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w 1. Introduction and Some Basic Definitions 

a) On Growth Types 

Let P =2g ~ be the Baer-Specker group, that is the set of all functions f =  { f .} .~  
= {f.} = {f(n)} on the first infinite ordinal co [-represented by the non-negative 
integers] with values taken in the group 2g of integers and addition defined co- 
ordinate wise. This group P was investigated first in a remarkable paper of Baer 
[1] in 1937. Some year later, in 1950, Specker [13] discovered some further 
interesting properties of P, basically the idea of "slenderness". If e ieP is the 
function ei={6~. } on co defined by the Kronecker symbol 6i. for ieco, it is quite 
common and sometimes convenient to write elements f =  {f.} of P as infinite 

sums ~ f~e.; cf. Fuchs [5; p. 159]. 
n = O  

If ~J~ is the subset of P of all those sequences {fn} which are positive and 
monotonic, i.e. 1 < f . <  f.+~ for all nee), Specker [13; p. 132] defines a growth 
type 3; by the following two conditions: 

(i) 3; is a non-empty subset of ~J/ which is minorant-closed, i.e. if {f.} egJ/, 
{t.}e3; and f . < t .  for all neco, then {f.}~3;. 

(ii) 3; is closed under sums, i.e. if s, re3;, then s+te72. 

In particular, ~Jl and its subset ~3 of all bounded sequences are (the largest and 
the smallest respectively) growth types. This definition can be given in terms of a 
natural quasi-ordering on 9J~. 
(gJl, <=) Let be {f.} < {g.} if and only if there is a keco such that f . < k . g ,  for all 
n C c o .  

We shall distinguish between the following quite common order relations in this 
paper: A relation is a quasi-ordering if it is reflexive and transitive. The relation 
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" < "  is a partial ordering if it is transitive and if the underlying set contains no 
elements x which satisfy x <x.  Relations which are reflective, transitive and anti- 
symmetric are called orderings. 

We can now redefine growth types omitting the algebraic notion of sums as: 

Definition 1.1. Then 7s ~: g; is a growth type if 

(i*) 7s is a cut of 931, i.e. if f 6gJ~, t~7s and f <=t then f 67s 

(ii*) 7s is directed (upwards) in 9~, i.e. if t, uETs there is a v~7s such that t<__v 
and u<v. 

The growth type 7s will be called Specker growth type if 7s is bounded in (93~, <=), 
i.e. There is an upperbound b ~ 9J~ such that t <= b for all t e 7s 

Hence growth types are the ideals of (ffJ~, <)  and Specker growth types are 
the bounded ideals in 0J~, _-<). Specker [13; p. 137, SatzV] constructed 2 2~~ 

different growth types which lead to 2 2~~ non-isomorphic monotone subgroups 
of P; cf. part b. All such growth types +9~ are bounded by {n "+~} and are 
therefore Specker growth types according to our definition. All Specker growth 
types are equivalent under the following equivalence relation " ~ "  between 
growth types. This equivalence relation can be motivated algebraically and it 
will allow us to distinguish between different types of slender groups; cf. part b. 
It is defined as follows. 

Definition 1.2. Denote by 9J~ s the subset of all strictly monotone sequences of 93l, 
i.e. all {f,}~9~ with f,:~ f ,+l for all n6co. Then r~931 s induces a monotone- 

stretching monomorphism re :  P ~ P  f . e . ~  ~ f~. 2 ei [=m-s-mono-  
n ~ o )  i = r n  

morphism]; cf. G6bel and Wald [7; p. 216] 

Definition 1.3. I f  Z, H are growth types, let 7s if there is an r~931 s with 
r#(7s and let 7s if 7s and ~ Z .  Then we denote by IP=(IP, ~ )  the set 
of all ~-classes of growth types with the induced ordering ~ .  

Then all Specker growth types 4 :~  are equivalent and thus represented by 
one element, e.g. the set ~ of all monotone sequences which increase at most 
linearly. The single sets 931 and ~3 form equivalence classes by themselves. Hence 

3 < liP[ < 22~~ Because of a 1 - 1 correspondence between the set iP and different 
classes of slender groups we shall determine the cardinality of iP; c.f. Corol- 
lary 1.7 and G6bel and Wald [7; p. 203, conjecture]. In sections 2 through 4 we 
shall be working under ZFC together with Martin's axiom (MA) to prove our 
main result, namely 

Theorem 1.4. Martin's axiom implies IiPI = 22~~ 

We refer the reader to Jech [10; pp. 229 ff.] and w 2 for a discussion of Martin's 
axiom. MA is a trivial consequence of the continuum hypothesis (CH) and the 
opposite is not true; cf. Jech [10; p. 140, Lemma 16.1 and p. 232, Theorem 51]. 
Therefore our assumptions are relatively consistent with ZFC; cf. Jech [10; 
pp. 108ff]. The fact that IiPI ==_4 in Z F C + C H  has already been shown by Wald 
I-Ph-D-thesis, Essen 1979]. The methods applied here are refinements of ideas in 
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this thesis. We wilt show, that llPf > 4 is generally true using ZFC only. In order 
to prove this, we will transform the problem [1P[>4 into an equivalent form 
without algebraic conditions: 

(gJi, ~ )  Define {f,}={g,} to mean that there is a k~co with f , < g ,  for all n~co 
and n>=k. 

