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§ 1. Introduction and Some Basic Definitions
a) On Growth Types

Let P=Z® be the Baer-Specker group, that is the set of all functions f'={f,},...
={f,} ={f ()} on the first infinite ordinal w [represented by the non-negative
integers] with values taken in the group Z of integers and addition defined co-
ordinate wise. This group P was investigated first in a remarkable paper of Baer
[1] in 1937. Some year later, in 1950, Specker [13] discovered some further
interesting properties of P, basically the idea of “slenderness”. If e,eP is the
function e;={J,,} on w defined by the Kronecker symbol §;, for iew, it is quite
common and sometimes convenient to write clements f={f} of P as infinite

sums Y f,e,; cf. Fuchs [5; p. 159].

n=0
If M is the subset of P of all those sequences {f,} which are positive and
monotonic, ie. 1= £, < f, for all new, Specker [13; p. 132] defines a growth
type ¥ by the following two conditions:

(i) T is a non-empty subset of M which is minorant-closed, i.e. if {f }eIN,
{t,}e% and f, <1, for all new, then {f,} 3.
(i1) T is closed under sums, i.e. if 5,1, then s+teI.

In particular, 9 and its subset B of all bounded sequences are (the largest and
the smallest respectively) growth types. This definition can be given in terms of a
natural quasi-ordering on .

(M, <) Let be {f,} <{g,} if and only if there is a kew such that f,<k-g_ for all
new.

We shall distinguish between the following quite common order relations in this
paper: A relation is a quasi-ordering if it is reflexive and transitive. The relation
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“ <™ is a partial ordering if it is transitive and if the underlying set contains no
elements x which satisfy x <x. Relations which are reflective, transitive and anti-
symmetric are called orderings.

We can now redefine growth types omitting the algebraic notion of sums as:

Definition 1.1. Then T+ @ is a growth type if
(i*) Tisacut of M, ie if feI, teT and f <t then feI

(ii*) T is directed (upwards) in M, i.e. if t,ucT there is a veT such that t<v
and u<y.

The growth type I will be called Specker growth type if T is bounded in (M, <),
i.e. There is an upperbound b eI such that t<b for all teT.

Hence growth types are the ideals of (M, <) and Specker growth types are
the bounded ideals in (I, ). Specker [13; p. 137, SatzV] constructed 2%
different growth types which lead to 22 non-isomorphic monotone subgroups
of P; cf part b. All such growth types #9 are bounded by {n"*'} and are
therefore Specker growth types according to our definition. All Specker growth
types are equivalent under the following equivalence relation “~” between
growth types. This equivalence relation can be motivated algebraically and it
will allow us to distinguish between different types of slender groups; cf. part b.
It is defined as follows.

Definition 1.2. Denote by M, the subset of all strictly monotone sequences of M,

ie. all {f}eIM with f,=f, , for all new. Then reIN, induces a monotone-
Fnep—1

stretching monomorphism r*: P—P (Z fiea— Y fir Y ei> [ =m— s-mono-

neE® new i=rn

morphism]; cf. Gobel and Wald [7; p. 216]

Definition 1.3. If T, U are growth types, let T if there is an reM, with
rH(DEU and let T~W if T<U and U<T. Then we denote by IP=(IP, <) the set
of all ~-classes of growth types with the induced ordering <.

Then all Specker growth types +%®B are equivalent and thus represented by
one element, e.g. the set £ of all monotone sequences which increase at most
linearly. The single sets 9 and B form equivalence classes by themselves. Hence

3Z|IP| <2%™ Because of a 1—1 correspondence between the set IP and different
classes of slender groups we shall determine the cardinality of IP; c.f. Corol-
lary 1.7 and Gobel and Wald [7; p. 203, conjecture]. In sections 2 through 4 we
shall be working under ZFC together with Martin’s axiom (MA) to prove our
main result, namely

Theorem 1.4. Martin’s axiom implies |IP]=22"°,

We refer the reader to Jech [10; pp. 2291f.] and § 2 for a discussion of Martin’s
axiom. MA is a trivial consequence of the continuum hypothesis (CH) and the
opposite is not true; cf. Jech [10; p. 140, Lemma 16.1 and p. 232, Theorem 51].
Therefore our assumptions are relatively consistent with ZFC; cf. Jech [10;
pp. 108ff]. The fact that |IP|=4 in ZFC+ CH has already been shown by Wald
[Ph-D-thesis, Essen 1979]. The methods applied here are refinements of ideas in
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this thesis. We will show, that |IP| =4 is generally true using ZFC only. In order
to prove this, we will transform the problem |[P|=4 into an equivalent form
without algebraic conditions:

(M, =) Define {f,}={g,} to mean that there is a kew with f,<g, for all new
and n=k.

