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Summary. A stress-field of a perfect elastic isotropic circular fin with variable thermal conductivity is 
obtained. The thermal conductivity is considered temperature dependent. The nonlinear conduction-con- 
vection-radiation heat transfer equation of the circular fins subjected to the nonlinear boundary condi- 
tions is solved by Adomian's double decomposition method. The thermal stress distribution is obtained 
by direct integration of the temperature distribution. For low temperature difference between the fin base 
and the ambiance, the effect of thermal conductivity on pure convection and convection-radiation is 
important and can be negligible in pure radiation. 

1 Introduction 

Circular fins are used extensively to increase heat transfer rates of  heat exchanging devices, 

particularly in compact heat exchangers. The fin optimization problems have been investi- 

gated to find the optimum fin profile for pure conduction, pure convection, and convection- 

radiation with variable thermal conductivity or variable fin profile [1] [5]. In order to find 
the opt imum fin shape, the optimum volume or the least material of  the fin was considered, 

either to minimize the fin volume for a given amount  of  heat dissipation or maximize the heat 
dissipation of  a given volume. 

The non-uniform temperature distribution on the fins causes thermal stresses, and the 

fatigue failure appears as a result of  temperature fluctuations. The consequences of  such ther- 

mal stress are important  and must be considered in many aspects of  engineering design. Kim 
[6] considered thin circular disks of  isotropic materials containing heat sources to cause ther- 

mal stress. Sadd [7] presented a non-Fourier  thermal stress in a circular disk. Misra [8] studied 

the thermal stresses in a circular disk of  orthotropic material due to the rotation of  a point 
heat source. The thermal stresses of  the convection-radiation thin annular fins with constant 

thermal parameter have been studied by Yu and Chen [9] with the hybrid method, which com- 
bines the Taylor transform and the finite difference approximation. 

In this paper, the nonlinear conduction-convection-radiation heat transfer equation with 
the nonlinear boundary conditions is solved by Adomian 's  double decomposition method, 

which can transform the boundary-value problem to the equivalent initial-value formulation. 
The stress field of  the circular fin can be treated as the plane-stress field, and the end faces are 
free of  traction when the thickness of  the fin is even smaller than the outer radius, re, [10]. The 

direct integration method is used to obtain the thermal stress distribution of  the thin circular 
fins. 
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2 The governing equation and boundary condition 

The objective of this study is the evaluation of thermal stress in a circular fin with a symmetric 
rectangular profile and homogenous material. A schematic of the theoretic apparatus shown 

in Fig. 1 is designed for the prediction of the thermal stress and allows the detection of the 

effect of variable thermal conductivity. The circular fin of thickness 2W is extended from the 

base radius rb to the tip radius r~, and the temperature of the fin base To is assumed constant. 
The convection and radiation give rise to the heat transfers from the fin surface to the sur- 

rounding at temperature T~. The steady-state energy equation of the fin can be written as 

d (A K(T) - Ph(T- To)- 4 
d7 

The associated boundary conditions are 

T : T b ,  r = r b ,  
(2) 

- K  - k(T) dT h(T  - Ta) + o(cT 4 - a te  4) r = r~ 

where A~ is the cross-sectional area, P is the fin perimeter, cr is the Stefan-Boltzmann con- 

stant, h is the convective heat transfer coefficient between the fin surface and the ambiance, e 

and a are respectively the emissivity and absorptivity of the fin at the effective temperature 

T~ of the radiative surface. 
Corresponding to a linear function of temperature, the thermal conductivity K of the fin 

may be expressed in the following form: 

K(T)  = ka[1 +/3(T - T~)], (3) 

where/q is the thermal conductivity at the ambient temperature T~, and/3 is the slope of the 

thermal conductivity-temperature curve divided by the intercept ka. Substituting the dimen- 
sionless variables 0 = T/Ta,  Ob = Tb/Ta, Oe = Te/Ta, and ~ = r/rb into the governing equa- 

tions (1) and (2) yields 

d20 d 2 O l d O  l d O  /dO~ 2 
d~ ~-+nlO~Z4~~247 ~a~ ~ ar ~ - - n 2 ( 0 - - 1 ) - - n a 0 4 - k n 4 = 0 "  (4) 

Fig. 1. Schematic diagram of a rec- 
tangular profile circular fin 
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The transformed boundary conditions become 

O=Ob, ~ =  1, 

dO ~ dO 
rnl ~ + m2O ~ + m30 + m404 = m3 ~- m5 , 

where 

~ = ~ ,  

149 

(5) 