This order goes back to Hausdorff [8] and was recently investigated by Hechler 
[9] (denoted by ~ )  whose motivation was purely set theoretical. (I.e. his 
theorems of the existence of certain scales.) 

Then 3;<gJl is a ~--growth type (or E-ideal) if 3; is a cut and directed with 
respect to = .  Now our claim liP[ _-> 4 can be formulated using the Hausdorff 
ordering ~- only. In addition it can be expressed in terms of subsets of co. The 
following statements (a), (b) or (c) are equivalent with the opposite case liP I < 3: 

Proposition. The following three statements are equivalent: 

(a) 93~ is the only unbounded <-growth type in 9)l. 

(b) 9J~ is the only unbounded ~-growth type in ~J~. 

(c) For any family Y. of subsets of co which satisfy the property 

(*) intersections of finitly many members of Y. are infinite 

there is a decomposition of co into finite non-empty subsets A, (n ~ co) such 
that X c~ A, + ~ for all X e Y. and almost all n ~ co. 

The proof is given in (5.1). The last condition (*) shows, that ultrafilter will 
come into play. Therefore in (5.2) for an ultrafilter 3s it will be shown, that (c) is 
not valid, which implies IIPI > 4. 

b) Connection Between Growth Types and Slender Groups 

According to Specker [13; p. 132] a growth type 2; can be associated with a 
subgroup [3;] of P which is called monotone subgroup after Fuchs [3; p. 51] and 
[5; p. 166, exercise 4]: 

{ma0, } {f~}e[3;] if and only if (1, rfil) e3;. 
" =  

Obviously we get P = [~Jl] and B = [~3] is the set of all bounded sequences of 
P. Conversely a growth type 3; satisfies 3; = [2:] c~ 9)l and is determined by its 
monotone subgroup [3;]. The group B is the only monotone subgroup which is 
free, as shown by Specker [13; p. 134, SatzII, p. 138, SatzVI with CH] and 
N/Sbeling [11; without CH]. This result was generalized to ring theory; cf. 
Bergmann [2]. Because our results hold trivially for the monotone group B, we 
shall exclude B from the class of monotone groups in the following discussion. 

For the special monotone group P the theory of slender groups was 
developed by Specker, Lo~, Sasiada, Fuchs and Nunke; cf. Fuchs [5; w 94, 95]. 
Since monotone subgroups have many properties in common, it is natural to 
develop "slenderness" simultaneously for all monotone subgroups. This was 
carried out in G6bel and Wald [7]: Any monotone subgroup U of P contains 
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the elements e i = {3~,} by definition. Hence we generalize slenderness in the sense 
of Log: 

Definition 1.5 [7]. A group G is called U-slender if any homomorphism ~: U---,G 
maps almost all e~ onto O. 

Hence P-slender equals slender by definition. In addition G will be called U- 
stout if any homomorphism a: U ~ G  is 0 if a maps all e~ onto 0; cf. G6bel [6; 
p. 49, Theorem 4.1]. From our results in [7; p. 10, Satz 4.6] it follows that there 
is only one class of stout groups, i.e. U-stout coincides with V-stout for all 
monotone subgroups U and V. In Fuchs [3; p. 52, Theorem 2] it is shown that 
wheh the cardinality of the groups under discussion is restricted to be less than 
2 s~ there is only one class of slender groups. In general, we have the following 

Theorem 1.6 ET; p. 17, Satz 5.5]: Let Z and gJ be two growth types. Then the 
following three statements are equivalent: 

(1) 3;•g A in the sense of (1.3) 

(2) [~2]-slender groups are [~)]-slender. 

(3) [gA] is not [Z]-sIender. 

There is an immediate 

Corollary 1.7. (a) [Z]-stender = EgO]-stender if and only if Z ~ ~.  

(b) The set of all classes of slender groups defined by monotone subgroups of P 
is order isomorphic with (IP, <() from (1.3). 

(c) All Specker growth types (#: ~)  define the same class of slender groups; cf. 
[7; p. 20, Satz 5.7(a)]. 

Combining (1,7) and our main result (1.4) of this paper, we obtain an answer 
to the question [7] about the number of different classes of slender groups: 

Corollary 1.8. MA implies the existence of precisely 2 2~~ different classes of 
slender groups defined by monotone subgroups of P. 

w 2. Specker Growth Types and the Hausdorff Ordering 

There is an obvious way to enlarge subsets of the set ~J~ of all positive and 
monotone sequences to obtain growth types, following the 

Definition 2.1. I f  X <=9)l, let X be the intersection of all growth types of 9J~ 
containing X. 

The set X = can also be described via elements. This will be accomplished by 
means of the following. 

