Martin's Axiom Implies the Existence of Certain Slender Groups*

Riidiger G6bel and Burkard Wald

Fachbereich 6, Mathematik, Universität Essen - Gesamthochschule, Universitätsstraße 3, D-4300 Essen, Federal Republic of Germany

w 1. Introduction and Some Basic Definitions

a) On Growth Types

Let $P = \mathbb{Z}^{\omega}$ be the *Baer-Specker group*, that is the set of all functions $f = {f_n}_{n \in \omega}$ $=\{f_n\} = \{f(n)\}\$ on the first infinite ordinal ω [represented by the non-negative integers] with values taken in the group Z of integers and addition defined coordinate wise. This group P was investigated first in a remarkable paper of Baer [1] in 1937. Some year later, in 1950, Specker [13] discovered some further interesting properties of **P**, basically the idea of "slenderness". If $e_i \in \mathbf{P}$ is the function $e_i = {\delta_{in}}$ on ω defined by the Kronecker symbol δ_{in} for $i \in \omega$, it is quite common and sometimes convenient to write elements $f = {f_n}$ of P as infinite

sums $\sum f_n e_n$; cf. Fuchs [5; p. 159]. n=O

If \mathfrak{M} is the subset of P of all those sequences $\{f_n\}$ which are positive and monotonic, i.e. $1 \le f_n \le f_{n+1}$ for all $n \in \omega$, Specker [13; p. 132] defines a *growth* $type \mathfrak{T}$ by the following two conditions:

(i) $\mathfrak T$ is a non-empty subset of $\mathfrak M$ which is minorant-closed, i.e. if $\{f_n\}\in\mathfrak M$, ${t_n}\in\mathfrak{X}$ and $f_n \leq t_n$ for all $n \in \omega$, then ${f_n}\in\mathfrak{X}$.

(ii) $\mathfrak T$ is closed under sums, i.e. if s, $t \in \mathfrak T$, then $s + t \in \mathfrak T$.

In particular, \mathfrak{M} and its subset \mathfrak{B} of all bounded sequences are (the largest and the smallest respectively) growth types. This definition can be given in terms of a natural quasi-ordering on \mathfrak{M} .

 (\mathfrak{M}, \leq) Let be $\{f_n\} \leq \{g_n\}$ *if and only if there is a kew such that* $f_n \leq k \cdot g_n$ *for all* $n \in \omega$.

We shall distinguish between the following quite common order relations in this paper: A relation is a *quasi-ordering* if it is reflexive and transitive. The relation

Financial support for this paper was furnished by the *Ministerium für Wissenschaft und Forschung des Landes Nordrhein-Westfalen* under the title *Oberabzgthlbare abelsche Gruppen*

" <" is a *partial ordering* if it is transitive and if the underlying set contains no elements x which satisfy $x \le x$. Relations which are reflective, transitive and antisymmetric are called *orderings.*

We can now redefine growth types omitting the algebraic notion of sums as:

Definition 1.1. *Then* $\mathfrak{T} \neq \emptyset$ *is a growth type if*

(i^{*}) $\mathfrak X$ *is a cut of* $\mathfrak M$ *, i.e. if* $f \in \mathfrak M$ *,* $t \in \mathfrak X$ *and* $f \leq t$ *then* $f \in \mathfrak X$

(ii^{*}) $\mathfrak X$ *is directed (upwards) in* $\mathfrak M$, *i.e. if t, u* $\in \mathfrak X$ *there is a v* $\in \mathfrak X$ *such that t* $\leq v$ *and* $u \leq v$.

The growth type $\mathfrak X$ will be called Specker growth type if $\mathfrak X$ is bounded in ($\mathfrak M, \leq$), *i.e. There is an upperbound b* $\in \mathfrak{M}$ such that $t \leq b$ for all $t \in \mathfrak{T}$.

Hence growth types are the ideals of (\mathfrak{M}, \leq) and Specker growth types are the bounded ideals in (\mathfrak{M}, \leq) . Specker [13; p. 137, Satz V] constructed $2^{2^{\aleph_0}}$ different growth types which lead to $2^{2^{\aleph_0}}$ non-isomorphic monotone subgroups of P; cf. part b. All such growth types $\# \mathfrak{M}$ are bounded by $\{n^{n+1}\}\$ and are therefore Specker growth types according to our definition. All Specker growth types are equivalent under the following equivalence relation " \sim " between growth types. This equivalence relation can be motivated algebraically and it will allow us to distinguish between different types of slender groups; cf. part b. It is defined as follows.

Definition 1.2. Denote by \mathfrak{M}_s the subset of all strictly monotone sequences of \mathfrak{M}_s , *i.e. all* ${f_n} \in \mathfrak{M}$ with $f_n + f_{n+1}$ for all $n \in \omega$. Then $r \in \mathfrak{M}_s$ induces a monotone-

 $stretching monomorphism$ $r^*: \mathbf{P} \to \mathbf{P}$ $\left(\sum_{n \in \omega} f_n e_n \to \sum_{n \in \omega} f_n \cdot \sum_{i=r_n} e_i \right)$ $\left[=m-s-monov\right]$ *morphism*]; *cf.* Göbel and Wald [7; p. 216]

Definition 1.3. If \mathfrak{T} , \mathfrak{U} are growth types, let $\mathfrak{T} \lt \mathfrak{U}$ if there is an $r \in \mathfrak{M}$, with $r^*(\mathfrak{T}) \leq \mathfrak{U}$ and let $\mathfrak{T} \sim \mathfrak{U}$ if $\mathfrak{T} \prec \mathfrak{U}$ and $\mathfrak{U} \prec \mathfrak{T}$. Then we denote by $P = (\mathbb{P}, \prec)$ the set *of all* \sim -classes of growth types with the induced ordering \prec .

Then all Specker growth types ${}+ \mathfrak{B}$ are equivalent and thus represented by one element, e.g. the set \mathfrak{L} of all monotone sequences which increase at most linearly. The single sets $\mathfrak M$ and $\mathfrak B$ form equivalence classes by themselves. Hence $3 \leq |\mathbb{P}| \leq 2^{2^{\aleph_0}}$. Because of a 1 - 1 correspondence between the set IP and different classes of slender groups we shall determine the cardinality of IP ; c.f. Corollary 1.7 and G6bel and Wald [7; p. 203, *conjecture].* In sections 2 through 4 we shall be working under ZFC together with *Martin's axiom* (MA) to prove our main result, namely

Theorem 1.4. *Martin's axiom implies* $|\mathbf{IP}| = 2^{2^{\aleph_0}}$.