This order goes back to Hausdorff [8] and was recently investigated by Hechler
[9] (denoted by <) whose motivation was purely set theoretlcal (Le. his
theorems of the existence of certain scales.)

Then T is a =-growth type (or —-ideal) if T is a cut and directed with
respect to =. Now our claim |IP|=4 can be formulated using the Hausdorff
ordering — only. In addition it can be expressed in terms of subsets of w. The
following statements (a), (b) or (c) are equivalent with the opposite case |[IP|<3:

Proposition. The following three statements are equivalent:
(a) 9N is the only unbounded <-growth type in M.
(b) M is the only unbounded —=-growth type in IR,
(c) For any family X of subsets of w which satisfy the property
(*) intersections of finitly many members of X are infinite

there is a decomposition of w into finite non-empty subsets A, (n€w) such
that X nA,% & for all X e X and almost all ne w.

The proof is given in (5.1). The last condition (*) shows, that ultrafilter will
come into play. Therefore in (5.2) for an ultrafilter X it will be shown, that (c) is
not valid, which implies |IP| = 4.

b) Connection Between Growth Types and Slender Groups

According to Specker [13; p.132] a growth type T can be associated with a
subgroup [T] of P which is called monotone subgroup after Fuchs [3; p. 51] and
[5; p. 166, exercise 4]:

(fye[T]  if and only if {m"axa, | fi[)}e‘z
i=0

Obviously we get P=["i] and B=[3B] is the set of all bounded sequences of
P. Conversely a growth type T satisfies T=[T] ~IM and is determined by its
monotone subgroup [T]. The group B is the only monotone subgroup which is
free, as shown by Specker [13; p.134, SatzII, p. 138, Satz VI with CH] and
Nobeling [11; without CH]. This result was generalized to ring theory; cf.
Bergmann [2]. Because our results hold trivially for the monotone group B, we
shall exclude B from the class of monotone groups in the following discussion.

For the special monotone group P the theory of slender groups was
developed by Specker, L0, Sasiada, Fuchs and Nunke; cf. Fuchs [5; §94,95].
Since monotone subgroups have many properties in common, it is natural to
develop “slenderness” simultaneously for all monotone subgroups. This was
carried out in Gobel and Wald [7]: Any monotone subgroup U of P contains
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the elements e;={4,,} by definition. Hence we generalize slenderness in the sense
of Los:

Definition 1.5 [7]. 4 group G is called U-slender if any homomorphism ¢: U—G
maps almost all e; onto Q.

Hence P-slender equals slender by definition. In addition G will be called U-
stout if any homomorphism ¢: UG is 0 if ¢ maps all e; onto 0; cf. Gobel [6;
p. 49, Theorem 4.17]. From our results in [7; p. 10, Satz 4.6] it follows that there
is only one class of stout groups, i.e. U-stout coincides with V-stout for all
monotone subgroups U and V. In Fuchs [3; p. 52, Theorem 2] it is shown that
when the cardinality of the groups under discussion is restricted to be less than
280 there is only one class of slender groups. In general, we have the following

Theorem 1.6 [7; p.17, Satz5.5]: Let I and Y be two growth types. Then the
Jfollowing three statements are equivalent:

(1) T<Y in the sense of (1.3)

(2) [T]-slender groups are [V ]-slender.

(3) [D] is not [T]-slender.

There is an immediate

Corollary 1.7. (a) [T]-slender =[Y1-slender if and only if T~Y.

(b) The set of all classes of slender groups defined by monotone subgroups of P
is order isomorphic with (IP, <) from (1.3).

(c) All Specker growth types (+B) define the same class of slender groups; cf.
[7; p. 20, Satz 5.7(a)].