Definition 2.2. I f  x,y~gJl, let be x v y6931 the point wise maximum, i.e. x v y 
= {max (x,, y,)} where x = {x,~} and y = {y,}. 

From (2.2) it follows that x v y is a least upper bound of x and y with respect 
to (9)l, <). We derive the immediate consequence. 
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Lemma 2.3. Let X <= ?0l. 

(a) J~ is a growth type 

(b) X--, X for all X <gJl is a closure operation, i.e. X < X, X = X  

(c) x e X  if and only if there are x 1 . . . . .  xneX such that x~gJl and 
X ~ X  1 V . . .  V X  n. 

Our next result (2.5) shows that many growth types J{ are bounded by 
certain elements of 9)l, and so are Specker growth types. This result is used in w 4 
and it will also illustrate that the proof of the existence of growth types which 
are not Specker growth types will be non-trivial. Corollary 2.5 will be shown 
under the hypothesis ZFC + MA. 

If (E, _-<) is a quasi-ordered set, two elements a, b e e  are compatible, if there 
exists ceE with a<=c and b<=c and if a, b are not compatible, they will be called 
incompatible. The set (E, _-<) satisfies the countable anti-chain condition, if all 
subsets of pairwise incompatible elements (anti-chains) are at most countable. It 
is customary to abbreviate the countable anti-chain condition by c.a.c.. A subset 
X of E is dense in (E, __<), if for each esE there is an x e X  so that e<x.  MA 
reads as follows (cf. Solovay and Tennenbaum [12; p. 132]): 

MA (topological version). Let (P, <) be a quasi-ordered set satisfying c.a.c, and ID 
be a family of less than 2 s~ subsets of P then there exists a ID-generic subset G of 
P, i.e. G satisfies: 

(i) G < P  is a cut 
(ii) G is directed upwardsJ i.e. G is an ideal in P (cf. 1.1). 

(iii) If D~ID is dense in P, then DnG4=~. 

Theorem 2.4. (ZFC+MA) :  I f  X <__gJl, IXl <2  ~~ there is an bagJl s such that x F b  
for all x s X .  

The proof of (2.4) is given in Jech [10; p. 261, Lemma 24.12] where baboo is 
constructed. This bound b can be modified to be in !r2 s. 

Since 9J~s_~!loR and ( f = g  ~f_-<g for f,g~gJl, from (2.4) it follows that subsets 
X__< 931 of cardinality < 2 s~ are bounded with respect to __<. Hence we get a 

Corollary 2.5. (ZFC+MA) :  I f  X5991, IX[ <2  ~~ then J( is a Specker growth type. 

In [7] we associated with any strictly monotone sequence r~gJl s a stretching- 
monomorphism (=s-monomorphism) r*: P-~P.  These monomorphisms where 
used to classify slender groups. 

Since r* never maps 93l into itself if r 4= {n}, we introduced in (1.2) a second 
monomorphism r e which does. We recall the notion of s-monomorphisms from 
[7]. 

Definition 2.6. I f  rs9?~s, let be r*: P ~ P  ( ~  f ,  en~ ~ fne~,) the stretching mo- 
nEo~ n~o 

nomorphism (s-monomorphsim) induced by r. 

The map r e restricted to 99l can be derived from r* by making the latter 
monotone. This follows from 
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Lemma 2.7. Let be re93~ s 

(a)  'iY: Imax ,he. a . .  r+ a" 
f e ~ .  C i : l  

- j 

(b) For growth types 5s and 11 of 9Jr we have r*(ld)<~ if and only if 
r*([U])__< [~;]. 

Proof (a) follows from the definitions r 4# and r*. 

(b) Let r~(11)<3; and fe[1g].  Then f e z [  and consequently ~ = r e ( f ) e 3 ; ,  
using (a). Hence r*(f )e[2; ] .  Conversely let r*( [ t l ] )_[3 ; ]  and f e l l .  Then 

r#(f)eSs follows from r e ( f ) = r * ( f ) : ~  und r*(f )e[3; ] .  

In w we introduced (liP, < )  using the m-s -monomorph i sm r ~. In [7] we 
applied s-monomorphisms. 

Lemma 2.6 (b) shows that we obtain the same ordered set [IP] ={X_cp,  
monoton}/~ in both cases. Hence the classifications (1.6), (1.7) remain the same 
if we interchange * and ~. As in the case of s-monomorphisms, we shall need the 
following simple and essential 

Lemma 2.8. I f  gegJ~\~3 and f e92R there is an regJl s such that re ( f )<g .  

Proof Since {g,} is not bounded, there is a strictly monotone positive sequence r 
={r,} such that f , < g , ,  for all neoJ. Hence r * ( f ) ~ = f , < g , < g  i for all r,<i<r,+ 1 
and all neco. Therefore r ~ ( f ) <  g by definition (w 1) of " < " .  

Lemma 2.9. I f  r, s eM s and r=s then s ~ ( f ) < r e ( f )  for all f e92R. 

