square velocity of the particles. 

In the present study, we extend the kinetic theory developed in Lun et al. [I] 
to the ease where the coefficient of restitution of the granular materials depends 
upon the impact velocity during a binary collision between smooth, inelastic 
.spherical particles. The ease of simple shear will be studied in detail and the 
theoretical prediction of stresses will be compared with experimental measure- 
ments. 

2. Kinet ic  Theory  

The moment equation, the conservation equations of mass, momentum, 
translational kinetic fluctuation energy and the integral forms for the constitutive 
equations such as the rate of energy dissipation, stresses and kinetic fluctuation 
energy flux which were derived in [1], are still appropriate for the case of granular 
:flows with materials having an impact velocity dependent coefficient of resti- 
tution e. 

The ensemble average of the single-particle quanti ty $ is defined as 

1 
; r  c; t) de (1) 

where n is the particle number density and /(1) is the single particle velocity 
distribution function. The equation of change for the mean value of particle 
quan t i ty  is 

a 
a--/<~r = (De> -- P.  <,m~> + ~,  0 4- z 

and  (2) 
a~ c~ leo c~q, 

where c is instantaneous particle velocity and te0 is the external force field. The 
collisional transfer contribution is 

= _ _  2 (01' - -  01) (c12 �9 k )  k / ( 2 )  (v - -  y T ~ k ,  c2 ; t) 

c~2 �9 k > 0 �9 dk  dc, de2 

(a) 
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and the 'source-like' contribution is 

(4)  

c~2 �9 k ~ 0 �9 d k  d e 1  d c ~ ,  

where subscripts 1 and 2 denote the quantities for particles 1 and 2 respectively. 
By  taking ~b to be m, me and mc2/2 in (2), we obtain the usual hydrodynamic 

equations 
~Q 
- -  = - - ~  v .  u (5 )  
dt 

d u  
~ - : Q b - -  V . P  (6) 

3 d T  
- -  o - -  = - - P  : V u  - -  V .  q - -  ~ .  (7) 
2 dt 

In  these equations ~ ~ m n  ~ ~ep is the bulk density, v is the bulk solids fraction 
(volume of solids/total volume), ~p is the mass density of an individual particle, 
u ~ (c} is the bulk velocity, P is the stress tensor and b is the body force per unit 

3 T -~ 1 (C2} is the specific kinetic energy of the velocity fluctua- mass. Finally, ~- ~- 

tion energy where C = c - -  u, and q is the flux of fluctuation energy. The quant i ty  
T is known as the granular ' temperature ' .  

The stress tensor P is the sum of a kinetic par t  Pk and a collisional par t  Pc 

Pk  : o~(CC}, Pc  = O(mc). (8), (9) 

Similarly, the flux of fluctuation energy q is the sum of a kinetic par t  qk and a 

collisional par t  q,. 

qk -~ ~(CzC}/2,  qe -~ 0(mC2/2) �9 (10), (11) 

The collisional rate  of energy dissipation per unit volume is y = - -z (mc2/2) .  

3. Collision Model 

Goldsmith [9] presented a number  of experiments in which the coefficient of 
resti tution for different materials was measured as a function of impact  velocity. 
The values of e were found to decrease with increasing impact  velocity. At very 
low impact  velocity, where the particle deformation is essentially elastic and the 
energy dissipated is small, e has values close to one. At high impact  velocity, 
where the effect of plastic deformation and energy dissipation are significant, e is 
.small compared to unity. The case of zero e represents the situation where the 
colliding particles do not rebound after the collision. 