Combining (1.7) and our main result (1.4) of this paper, we obtain an answer
to the question [7] about the number of different classes of slender groups:

Corollary 1.8. MA implies the existence of precisely 22%e different classes of
slender groups defined by monotone subgroups of P.

§ 2. Specker Growth Types and the Hausdorff Ordering —

There is an obvious way to enlarge subsets of the set M of all positive and
monotone sequences to obtain growth types, following the

Definition 2.1. If X <M, let X be the intersection of all growth types of M
containing X.

The set X can also be described via elements. This will be accomplished by
means of the following.

Definition 2.2. If x, yeI, let be x v yeI the point wise maximum, ie. x vy
={max(x,,y,)} where x = {x,} and y={y,}.

From (2.2) it follows that x v y is a least upper bound of x and y with respect
to (M, ). We derive the immediate consequence.
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Lemma 2.3. Let X <IR.
(@) X is a growth type
(b) XX for all X <M is a closure operation, ie. X<X, X=X

(c) xeX if and only if there are x,,...,x,€X such that xe and
XEX{ V... VX,

Our next result (2.5) shows that many growth types X are bounded by
certain elements of M, and so are Specker growth types. This result is used in §4
and it will also illustrate that the proof of the existence of growth types which
are not Specker growth types will be non-trivial. Corollary 2.5 will be shown
under the hypothesis ZFC +MA.

If (E, £) is a quasi-ordered set, two elements a, beE are compatible, if there
exists ceE with a<c and b<c and if a, b are not compatible, they will be called
incompatible. The set (E, <) satisfies the countable anti-chain condition, if all
subsets of pairwise incompatible elements (anti-chains) are at most countable. It
is customary to abbreviate the countable anti-chain condition by c.a.c.. A subset
X of E is dense in (E, £), if for each ecE there is an xeX so that e<x. MA
reads as follows (cf. Solovay and Tennenbaum [12; p. 1327):

MA (topological version). Let (P, <) be a quasi-ordered set satisfying c.a.c. and ID
be a family of less than 2%° subsets of P then there exists a ID-generic subset G of
P, i.e. G satisfies:
(i) GEPisacut
(if) G is directed upwards
@ii) If DelD is dense in P, then DN G+ 2.

Theorem 2.4. (ZFC+MA): If X <M, | X| <20 there is an beM, such that x=b
for all xeX.

The proof of (2.4) is given in Jech [10; p. 261, Lemma 24.12] where bc®w is
constructed. This bound b can be modified to be in ;.

Since M, <M and (f =g = f =g for f,ge M, from (2.4) it follows that subsets
X M of cardinality <2 are bounded with respect to <. Hence we get a

Corollary 2.5. (ZFC+MA): If X <M, | X| < 2% then X is a Specker growth type.

} i.e. G is an ideal in P (cf. 1.1).

In [7] we associated with any strictly monotone sequence rei_ a stretching-
monomorphism (=s-monomorphism) r*: P—P. These monomorphisms where
used to classify slender groups.

Since r* never maps M into itself if = {n}, we introduced in (1.2) a second
monomorphism »* which does. We recall the notion of s-monomorphisms from

[7].
Definition 2.6. If redk,, let be r*: P—>P (Y foe,— Y f,e,) the stretching mo-

new new

nomorphism (s-monomorphsim) induced by r.

The map r* restricted to M can be derived from r* by making the latter
monotone. This follows from
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Lemma 2.7. Let be reIN,

(a) If f= {m;x (1, ]fi|)}f0r all f={f}€P then { =f and r#(f)zr/%for all
feM. i=t

(b) For growth types T and W of M we have r* QAT if and only if
r*([UD=[T].

Proof. () follows from the definitions »* and r*.

(b) Let r*(U)<T and fe[U]. Then fell and consequently 7 (f)=r*(f)eg,
using (a). Hence r*(f)e[T]. Conversely let r*([U])S[T] and fel. Then

r*(f)eZ follows from r#(f):r#(f):r/*m und *(f)e[T].

In §1 we introduced (IP, <) using the m—s-monomorphism r*. In [7] we
applied s-monomorphisms.