We refer the reader to Jech [10; pp. 229ff.] and $\S 2$ for a discussion of Martin's axiom. MA is a trivial consequence of the continuum hypothesis (CH) and the opposite is not true; cf. Jech [10; p. 140, Lemma 16.1 and p. 232, Theorem 51]. Therefore our assumptions are relatively consistent with *ZFC;* cf. Jech [10; pp. 108ff]. The fact that $|\mathbb{P}| \ge 4$ in $\mathbb{ZFC} + \mathbb{CH}$ has already been shown by Wald I-Ph-D-thesis, Essen 1979]. The methods applied here are refinements of ideas in Martin's Axiom Implies the Existence of Certain Slender Groups 109

this thesis. We will show, that $|P| \geq 4$ is generally true using **ZFC** only. In order to prove this, we will transform the problem $|{\bf P}|\geq 4$ into an equivalent form without algebraic conditions:

 $(\mathfrak{M}, \subseteq)$ *Define* $\{f_n\} \subseteq \{g_n\}$ *to mean that there is a k* $\in \omega$ with $f_n < g_n$ *for all n* $\in \omega$ *and* $n \geq k$.

This order goes back to Hausdorff [8] and was recently investigated by Hechler [9] (denoted by \lt) whose motivation was purely set theoretical. (I.e. his theorems of the existence of certain scales.)

Then $\mathfrak{T} \leq \mathfrak{M}$ is a \equiv -growth type (or \equiv -ideal) if \mathfrak{T} is a cut and directed with respect to \subset . Now our claim $|P| \geq 4$ can be formulated using the Hausdorff ordering \equiv only. In addition it can be expressed in terms of subsets of ω . The following statements (a), (b) or (c) are equivalent with the opposite case $|\mathbf{P}| \leq 3$:

Proposition. The *following three statements are equivalent:*

- (a) \mathfrak{M} is the only unbounded \leq -growth type in \mathfrak{M} .
- (b) \mathfrak{M} *is the only unbounded* \equiv -growth type in \mathfrak{M} .
- (c) For any family $\mathfrak X$ of subsets of ω which satisfy the property $(*)$ intersections of finitly many members of $\mathfrak X$ are infinite *there is a decomposition of* ω *into finite non-empty subsets* A_n *(n* $\in \omega$ *) such that* $X \cap A_n \neq \emptyset$ *for all* $X \in \mathfrak{X}$ *and almost all* $n \in \omega$ *.*

The proof is given in (5.1). The last condition (*) shows, that ultrafilter will come into play. Therefore in (5.2) for an ultrafilter $\mathfrak X$ it will be shown, that (c) is not valid, which implies $|IP| \geq 4$.

b) Connection Between Growth Types and Slender Groups

According to Specker [13; p. 132] a growth type $\mathfrak X$ can be associated with a subgroup [3;] of P which is called *monotone subgroup* after Fuchs [3; p. 51] and [5; p. 166, exercise 4]:

$$
\{f_n\} \in [\mathfrak{T}] \quad \text{if and only if } \left\{ \max_{i=0}^n (1, |f_i|) \right\} \in \mathfrak{T}.
$$

Obviously we get $P = [\mathfrak{M}]$ and $B = [\mathfrak{B}]$ is the set of all bounded sequences of **P.** Conversely a growth type \mathfrak{T} satisfies $\mathfrak{T} = [\mathfrak{T}] \cap \mathfrak{M}$ and is determined by its monotone subgroup $[\mathfrak{T}]$. The group **B** is the *only* monotone subgroup which is free, as shown by Specker [13; p. 134, Satz II, p. 138, Satz VI with CH] and Nöbeling [11; without CH]. This result was generalized to ring theory; cf. Bergmann [2]. Because our results hold trivially for the monotone group B, *we shall exclude B from the class of monotone groups in the following discussion.*

For the special monotone group P the theory of slender groups was developed by Specker, Łoś, Sasiada, Fuchs and Nunke; cf. Fuchs [5; §94, 95]. Since monotone subgroups have many properties in common, it is natural to develop "slenderness" simultaneously for all monotone subgroups. This was carried out in Göbel and Wald $[7]$: Any monotone subgroup U of P contains

the elements $e_i = \{\delta_{i,n}\}\$ by definition. Hence we generalize slenderness in the sense of Los:

Definition 1.5 [7]. *A group G is called U-slender if any homomorphism* $\sigma: U \rightarrow G$ *maps almost all e_i onto 0.*

Hence P-slender equals slender by definition. In addition G will be called U*stout* if any homomorphism $\sigma: U \rightarrow G$ is 0 if σ maps all e , onto 0; cf. Göbel [6; p. 49, Theorem 4.1]. From our results in [7; p. 10, Satz 4.6] it follows that there is only one class of stout groups, i.e. *U-stout coincides with V-stout for all monotone subgroups U and* V. In Fuchs [3; p. 52, Theorem 2] it is shown that when the cardinality of the groups under discussion is restricted to be less than 2^{\aleph_0} , there is only one class of slender groups. In general, we have the following

Theorem 1.6 [7; p. 17, Satz 5.5]: *Let* \mathfrak{T} and \mathfrak{Y} be two growth types. Then the *following three statements are equivalent:*

- (1) $\mathfrak{T} \lt \mathfrak{Y}$ in the sense of (1.3)
- (2) $\lceil \mathfrak{T} \rceil$ -slender groups are $\lceil \mathfrak{Y} \rceil$ -slender.
- (3) $[$ $[$ \mathfrak{D} $]$ *is not* $[$ \mathfrak{T} $]$ *-slender.*

There is an immediate

Corollary 1.7. (a) $\lceil \mathfrak{T} \rceil$ -slender = $\lceil \mathfrak{Y} \rceil$ -slender if and only if $\mathfrak{T} \sim \mathfrak{Y}$.

(b) The *set of all classes of slender groups defined by monotone subgroups of P is order isomorphic with* (\mathbb{P}, \prec) *from* (1.3).

(c) All Specker growth types (4.2) define the same class of slender groups; cf. [7; p. 20, Satz $5.7(a)$].

Combining (1.7) and our main result (1.4) of this paper, we obtain an answer to the question [7] about the number of different classes of slender groups:

Corollary 1.8. MA *implies the existence of precisely* $2^{2^{\aleph_0}}$ *different classes of slender groups defined by monotone subgroups of P.*

w 2. Specker Growth Types and the Hausdorff Ordering

There is an obvious way to enlarge subsets of the set \mathfrak{M} of all positive and monotone sequences to obtain growth types, following the

Definition 2.1. *If* $X \leq \mathfrak{M}$, let \overline{X} be the intersection of all growth types of \mathfrak{M} *containing X.*

The set \bar{X} can also be described via elements. This will be accomplished by means of the following.

Definition 2.2. *If* $x, y \in \mathfrak{M}$, let be $x \vee y \in \mathfrak{M}$ the point wise maximum, i.e. $x \vee y$ $= \{ \max(x_n, y_n) \}$ *where* $x = \{x_n\}$ *and* $y = \{y_n\}.$

From (2.2) it follows that $x \vee y$ is a least upper bound of x and y with respect to (\mathfrak{M}, \leq) . We derive the immediate consequence.