Proof Since r~-s, there is a keco such that r,,<s, for all n>k. Let be n>s k and 
choose e, meo~ such that re<n<re+ ~ and sm<n<sm+ 1. Since re>k, we get 
r~<sm<n and m<e. If fe92R, we obtain s ~ ( f ) , = f ~ < f e = r ~ ( f ) , ,  i.e. 
se(f)<r4#(f) .  

Next we will show that there exists well ordered cofinal subsets of 9)l s. 

Corollary 2.10. ( Z F C + M A )  (93l,, F )  has a cofinal well ordered chain of length 
2 N~ 

Proof Since 193l~l=2 s~ we will label the elements of 92R~ in the form x u for all 
#e2  s~ Assume that we have constructed r, for r e #  as well ordered chain already 
such that 
(*) x~ = r, for all v < #. 

Let be X={r~,xu;ve#}. Since [X]<2 s~ from (2.4) we obtain an element 
r, egJ~ which is upper bound of X. Then the Set {r~; ve2 s~ is defined and by 
construction it is the required cofinal chain. 

w 3. Construction of Compatible and Incompatible Step Functions 

The following quasi-ordering of coarseness "_~" of functions in 9)l\~3 will be 
very useful in this section. The proofs and the quasi-ordering _~ while looking 
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- -  gn = frn  =gin 
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Fig. 1. Definition of 

l i t  (~O 

some what technical are actually quite natural, when one has, in mind, a picture 
of the constructed functions. Hence we would like to ask the reader become 
familiar with the figures included in the proofs. 

Definition 3.1. (cf. Fig. 1) Let be f g~gJ~\~, then say f ~_g (g is coarser than f )  if 
and only if 

(i) For almost all n~o9 there is an mec~ such that g, =fro 

(ii) For almost all n~co with g~ =fm we have g,, =f,,. 

We have the following 

Lemma3.2.  Let be regJ~ s, f yEgJl and fq~3. There is a gEg~ with g~_f and 
r e ( x ) ~ y  for all x ~ g .  

Proof First we construct the sequence gsgJ~ by induction' (cf. Fig. 2). Put go =fo  
and assume gk to be constructed already for all k<n  and some 0+n~og. If 
f ,  < g . -  a, we choose g. = g._ 1 and if f .  > g._ 1 choose m > n such that f,. > r.. Yr. 
and define g. =f. , .  

From fegJ/ \~3 it follows by construction that gcgJ/\~3, too. Next we will 
verify that f o g .  Since (i) of (3.1) is true for all n~co, we only have to prove 
(3.1) (ii): Therefore let g .= f , ,  and assume first m<n. Then g,.<g., since g is 
monotone. If g , .<g. ,  we get g.~_~ < g m < g . = f , .  and therefore g.~=f~ for some 
k__> m by construction of g. Hence g,. <g .  =fro < fk =g.~ is a contradiction, which 
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Fig. 2. Idea of the construction (Lemma 3.2) 

shows g m = g ,  in this case. If  re>n, let n<k<=m for keco. Therefore  f k< f~  
= g , < g k  t since f and  g are mono tone .  F r o m  the cons t ruc t ion  of  g it follows 
tha t  gk-1 = gk and  by induc t ion  on k is f , ,  = gn = gin. F ina l ly  we will show tha t  
re(x)4:y for gc_x. The inequal i ty  has the explici t  form 

(*) F o r  all keco there is an s~co such tha t  re(x) (s )>k ,  y(s). 

Because of  (3.1) and  f~_g~_x there  is an eeco such tha t  re>k and  

(i*) F o r  all n>e  there  are  m, ieco with g , = f , ,  and  x ,=g~ .  

(ii*) F o r  all n>e if g,=f , ,  then fro---g,, moreove r  x n = g  m implies  x,, =g , , .  

N o w  we choose  meco with m > e  and  x ~ > x  e and  n~co min ima l  with x m = g  n. 
F r o m  x~ < x,, = g,  = x,  it follows e < n and  therefore  r e < r,. I f  f ,  < gn - t our  n is no 
longer  m in ima l  with xm =gn since x m = g,  = g ,_  ~ by cons t ruc t ion  of  g. Therefore  
fn>gn_l and g , > r , . y ~ ,  by  cons t ruc t ion  of g. F r o m  r,<r, follows tha t  r~(x)(r,) 
= x . = g , > r , .  y ~ > r e y ~ > k . y ~  and  (*) is satisfied for s=r,.  

Next  we will show tha t  (g)l, <__) conta ins  many  subsets  of i nc ompa t ib l e  
funct ions der ived  from prescr ibed  e lements :  

L e m m a  3.3. Let be a, b, csgJl\f8 and cSb .  Then there is an element segJ~\f8 such 
that s ~_ a and d $ x v b for all x ~ s. 