Lemma 2.6 (b) shows that we obtain the same ordered set [IP]={X<P,
monoton}/~ in both cases. Hence the classifications (1.6), (1.7) remain the same
if we interchange * and *. As in the case of s-monomorphisms, we shall need the
following simple and essential

Lemma 2.8. If geMi\B and feM there is an reM_ such that r*(f)<g.

Proof. Since {g,} is not bounded, there is a strictly monotone positive sequence r
={r,} such that f,<g, for all new. Hence r*(f),=f,<g, <g forallr,<i<r, ,
and all new. Therefore r*(f)< g by definition (§1) of “<”.

Lemma 29. If r,se M, and r=s then s*(f)<r*(f) for all feM.

Proof. Since r—s, there is a kew such that r,<s, for all n=k. Let be n=s, and
choose e,mew such that r,Sn<r, , and s5,=n<s, ;. Since m=k, we get
fn<S,<n and m=Ze If feM, we obtain s*(f),=f,=f.=r*(f), Iie

sTSrE).
Next we will show that there exists well ordered cofinal subsets of K.

Corollary 2.10. (ZFC+MA) (IR, =) has a cofinal well ordered chain of length
2o,

Proof. Since |M |=2%, we will label the elements of M, in the form x, for all
pue2¥. Assume that we have constructed r, for veu as well ordered chain already
such that

(*) x,=r, forall v<p.

v

Let be X={r,, x,; veu}. Since |X]<2% from (2.4) we obtain an element

r,e9M, which is upper bound of X. Then the set {r,; ve2®°} is defined and by
construction it is the required cofinal chain.

§ 3. Construction of Compatible and Incompatible Step Functions

The following quasi-ordering of coarseness “<” of functions in M\ B will be
very useful in this section. The proofs and the quasi-ordering < while looking
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l,...-.).- - 9, = fm =4y

n m

Fig. L. Definition of <

some what technical are actually quite natural, when one has, in mind, a picture
of the constructed functions. Hence we would like to ask the reader become
familiar with the figures included in the proofs.

Definition 3.1. (cf. Fig. 1) Let be f, ge\B, then say f g (g is coarser than f) if
and only if

(i) For almost all new there is an mew such that g,=f,,
(i) For almost all new with g,=f,, we have g, =f,,.

We have the following

Lemma 3.2. Let be reR,, f,yeIM and f¢B. There is a geIM with g2 f and
r¥*(x)£y for all x2g.

Proof. First we construct the sequence geIt by induction: (cf. Fig, 2). Put g,=/,
and assume g, to be constructed already for all k<n and some O%new. If
f.=g,_,, we choose g,=g,_, and if f,>g, , choose m=n such that f, >r,.y,
and define g,=f,,.

From feM\B it follows by construction that geIM\B, too. Next we will
verify that f<g. Since (1) of (3.1) is true for all new, we only have to prove
(3.1) (ii): Therefore let g,=f,, and assume first m=<n. Then g,<g,, since g is
monotone. If g, <g,, we get g,,_,5g,,<g,=/, and therefore g, =f, for some
k=m by construction of g. Hence g,, <g,=/,= f,=g, is a contradiction, which
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Fig. 2. Idea of the construction (Lemma 3.2)

shows g, =g, in this case. If m>n, let n<k<m for kew. Therefore f, </,
=g <g, , since f and g are monotone. From the construction of g it follows
that g, _, =g, and by induction on k is f,,=g,=g,. Finally we will show that
r*(x)£y for g=x. The inequality has the explicit form

(*) For all kew there is an secw such that r*(x)(s)>k - y(s).

Because of (3.1) and f =g<x there is an ecw such that r,2k and
(i*} For all n=e there are m,icew with g,=f, and x,=g;.
(ii*) For all n>e if g, =f, then f, =g, moreover x,=g,, implies x,,=g,,.

Now we choose mew with m=ze and x,,>x, and new minimal with x,, =g,.
From x, <x,,=g,=x, it follows e <n and therefore r,<r,. If f,<g,_, our nisno
longer minimal with x, =g, since x,, =g,=g,_; by construction of g. Therefore
fi>g,_, and g,>r,-y, by construction of g. From r,<r, follows that #*(x)(r,)
=X,=8,>1," ¥, >1. ), =k -y, and (¥) is satisfied for s=r,.