Martin's Axiom Implies the Existence of Certain Slender Groups 111

Lemma 2.3. Let $X \leq \mathfrak{M}$.

- (a) \bar{X} *is a growth type*
- (b) $X \rightarrow X$ for all $X \leq \mathfrak{M}$ is a closure operation, i.e. $X \leq X, X=X$
- (c) $x \in X$ if and only if there are $x_1, \ldots, x_n \in X$ such that $x \in \mathfrak{M}$ and $x \geq x_1 \vee \ldots \vee x_n$.

Our next result (2.5) shows that many growth types \overline{X} are bounded by certain elements of \mathfrak{M} , and so are Specker growth types. This result is used in § 4 and it will also illustrate that the proof of the existence of growth types which are not Specker growth types will be non-trivial. Corollary 2.5 will be shown under the hypothesis $\mathbf{ZFC} + \mathbf{MA}$.

If (E, \leq) is a quasi-ordered set, two elements a, $b \in E$ are *compatible*, if there exists $c \in E$ with $a \leq c$ and $b \leq c$ and if a, b are not compatible, they will be called *incompatible.* The set (E, \leq) satisfies the *countable anti-chain condition*, if all subsets of pairwise incompatible elements (anti-chains) are at most countable. It is customary to abbreviate the countable anti-chain condition by *c.a.c..* A subset X of E is *dense* in (E, \leq) , if for each $e \in E$ there is an $x \in X$ so that $e \leq x$. **MA** reads as follows (cf. Solovay and Tennenbaum [12; p. 132]):

MA (topological version). Let (P, \leq) be a quasi-ordered set satisfying c.a.c. and D *be a family of less than* 2^{\aleph_0} *subsets of P then there exists a ID-generic subset G of* P, i.e. G satisfies:

- (i) $G \leq P$ is a cut
- (ii) G is directed upwards \int i.e. G is an ideal in F (ci. 1.1).
- (iii) If $D \in \mathbb{D}$ is dense in P, then $D \cap G + \emptyset$.

Theorem 2.4. (ZFC+MA): *If* $X \leq \mathfrak{M}$, $|X| < 2^{\aleph_0}$ *there is an b* $\in \mathfrak{M}_s$ *such that* $x = b$ *for all* $x \in X$.

The proof of (2.4) is given in Jech [10; p. 261, Lemma 24.12] where $b \in \infty$ is constructed. This bound b can be modified to be in \mathfrak{M}_{s} .

Since $\mathfrak{M}_s \subseteq \mathfrak{M}$ and $(f \sqsubset g \Rightarrow f \leq g$ for $f, g \in \mathfrak{M}$, from (2.4) it follows that subsets $X \leq \mathfrak{M}$ of cardinality $\langle 2^{80} \rangle$ are bounded with respect to \leq . Hence we get a

Corollary 2.5. (**ZFC+MA**): *If* $X \leq \mathfrak{M}$, $|X| < 2^{\aleph_0}$ then \overline{X} is a Specker growth type.

In [7] we associated with any strictly monotone sequence $r \in \mathfrak{M}_s$ a stretchingmonomorphism (=s-monomorphism) $r^* \nvert P \rightarrow P$. These monomorphisms where used to classify slender groups.

Since r^{*} never maps \mathfrak{M} into itself if $r \neq \{n\}$, we introduced in (1.2) a second monomorphism r^* which does. We recall the notion of s-monomorphisms from [7].

Definition 2.6. If $r \in \mathfrak{M}_s$, let be $r^*: \mathbf{P} \to \mathbf{P}$ ($\sum_{n \in \omega} f_n e_n \to \sum_{n \in \omega} f_n e_n$) the stretching mo*nomorphism (s-monomorphsim) induced by r.*

The map r^* restricted to \mathfrak{M} can be derived from r^* by making the latter monotone. This follows from

Lemma 2.7. Let be $r \in \mathfrak{M}_s$

(a) If
$$
\tilde{f} = \left\{ \max_{i=1}^{n} (1, |f_i|) \right\}
$$
 for all $f = \{f_n\} \in \mathbf{P}$ then $\tilde{f} = f$ and $r^*(\tilde{f}) = \widetilde{r^*(f)}$ for all $f \in \mathfrak{M}$.

(b) For growth types $\mathfrak X$ and $\mathfrak U$ of $\mathfrak M$ we have $r^*(\mathfrak U) \leq \mathfrak X$ if and only if r^* ([U]) \leq [\mathfrak{T}].

Proof. (a) follows from the definitions r^* and r^* .

(b) Let $r^*(\mathfrak{U}) \leq \mathfrak{X}$ and $f \in [\mathfrak{U}]$. Then $\tilde{f} \in \mathfrak{U}$ and consequently $\widetilde{r^*(f)} = r^*(\tilde{f}) \in \mathfrak{X}$, using (a). Hence $r^*(f) \in [\mathfrak{T}]$. Conversely let $r^*([\mathfrak{U}]) \subseteq [\mathfrak{T}]$ and $f \in \mathfrak{U}$. Then $r^*(f) \in \mathfrak{X}$ follows from $r^*(f)=r^*(\tilde{f})=r^*(\tilde{f})$ und $r^*(f) \in [\mathfrak{X}].$

In §1 we introduced (IP, \lt) using the *m*-s-monomorphism r^* . In [7] we applied s-monomorphisms.

Lemma 2.6 (b) shows that we obtain the same ordered set $[IP] = \{X \subseteq P,$ *monoton*}/ \sim in both cases. Hence the classifications (1.6), (1.7) remain the same if we interchange $*$ and $*$. As in the case of s-monomorphisms, we shall need the following simple and essential

Lemma 2.8. *If g* $\in \mathfrak{M} \setminus \mathfrak{B}$ *and f* $\in \mathfrak{M}$ *there is an r* $\in \mathfrak{M}$ *, such that r*[#](*f*) \leq *g*.

Proof. Since ${g_n}$ is not bounded, there is a strictly monotone positive sequence r $=\{r_n\}$ such that $f_n \leq g_{r_n}$ for all $n \in \omega$. Hence $r^*(f)_{i} = f_n \leq g_{r_n} \leq g_i$ for all $r_n \leq i \leq r_{n+1}$ and all $n \in \omega$. Therefore $r^*(f) \leq g$ by definition (§1) of " \leq ".

Lemma 2.9. *If r, s* \in *M, and r* \subset *s then s*[#](*f*) \leq *r*[#](*f*) *for all f* \in *M.*

Proof. Since $r=s$, there is a $k \in \omega$ such that $r_n < s_n$ for all $n \geq k$. Let be $n \geq s_k$ and choose $e, m \in \omega$ such that $r_e \leq n < r_{e+1}$ and $s_m \leq n < s_{m+1}$. Since $m \geq k$, we get $r_m < s_m \leq n$ and $m \leq e$. If $f \in \mathfrak{M}$, we obtain $s^*(f)_n = f_m \leq f_e = r^*(f)_n$, i.e. $s^*(f) \leq r^*(f)$.