Proof Fi rs t  we cons t ruc t  s~gJ~\~3 and a sequence {i,}~gJl by induct ion.  Put  s o 
= % ,  i o = i 1 = 1  and  assume s k, ik+ 1 has been cons t ruc ted  for k < n  (cf. Fig. 3). 
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Fig. 3. Idea of the construction (Lemma 3.3) 

�9 c o  

There  are two cases: 

(1) c . _ l < = i . . m a x { s . _ l , b . _ l }  or  s . _ l = a , .  

and  

for some m_> n 

(2) i . .  max  {s._ i,  b ._  1 } < Cn-- l and  s ._ 1 + % for all m > n. 

Put  s . = s . _  I and  i.+ 1 = i .  in case ( l)  and  choose  m~co such tha t  an_ 1 <am and  
pu t  s. = a , .  and  i.+ 1 = i . +  1 in case (2). Next  we will show that  the cons t ruc ted  
e lement  s satisfies the hypothes is  of  the lemma.  To show tha t  s~g) l  we assume 
by way of con t rad ic t ion  tha t  there  exists 0 =t = n ~ co with s. < s . _  1. 

F r o m  case (2) it follows tha t  a ._  l < S . < S . _ l .  By cons t ruc t ion  there  is an 
m~co with s._ 1 = % .  Hence  a ._  1 < %  and  from asg) l  fol lows n < m .  Therefore  s. 
= s . _  1 by cons t ruc t ion  of  s, which con t rad ic t s  s. < s . _  1. Consequen t ly  segJ~. 

N o w  we assume s e ~ .  There  is k ~ o  such tha t  s._ 1 = s .  and  i . = i . +  1 for all 
n>=k by def ini t ion of  ~ and (1). Since a, cegJ~ \~ ,  c S b  there  exists m > k  with 

s k < a,., ik+ 1" Sk < % and  ik+ 1" bm< %" Hence  ira+ 1 "max  {s m, bin} < Cm and  s m =t = a .  
for all n > m, so tha t  we der ive case (2) of  the const ruct ion .  This con t rad ic t s  s k 
=s, .+1 and  s ~ g J ~ \ ~  is shown. In o rde r  to show s~_a, the only  cond i t ion  of  (4.1) 
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which is not  obvious,  is (3.1) (ii). Hence  let us assume sn=a m. If n<m, the fact 
that  sm=a m follows inductively f rom the construct ion in case (1) and so 
condi t ion (ii) holds. Hence  we assume m < n and by way of contradic t ion assume 
that  Sm<S .. F r o m  case (2) of the const ruct ion follows that  there exists an eeco 
with m < e < n  and G 1 <se.  Hence  G i < s ~ < s ~ = %  implies e < m  and the 
contradic t ion m < e < m. 

Final ly we will show c S x v b  for x~_s. Since {i,} e ~ \ ~ 3 ,  for kEco there is an 
n~co with i~>k. Choose  t > n  such that  x~_ l < x t .  Since s~93l\~3 and s~_x there 
is m > t with x,, = s m < s m + 1. 

If  Sm=a j for some j>m,  we get S;=-Sm<G+ ~ and so j < m  which is a 
contradict ion.  Therefore  s m 4= aj for all j >  m and f rom our  const ruct ion of s, we 
obtain  ira+ 1' max  {Sin, b~} < %  and consequent ly  cmSk .  max  {x m, b,,}. Using the 
definitions of  __< and v and the last inequality, we obtain  c ~ x v b. 

Next  we will show the existence of upper  bounds  for chains in 9)l\~3 of 
cardinali ty < 2  s~ with respect to the coarse ordering _~. 

L e m m a  3.4. ( Z F C + M A ) .  Let tc~2 ~~ and avc_a ~ for all vE#~tc be a linearly or- 
dered chain of elements of gJ~\~. There is an acgJt\f8 such that G c_a for all ve~c. 

Proof. If  F is a finite subset of the ordinal  ~c, choose t(F)~co minimal  with respect  
to the condit ion:  

For  all v, f i eF  with v < #  and all n>t(F)  the following holds:  

(i) There is an m~co such that  au(n)=av(m). 

(ii) The equali ty G(n)= a~(m) implies a (m)= G(m). 

Let P be the set of  all pairs (potential  conditions) (s, F) of finite subsets F of tc 
and m o n o t o n e  functions s: [0, k ] ~ c o \ 0  of initial segments  [0, k ] = { x ~ c o ;  
0_<x_<k} of co and any k~co. Next  we will define a quasi -order ing < in P:  

If  (s, F), (s',F')~P, we define (s,F)<(s' ,F') if and only if the following is 
satisfied: 

t (a) s _ s ,  i.e. the function s' extends s. 

(b) F < F '  (the usual subset relation) 

(c) If s c s '  (s' extends s properly) and F'=#~a, for all n~dom(s ' ) \dom(s)  there 
are kx, k2~co and #~F' such that  the following holds:  

(1) max  (dom (s)) __< k 1 < n-<_ k 2 < max  (dom (s')) 

(2) v < #  for all v~F 

(3) k 2 ~ t ( F u  {#}) 

(4) au(k 1) < au(kz) < au(k2 + 1) 

(5) s ' (m)=au(k2)  /f k 1 < m ~ ] r  2. 