Next we will show that (MR, <) contains many subsets of incompatible
functions derived from prescribed elements:

Lemma 3.3. Let be a, b, ceM\B and c £b. Then there is an element se M\ B such
that s2a and cEx v b for all x2s.

Proof, First we construct seI\B and a sequence {i,} €I by induction. Put s,
=aq,, i=i,=1 and assume s, i,, , has been constructed for k<n (cf. Fig.3).
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Fig. 3. Idea of the construction (Lemma 3.3)

There are two cases:

1) ¢, Zi,-max{s,_,.b, ,} or s, ;=a, forsome m=n
and
2) i,-max{s, ,b, }<c, ; and s, ,=+a, forall mzn.

Put s,=s,_, and i, , =i, in case (1) and choose mew such that a, , <a, and
put s,=a, and i,, ,=i,+1 in case (2). Next we will show that the constructed
element s satisfies the hypothesis of the lemma. To show that se M we assume
by way of contradiction that there exists 0new with 5,<s,_;.

From case (2) it follows that g, ,<s,<s,_,. By construction there is an
mew with s,_, =a,,. Hence a,_, <a,, and from aeM follows n =m. Therefore s,
=s,_, by construction of s, which contradicts s,<s,_,. Consequently set.

Now we assume s€B. There is kew such that s, ,=s, and i, =i, , for all
nzk by definition of B and (1). Since a,ceM\B, c£b there exists m=k with
S <Gy Giyy 5 <C, and i, ,-b, <c,. Hence i, ,-max{s,,b,} <c, and s,=*a,
for all n>m, so that we derive case (2) of the construction. This contradicts s,
=5, 1 and seM\B is shown. In order to show s2a, the only condition of (4.1)
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which is not obvious, is (3.1) (ii). Hence let us assume s,=a,,. If n<m, the fact
that s,=a, follows inductively from the construction in case (1) and so
condition (ii) holds. Hence we assume m<n and by way of contradiction assume
that s, <s,. From case (2) of the construction follows that there exists an ecw
with m<e=n and a, (<s, Hence a, <s,<s,=a, implies e<m and the
contradiction m<e=<m.

Finally we will show ¢£x v b for x=s. Since {i,} e\ B, for kew there is an
new with i,=k. Choose t=n such that x,_, <x,. Since seW\B and s x there
ismzt with x,=s,,<5,,,1.

If s,=a; for some j>m, we get s;=s,<s,. , and so j=m which is a
contradiction. Therefore s, +a; for all j>m and from our construction of s, we
obtain i, ,-max{s,,b,} <c, and consequently c, £k -max{x,,b,}. Using the
definitions of < and v and the last inequality, we obtain cf£x v b.

Next we will show the existence of upper bounds for chains in MM\B of
cardinality <2%° with respect to the coarse ordering <.

Lemma 34. (ZFC+MA). Let k€2™ and a,Za, for all vepex be a linearly or-
dered chain of elements of IM\B. There is an acI\B such that a,=a for all vexk.

Proof. If F is a finite subset of the ordinal x, choose ¢t(F)ew minimal with respect
to the condition:
For all v, ueF with v=<p and all n=t(F) the following holds:
(i) There is an mew such that a,(n)=a,(m).
(ii) The equality a,(n)=a,(m) implies a,(m)=a,(m).
Let P be the set of all pairs (potential conditions) (s, F) of finite subsets F of x
and monotone functions s: [0,k]—w\0 of initial segments [0,k]={xcw;
0=x=zk} of w and any kew. Next we will define a quasi-ordering < in P:
If (s, F), (s, FYeP, we define (s, F)<(s, F’) if and ounly if the following is
satisfied:
(a) s=¢, i.e. the function s" extends s.
(b) F<F' (the usual subset relation)
(¢) If scs' (s extends s properly) and F’' = @, for all nedom (s)\dom s) there
are k,, k,ew and peF’ such that the following holds:
(1) max(dom(s))<k, <n=<k, <max(dom(s))
(2) v=u for all veF
(3) kyZt(F U ()
4) a,(k)<a,lk;)<a,(k,+1)
(3) ssmy=a,(ky) if k,<m=k,.