Next we will show that there exists well ordered cofinal subsets of \mathfrak{M}_{α} .

Corollary 2.10. (ZFC+MA) (\mathfrak{M}_s , \equiv) *has a cofinal well ordered chain of length* 2^{\aleph_0} .

Proof. Since $|\mathfrak{M}_s|=2^{\aleph_0}$, we will label the elements of \mathfrak{M}_s in the form x_u for all $\mu \in 2^{\aleph_0}$. Assume that we have constructed r, for $\nu \in \mu$ as well ordered chain already such that

$$
x_{\nu} = r_{\nu} \quad \text{for all } \nu < \mu.
$$

Let be $X = {r_v, x_u, v \in \mu}$. Since $|X| < 2^{\aleph_0}$, from (2.4) we obtain an element $r_u \in \mathfrak{M}_s$ which is upper bound of X. Then the set $\{r_v, v \in 2^{\aleph_0}\}\)$ is defined and by construction it is the required cofinal chain.

w 3. Construction of Compatible and Incompatible Step Functions

The following quasi-ordering of *coarseness* " \subseteq " of functions in $\mathfrak{M}\backslash\mathfrak{B}$ will be very useful in this section. The proofs and the quasi-ordering \subseteq while looking

some what technical are actually quite natural, when one has, in mind, a picture of the constructed functions. Hence we would like to ask the reader become familiar with the figures included in the proofs.

Definition 3.1. (cf. Fig. 1) Let be f, $g \in \mathfrak{M} \backslash \mathfrak{B}$, then say $f \subseteq g$ (g is coarser than f) if *and only if*

- (i) *For almost all n* $\epsilon \omega$ there is an m $\epsilon \omega$ such that $g_n = f_m$
- (ii) *For almost all n* $\epsilon \omega$ with $g_n = f_m$ we have $g_m = f_m$.

We have the following

Lemma 3.2. Let be $r \in \mathfrak{M}$, $f, y \in \mathfrak{M}$ and $f \notin \mathfrak{B}$. There is a $g \in \mathfrak{M}$ with $g \supseteq f$ and $r^*(x) \not\leq y$ *for all* $x \supseteq g$.

Proof. First we construct the sequence $g \in \mathfrak{M}$ by induction: (cf. Fig. 2). Put $g_0 = f_0$ and assume g_k to be constructed already for all $k < n$ and some $0 + n \in \omega$. If $f_n \leq g_{n-1}$, we choose $g_n = g_{n-1}$ and if $f_n > g_{n-1}$ choose $m \geq n$ such that $f_m > r_n \cdot y_{r_n}$ and define $g_n = f_m$.

From $f \in \mathfrak{M} \setminus \mathfrak{B}$ it follows by construction that $g \in \mathfrak{M} \setminus \mathfrak{B}$, too. Next we will verify that $f \subseteq g$. Since (i) of (3.1) is true for all $n \in \omega$, we only have to prove (3.1) (ii): Therefore let $g_n = f_m$ and assume first $m \leq n$. Then $g_m \leq g_n$, since g is monotone. If $g_m < g_n$, we get $g_{m-1} \leq g_m < g_n = f_m$ and therefore $g_m = f_k$ for some $k \ge m$ by construction of g. Hence $g_m < g_n = f_m \le f_k = g_m$ is a contradiction, which

Fig. 2. Idea of the construction (Lemma 3.2)

shows $g_m = g_n$ in this case. If $m > n$, let $n < k \leq m$ for $k \in \omega$. Therefore $f_k \leq f_m$ $=g_n \leq g_{k-1}$ since f and g are monotone. From the construction of g it follows that $g_{k-1} = g_k$ and by induction on k is $f_m = g_n = g_m$. Finally we will show that $r^*(x) \leq y$ for $g \subseteq x$. The inequality has the explicit form

(*) For all $k \in \omega$ there is an $s \in \omega$ such that $r^*(x)(s) > k \cdot y(s)$.

Because of (3.1) and $f \subseteq g \subseteq x$ there is an $e \in \omega$ such that $r_e \geq k$ and

- (i^{*}) For all $n \ge e$ there are $m, i \in \omega$ with $g_n = f_m$ and $x_n = g_i$.
- (ii^{*}) For all $n \ge e$ if $g_n = f_m$ then $f_m = g_m$ moreover $x_n = g_m$ implies $x_m = g_m$.

Now we choose $m \in \omega$ with $m \geq e$ and $x_m > x_e$ and $n \in \omega$ minimal with $x_m = g_n$. From $x_e < x_m = g_n = x_n$ it follows $e < n$ and therefore $r_e < r_n$. If $f_n \le g_{n-1}$ our *n* is no longer minimal with $x_m = g_n$ since $x_m = g_n = g_{n-1}$ by construction of g. Therefore $f_n > g_{n-1}$ and $g_n > r_n \cdot y_{r_n}$ by construction of g. From $r_e < r_n$ follows that $r^*(x)(r_n)$ $=x_n=g_n>r_n\cdot y_{r_n}>r_e y_{r_n}\geq k\cdot y_{r_n}$ and (*) is satisfied for $s=r_n$.

Next we will show that (\mathfrak{M}, \leq) contains many subsets of incompatible functions derived from prescribed elements:

Lemma 3.3. Let be a, b, $c \in \mathfrak{M} \setminus \mathfrak{B}$ and $c \not\leq b$. Then there is an element $s \in \mathfrak{M} \setminus \mathfrak{B}$ such *that* $s \supseteq a$ *and* $c \not\leq x \vee b$ *for all* $x \supseteq s$ *.*

Proof. First we construct $s \in \mathfrak{M} \setminus \mathfrak{B}$ and a sequence $\{i_n\} \in \mathfrak{M}$ by induction. Put s_0 $=a_0$, $i_0=i_1=1$ and assume s_k , i_{k+1} has been constructed for $k < n$ (cf. Fig. 3).

Fig. 3. Idea of the construction (Lemma 3.3)

There are two cases:

(1)
$$
c_{n-1} \leq i_n \cdot \max\{s_{n-1}, b_{n-1}\}\
$$
 or $s_{n-1} = a_m$ for some $m \geq n$

and

(2)
$$
i_n \cdot \max\{s_{n-1}, b_{n-1}\} < c_{n-1}
$$
 and $s_{n-1} + a_m$ for all $m \ge n$.

Put $s_n = s_{n-1}$ and $i_{n+1} = i_n$ in case (1) and choose $m \in \omega$ such that $a_{n-1} < a_m$ and put $s_n = a_m$ and $i_{n+1} = i_n + 1$ in case (2). Next we will show that the constructed element s satisfies the hypothesis of the lemma. To show that $s \in \mathfrak{M}$ we assume by way of contradiction that there exists $0 + n \in \omega$ with $s_n < s_{n-1}$.