2 A c t a  Mech.  63/1-4 
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A dimensional analysis for the collision between two identical inelastic spherical 
particles can be used to obtain an expression relating e to the relevant physical 
variables. The coefficient of restitution e may  be expressed as follows 

e =/n((~, ep, lk .  c~[, po, E, ~p,g), (12) 

where c1~ ~ cl - -  c2 is the relative velocity and k is the unit vector between the 
centers of the two colliding particles, Pc is the yield stress, E is the modulus of 
elasticity and vp is the Poisson's ratio and g is the gravitat ional  acceleration. We 
may  rewrite (12) in terms of dimensionless groups as follows 

e = l~((eplE) lI2 Ik .  c,~l, PolE, ~,p, po(~opg(~)) �9 (13) 

These non-dimensional groups, except the last one, are consistent with the theo- 
retical analysis presented by  Goldsmith [9] which accounted for the plastic de- 

formation during the collision. If  we multiply both the numerator  and denomi- 
nator  of the last  non-dimensional group in (13) by  the square of the particle 
diameter, then it is clear tha t  the group is proportional to the ratio of the force 
required to make the particle yield and its own weight. This non-dimensioal group 

is unlikely to be impor tant  for most  practical granular materials. The analysis 
of Goldsmith [9] indicates that  the coefficient of restitution is independent of the 
particle diameter for collisions between identical particles. 

In  the present analysis, the coefficient of restitution is assumed to decay 
exponentially with increasing impact  velocity. This trend of reduction in e is 

~i/2 : 0.0001 

0.0CC5 

0 1 I I 
i00 2OO 30O 400 5OO 

Impact velocity cm/s 

Fig. 1. Variation of coefficient of restitution e with impact velocity, - - - - ,  glass spheres 
[9]; ~ ,  present results for gl~.ss spheres 
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indicated by  most of the experimental data obtained using different materials [9], 

i . e .  

e = exp [--~(op/E)  1/2 I k �9 c~r],  (14) 

where d is a v..on-dimensional coefficient. Moreover, an exponential decay function 
for the coefficient of restitution is very convenient for the computations of the  
constitutive integrals such as the stresses. Equation (14) is plotted in Fig. 1 as a 
function of d(~/E) l/e and impact velocity. Labora tory  experiments were per- 
formed to determine e versus impact velocity (see Appendix A for details) for 
glass spheres with diameters from 2.0 to 2.5 mm. The results of these experiments 
and those presented by  Goldsmith yield a value for the group 5(o~/E) 1/2 of  about 

0.0005 s/era. 
The derivations for the relationships between e, the preeollisional and post- 

collisional velocities, and the translational energy lost during a collision were 
given in [1] and will not be repeated here. 

4. Constitutive Equat ions  

We follow the moment method used in [1] to obtain the single particle velocity 
distribution function and the constitutive relations. The calculations are much 
more involved and tedious than the previous ease of a constant coefficient of 
restitution, hence we restrict our at tention to the constitutive equations for the 
stresses which are sufficient to s tudy the ease of simple shear. 

The singlet distribution function/(1) may  be written in the form of a per- 
turbation of the local Maxweltian distribution ](o) 

/(1)=/(0) (1 ~_ a l e ~  Vu) ,  (15) 

where the traceless dyadic 

o 1 2 
CC = C C  --  - -  C I .  (16) 

3 

We make the Enskog assumption for the pair velocity distribution function such 

that  

/(2)(rl, c~ ; r2, c2 ; t) = go(v) ](1)(r --  (~k, c~ ; t) ](1)(r, c2 ; t). (17) 

An empirical equation for the radial distribution function is employed (Appen- 

dix B) 

go(V) = (1 --  v/rm) -5~/2. (18) 

The coefficient al may  be determined using the moment method by  considering 
the case of Vu = e~e~du/dy  (where u = (u, v, w)), T and n being constants and 

2* 
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taking m o m e n t  of $ = c~c v ii1 (2), (3) and  (4). Thus  we f ind 

C~ 1 - -  

( 8 )  
P 1 + b2w0 (19) o T'~cJobl -5 

5m(T/~)~l~ (20) 

where # is tlle shear  viscosi ty  for  per fec t ly  elastic part icles (i.e. 6 = 0) a t  dilute 

concentrat ion.  B y  using (8) and  (9), we m a y  calculate the cons t i tu t ive  equa t ion  
for  the stresses. The  kinetic and  collisional contr ibut ions  to the to ta l  stress tensor  
P are 

Pc = 4~ Tb~vcJoI 

where 

Pk=oTI - -  2re (1-1- 8 ) 
" gob1 --~ b~vgo S (21) 

