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Summary. Constitutive relations for incompressible (slightly compressible) anisotropic materials cannot 
(could hardly) be obtained through the inversion of the generalized Hooke's law since the corresponding 
compliance tensor becomes singular (ill-conditioned) in this case. This is due to the fact that the incom- 
pressibility (slight compressibility) condition imposes some additional constraints on the elastic constants. 
The problem requires a special procedure discussed in the present paper. The idea of this procedure is 
based on the spectral decomposition of the compliance tensor but leads to a closed formula for the elas- 
ticity tensor without explicit using the eigenvalue problem solution. The condition of nonnegative (posi- 
tive) definiteness of the material tensors restricts the elastic constants to belong to an admissible value 
domain. For orthotropic and transversely isotropic incompressible as well as isotropically compressible 
materials the corresponding domains are illustrated graphically. 

1 Introduction 

As a research object incompressible and slightly compressible anisotropic materials have 

drawn attention only recently which has mostly been motivated by interest in the numerical 

simulation of  soft biological tissues and first of  all human organs. Probably for this reason 
the constitutive equations for these structures are not well established in literature except for 

some special cases of  anisotropy (see, e.g., [1], [2]). 

The main problem in the formulation of  the constitutive relations is due to the incompres- 

sibility condition imposing some constraints on the elastic constants such that the compliance 
tensor of  the material becomes singular. Thus, the stress-strain (constitutive) relations cannot 

be obtained through the direct inversion of  the Hooke 's  law which requires a special proce- 
dure to be discussed in the present paper in detail. The idea of  this procedure is based on the 

spectral decomposition of  the compliance tensor but leads to a closed formula for the elasti- 

city tensor without explicit using the eigenvalue problem solution. Alternatively, this closed 

formula can also be obtained as the so-called generalized inverse of  the compliance tensor [3]. 
Since the nature avoids any extremes the slight compressibility seems to be a more realistic 

assumption than ideal incompressibility. For  a better insight into the slight compressibility we 
introduce here a notion o f  "weak" internal material constraint. This is a constitutive restric- 
tion (inequality) caused by one vanishing eigenvalue o f  the compliance tensor or, vice versa, 

large eigenvalue of  the elasticity tensor. 
Slightly compressible or in other words nearly incompressible materials are characterized 

by the bulk modulus which is large by comparison with other elastic moduli. In contrast to 
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isotropy the bulk modulus of an anisotropic compressible material is a function of a stress 
and does not generally represent a material constant. Therefore one requires the above restric- 
tion to be satisfied for all admissible material states. This in turn can be achieved in an aniso- 
tropic solid by imposing not necessarily only one but also by a superposition of several weak 
internal constraints. 

For the case of only one weak internal material constraint we will prove the volumetric 
response of a slightly compressible anisotropic solid to be purely isotropic. Such isotropically 
compressible anisotropic materials sometimes referred in literature to as quasi-isotropic [4] are 
frequently used as a constitutive model in the numerical analysis (see, e.g., [5]). It is worth 
mentioning that only for these solids the bulk modulus is independent of the stress state and, 
hence, represents a material constant. In this case the eigenstate corresponding to the weak 
internal constraint is a priori known (the identity tensor), such that we can formulate the 
closed formula for the elasticity tensor taking into account anisotropic materials with isotro- 
pic volumetric response. This formula enables to avoid the numerical inversion of the compli- 
ance tensor being ill-conditioned for nearly incompressible solids. 

Finally, the closed formula presented is applied to derive the elasticity tensor for orthotro- 
pic and transversely isotropic materials being of special importance for engineering practice. 
By means of incompressibility (isotropic compressibility) condition the Poisson's ratio can be 
expressed in terms of the Young's (and bulk) moduli which reduces the number of indepen- 

dent material parameters. The requirement of positive definiteness (or in the case of incom- 
pressibility semi-definiteness) of the compliance tensor imposes some additional restrictions 
on the remaining elastic constants. These restrictions are well-established in literature for 
compressible orthotropic materials (see, e.g., [6], [7]) but, to our best knowledge, absolutely 
unknown for incompressible as well as isotropically compressible ones. Using eigenvalues 
of the compliance tensor we formulate these constraints yielding an admissible value domain 
the Young's moduli belong to. For orthotropic and transversely isotropic incompressible as 
well as isotropically compressible materials the corresponding domains are illustrated gra- 
phically. 