From case (2) it follows that $a_{n-1} < s_n < s_{n-1}$. By construction there is an $m \in \omega$ with $s_{n-1} = a_m$. Hence $a_{n-1} < a_m$ and from $a \in \mathfrak{M}$ follows $n \leq m$. Therefore s_n $=s_{n-1}$ by construction of s, which contradicts $s_n < s_{n-1}$. Consequently se \mathfrak{M} .

Now we assume $s \in \mathcal{B}$. There is $k \in \omega$ such that $s_{n-1} = s_n$ and $i_n = i_{n+1}$ for all $n \ge k$ by definition of \mathfrak{B} and (1). Since $a, c \in \mathfrak{M} \backslash \mathfrak{B}$, $c \not\le b$ there exists $m \ge k$ with $s_k < a_m$, $i_{k+1} \cdot s_k < c_m$ and $i_{k+1} \cdot b_m < c_m$. Hence $i_{m+1} \cdot \max \{s_m, b_m\} < c_m$ and $s_m \neq a_n$. for all $n > m$, so that we derive case (2) of the construction. This contradicts s_k $=s_{m+1}$ and $s\in\mathfrak{M}\setminus\mathfrak{B}$ is shown. In order to show $s\supseteq a$, the only condition of (4.1)

which is not obvious, is (3.1) (ii). Hence let us assume $s_n = a_m$. If $n \leq m$, the fact that $s_m = a_m$ follows inductively from the construction in case (1) and so condition (ii) holds. Hence we assume $m < n$ and by way of contradiction assume that $s_m < s_n$. From case (2) of the construction follows that there exists an $e \in \omega$ with $m < e \le n$ and $a_{e-1} < s_e$. Hence $a_{e-1} < s_e \le s_n = a_m$ implies $e \le m$ and the contradiction $m < e \leq m$.

Finally we will show $c \le x \vee b$ for $x \ge s$. Since $\{i_n\} \in \mathfrak{M} \setminus \mathfrak{B}$, for $k \in \omega$ there is an $n \in \omega$ with $i_n \geq k$. Choose $t \geq n$ such that $x_{t-1} < x_t$. Since $s \in \mathfrak{M} \setminus \mathfrak{B}$ and $s \subseteq x$ there is $m \ge t$ with $x_m = s_m < s_{m+1}$.

If $s_m = a_j$ for some $j > m$, we get $s_j = s_m < s_{m+1}$ and so $j \leq m$ which is a contradiction. Therefore $s_m + a_j$ for all $j > m$ and from our construction of s, we obtain $i_{m+1} \cdot \max \{s_m, b_m\} < c_m$ and consequently $c_m \not\leq k \cdot \max \{x_m, b_m\}$. Using the definitions of \leq and \vee and the last inequality, we obtain $c \leq x \vee b$.

Next we will show the existence of upper bounds for chains in $\mathfrak{M}\setminus\mathfrak{B}$ of cardinality $\langle 2^{\aleph_0} \text{ with respect to the coarse ordering } \subseteq .$

Lemma 3.4. (ZFC+MA). Let $\kappa \in 2^{\aleph_0}$ and $a_v \subseteq a_u$ for all $v \in \mu \in \kappa$ be a linearly or*dered chain of elements of* $\mathfrak{M}\backslash\mathfrak{B}$ *. There is an a* $\in\mathfrak{M}\backslash\mathfrak{B}$ such that $a_{\omega}\subseteq a$ for all $v\in\kappa$.

Proof. If F is a finite subset of the ordinal κ , choose $t(F) \in \omega$ minimal with respect to the condition:

- For all $v, \mu \in F$ with $v \leq \mu$ and all $n \geq t(F)$ the following holds:
	- (i) There is an $m \in \omega$ such that $a_u(n) = a_v(m)$.
	- (ii) The equality $a_n(n) = a_n(m)$ implies $a_n(m) = a_n(m)$.

Let P be the set of all pairs (potential conditions) (s, F) of finite subsets F of κ and monotone functions $s: [0, k] \to \omega \setminus 0$ of initial segments $[0, k] = \{x \in \omega;$ $0 \le x \le k$ of ω and any $k \in \omega$. Next we will define a quasi-ordering \le in P:

If (s, F) , $(s', F') \in P$, we define $(s, F) \leq (s', F')$ if and only if the following is satisfied:

- (a) $s \subseteq s'$, i.e. the function s' extends s.
- (b) $F \leq F'$ (the usual subset relation)

(c) If $s \subset s'$ (s' extends *s* properly) and $F' \neq \emptyset$, for all $n \in \text{dom}(s') \setminus \text{dom}(s)$ there are $k_1, k_2 \in \omega$ and $\mu \in F'$ such that the following holds:

- (1) max $(\text{dom}(s)) \leq k_1 < n \leq k_2 \leq \max(\text{dom}(s'))$
- (2) $v \leq \mu$ for all $v \in F$
- (3) $k_2 \ge t(F \cup \{\mu\})$
- (4) $a_u(k_1) < a_u(k_2) < a_u(k_2 + 1)$
- (5) $s'(m) = a_n(k_2)$ if $k_1 < m \leq k_2$.

Using $t(F \cup \{\mu\}) \leq t(F' \cup \{\mu\})$ for $F \leq F'$, one easily checks that (P, \leq) is a quasiordering and \leq is in particular a transitive relation.

In order to show that (P, \leq) satisfies *c.a.c.*, let $C \leq P$ and $|C| > \aleph_0$. The latter implies the existence of elements $(s, F), (s', F') \in C$ such that $s = s'$ and $F \neq F'$. If F'' $=F \cup F'$, then $(s, F) \leq (s, F'')$, $(s', F') \leq (s, F'')$ and $(s, F'') \in P$ follows trivially. Hence C contains compatible elements and antichains are at most countable, i.e. P

satisfies *c.a.c.* Next we claim the subsets of P

$$
C_r = \{(s, F) \in P, \text{ there is an } x \in \text{dom}(s) \text{ with } r \leq s(x)\}
$$

$$
D_n = \{(s, F) \in P, n \in \text{dom}(s)\}
$$

$$
E_v = \{(s, F) \in P, v \in F\}
$$

to be dense in P for all $n, r \in \omega$ and $v \in \kappa$.

Proof of the density. Let $n, r \in \omega$, $v \in \kappa$, $p = (s, F) \in P$, dom $(s) = [0, k]$, $F' = F \cup \{v\}$ and $\mu = \max F'$. Choose $k' \in \omega$ such that $n \leq k'$, $k \leq k'$, $t(F') \leq k'$, $r \leq a_u(k')$ and $a_u(k) < a_u(k') < a_u(k'+1)$. Next we define

$$
s'(x) = \begin{cases} s(x) & \text{if } 0 \le x \le k \\ a_u(k') & \text{if } k < x \le k' . \end{cases}
$$

Then $(s', F') \in C_r \cap D_n \cap E_v$ and $(s, F) \leq (s', F')$. Therefore C_r , D_n , E_v are dense in P.