16~u~b3(1-~- S ) 256b~Fv29o[6S+(V.u) I ] 5bl "~ b2Wo S -- 5--'-~ 
(22) 

1 1 
S = -~- (u~,j + u~.d - -  -3- uk,edij. (23) 

The  to ta l  stress tensor  m a y  be wr i t t en  as 

where 

P = Pk + Pc 

= [,oT(1 + 4b6w0) - -  b,FbV, u] I 
8 6 

(24) 

256 
#b = 5~ #~29~ (25) 

is the bulk  viscosi ty for  per fec t ly  elastic part icles and  b4Fb is tha t  p r o p e r t y  for the 
inelastic particles.  

The  expression for  the  collisional ra te  of energy dissipat ion per  uni t  vo lume is 

12~pv~g~ bsT 3/2. (26) 
7 ~12~ 

The  variables  bl to b6 are compl ica ted  funct ions of a nondimensional  granular  
t empera tu re  T* which is defined as 

T* -= ~(0p/E) T (27) 
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and 

b ~ =  1 - -  ~ t 3 T * _ _ 8  T .2 

5 2  - -  

(uT*)I/~ (3 + 2T .2) exp (T*) eric (T .1/~) 
6 3 3 

(28) 

+ (~T*) 1/2 1 ~- 6T* + -~ T .2 exp (4T*) erie (2T .1/2) 

1 2 (3 ~- 4T*) -~ + T* exp (T*) erie (T .1/2) 
4 

(29) 

-}- -~- (1 + 5T* + 2T .2) exp (T*) eric (T .1I~) --  (2 + :T*) (30) 

1 (~T*) 1/~ 
+ ~ (1 + T*) 4 (3 + 2T*) exp (T*) eric (T *x12) (31) 

1 
b3 = 

1 b~=~ 

b5 : - -4T* ~- (TgT*) 112 (3 ~- 8T*) exp (4T*) eric (2T *l/e) 

1 1 
b~ : ~- + ~ (1 + 2T*) exp (T*) er ic  (T  *1/2) - -  (T*/7~) 1/2 

(32) 

(33) 

where eric (x) is the usual complementary error function which was approximated 
using rational functions [14]. 

When we take the limit of ~--> 0, e--> 1 corresponding to perfectly elastic 
particles, then (21)--(33) reduce to the classical results for dense hard sphere 
fhiids ([15], [16]) and the eotlisiona] rate of energy dissipation term in (26) vanishes. 

5. Simple Shear Flow 

In  this section, we s tudy the case of a mean simple shear flow (constant shear 
rate) u - - u ( y )  e~ having no gradients of fluctuation kinetic energy or bulk 
density. The translational fluctuation energy equation (7) reduces to a simple 
balance between the shear work and the rate of dissipation 

P ~  ~ + r = 0 .  (34) 
~y 

From (24), we obtain the following expressions for the shear and normal stresses 

P~:u = P ~  -~ --F(~,, T*) -~ 9p(~T) 1/2 (35) 

P~y -~ P ~  = P~ -= oT(1 + 4b~g0). (36) 
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Using (26), (34) and (35), we obtain a relationship for the nondimensional param- 
eter R 

= [ 
R -- (3T)~/u [5~rF(u, T*) j (37) 

where 

)( ; ) (38) 

5.1 Estimation o / M e a n  Particle Impact  Velocity 

Depending upon the rate of shear, the granular particles will collide with 
different impact velocities. Hence, it is worthwhile to determine the range of 
mean impact velocities experienced by the particles in the flow system. 

In a simple approximate way, we may estimate the particle's impact velocity 
by taking the ratio of the mean separatiou distance 8 of the particles to the mean 
time interval between successive collisions, i.e. V~ = siT. The mean partiele 
separation distance s may be expressed in terms of (vm/v) [17] as follows 

8 = f f [ (Vm/ , )  1/3 - -  1]. (39) 

The mean time between collisions T is given by the reciprocal of the collision 
frequency, hence we obtain 

~-l=lf,~2(c~.k)/(2)(v--~k,c~;v,c:;t)dkdcldc~. 
(~0) 

C12 �9 k > 0 

Using (15) and (16), Eq. (40) may be evaluated readily to yield 

T -1 ~- 4~l/~nr2goT1/2. (41) 

Hence the mean particle impact velocity is given by 

24 
~ = ~ go[(~,~/~) lj~ - 1 ]  T 1I~. (42) 

Equation (42) will be used in Section 6 to estimate Vi for the shear cell experi- 
ments of Hanes [18] and Savage and Sayed [20]. 