Using t ( F u  {#})=<t(F 'u {#}) for F<F' ,  one easily checks that  (P, < )  is a quasi- 
ordering and < is in par t icular  a transit ive relation. 

In  order  to show that  (P, < )  satisfies c.a.c., let C < P and I cI > N0. The lat ter  
implies the existence of elements (s, F), (s', U)~  C such that  s = s' and F +-F'. If  F"  
= F u  F', then (s, F)<(s, F"), (s', F')<(s, F") and (s, F")~P follows trivially. Hence  
C contains compat ib le  elements and antichains are at most  countable,  i.e. P 
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satisfies c.a.c. Next  we claim the subsets of P 

C r =  {(s, F)eP, there is an x e d o m ( s )  with r<s (x )}  

D, = {(s, F)eP, n e d o m  (s)} 

g~ = {(s, F)eP, v e f }  

to be dense in P for all n, reco and vs~c. 

P roo f  of  the density. Let  n, rec0, ve~:, p =(s,  F ) e P ,  d o m  (s) = [0, k], F '  = F w {v} 
and # = m a x F ' .  Choose  k'Eco such that  n=<k', k<k', t(F')<k', r<au(k' ) and 
au(k) < au(k' ) < au(k' + 1). Next  we define 

s'(x)= ') if k <x<k'. 

Then  (s',F')eCrr~D,c-~E v and (s,F)<(s',F'). Therefore  Cr, D,,  Ev are dense in P. 

An appl ica t ion of M A  shows the existence of a generic set G of P such that  

(1) Fo r  p,p'eG there is qeG with p<q and p'<q. 
(2) Cr~G@~ for all reco 

(3) Dn~G@~ for all nee)  

(4) E~nG4=~ for all ve~: 

We define a = U s where we interpret  functions as graphs. Then the fact that  
(s, F)~ G 

a is a well-defined unbounded  m o n o t o n e  function f rom co to co follows (1), (2), (3) 
and our  definition o f (P ,  =<). Final ly we will show GGa for all ve~c, which means  
that  we must  check the two condit ions of definition (4.1): 

Choose  p = ( s ,  F)eE~c~ G and k = m a x ( d o m ( s ) ) .  For  any n>k we will show 

(c 0 There  is an meco such that  a(n)=G(m ) 
(fl) a(n)=G(m ) implies a(m)=a~(m). 

Because Dn is dense, there is p' =(s ' ,  F')eG~D~. The filter condi t ion (1) implies 
the existence of p " = ( s " , f " ) e G  such that  p < p "  and p'__<p". Since 
n e d o m  ( s " ) \ d o m  (s) there a re  k l ,  k 2 eco and ~ e F "  such that  
max(dom(s))<k~ <n<k2 <max(dom(s")), v<# for all veF, k2>t(Fu{#}) , 
au(kl) < G(k2) < au(k 2 + 1) and s"(m) = a,(kz) if k I < m < k 2 as follows f rom (c). 

Since 7=<# and kz>t(Fu{#} ), there is an rneco such that  a,(k2)=G(m ). 
Hence  a(n)=s"(n)=a,(k2)=G(m ) and (e) is shown. 

I f  a(n)=G(m ) for some meco, we obta in  a,(kg)=S"(n)=a(n)=G(m ). Hence  
au(m)=G(m)=a,(k2). In conjunct ion with au(kO<G(k2)<au(k 2 + 1) this implies 
k 1 < m__< k 2. Therefore  a (m) = s" (m) = au (k2) = a~ (m) and (fl) is shown. 

Condi t ions  (c 0 and (fi) and (4.1) show Gc_a. Q.E.D. 

w 4. Proof of the Main Theorem 

In this section we will p rove  our  ma in  result (1.4). Let  us recall that  (1P, -<) are 
the equivalence classes of  growth types 3;, 1i where 3 ;~1I  if there is an regJ~ s 
such that  r e ( 3 ; ) < l I  and 3;~11 if ~;-<11~(3;; cf. (1.2), (1.3) and (2.7). 
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Theorem 4.1. (ZFC + MA). r IPl = 2 2s~ 

The major burden of proving (4.1) will be the following. 

Construction 4.2. (ZFC+MA).  There is a subset K~92i~\~ with the following 
properties. 

(*) 111=2 s~ 

(**) I f  X, Yare any subsets of K with X<Y,, then I x \ y l < 2  s~ 

We will prove (4.2) at the end of this section. In order to derive (4.1) from 
(4.2), we will use a set theoretic result. 

Let .3s= { X < K s ,  IXl <N} the ideal of the boolean set ~,3(Ks) of some set 
K s of cardinality N and ~*  = ~(Ks)/.3 s its quotient. We will write ~3"= ~3(K)/.3 
if N = 2 s~ as in (4.2). We obtain the 

Lemma 4.3. l~* l - -2  ~ and in particular l~3*l =2  2s~ 

Decompose K s into N subsets K~ of cardinality N with i~J and [J[ =N. If 
T < I, let K r = U Kt. Then K r = K r, mod ,~ if and only if T = T'. Therefore, the 

t ~ T  

set {Kr, T < K }  represents a subset of 2 s different elements of ~*. 