An application of MA shows the existence of a generic set G of P such that

- (1) For *p*, $p' \in G$ there is $q \in G$ with $p \leq q$ and $p' \leq q$.
- (2) $C_r \cap G + \emptyset$ for all $r \in \omega$
- (3) $D_n \cap G + \emptyset$ for all $n \in \omega$
- (4) $E_v \cap G \neq \emptyset$ for all $v \in \kappa$

We define $a = \cup$ s where we interpret functions as graphs. Then the fact that $(s, \overline{F}) \in G$ a is a well-defined unbounded monotone function from ω to ω follows (1), (2), (3) and our definition of (P, \leq). Finally we will show $a_v \subseteq a$ for all $v \in \kappa$, which means that we must check the two conditions of definition (4.1):

Choose $p=(s, F) \in E_v \cap G$ and $k=max(\text{dom}(s))$. For any $n > k$ we will show

- (α) There is an $m \in \omega$ such that $a(n) = a_{\nu}(m)$
- (β) $a(n) = a_v(m)$ implies $a(m) = a_v(m)$.

Because D_n is dense, there is $p' = (s', F') \in G \cap D_n$. The filter condition (1) implies the existence of $p''=(s'',f'')\in G$ such that $p\leq p''$ and $p'\leq p''$. Since $n \in \text{dom}(s'') \setminus \text{dom}(s)$ there are $k_1, k_2 \in \omega$ and $\mu \in F''$ such that $\max(\text{dom}(s)) \leq k_1 < n \leq k_2 \leq \max(\text{dom}(s'))$, $v \leq \mu$ for all $v \in F$, $k_2 \geq t(F \cup \{\mu\})$, $a_{\mu}(k_1) < a_{\mu}(k_2) < a_{\mu}(k_2 + 1)$ and $s''(m) = a_{\mu}(k_2)$ if $k_1 < m \leq k_2$ as follows from (c).

Since $\gamma \leq \mu$ and $k_2 \geq t(F \cup \{\mu\})$, there is an $m \in \omega$ such that $a_{\mu}(k_2) = a_{\nu}(m)$. Hence $a(n) = s''(n) = a_n(k_2) = a_v(m)$ and (α) is shown.

If $a(n) = a_v(m)$ for some $m \in \omega$, we obtain $a_u(k_2) = s''(n) = a(v) = a_v(m)$. Hence $a_\mu(m) = a_\mu(m) = a_\mu(k_2)$. In conjunction with $a_\mu(k_1) < a_\mu(k_2) < a_\mu(k_2 + 1)$ this implies $k_1 < m \leq k_2$. Therefore $a(m) = s''(m) = a_u(k_2) = a_v(m)$ and (β) is shown.

Conditions (*x*) and (*f*) and (4.1) show $a_v \subseteq a$. **Q.E.D.**

w 4. Proof of the Main Theorem

In this section we will prove our main result (1.4). Let us recall that (\mathbb{P}, \prec) are the equivalence classes of growth types \mathfrak{T} , \mathfrak{U} where $\mathfrak{T} \prec \mathfrak{U}$ if there is an re \mathfrak{M} . such that $r^*(\mathfrak{T}) \leq \mathfrak{U}$ and $\mathfrak{T} \sim \mathfrak{U}$ if $\mathfrak{T} \prec \mathfrak{U} \prec \mathfrak{T}$; cf. (1.2), (1.3) and (2.7).

Theorem 4.1. ($ZFC + MA$). $|P| = 2^{2\aleph_0}$.

The major burden of proving (4.1) will be the following.

Construction 4.2. (ZFC+MA). There is a subset $K \subset \mathfrak{M} \backslash \mathfrak{B}$ with the following *properties.*

 $(*)$ $|K|=2^{\aleph_0}$.

(**) If X, Y are any subsets of K with $\bar{X} \prec \bar{Y}$, then $|X \setminus Y| \prec 2^{\aleph_0}$.

We will prove (4.2) at the end of this section. In order to derive (4.1) from (4.2), we will use a set theoretic result.

Let $\mathfrak{I}_{N} = \{X \leq K_{N}, |X| < N\}$ the ideal of the boolean set $\mathfrak{P}(K_{N})$ of some set $K_{\rm s}$ of cardinality N and $\mathfrak{P}_{\rm s}^* = \mathfrak{P}(K_{\rm s})/\mathfrak{I}_{\rm s}$ its quotient. We will write $\mathfrak{P}^* = \mathfrak{P}(K)/\mathfrak{I}$ if $\aleph = 2^{\aleph_0}$ as in (4.2). We obtain the

Lemma 4.3. $|\mathfrak{P}_8^*|=2^8$ *and in particular* $|\mathfrak{P}^*|=2^{2\aleph_0}$.

Decompose K_{\aleph} into \aleph subsets K_i of cardinality \aleph with $i \in J$ and $|J| = \aleph$. If $T \leq I$, let $K_T = \bigcup K_t$. Then $K_T = K_{T'}$ mod 3 if and only if $T = T'$. Therefore, the set $\{K_T, T \leq K\}$ represents a subset of 2^{*n*} different elements of \mathfrak{P}^* .

Lemma 4.4. (ZFC+MA). *If* $X^* \in \mathfrak{P}^*$ is represented by $X \le K$ and K as in (4.2), *the map* $\gamma: (\mathfrak{P}^*, \leq) \to (\mathbb{P}, \prec)(X^* \to \overline{X})$ *is an order preserving monomorphism.*

Proof. Lemma 4.4 is an immediate consequence of property (4.2), Lemma 2.8 and Theorem 2.4: For if $X^* \leq Y^*$, then $|X \setminus Y| < 2^{\aleph_0}$ by definition of \mathfrak{P}^* and by (2.4) there is a $b \in \mathfrak{M}$, such that $u \leq b$ for all $u \in X \setminus Y$. From (2.8) we have an $r \in \mathfrak{M}$ such that $r^*(b) \leq y$ for some $y \in Y$. Therefore $r^*(X \setminus Y) \leq \overline{Y}$ and trivially $r^*(X \cap Y) \leq \overline{Y}$ which proves $r^*(\bar{X}) \leq \bar{Y}$. Hence $\bar{X} < \bar{Y}$ and γ is order preserving. From $\bar{X} \sim \bar{Y}$ it follows that $\bar{X} \lt \bar{Y}$ and $\bar{Y} \lt \bar{X}$, hence $|X \setminus Y| \lt 2^{\aleph_0}$ and $|Y \setminus X| \lt 2^{\aleph_0}$ taking *X, Y* $\le K$ according to (4.2)(**). Therefore $X^* = Y^*$ by definition of \mathfrak{P}^* and γ is injective.