6. Comparison with Experimental Data 

We may compare the theory with the experimental results for dry glass beads 
presented by Hanes [18], [19] and those for dry polystyrene beads obtained by 
Savage arid Sayed [20]; both sets of data were obtained with similar annular shear 
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cells. In  the comparisons that  follow, unless otherwise specified, experimental 

measurements of stresses a t  the top plate of the annular shear cells of Savage and 

Sayed [20] and Hanes [18] are used. Table 1 below summarizes the materials tested 

in their experiments. 

Table 1 

Experiments Grains Mean Specific Max. 
din. (ram) gravity cone. 

Hanes [19] Gl~ss I 1.1 2.5 0.64 
Glass I I  1.85 2.8 0.55 

Savage and Glass I I I  1.80 2.97 0.552 
Sayed [20]  Polystyrene I 1.0 1.095 0.551 

Polystyrene I IA 1.32 1.095 0.537 
Polystyrene I IB  1.32 1.095 0.548 

In  the following presentations, broken curves represent calculations using the 
kinetic theory derived in [1] for particles with a constant coefficient of restitution 
whereas the solid curves represent the predictions of the present theory for 

particles with an e which depends upon the impact  velocity. The broken curves 
for both the normal and shear stresses indicate a quadratic shear rate dependence 
in agreement with the physical arguments  of Bagnold [17] for the grain inertia 
regime. FIowever, most  of the experimental  results indicate variations with the 

shear rate to a power somewhat less than two. Previously, the explanation 
offered for the reduction in the quadratic shear rate dependence of the stresses 
was that  it was due to the effect of dry  Coulomb rubbing friction during particle 
overriding [20] which gives rise to shear-rate independent stress contributions. 
From the present results, there seems to exist another possible mechanism which 
can cause the stresses to vary  with shear rate raised to a power of less than two. 

This is perhaps the major  result of the present study. 
By  curve fitting the experimental  measurements of the coefficient of restitution 

for glass beads as shown in Fig. 1, the dimensionless group ~(@v/E) 1/2 ]k.  c1~1 is 

found to be about  5 • 10 -4 ]k.  v12]. A mean value of e ~ 0.95 is used in the 
constant e theory of [1]. Figs. 2 to 5 present some typical results of the theoretical 

predictions for glass beads with a mean diameter of 1.1 ram. 
Fig. 2 shows the variation of the mean impact  velocity of the granular particles 

with the shear rate for different solids fractions tested in Hanes '  experiments [18]. 
The analysis of Section 5.1 can be used to estimate the range of impact  velocities 
experienced by  the particles. I t  is noted that  the range of shear rates tested in the 
experiments was from 40 to 300 s -~ which corresponds to the range of mean 
particle impact  velocities for gl~ss beads of about  40 to 200 cm/s computed using 
Eq. (4=2). This range of impact  velocities in the shear cell experiments ~Ls similar 
to the range of velocities tested in the coefficient of restitution experiments that  
~re shown in Fig. 1. 
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Fig. 2. Variation of mean impact  velocity Y~ with  shear ra te  for the case of shearing 
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with shear rate  for the case of shearing glass beads with a mean diameter  of 1.1 mm,  

, present  theory;  . . . .  , cons tan t  e theory  [i]  
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Fig. 4. Variation of a normal stress b shear stress and c shear to normal stress ratio with 
she~tr r~te for the case of shearing glass beads with a mean diameter of 1.1 mm [18]. 