Using t(Fu {u})<t(F' ' {u}) for F<F', one easily checks that (P, £) is a quasi-
ordering and < is in particular a transitive relation.

In order to show that (P, <) satisfies c.a.c., let C<P and |C|>¥,. The latter
implies the existence of elements (s, F), (s, F")e C such that s=s"and FF" If I
=FUF' then (s, F)<(s, F"), (s, F)<(s, F") and (s, F")eP follows trivially. Hence
C contains compatible elements and antichains are at most countable, ie. P
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satisfies c.a.c. Next we claim the subsets of P

C,={(s, F)eP, there is an xedom (s) with r <s(x)}
D,={(s, F)eP, nedom(s)}
E,={(s,F)eP, veI'}

to be dense in P for all n, rew and vexk.

Proof of the density. Let n,rew, vek, p=(s, F)eP, dom(s)=[0,k], FF'=Fu{v}
and p=maxF'. Choose k'ew such that n<k', k<k/, t(F)<k, r<a,(k) and
a,k)<a,(k)<a,(k'+1). Next we define

5 (x)= s(x) if 0=x=k
e, k) if k<x=K.

Then (s, F)eC,nD,nE, and (s, F) <(s', F'). Therefore C,, D,, E, are dense in P.
An application of MA shows the existence of a generic set G of P such that

(1) For p,p'eG there is geG with p<q and p'<gq.
(2) C,nG*g for all rew
(3) D,nG=*g for all new
4) E,nG=+g for all vex

We define a= [ ) s where we interpret functions as graphs. Then the fact that
(s, FleG
a is a well-defined unbounded monotone function from w to w follows (1), (2), (3)

and our definition of (P, £). Finally we will show a,=a for all vek, which means
that we must check the two conditions of definition (4.1):
Choose p=(s, F)eE,nG and k=max(dom (s)). For any n>k we will show

(o) There is an mew such that a(n)=a,(m)
(B) a(n)=a,(m) implies a(m)=a, (m).

Because D, is dense, there is p'=(5', F')eG n D,. The filter condition (1) implies
the existence of p’=(s",f")eG such that p=<p” and p' <p’. Since
nedom(s")\\dom(s) there are k,,k,ew and wpeF” such that
max(dom(s)) Sk, <n=k,<max(dom(s")), v=p for all veF, k,=t(Fu{u}),
a,(k))<a,(ky)<a,(k,+1) and s"(m)=a,(k,) if k, <m=k, as follows from (c).

Since y=p and k,=t(Fu{u}), there is an mew such that a,(k,)=a,(m).
Hence a(n)=s"(n)=a,(k,)=a,(m) and («) is shown.

If a(n)=a,(m) for some mew, we obtain a,(k,)=s"(n)=a(n)=a,(m). Hence
a,(m)=a,(m)=a,(k,). In conjunction with a,(k;)<a,(k,)<a,(k,+1) this implies
k,<m=k,. Therefore a(m)=s"(m)=a,(k,)=a,(m) and (B) is shown.

Conditions () and (f) and (4.1) show a,ca. Q.E.D.

§ 4. Proof of the Main Theorem

In this section we will prove our main resuit (1.4). Let us recall that (IP, <) are
the equivalence classes of growth types T, U where T<1U if there is an reM,
such that r*(T)<U and T~U if T<U<T; cf (1.2), (1.3) and (2.7).
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Theorem 4.1. (ZFC+MA). |IP| =22
The major burden of proving (4.1) will be the following.

Construction 4.2. (ZFC +MA). There is a subset K<IR\B with the following
properties.

(*) [K|=2%.
(**) If X,Y are any subsets of K with X <Y, then | X\Y | < 2%,

We will prove (4.2) at the end of this section. In order to derive (4.1) from
(4.2), we will use a set theoretic result.

Let 3,={X <Ky, |X|<¥} the ideal of the boolean set B(Ky) of some set
K, of cardinality & and P =*B(K)/I its quotient. We will write P* =P(K)/JI
if X=2%0 as in (4.2). We obtain the

Lemma 4.3. |B|=2% and in particular |P*|=2%%0,

Decompose K, into N subsets K; of cardinality X with ieJ and |[J|=N. If
T=<I let K;=|)K,. Then K; =K, modJif and only if T=T". Therefore, the

teT
set {K,, T<K]} represents a subset of 2% different elements of T*.