~Ta hrb 2 rh2 aTa3 e rb2 CrTa3 aOe 4 
n l  - -  1 - -  ~ ' n 2  - -  W k a (  1 _ ~ T a )  , n 3  - W]c ,a (  1 _ [~Ta ) , n 4  - W ] ~ a ( 1  - ~ T a )  ' 

hrb rb~Taa c rb(TTa3 aO e 4 
m l  • 1 --/3Ta, m2 = ~Ta , m3 ka ' m4 ka ' m5 ka 

3 Double decomposition method 

In the boundary value problems, the main algorithm of Adomian's double decomposition 

method is used to evaluate the decomposition of u0 based on the boundary conditions and to 
add the integral constants for each successive term u~ [11]. A general nonlinear ordinary dif- 

ferential equation form for the demonstration of the double decomposition method is 

Lu + R u  + N u  = g, (6) 

and the general boundary conditions are specified by Blu(7-1) = ~/1, B~u(T2) = 72, where B is 

a boundary operator. It can be of linear or nonlinear form, e.g. B's = d/dx  + a + X ,  where 
~Az is a nonlinear term and B1 is not necessarily the same as B2. L is taken as the highest- 
order derivative, and R is the remainder of the linear operator. The order of R is always less 

than the order of L, and N u  is a nonlinear term. 
Operating on both sides of (6) with L -1 yields 

u = Cx + L - l g  - L - 1 R u  - L - 1 N u ,  (7) 

where LCx = O. Let  u = ~-~ u.~, r = ~ r and N u  = ~-~ Am, Eq. (7) becomes 
m=0 m=0  m=0 

OO 

ra=0 m=0  m=0 m=0  

If  L is a second-order operator, L -1 is pure two-fold indefinite integration without involving 

constants. Let r = CO,m + XCl,m, and the approximate solution ~,~+1 = E urn, the integral 
m=0 

constants c0,m and Cl,m are solved by matching the boundary conditions to each approximate 
solution. 

The components of the approximation solution are calculated from 

u0 = c0,0 + xcl,o + L - l g ,  

Ul = c0,1 + xca,1 - L-aRuo - L-aA0, (9) 

u2 = co,z + XCl,2 - L 1Rul - L -1A1 ,  
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where in Adomian 's  polynomial the A.~'s are defined as 

1 d "~ 
Am -- m! d/~ m [f[u(A)]] [A=0' 

and can be written in the following convenient form: 

AM = ~ C ( . ,  m) f ( " ) (uo )  m > 1, (10) 
u=l 

where the C(u,  m)  are products of  u components of  u whose subscripts sum to m, divided by 

the factorial of  the number of  repeated subscripts [12]. 

I f  the Dirichlet conditions u(bl)  = ~/1 and u(b2) = ~2 are considered, the one-term approxi- 

mant is ~1 = u0 which must satisfy the boundary conditions 

c0,0 + blCl,0 + L - l g  = rh, 

co,0 + b2c1,0 + L-19  = ~7~, 

or in matrix form 

f l b2 kCl,0 L - l g J  

If  the determinant of  the first matrix is non-zero, c0,0 and cl,0 are determined and ~1 = u0 is 
determined completely. Therefore, the next approximation ~2 can be determined by marching 

the boundary conditions to evaluate the constants, c0,1 and %1, since ~z = ~1 + u~ and qol has 
been determined. In order to increase the accuracy of  the solution, the further evaluations of  

the approximant ~.~+1 = ~m + u.~, which must still satisfy the boundary conditions, are 

required. Continuing in this manner, the m-term approximation is 

~m+l  : ~m -7 C0,m -F X C 1 ,  m - -  L 1RUm_l - L 1A.~_l. 

Substituting and matching ~o.~+1 to the conditions gives 

Co,m + bl,m - L-1RUm 1(bl) - L - 1 d m - l ( b l )  + ~m(b]) = Th, 

co,,~ + bl,.~ - n-Z Ru.~- l  (b2) - L-1A.~-I  (b2) + ~.~(b2) = ~2 , 

and 

co,m + blcl,.~ = Th - ~.~(bl) + L -1Ru ,n - l (b l )  + L - 1 d m - l ( b l )  = rh .... 

co,m + b2c1,.~ = ~12 - ~m(b2) + L IRum_,(b2) + L-1Am_l(b2)  = n2,m, 

or in matrix form 

I 
1 b2 L c1,.~ J L~12,.~ j '  

where 

v/2,.~ r/2 ~m(b2) + L-1Rum- l (b~)  + L-1A . , - I (b2)  " 