Lemma 4.4. (ZFC+MA).  I f  X * ~ *  is represented by X <K and K as in (4.2), 
the map 7: (~*, <)--+(IP,-<)(X*~X) is an order preserving monomorphism. 

Proof Lemma 4.4 is an immediate consequence of property (4.2), Lemma 2.8 and 
Theorem 2.4: For if X* < Y*, then IX\Y[ <2 s~ by definition of ~*  and by (2.4) 
there is a b~931~ such that u<b for all u e X \ g .  From (2.8) we have an r~gJ/such 
that r e ( b ) < y  for some yeY. Therefore r~*(X\Y)< 5" and trivially r~(Xc~ g)< 
which proves r e ( X ) <  Y. Hence X ~ , Y  and 7 is order preserving. From X ~  Y it 
follows that X < Y  and Y-<J(, hence I X \ Y I < 2  s~ and I Y \ X I < 2  s~ taking 
X, Y<=K according to (4.2)(**). Therefore X * =  Y* by definition of ~}* and ), is 
injective. 

Proof of (4.1)from (4.2). Note that by (4.3) and (4.4) the following inequalities 
h o l d  

22 S ~  = I~*1 -<- IIPI _-< 2 =s~ 

Finally, we derive (4.2). First we choose a cofinal chain {r,} for #~2 s~ from the 
ordered set {gJ~ s, r ) ,  which exists by Corollary 2.10. To show that (4.2) holds we 
next construct K to be a sequence x,~gJt\~3 for #e2 ~~ so that for each finite 
subset F of 2 s~ and each element veF the following property holds 

(+) r~(x0$ V x~. 
peF\{v} 

Property (+)  will imply (4.2)(**). The construction is done by induction on the 
ordinal max(F). Let x 0 be an arbitrary element in 9Jl\23. Now let #~2 s~ and 
assume that for c~ < # the element x~ has been choosen such that (+ )  holds for 
every F with m a x ( F ) < #  and every veF. Consider the set R,  of all pairs (F, v) 
where F is a finite subset of 2 s~ with m a x ( F ) = #  and vsF. Then [R,l=~c<2s~ 
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and we can index Ru by the ordinals less than ~:, i,e, R , =  {px; 2a~c}. We will 
choose x~ as an upper bound of a _q-chain {yz} for )oatc were the latter is 
defined inductively as follows. We start with an arbitrary element y_l@~CJl\~. 
Assume 2e~c and that yx, has already constructed for all 2 '<2.  

By Lemma 3.4 we can find y '~gJ l \~  so that y~,c_y' for all 2 ' ~{ -1 }  u2.  Let 
p~=(F,v). If v = # = m a x ( F ) ,  we choose yx~_y' by Lemma3.2 such that 
r~ (x) ~: V x o for all x _~ yx. If v 4= # we choose Ya-~ Y' by Lemma 3.3 such that 

peY\{u} 

r~(x~)$ V Xp V X for all x _ y ~  (By induction, we obtain r~ (x~)$ ~/ x o.). 
p~F\{#, v} p~F\{I~, v} 

Another application of Lemma 3.4 allows us to find x u coarser than y~ for 
every 2 ~ .  From the definition of the chain {y~} we see that (+)  holds for 
every F with m a x ( F ) = #  and every w F .  

Let be K = { x  ; # a 2  ~~ where the elements satisfy condition (+)  for all 
#E2 s~ Since I K[ = ~ o  by construction, we only need to show (4.2)(**): Let be X, 
Y subsets of K and X <  Y. Assume IX \Y]  =2  s~ for contradiction. By definition 
(L3) of < and (2.6)(b) there is an r~93l~ such that r~ ( ) ; )<  Y. Since the chain 
{r~; re2  ~~ is a cofinal subset of 9Jls, ~-) there is a 2e2 ~~ such that rFr~. From 
I X \  Y[ = 2 ~~ follows by definition of cardinals the existence of x~ a X \  Y such that 
2av. Since r~-r~-r~ we get from Lemma2.9 that r~(x~)<=r~(x~) and hence 
r~(x~)~Y. Because of (2.3)(c) there are x~ . . . . .  x ~ a Y  such that 
r~(x~)<Xv, v ... v x ~ .  Since x~(~Y and x~,aYit  follows that v4=v~ for 1 < i < n  and 
(+ )  contradicts the last inequality between x~ and x~'s. 

w 5. Existence of Growth Types Which are not Specker Without MA 

First we will consider equivalent conditions in ZFC such that there is no 
unbounded growth type 4=931. We will derive: 

Proposition 5.1. The following conditions are equivalent 

(a) There is no unbounded <-_-growth-type 4= 9)2. 