Proof of (4.1) *from* (4.2) . Note that by (4.3) and (4.4) the following inequalities hold:

$$
2^{2^{\aleph_0}} = |\mathfrak{B}^*| \leq |\mathbf{P}| \leq 2^{2^{\aleph_0}}.
$$

Finally, we derive (4.2). First we choose a cofinal chain $\{r_u\}$ for $\mu \in 2^{\aleph_0}$ from the ordered set $\{\mathfrak{M}, \equiv\}$, which exists by Corollary 2.10. To show that (4.2) holds we next construct K to be a sequence $x_{\mu} \in \mathfrak{M} \backslash \mathfrak{B}$ for $\mu \in 2^{\aleph_0}$, so that for each finite subset F of 2^{\aleph_0} and each element $v \in F$ the following property holds

$$
(+) \t\t\t r_v^*(x_v) \nleq \bigvee_{\rho \in F \setminus \{v\}} x_{\rho}.
$$

Property $(+)$ will imply (4.2) (**). The construction is done by induction on the ordinal max(F). Let x_0 be an arbitrary element in $\mathfrak{M}\backslash\mathfrak{B}$. Now let $\mu\in 2^{\aleph_0}$ and assume that for $\sigma < \mu$ the element x_{σ} has been choosen such that (+) holds for every F with max(F) $\lt \mu$ and every v \in F. Consider the set R_μ of all pairs (F, v) where F is a finite subset of 2^{\aleph_0} with max(F)= μ and $\nu \in F$. Then $|R_\mu| = \kappa < 2^{\aleph_0}$

and we can index R_{μ} by the ordinals less than κ , i.e. $R_{\mu} = \{p_{\lambda}; \lambda \in \kappa\}$. We will choose x_u as an upper bound of a \subseteq -chain $\{y_\lambda\}$ for $\lambda \in \kappa$ were the latter is defined inductively as follows. We start with an arbitrary element $y_{-1} \in \mathfrak{M} \backslash \mathfrak{B}$. Assume $\lambda \in \kappa$ and that $y_{\lambda'}$ has already constructed for all $\lambda' < \lambda$.

By Lemma 3.4 we can find $y' \in \mathfrak{M} \backslash \mathfrak{B}$ so that $y_{\lambda'} \subseteq y'$ for all $\lambda' \in \{-1\} \cup \lambda$. Let $p_{\lambda}=(F, v)$. If $v=\mu=\max(F)$, we choose $y_{\lambda}\supseteq y'$ by Lemma 3.2 such that $r_u^*(x) \leq \sqrt{x_a}$ for all $x \geq y_a$. If $v \neq \mu$ we choose $y_a \geq y'$ by Lemma 3.3 such that $\rho \in F \backslash \{ \mu \}$ $r_v^*(x_v) \nleq \bigvee_{\rho \in F\setminus \{\mu, v\}} x_\rho \vee x$ for all $x \supseteq y_\lambda$ (By induction, we obtain $r_v^*(x_v) \nleq \bigvee_{\rho \in F\setminus \{\mu, v\}} x_\rho$.). Another application of Lemma 3.4 allows us to find x_u coarser than y_{λ} for every $\lambda \in \kappa$. From the definition of the chain $\{y_{\lambda}\}\)$ we see that (+) holds for every F with max(F)= μ and every $v \in F$.

Let be $K = \{x_u; \mu \in 2^{\aleph_0}\}\)$ where the elements satisfy condition (+) for all $\mu \in 2^{\aleph_0}$. Since $|K| = 2^{\aleph_0}$ by construction, we only need to show (4.2)(**): Let be X, *Y* subsets of *K* and $\bar{X} \prec \bar{Y}$. Assume $|X \setminus Y| = 2^{\aleph_0}$ for contradiction. By definition (1.3) of \prec and (2.6)(b) there is an $r \in \mathfrak{M}_s$ such that $r^*(\bar{X}) \leq \bar{Y}$. Since the chain ${r_r; v \in 2^{\aleph_0}}$ is a cofinal subset of \mathfrak{M}_s , \equiv) there is a $\lambda \in 2^{\aleph_0}$ such that $r \equiv r_\lambda$. From $|X \setminus Y| = 2^{\aleph_0}$ follows by definition of cardinals the existence of $x_v \in X \setminus Y$ such that $\lambda \in v$. Since $r = r_1 = r_v$ we get from Lemma 2.9 that $r_v^*(x_v) \le r^*(x_v)$ and hence $r_v^*(x_v) \in Y$. Because of (2.3)(c) there are $x_v, \ldots, x_v \in Y$ such that $r_v^*(x_v) \le x_v, \forall \dots \forall x_v$. Since $x_v \notin Y$ and $x_v \in Y$ it follows that $v \ne v_i$ for $1 \le i \le n$ and $(+)$ contradicts the last inequality between x_{v} and x_{v} 's.

w 5. Existence of Growth Types Which are not Specker Without MA

First we will consider equivalent conditions in ZFC such that there is no unbounded growth type $=$ \mathfrak{M} . We will derive:

Proposition 5.1. The *following conditions are equivalent*

- (a) *There is no unbounded* \leq -growth-type $\neq \mathfrak{M}$.
- (b) *There is no unbounded* $=$ -growth-type $\neq \mathfrak{M}$.
- (c) For any family $\mathfrak X$ of subsets of ω which satisfies the property
- $(*)$ intersections of finitely many members of x are infinite

there is a decomposition of ω *into finite non-empty subsets* $A_n(n \in \omega)$ *such that* $X \cap A_n \neq \emptyset$ for all $X \in \mathfrak{X}$ and almost all $n \in \omega$.

Proof. (b) \Rightarrow (a). If $\mathfrak{T} \neq \mathfrak{M}$ is a \leq -growth-type, then \mathfrak{T} is a \equiv -growth-type as well, using the implication ($f \subset g \Rightarrow f \leq g$). Therefore there is $b \in \mathfrak{M}$ such that $t \subset b$ for all $t \in \mathfrak{X}$.

Using $(f \sqsubset g \Rightarrow f \leq g)$ again, $\mathfrak T$ is a bounded \leq -growth-type.

(a) \Rightarrow (c). Let \ddot{x} be a family of subsets of ω satisfying (*) and $a = \{a_n\} \in \mathfrak{M}$ be any unbounded sequence. For $X \in \mathfrak{X}$ define $X' \in \mathfrak{M}$ as follows. If $n \in \omega$, let $X'(n) = a_m$ where $m = min \{k \in X, k \ge n\}$, which is well defined since X is infinite by (*). Then $\mathfrak{T} = \{X', X \in \mathfrak{X}\}\$ is a \leq -growth-type of \mathfrak{M} .

Assuming $(na_n) \in \mathfrak{X}$, there are $X_1, \ldots, X_t \in \mathfrak{X}$ such that $(na_n) \leq X'_1 \vee \ldots \vee X'_t$ as follows from $(2.3)(c)$.