- - ,  present theory; . . . .  , constant e theory [1] 

Fig.  3 shows the  va r i a t i on  of the  nond imens iona l  p a r a m e t e r  R (defined as the  

ra t io  of the  mean  charac te r i s t i c  ve loc i ty  to the  r .m.s,  f l uc tua t ion  veloci ty)  wi th  

shear  ra te .  The  p a r a m e t e r  R increases  wi th  increas ing shear  r a t e  for  the  ease of 

mater iMs having  an  i m p a c t  ve loc i ty  dependen t  e whereas i t  is i ndependen t  of 

shear  r a t e  for  par t ic les  hav ing  a cons t an t  e. 

Figs .  4.a, b, e compare  the  expe r imen ta l  resul ts  of the  no rma l  stress,  the  

shear  s tress  a n d  the  shear  to no rma l  s tress  ra t io  for  1.1 m m  glass beads  wi th  the  

p red ic t ions  of the  two theories.  The  p r ed i c t ed  n o r m a l  stresses are  higher  t han  

the measurements ,  whereas  the  p red i c t ed  shear  stresses a re  closer to the  measured  

ones. Genera l ly  speaking,  the  p red i c t ed  stresses (the solid cu rves ) ind i ca t e  var ia -  

t ions  wi th  the  shear  r a t e  ra ised to a power  less t h a n  two which agree qui te  well 

wi th  the  expe r imen t a l  resul ts .  The compar isons  for  the  stresses a t  solids f rac t ions  

lower  t h a n  0.49 a re  no t  shown here because  the  e xpe r ime n t a l  d a t a  were c lus tered  

toge ther  and  show l i t t le  dependence  u p o n  ~. At  the  p resen t  t ime,  the  cause for  the  

c luster ing of the  expe r imen ta l  resul ts  for  solids f rac t ions  lower t h a n  0.49 is n o t  

o l e a r .  

The p red ic t ed  stress ra t ios  are  much  lower  t h a n  the  measured  values.  The  

p red ic t ed  stress  ra t io  is i ndependen t  of shear  r a t e  for ma te r i a l s  wi th  a cons tan t  e 

(broken curves) whereas  the  stress ra t io  depends  on the shear  r a t e  for  ma te r i a l s  
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Fig. 5. Variation of non-dimensional a normal stress b shear stress and c shear to normal 
stress ratio with shear rate for the case of shearing glass beads with a mean diameter 

of 1.1 mm [18]. , present theory; . . . .  , constant e theory [1] 

with an impact velocity dependent e (solid curves). Both sets of calculations 

indicate only slight variations with concentration over the small range of solids 

fractions covered in the experiments. The experimental stress ratios decrease with 

increasing shear rate and increasing solids fraction. These trends are opposite to 

those suggested by the present theoretical results. 

All the results in Figs. 4.a, b, c may be presented in a somewhat different 
manner by  plotting the non-dimensional stresses versus the solids fraction for a 

fixed shear rate as shown in Figs. 5.a, b, c. Only the experimental measurements 

at  the lowest and the highest shear rates for a given solids concentration tested 

are presented in the figures and they are denoted by solid and open symbols 

respectively. The present theoretical predictions show that the non-dimensional 
stresses decrease with increasing shear rate; this agrees qualitatively with the 

trend shown by the experimental results. Fig. 5a shows the variation of non- 
dimensional normal stress with solids fraction. One noteworthy feature of this 
figure is the shift of the minima when an impact velocity dependence e is employed 

instead of a constant e. 
The quantitative discrepancies in the normal stress and the shear to normal 

stress ratio between the predictions of the two kinetic theories and the experi- 
mental measurements possibly are due to the incompleteness of the present 
analyses in which surface friction of the granular materials has been ignored. 
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According to the theories of [2] and [3], which incorporated the effect of par- 
ticles' surface friction, the stresses were found to decrease with increasing values 

of the particles' surface coefficient of friction. In addition to the effect of surface 
friction, the kinetic theory for rough particles developed in [21] (which accounts 
for the effect of ro tary  inertia) predicts that  as the surface roughness of the 
particles increases, the normal stress is reduced more drastically than the shear 
stress. AS a result, the predicted stress ratio is increased. Thus, it seems possible 
that  a proper inclusion of the effects of surface roughness and impact velocity 
dependent coefficient of restitution in the analysis would yield closer agreement 
with carefully conducted measurements. 