Therefore, every integral constants C0,m and Cl,m for each Tm for any m can be obtained and 
then ~.~ is determined completely. 
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4 The fin temperature distribution 

Based on Adomian's double decomposition analysis, L is the highest-order linear differential 
operator. Thus, the linear operator L~ = d2/~ 2 is chosen and Eq. (4) becomes 

1 dO d20 (dO'~ 2 - 1 dO 
L~O=-(n2+rt4)-~ ~ + n 2 0 - n l O - ~ - n l \ d ~  ]- nl ~O~-1-n304 

(12) 
1 dO 1 

= - ( ~ 2  + n4) - ~ ~ + ~20 - n l N A  - n l N B  - ~1 ~ N C  + ~ 3 N D .  

The nonlinear terms are defined by 

NA 
0 c t ~ =  =o d~] ~=o 

dO ~ Cn, N D=O4= ~ D~. NC = 0 ~ = ~=o ~=o 

These specially generated polynomials for the specific nonlinearity can be derived from 

d20o 
Ao = Oo - -  d~2 ' 

d20~ d201 (13) 
& = 01 ~ -  + Oo d T  ' 

d200 d201 d202 
A2 = 02 ~ -  + 01 ~ -  Jr- O0 d~- ~- , 

(do0)  2 
Bo = \ < j , 

dOo dO1 
B1 = 2 d~ d~-' (14) 

dOo 
Co = Oo d~ ' 

dOo. ~ dO1 (15) 
C1 = 01 ~ - P  Uo d~ ' 

dOo + O1 ~ dO2 C 2 = 0 2 ~  +0o d~ ' 

Do : 004 

D1 = 400301, (16) 

D2 = 6002012+40o302, 
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Operating on both sides of  (12) with L (  1 yields 

L~-I L~O=-  L~-I(n2 + n4) - L~-I ( ~ ~ ) + n2L~-iO- niL~-I N A -  ni L~-I N B  

1 - nlL~ -i  ~ N C  + n3L~-iND, 

and 

EOm=Er d~ ] +n2L( -1EOm-I I ' IL ( -1EAm 

1 E C m  -~- n3L( -1 E Din, (17) - n i L (  1 - n i L s  1 

where r = c0,.~ + ~ci,.~ and the nondimensional temperatures of  0 are decomposed as 

00 = C0,0 AF ~el,0 - -  L~-l(n2 + n4), 

_1(1 d0o'  
01 = Co,z + ~ci,i - L~ ~ - ~ j  + n2L~-lOo - niL~-lUAo - nlL~-iBo 

1 
- -  nlL~ -1 ~ Co + n3L~-lDo, 

02 = Co,2 + ~Cl,2 _ L{_1( ~ d01"~ --'~ j + n2L~-101 - nlL~ 1A 1 _ nlL~-IB1 

1 - nlL~ -1 ~ C1 + n3L~-ID1, 

Om : co,rn + ~Cl,m - L~-l (~ dO~-~ 1) + ?z2L~-lOm_l - nlL~-lAm_l - nlL~-lBra 1 

1 
-- nlL{ -1 ~ Cm-1 Jr- rt3L{ 1Din-1. 

Upon summing those iterates, the m-term approximation is expressed by 

qOm+l : ~ Oi : 00 ~- 01 @ 02" ' '  -}- 0ra. (18) 
i=0 

The sum ~Pm+i = ~ 0i can serve as a practical solution and the series converges very rapidly. 
i=0 

5 Thermal stress 

If  the Biot number, hW/Ka, is less than 0.1, the effect of  heat conduction on the rate of  heat 
transfer in the thickness direction of  the fin appears to be quite negligible [13]. It may be 

assumed that the stress and displacement due to the heating do not vary over the thickness. 
Timoshenko and Goodier [14] indicated that the stress on the thin circular fins can be consid- 

ered as an axisymmetrically plane stress. Therefore, the stresses a~ and c~0 must satisfy the 

equation of  equilibrium 

dGr Gr - o'o - -  - 0, (19) 
dr r 
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where err and ~r0 are the radial and circumferential stresses, respectively. The shear stress ~-r0 is 
zero on account of the symmetry of the deformation, and the relations of strain and displace- 
ment are 

d u  qA 
c0 = - ,  (20) C r  z - -  

dr ' r 

where Cr is the radial strain, c0 is the circumferential strain, and u is the radial displacement. 
The ordinary stress-strain relation for plane stress, due to the thermal expansion effect, 

becomes 

1 1 
er = -~ (at - uao) + ~ * T ,  eo = ~ (cro - ucrr) + ~ * T ,  (21) 

where E is the modulus of elasticity, u is Poisson's ratio, and a* is the coefficient of linear 
thermal expansion. Solving Eq. (21) for err and or0 gives 