Hence there is $k \in \omega$ with $na_n \leq k \cdot max\{X'_1(n), ..., X'_t(n)\}$ for all $n \in \omega$. Since $X_1 \cap \ldots \cap X_t$ is infinite by (*), there is an $n \in X_1 \cap \ldots \cap X_t$ with $n > k$. Therefore $X'_{i}(n) = a_n$ and $na_n \leq ka_n < na_n$ is a contradiction. Therefore $\{na_n\} \notin \mathfrak{T}$ in particular, \mathfrak{T} \neq *W* and \mathfrak{T} is bounded by assumption (a). Let $b = {b_n} \in \mathfrak{M}$ such that $t \leq b$ for all $t \in \mathfrak{X}$. For $n \in \omega$ we define $k(n) = \max \{m \in \omega, n \leq m, a_m \leq nb_n\}$ if $\{m \in \omega, n \leq m,$ $a_m \leq nb_n$ $\neq \emptyset$ and $k(n)=n$ otherwise. Using the intervals $[n, k(n)]$ for $n \in \omega$ one can select inductively a decomposition of ω . Since $X' \leq b$ for $X \in \mathfrak{X}$ there is $n_0 \in \omega$ such that $X'(n) \leq n_0 b_n$ for all $n \in \omega$. Now let $n \geq n_0$, then $X'(n) = a_m$ for some $m \in X$ with $m \ge n$. Therefore $a_m \le X'(m) \le n_0 b_n \le nb_n$ and $m \in \{i \in \omega, n \le i, a_i \le nb_n\}$. Hence $m \leq k(n)$ and $m \in X \cap [n, k(n)] \neq \emptyset$, which shows (c).

(c) \Rightarrow (b). Let $\mathfrak{T} + \mathfrak{M}$ a $=$ -growth-type and $a = \{a_n\} \in \mathfrak{M} \setminus \mathfrak{T}$. If $x = \{x_n\} \in \mathfrak{T}$, let x' $= {n \in \omega, x_n \le a_n}$, which is infinite, since $a \ne x$. The set $\mathfrak{X} = \{x', x \in \mathfrak{X}\}\)$ satisfies the intersection property (*) because of $x'_1 \cap ... \cap x'_t = (x_1 \vee ... \vee x_t)'$ for $x_1, ..., x_t \in \mathcal{I}$. Hence there is a decomposition $\omega = \bigcup A_n$ which satisfies the hypothesis of (c). n Define an element $b = {b_n} \in \mathfrak{M}$ as $b_n = a_{\max(A_m)} + 1$ where $m = \min {i \in \omega, n \leq k \text{ for }}$

all $k \in A_i$. Next we claim $x = b$ for all $x \in \mathcal{I}$ and \mathcal{I} is bounded. Since $x \in \mathfrak{X}$, we get $A_m \cap x' + \emptyset$ for all $m > m_0$ and some $m_0 \in \omega$. Let k $=$ max $\{A_0 \cup ... \cup A_{m_0}\}$ and take any $n > k$. If $m = \min \{i \in \omega, n \leq k' \text{ for all } k' \in A_i\}$ then $m>m_0$ and $A_m \cap x' \neq \emptyset$. Let $j \in A_m \cap x'$ then $n \leq j$ and therefore $x_n \le x_j \le a_j \le a_{\max(A_m)} < a_{\max(A_m)} + 1 = b_n$ and (5.3) is shown.

Proposition 5.2. (ZFC). *There are unbounded growth types* $\pm \mathfrak{M}$.

Proof. Let $\mathfrak X$ be an ultrafilter of ω which is not principal. Hence $\mathfrak X$ satisfies (*) of Proposition 5.1(c). Let A_n ($n \in \omega$) be any decomposition of ω into finite nonempty subsets. If $\omega = N_1 \cup N_2$ and $|N_1| = |N_2| = \infty$, let $Y_i = \bigcup_{n \in N_i} A_n$ for $i = 1, 2$. Since $\mathfrak X$ is an ultrafilter, either Y_1 of Y_2 belongs to $\mathfrak X$, and take $Y_1 \in \mathfrak X$. Since $Y_1 \cap A_n = \emptyset$ for all $n \in N_2$, condition (c) of (5.1) is not valid.

Finally we will remark, that the order-structure of growth types depends strongly on the underlying set theory as follows from a slightly modified version of a result of Hechler $[9, p. 156,$ Theorem 1.1]:

Theorem 5.3 (Hechler [9]). *Let ~ be any countable standard model of* ZFC *and A* $=(A, <)$ be any partial ordered set in $\mathscr X$ such that $|A| \leq 2^{\aleph_0}$ (with respect to $\mathscr X$) and such that every countable subset (with respect to $\mathscr X$) of A has an upper bound. Then there is a normal extension $\mathcal N$ of $\mathcal X$ in which A is order-isomorphic to a *cofinal subset of* (\mathfrak{M}, \equiv) *.*

Remark. In order to obtain (5.3) from [9], change the potential p on p. 156 of [9] such that $p_a \in \infty$ is a function which is monotonic in addition. Then the image of A under the embeding $(a \rightarrow f_a)$ constructed by Hechler [9; p. 166] is already in $(\mathfrak{M}, \equiv).$

(5.3) can be used to obtain further unbounded growth types different from \mathfrak{M} without the use of MA.

References

- 1. Baer, R.: Abelian groups without elements of finite order. Duke Math. J. 3, 68-122 (1937)
- 2. Bergman, G.M.: Boolean rings of projection maps. J. London Math. Soc. (2) 4, 593-598 (1972)
- 3. Fuchs, L.: Note on certain subgroups of products of infinite cyclic groups. Comment. Math. Univ. St. Paul 19, 51-54 (1970)
- 4. Fuchs, L.: Infinite Abelian Groups, vol. I. New York-London: Academic Press 1970
- 5. Fuchs, L.: Infinite Abelian Groups, vol. II. New York-London: Academic Press 1974
- 6. Göbel, R.: On stout and slender groups. J. Algebra 53 , $39-55$ (1975)
- 7. G6bel, R., Wald, B.: Wachstumstypen und schlanke Gruppen. Symposia Mathematica 23, 201- 239 (1979)
- 8. Hausdorff, F.: Untersuchungen über Ordnungstypen. Ber. Sächs. Akad. Wiss. 59, 84-157 (1907)
- 9. Hechler, S.H.: On the existence of certain cofinal subsets of ω . In: Axiomatic Set Theory. Proceedings of a Symposium (Los Angeles 1967), pp. 155-173. Proceedings of Symposia in Pure Mathematics 13, Part 2. Providence, R.I.: American Mathematical Society 1974
- 10. Jech, T.J.: Set Theory. New York-London: Academic Press 1978
- 11. Nöbeling, G.: Verallgemeinerung eines Satzes von E. Specker. Invent. Math. 6, 41-55 (1968)
- 12. Solovay, R.M., Tennenbaum, S.: Iterated Cohen extensions and Souslin's problem. Ann. of Math. (2) 94, 201-245 (1971)
- 13. Specker, E.: Additive Gruppen yon Folgen ganzer Zahlen. Portugal. Math. 9, 131-140 (1950)

Received July 5, 1979