Although the present analysis of simple shear flow has not  incorporated the 
effect of gravity, it is interesting to compare the theoretical predictions with the 
measured stresses developed at  different horizontal planes within the annular 
shear cell for shearing glass beads with mean diameter of 1.1 mm [18]. The shear 
stresses are assumed to be uniform in the vertical direction for the ease of simple 
shear flow. The experimental normal stresses increase with increasing depth due 
to the weight of the materials being sheared. Thus, the predicted normal stresses 
agree somewhat bet ter  with the experimental results which are transformed to 
the mid-depth or the bot tom of the trough of the annular shear cell. Due to lack 
of space these comparisons are not  made here. 
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Only the comparisons of the predicted stress ratios with the experimental 

measurements transformed to the bot tom of the trough are shown in Fig. 6. The 

agreement between the theoretical predictions and the measurements is improved 

when compared to that  presented in Fig. 4c. The measured stress ratio increases 

slightly with increasing shear rate and decreasing solids fraction while the pre- 

dicted stress ratio increases gradually with increasing shear rate but decreases 

with decreasing solids fraction. These variations of the stress ratio with shear rate 
and solids fraction for shearing glass beads are similar to the results obtained for 
shearing polystyrene beads (Figs. 9 to 11). 

Figs. 7 and 8 show the comparisons of the theoretical predictions for 1.85 and 
1.8 mm mean diameter glass beads with the experimental data obtained by 
Hanes [18] and Savage and Sayed [20] respectively. The results for the 1.85 mm 
glass beads are quite similar to those discussed above for the case of the 1.1 mm 
glass beads. However, the experimental results for the 1.8 mm glass beads are 
much lower than the theoretical predictions. The low values of stresses measured 
for the case of the 1.8 mm glass beads may have been caused by slip at the rough 
sand paper boundaries used in the annular shear cell of Savage and Sayed [20]. 
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Unfortunately, there are no experimental data available on the coefficient of 
restitution for the polystyrene beads as a function of impact velocity (see Ap- 
pendix A). In order to make predictions of the shear cell results for sheared poly- 
styrene particles the dimensionless group 6(~p/E) 1/2 Ik.  el~l was assigned a value 
of 2 • 10 -3 lk .  et~] and an e of 0.8 was used in the constant e theory of [1]. 

The comparisons of the theoretical predictions and the experimental results 
for normal and shear stresses are shown in Figs. 9 to 11. The qualitative behaviour 
of the stresses is similar to that  for the glass beads. However, it is interesting to 
note that  the measured stress ratios for the polystyrene beads increase slightly 
wi th  increasing shear rate and decreasing solids concentration which is similar 
to the previous experimental results for glass beads transformed to the bottom 
of the trough. Since the glass beads are heavier than the polystyrene particles, 
gravity had a stronger effect on the normal stresses developed in sheared glass 
beads than those developed in the polystyrene beads. As a result, the agreement 
between the theoretical predictions and the experimental results measured at the 
top plate for the polystyrene bead tests is better than that  for the glass bead 
tests. 

7. Conclusion 

The present analysis extends the kinetic theory for rapid granular flows 
developed in Lun, et al. [1] to consider the flow of materials having an impact 
velocity dependent coefficient of restitution e. An empirical exponential decay 
function was introduced to describe the variation of e with the impact velocity. 
Constitutive equations for the stress and the rate of energy dissipation were 
derived. The theory  was then applied to the case of simple shear and the pre- 
dictions were compared with the results from a nmnber of experiments. 

Experiments were performed to obtain the coefficient of restitution for glass 
beads. Quantitative results of e for polystyrene beads could not be obtained 
using the present experimental apparatus. 