Lemma 4.4. (ZFC+MA). If X*eP* is represented by X <K and K as in (4.2),
the map v: (B*, <) - (P, <)(X*— X) is an order preserving monomorphism.

Proof. Lemma 4.4 is an immediate consequence of property (4.2), Lemma 2.8 and
Theorem 2.4: For if X*<Y*, then | X\ Y|<2% by definition of P$* and by (2.4)
there is a beWi, such that u<b for all ueX\Y From (2.8) we have an ret such
that r*(h)<y for some yeY. Therefore r*(X\Y)<Y and trivially r*(Xn Y)Y
which proves r#(X )< ¥ Hence X<Y and y is order preserving. From X ~ Y it
follows that X<Y and Y<X, hence |X\Y|<2® and |Y\X|<2% taking
X, Y<K according to (4.2)(**). Therefore X*=Y* by definition of P* and y is
injective.

Proof of (4.1) from (4.2). Note that by (4.3) and (4.4) the following inequalities
hold:

270 = || < |IP| < 227

Finally, we derive (4.2). First we choose a cofinal chain {r,} for ue2® from the
ordered set {9, =), which exists by Corollary 2.10. To show that (4.2) holds we
next construct K to be a sequence x,eM\B for ue2™, so that for each finite
subset F of 2% and each element veF the following property holds

(+) rfx)E V ox,.

peF\{v}
Property (+) will imply (4.2) (**). The construction is done by induction on the
ordinal max (F). Let x, be an arbitrary element in I\ B. Now let ue2®e and
assume that for ¢ <pu the element x, has been choosen such that (+) holds for
every F with max(F)<yu and every veF Consider the set R, of all pairs (F, V)
where F is a finite subset of 2% with max(F)=pu and veF. Then IR, | =1 <20
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and we can index R, by the ordinals less than x, i.e. R,={p,;; lex}. We will
choose x, as an upper bound of a &-chain {y;} for Aex were the latter is
defined inductively as follows. We start with an arbitrary element y_,e3\B.
Assume Aex and that y,  has already constructed for all 1'< A

By Lemma 3.4 we can find y'eI\B so that y,,=y for all Ye{—1}UA. Let
p,=(F,v). If v=p=max(F), we choose y,=2) by Lemma3.2 such that
r¥)£ V x,forall x=2y,. If v4u we choose y, 23" by Lemma 3.3 such that

peF\u}
rix)f V x,vxforall x2y, (By induction, we obtain v} (x )£ V x,.).
peF\{u, v} peF\{u, v}

Another application of Lemma 3.4 allows us to find x, coarser than y, for
every Aex. From the definition of the chain {y,} we see that (+) holds for
every F with max(F)=yu and every veF.

Let be K={x,; pne2®} where the elements satisfy condition (+) for all
pne2®, Since |K|=2%° by construction, we only need to show (4.2) (**): Let be X,
Y subsets of K and X< Y. Assume | X\ Y|=2% for contradiction. By definition
(1.3) of < and (2.6)(b) there is an red, such that r*(X)< Y. Since the chain
{r,; ve2¥°} is a cofinal subset of M, =) there is a 1€2™ such that r=r,. From
| X\ Y|=2% follows by definition of cardinals the existence of x,e X\ Y such that
Jev. Since rer,=r, we get from Lemma 2.9 that r*(x,)<r*(x,) and hence
rF(x,)eY. Because of (2.3)(c) there are x,,..,x, €Y such that

e
r‘*(xv)gxVl v...vx, . Since x,¢Y and x, €Y it follows that v=v, for 1<i=<n and

v

(+) contradicts the last inequality between x, and x,s.

§ 5. Existence of Growth Types Which are not Specker Without MA

First we will consider equivalent conditions in ZFC such that there is no
unbounded growth type 9. We will derive:

Proposition 5.1. The following conditions are equivalent
(a) There is no unbounded =<-growth-type =+,
(b) There is no unbounded —=-growth-type +IN.