E E 
~rr -- 1 - u 2 [st + ucO - (1 + u) a ' T ] ,  ao -- 1 - u 2 [co + Uer - (1 + u) a ' T ] .  (22) 

Therefore, the equation of equilibrium (19) becomes 

d (23) r dr  (er + UCo) + ( 1 -  u) (cr - co) = ( l  + u ) a * r  d T  

Equation (20) together with Eq. (23) takes the following form: 

aeu 1 du u d T  
dr 2+ ( l + u )  a - - .  (24) r dr r 2 dr 

It is easy to show that 

drrd [~ d-r-r Jd(r~)] : (1 +  'dT (24) 

and the solution of the radial displacement is 

u = (1 + u) ~* -rl / r T d r  + c l r  + C2r ' (26) 
rb  

where rb is the inner radius of the circular fin. With the help of Eqs. (20) and (26) the stress 
components shown by Eq. (22) can be expressed as 

] [ 1] (27) 1 E ( 1 + u ) - c 2 ( 1  u ) ~  , err = -~*E  ~ r T d r + ~  Cl 

rb 

a o = ~ * E  r T d r - c F E T + l ~ - -  ~ c l ( l + u ) + c 2 ( 1 - u ) ~ - ~  . 

rb 

Therefore, the constants Cl and c2 in Eq. (27) can be derived by satisfying the transformed 
boundary conditions (ar)rb = 0 and (at)to = 0 and expressed as 

re  r e  

cl . . . . . .  r T  dr c2 -- r T  dr 
~ ' e 2  - -  T b  2 ~ T e  2 - -  r b  2 " 

rb rb 
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Consequently,  the final expressions for the stresses are 

a r  : a * E  

GO : c t * E  
r 2 + rb 2 + 1 

- T - [  r2 (r  2 _ rb2) r T  dr  r2 r T  dr  . 

7" b r b 

(29) 

As a result, the stress distr ibutions of  Sr = ~ r / a * E  and St = Go/c~*E are respectively related 

to the following formulas of  

T~(~ 2 - 1) Ta 

~=i ~=i 

and 

S :-ToO  . 

~=1 (=i 

6 Results and discussion 

F o r  the cases considered in the present study, the corresponding exact solutions are calculated 

according to the following specific values of  the mater ial  properties:  

k~ = 186 W / m k ,  c~ = 0.8, s = 0.8 ; 

parameter  describing the var ia t ion of  thermal conductivity 

fl = 0, i 0 . 000  18 ; 

dimension of  circular fin 

r b = 0 , 0 2 m ,  r e = 0.06 m ,  2W = 0.004ra ; 

the convective heat  transfer coefficient 

h = 5 0 W / m 2 K ;  

and the radia t ion parameter  

G = 5.67 x 10 .8 W / m 2 K  4 . 

In order  to make a compar ison with the known results and to provide a useful test of  the 

accuracy of  the present method,  the present results are compared  with the results of  Yu and 

Chen [9]. They calculated the transient thermal stresses in an isotropic annular  fin with con- 

stant thermal conductivity (~ = 0) by the Taylor  t ransformat ion method and depicted the 

temperature  dis tr ibut ion along the fin. The comparisons were made with the similar condit ion 

of  constant  thermal conductivi ty for verifying that  the decomposi t ion method  worked prop-  

erly and is tabula ted  in Tables 1, 2 and 3 for convent ion-radiat ion,  pure convection and pure 

radiat ion,  respectively. I t  can be observed that  agreement is obtained. 

Consequently,  further progress is now necessary to figure out  the influence of  thermal con- 

ductivity on the temperature  distr ibution.  Three different values of  the thermal  conductivity 
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Table 1. Node temperatures of the convection-radiation fins, with constant  thermal conductivity 

155 

~, (r/rb) 1.5 2.0 2.5 3.0 

Taylor Transform [9] 577.784 561.310 554.404 553.240 
Present method 570.917 554.373 545.663 542.499 

Table 2. Node temperatures of the pure convection fins, with constant thermal conductivity 

(r/rb) 1.5 2.0 2.5 3.0 

Taylor Transform [9] 582.794 570.100 564.924 564.259 
Present method 577.070 563.724 556.613 554.022 

Table 3. Node temperatures of the pure radiation fins, with constant thermal conductivity 