The predicted normal and shear stresses are proportional to the shear rate 
raised to a power less than two. The shear to normal stress ratio was found to 
increase with increasing shear rate. In addition to the effect of dry  Coulomb 
rubbing friction as suggested by  Savage and Sayed [20], the present theory shows 
that  the effect of an impact velocity dependent e can cause the stresses to vary 
with the shear rate raised to a power less than two in the grain inertia regime. In  
general, the predicted normal stress is higher than the measurements, the pre- 
dicted shear stress is in fair agreement, and hence the predicted stress ratio is low. 
The proper inclusion of the surface friction, ro tary  inertia and dry Coulomb 
effects in the present kinetic theory may lead to better  agreement with results 
from carefully conducted experiments. 
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A p p e n d i x  A :  Coef f ic ient  of R e s t i t u t i o n  

A simple experiment was conducted to determine the coefficient of restitution 
for glass and polystyrene beads of diameter ranging from 2.0 to 2.5 ram. The test 
particles were fed in at the upper end of a nearly vertical glass tube and fell 
freely through it. At the lower end of the tube the particle bounced between two 
horizontal plates separated by  some (adjustable) known distance H. Small 
electronic microphones were attached to each plate in order to pick up the signals 
generated by  particle collisions. The signals were filtered and amplified, and were 
then fed into a DEC Minc-11 computer system which determined the successive 
real time intervals between collisions made by  the particle with the top and the 
bottom plates. The apparatus was set up by  Mr. W. Durell as a final year under- 
graduate project. 

The simple equation of motion for a free falling spherical particle under 
gravi ty in the negative x-direction taking into account the effect of the air drag 
may  be written as 

c~u 8~t 2 
. . . .  (a i) 
dt  g 

where the non-dimensional parameter 

3e~CD 
e . . . .  , (A 2) 

4~p 

u is the particle velocity in the positive x-direction, g is the gravitational constant, 
Q~ is the density of air, CD is the drag coefficient. An estimate of the Reynolds 
number in these experiments for a spherical particle of 2 mm in diameter shows 
that  the flow is in the turbulent regime. Thus, we assume a constant drag coef- 
ficient CD of 0.4. Since the density ratio between the air and the solid particle is 
small, the parameter s is also small, i.e. e ~ 1. We seek a solution for Eq. (A 1) 
by  using a perturbation method, i.e, we expand u in terms of powers of the small 
parameter e as follows 

u = uo + eul + e2u~ + . . .  (A 3) 

This expansion in powers of e is appropriate for small time and for the case in 
which the initial velocity is not  close to the terminal velocity. Both conditions 
are satisfied in the present experiment. Substituting (A 3) into (A 1) and matching 
terms of order e, we obtain 

duo 
dt  - -  g (A 4) 

d u  1 
- -  = --u0 2 (A 5) 
dt 
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Mter  integrating (A 4) and (A 5) and substituting into (A 3), we find for the first 
order solution 

u = us -4- gt  - -  (e/a)  (ui2t  -4- u ig t  z + 92t3/3) ,  (A 6) 

where us is the initial velocity. The distance fallen is 

x --~ u~t -[- gt2/2 - -  (s /a)  (u~2t2/2 ~-  u~gt3/3 + g2ta/12). (A 7) 

Similarly, for a particle travelling vertically upward against gravity, the solutions 
of the velocity and the distance travelled are 

and 

u = u~ - g t  - ( s / z )  ( u ~ t  - u a t  2 + g~t3/3)  

x -~ u~t - -  gt2/2 - -  (e/a)  (u~2t2/2 - -  u~gta/3 -}- 92ta/12). 

(A S) 

(A 9) 

By knowing the time intervals between several successive collisions between the 
particle and the two plates, we may solve for the impact as well as the rebound 
velocities of each collision using (A 6) to (A 9) by means of iteration. 

The coefficient of restitution for the glass particle colliding with fixed glass 
plates of 5 mm thick was obtained and its values were plotted against the impact 
velocity as shown in :Fig. 1. The glass particles were found to bounce vigorously 
between the two plates. The results shown in the figure were the measurements of 
the first three collisions of each run. 

Within the range of impact velocities tested, the range of coefficients of 
restitution for the glass beads were found to have values ranging from 0.97 
to 0.85. These values are consistent with those presented by Goldsmith [9] from 
tests of colliding identical glass spheres which are many times larger in diameter 
than the small glass beads tested in the present experiment. :For example, a 
typical result of e = 0.94 quoted by Goldsmith [9] for the glass particles was 
obtained by I-Iodgkinson [22] using two approximately identical glass spheres 
with diameters of about 4.12 cm. These two sets of results seem to agree with 
the dimensional analysis in Section 3 and the theoretical prediction of Goldsmith 
[9] that  the coefficient of restitution is independent of particle diameter. Both 
sets of results show similar trends of behaviour; the coefficient of restitution 
e decreases slightly with increasing impact velocity. 