(b) There is no unbounded r--growth-type 4=93l. 

(c) For any family ~ of subsets of co which satisfies the property 
(*) intersections of finitely many members of t are infinite 
there is a decomposition of co into finite non-empty subsets A.(n~co) such that 
X c~A,4= ~ for all Xa3s and almost all ncco. 

Proof (b) ~ (a). If Z 4= 93l is a < -growth-type, then Z is a ~ -growth-type as well, 
using the implication ( f m g ~ f < g ) .  Therefore there is be991 such that t~-b 
for all taX. 

Using ( f  ~-g ~ f  < g) again, Z is a bounded <-growth-type. 

(a)~(c). Let 3~ be a family of subsets of co satisfying (*) and a =  {a,}~gJl be any 
unbounded sequence. For  Xe3~ define X'~93l as follows. If nsco, let X' (n)=a m 
where m =rain {kaX,  k> n}, which is well defined since X is infinite by (*). Then 
~: = {X', Xe~}  is a <-growth-type of ffJl. 

Assuming (na,}aX, there are X 1 . . . . .  X~eX such that (na,} < X '  1 v ... vX~ as 
follows from (2.3)(c). 
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Hence there is keco with na,<-_k.max{X't(n ) . . . . .  X;(n)} for all n~co. Since 
X I ~ . . . c ~ X  t is infinite by (*), there is an n e X l ~ . . . c ~ X  t with n>k.  Therefore 
X'~(n)=a, and n a , < k a , < n a ,  is a contradiction. Therefore {na,}r in particu- 
lar, 3;#9J~ and 3; is bounded by assumption (a). Let b =  {b,}~gJ~ such that t< b  
for all te3;. For n~co we define k(n)=max {meco, n<m, a,,<nb,} if {meco, n<m, 
am<nb,} # ~  and k(n)=n otherwise. Using the intervals In, k(n)] for neco one 
can select inductively a decomposition of co. Since X' <b  for X~3; there is n0~co 
such that X'(n)<nob ~ for all neco. Now let n>n  o, then X'(n)=a m for some m ~ X  
with m>n. Therefore am< X ' (m)<nob ,<nb  . and m~{i~co, n<i,  ai <nb,}.  Hence 
m<k(n) and m e X ~  [n, k(n)] =t=~, which shows (c). 

(c)~(b). Let 3;+9)l a E-growth-type and a={a,}eg) l \3; .  If x={x,}e3; ,  let x' 
= {n~co, x ,<a,} ,  which is infinite, since aCx.  The set 3;= {x', xe3;} satisfies the 
intersection property (*) because of x ' l~ . . .~x ' t=(x l  v ... v xt)' for x 1, ..., xte3;. 
Hence there is a decomposition co = ~) A ,  which satisfies the hypothesis of (c). 

?1 

Define an element b = {b,} EgJI as b, =am,~cA~ ) + 1 where m =rain {ieco, n < k  for 
all kaAi}. Next we claim x~-b for all xe3;  and 2~ is bounded, 

Since xe~;, we get A ~ x ' + ; z ;  for all m > m  o and some moeco. Let k 
= m a x { A o w . . . W A ~ o  ) and take any n>k.  If m=min{ieco,  n<k'  for all k'eAi} 
then m > m  o and AmC~X':~. Let jeA, ,c~x'  then n<j  and therefore 
x,  < xj < aj < am,~(A~ ) < amax(A~ ~ + 1 = b, and (5.3) is shown. 

Proposition 5.2. (ZFC). There are unbounded growth types @ 9)l. 

Proof. Let 3; be an ultrafilter of co which is not principal. Hence 3; satisfies (*) of 
Proposition 5.1(c). Let A, (nsco) be any decomposition of co into finite non- 
empty subsets. If c o = N l w N  2 and ]g l l= tX2[=  oo, let Yi = ~ A m for i=1 ,2 .  Since 

neN~ 

3; is an ultrafilter, either Yi of I12 belongs to 3;, and take Yie3;. Since Yi n A , = ~  
for all heN2, condition (c) of (5.1) is not valid. 

Finally we will remark, that the order-structure of growth types depends 
strongly on the underlying set theory as follows from a slightly modified version 
of a result of Hechler [-9, p. 156, Theorem 1.1]" 

Theorem 5.3 (Hechler [9]). Let ~ be any countable standard model of ZFC and A 
=(A, <)  be any partial ordered set in s such that [A[ _-<2 ~~ (with respect to 9;') and 
such that every countable subset (with respect to ~2) of A has an upper bound. 
Then there is a normal extension ~ of s in which A is order-isomorphic to a 
cofinal subset of (9)1, F). 

Remark. In order to obtain (5.3) from [9], change the potential p on p. 156 of [9] 
such that p~e"co is a function which is monotonic in addition. Then the image of 
A under the embeding ( a~ f , )  constructed by Hechler [9; p. 166] is already in 
(~, ~). 

(5.3) can be used to obtain further unbounded growth types different from 9J~ 
without the use of MA. 
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