(c) For any family X of subsets of « which satisfies the property

(*) intersections of finitely many members of X are infinite

there is a decomposition of ¢ into finite non-empty subsets A, (new) such that
XA+ for all XeX and almost all new.

Proof. (b)=(a). If T+ Wt is a <-growth-type, then T is a =-growth-type as well,
using the implication (f=g=>f<g). Therefore there is bR such that t=h
for all teX.

Using (f=g=f <g) again, T is a bounded <-growth-type.

(a)=>(c). Let X be a family of subsets of w satisfying (*) and a={a,}cM be any
unbounded sequence. For XeX define X'eI as follows. If new, let X'(n)=a,,
where m=min {keX, k= n}, which is well defined since X is infinite by (*). Then
T={X', XX} is a <-growth-type of .

Assuming (na,}€Z, there are X, ..., X,€X such that (na }<X;v...v X, as
follows from (2.3) (c).
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Hence there is kew with na, <k -max {X|(n),..., X;(n)} for all new. Since
X,N...nX, is infinite by (¥), there is an neX;n...nX, with n>k. Therefore
Xi(n)=a, and na,<ka,<na, is a contradiction. Therefore {na,}¢T in particu-
lar, T+ and T is bounded by assumption (a). Let b={b,}eIM such that t<b
for all teX. For new we define k(n)=max {mew, n<m, a,<nb,} if {mew, n<m,
a,<nb,}+2 and k(n)=n otherwise. Using the intervals [n, k(n)] for new one
can select inductively a decomposition of @. Since X' <b for XeX there is nycw
such that X'(n)<n,b, for all new. Now let n=n,, then X'(n)=aq,, for some meX
with m2n. Therefore a, <X'(m)<n,b,<nb, and me{icw, n<i, a;<nb,}. Hence
mZk(n) and me X n[n, k(n)] + &, which shows (c).

(€)=>(b). Let T+M a =-growth-type and a={a,}eIN\ZT. If x={x,}eT, let x’
={new, x,<a,}, which is infinite, since ar~x. The set ¥ ={x', xeX} satisfies the
intersection property (*) because of x;n...nx;=(x; v...vx) for x;,...,x,eX.
Hence there is a decomposition w=|] A, which satisfies the hypothesis of (c).

Define an element b={b, }eM as b,=a,, . ,+1 where m=min {iew, n=k for
all keA,}. Next we claim x=5 for all xe¥ and T is bounded.

Since xeZ, we get A,nx'+g for all m>m, and some mjew. Let k
=max {A,u...UA,) and take any n>k. If m=min {iew, n<k’ for all k'eA;}
then m>m, and A,nx'=+=g. Let jeAd,nx then n<j and therefore
X, SX; 50 S A4 <Omax(any T 1 =b, and (5.3) is shown.

Proposition 5.2. (ZFC). There are unbounded growth types +IR.

Proof. Let X be an ultrafilter of w which is not principal. Hence X satisfies (*) of

Proposition 5.1(c). Let 4, (new) be any decomposition of « into finite non-

empty subsets. If =N, UN, and |N,|=|N,|=00, let ;= (] A4, for i=1,2. Since
neN;

¥ is an ultrafilter, either ¥, of Y, belongs to X, and take Y,€X. Since ¥, nA4, =2
for all neN,, condition (c) of (5.1) is not valid.

Finally we will remark, that the order-structure of growth types depends
strongly on the underlying set theory as follows from a slightly modified version
of a result of Hechler [9, p. 156, Theorem 1.1]:

Theorem 5.3 (Hechler [97). Let & be any countable standard model of ZFC and A
=(A, <) be any partial ordered set in & such that |A| <2%° (with respect to &) and
such that every countable subset (with respect to &) of A has an upper bound.
Then there is a normal extension A of & in which A is order-isomorphic to a
cofinal subset of (M, =).

Remark. In order to obtain (5.3) from [9], change the potential p on p. 156 of [9]
such that p,e"w is a function which is monotonic in addition. Then the image of
A under the embeding {(a—f,) constructed by Hechler [9; p. 166] is already in
(I, ).

(5.3) can be used to obtain further unbounded growth types different from 3
without the use of MA.
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