The present results are scattered about the results presented by Goldsmith 
[9]. l~aman [23] observed from his experiments that  in order to obtain regular 
and consistent results for the coefficient of restitution the surfaces of the colliding 
balls must be clean and polished after each test. In the present experiment 
the beads and the plates, though they were kept clean, were never polished. 
This may explain in part the greater scatter of the present results. I t  also should 
be noted that  the present experiments yield the coefficients of restitution between 
a spherical glass particle and a glass plate. 
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Attempts were made to determine the coefficient of restitution for the poly- 
styrene beads, however due to various limitations in the simple experimental 
set up, we were unable to obtain quantitative results for e. [For example, the 
impact waves generated by the collisions between the polystyrene bead and 
the plates were too weak to be sensed by the microphones. 

Some qualitative tests were performed by bouncing polystyrene beads between 
glass plateS. I t  was found that under the same initial conditions, the polystyrene 
beads bounced fewer times than the glass beads. This implies that  the energy 
dissipated by the polystyrene bead colliding with the glass plates was probably 
higher than that  dissipated by the glass bead. Therefore, the coefficient of resti- 
tution for the polystyrene beads would be lower than that of glass beads. 

Appendix B: Radial Distribution Funct ion 

In order to evaluate the collisional integrals using the Enskog assumption 
for the pair velocity distribution function, we require knowledge of the radial 
distribution function ~/o(v). At low concentrations, the equilibrium radial distri- 
bution function which was derived from geometric considerations of collisions 
between hard spheres [15], [24] may be written as 

go(~) = 1 @ 2.5r -~- 4.592v 2 @ 7.36v 3. (B 1) 

In [1], we have used the empirical formula for go(v) due to Carnahan and Starling 
[25] 

2 - - r  
g0(Y) = (H 2)  

2(1 --  v) 3 

which agrees with molecular dynamics calculations up to v = 0.5. 
Savage [26] has suggested that  the expression given by Ogawa et al. [2] 

g0(v) = [1 -- (v/vm)l/3] -1 (B 3) 

m a y  be more appropriate for use in the expression for [m) at  high concentrations 
during shearing than Eq. (B 2). However, at  low concentrations Eq. (B 3) is 
not consistent with Eq. (B 1) and does not agree with the molecular dynamics 
calculations. 

We propose another expression for the radial distribution function 

g0(v) = (1 - v / ~ )  -5"~/2 (B 4) 

whieh may be more appropriate for use at  high concentrations during shearing 
for small finite systems than Eqs. (B 1) to (B 3). When Eq. (B 4) is expanded 
in power series for small ~, the first two terms are same as those derived in (B 1). 

Eqs. (B 1) to (B 4) were plotted in [Fig. 12 together with the results from the 
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molecular dynamics calculations [27]. The computer simulations were performed 
up to a volume concentration of about  0.641 under equih~rium conditions and 
with the use of periodic boundaries. The computat ion yielded a large increase 
in the normal stress and consequently a large increase in g0(v) (see for example 
Eq. (36)) a t  concentrations near  the max imum concentration ~,~ for random 
closest packing of the system. 

The radial distribution function proposed in (B 4) accounts for the drastic 

increase in g0(v) as v approachs r,n. In  order for the equilibrium radial distribution 
function of Carnahan and Starling (B 2) to describe the same increase in g0(v), 

has to increase to uni ty which is physically impossible for identical hard spheres. 
:For finite granular systems, the value of ~m can be as low as 0.55 or so depending 
upon the size and geometry of the shear space in the test  devices [17], [19]. 
We repeat,  the present form of Eq. (B 4) is proposed for shearing motion whereas 
that  of Oarnahan and Starling (B 2) was based upon simulations involving no 
mean motion. 
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