(r/rb) 1.5 2.0 2.5 3.0 

Taylor Transform [9] 591.919 585.810 582.988 582.140 
Present method 591.342 586.323 583.636 582.652 

~X 
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0 

1.8 

K a = 1 8 6  w / m  k 13= + 0 . 0 0 0 1 8  

h = 5 0  w / m * m  k - -  I~= + 0.0 

e = 0 . 8  0 . = 0 . 8  . . . . . . .  1 3 = - 0 . 0 0 0 1 8  

1 . 7 1  , , ~ , I ~ , i i I , i , i I , i 
1.5 2 2.5 3 

Fig. 2. The reduced temperature (0) vs. reduced 
radius (~) of the circular fins with variable thermal 
conductivity for convection-radiation heat transfer 

parameter (/3 = -0 .000 18, 0, 0.000 18) are considered, and results are plotted for the diffe- 

rent cases separately. Figures 2 - 4  individually show the reduced temperature distribution 
along the fin for convection-radiation, pure convection, and pure radiation. It is observed 
that the dimensionless fin temperature always decreases monotonically f rom the base (~ = 1) 

to the tip (~ = 3). The temperature distribution separates from the constant thermal conduc- 
tivity (/3 = 0). I f  the thermal conductivity of  the fin material increases with temperature 

(/3 > 0), it causes the temperature to increase. On the other hand, if the thermal conductivity 
decreases with temperature (/3 < 0), the result is decreased in the temperature. This is a conse- 

quence of  the nonlinearity due to temperature-dependent thermal conductivity. But in the 
pure radiation, there is no obvious difference with the varying thermal conductivity. 

In the convection-radiation heat transfer, the radial and tangential fields of  thermal stress 

along the circular fin with different values of  the thermal conductivity parameter, /3, are 
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1 .9  

1 . 8  
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Fig. 3. The reduced temperature (0) vs. reduced 
radius (() of the circular fins with variable thermal 
conductivity for pure convection heat transfer 
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Fig. 4. The reduced temperature (0) vs. reduced 
radius (~) of the circular fins with variable thermal 
conductivity for pure radiation heat transfer 
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Fig. 5. The radial thermal stress of the circular 
fins with variable thermal conductivity for convec- 
tion-radiation heat transfer 
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Fig. 6. The tangential thermal stress of the circu- 
lar fins with variable thermal conductivity for con- 
vection-radiation heat transfer 

shown in Figs. 5 and 6. Figures 7 and 8 show the results in the pure convection heat  transfer. 

The pure radia t ion heat  transfer is shown in Figs. 9 and 10. The fins are subjected to a com- 

pressive stress in radial  direction, and the present results indicate that  the compressive stress 

significantly increases with decreasing thermal  conductivity.  The maximum value of  the radial  

stress appears  at  ~ = 1.5. The higher thermal  conductivity gives the higher value of  tangential  

stress at a small value of  ~, and this t rend is reversed at larger ~. The maximum value of  the 

tangential  stress appears  at the inner base of  the fins. Figures 9 and 10 give the results of  ther- 

mal stress in pure radia t ion heat  transfer. As the temperature  distr ibut ion,  the variable ther- 

mal  conductivity does not  affect the development  of  the fin stress. 
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Fig. 7. The radial thermal stress of the circular 
fins with variable thermal conductivity for pure 
convection heat transfer 
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Fig. 8. The tangential thermal stress of the circu- 
lar fins with variable thermal conductivity for pure 
convection heat transfer 
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Fig. 9. The radial thermal stress of the circular 
fins with variable thermal conductivity for pure 
radiation heat transfer 
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Fig. 10. The tangential thermal stress of the circu- 
lar fins with variable thermal conductivity for pure 
radiation heat transfer 

7 Conclusions 

Comparison of  the calculated results with available data of  node temperatures for the convec- 
tion-radiation, pure convection and pure radiation heat transfers with constant thermal con- 
ductivity shows a very good performance of  the present analysis procedure. The present 

method is a useful and practical method and can predict quite accurately the performance of  
the circular fin with variable conductivity. 

The temperature distributions and the thermal stresses of  the thin circular fins with tem- 

perature dependent thermal conductivity have been obtained, including one-dimensional con- 
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duction, and the heat  transfer from the fin surfaces and tip with convection and radiat ion to 

the surrounding area. Fo r  the analytic performance of  the fin, the thermal conductivity 

assumed variable is necessary for the convect ion-radiat ion or pure convection. With  pure 

radia t ion heat  transfer, if  the temperature  difference between the base and the ambient  is low, 

the thermal conductivity assumed constant  is reasonable.  
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