2 Basic notations and definitions 

Throughout the paper we will use absolute tensor notation and abide by the algebra of 
second- and fourth-order tensors by Itskov [8]. Some of important definitions to be exploited 
in the further derivations are recorded below. 

Let Lin be a set of all linear mappings of a three-dimensional vector space V over reals 
into itself the elements of which are called second-order tensors (bold capitals). Fourth-order 
tensors (bold italic capitals) constitute in turn a set Lin of all linear mappings of Lin into 
itself, such that: 

B = D : A ,  B E L i n ,  V A E L i n ,  V D E L i n .  (2.1) 

With respect to a dual basis gi �9 g~ = 5ij (i, j = 1, 2, 3) in V second- and fourth-order tensors 
can be represented as follows: 

A = Aijg i @ gJ = Aijg i @ g j  = A.~g i | g~ . . . .  , (2.2) 

D '~ g~ g~ . . . .  = . . . ,  (2.3) D = ijklg @ ~ | | = D~Ygi | gj | gk | gt = D~jk. zgi | g3 | gk | gl 
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such that the mapping (2.1) can be expressed by 

i k A j g~ . (2.4) D : A  = D.j.I .~ @g~ 

Fourth-order tensors can be constructed from second-order ones by means of a tensor pro- 
duct " x "  defined by 

(A x B ) :  C = (B:  C) A ,  VA, B , C  E Lin. (2.5) 

Elasticity and compliance tensors to be considered in the paper belong to a subset Slin C Lin 

of super-symmetric fourth-order tensors for which holds: 

A : ( H : B ) = B : ( H : A ) ,  H : A = H : A  T , H E S l i n ,  VA, B E L i n .  (2.6) 

In other words, Slin constitute the set of all linear mapping of symmetric second-order tensors 
Sym = {A c Lin : A = A T} into itself. Of special importance for the further derivation are 

two following elements of Slin: the super-symmetric identity tensor 

1 
i s = _ 2 _ g ~ | 1 7 4 1 7 4 1 7 4  ~ I s : A = A ,  V A ~ S y m  (2.7) 

and the super-summetric deviatoric projection tensor 

s __ is 1 ps  , Pdev -- ~- I X I => dev : A = devA VA E Sym. (2.8) 

According to the spectral theorem a super-symmetric fourth-order tensors can be represented 

by 

6 

F = ~ A r M r x M r ,  Mr M t = ~ , . t ,  M r E S y m ,  ( r , t = l , 2 , . . . , 6 ) ,  (2.9.1-3) 

where Ar and MT (r = 1,2, . ,6) denote eigenvalues and associated eigentensors (eigen- 
states), respectively. In particularly, for the super-symmetric fourth-order identity tensor (2.7) 
the spectral decomposition (2.9) takes the form 

6 
I s = ~ M~, x Mr .  (2.10) 

r = l  

To complete this section we define the scalar product of fourth-order tensors as follows: 

D i l a E j  I "" (2.11) D :: E =  . j . l  i . k .  : D i j  klEzakl . . . .  

3 Incompressibility condition for anisotropic materials 

We start with the generalized Hooke's  law establishing a linear relationship between stresses a 
and infinitesimal strains e. The Hooke's  law can be given in the tensor 

= H :  ~ (3.1) 
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or alternatively in the classical matrix form (see, e.g. [9]) with respect to the Cartesian frame 

811 Hl111 H1221 H1331 v/2 H1231 v~ Hlal v/2 Hl121 ~11 

822 H2112 H2222 //2332 x/2H2%2 x/2H2312 v/2H2122 0-22 

s H3113 H3223 H3333 ~ H3233 x/~ H3313 V/~ H3123 0"33 

V~823 = ~/2H2113 v~H2223 x/2H%33 2H2233 2 H 2 a 3  2H2123 V ~G23 

V/2 g31 ~V/2 H3111 v/2 H3221 v/2 H3331 2H3231 2H3311 2H3121 x/r~ 0-31 

- V/2E12 V/2 Hl112 x/2 H1222 x/~ H1332 2H1232 2H1312 2Hl122 - x/~ 0-12 

(3.2) 

In the general case of anisotropy the super-symmetric compliance tensor H is described by 21 
independent components related to material constants. The incompressibility condition given 
in the linear case by 

tr~ = I : e = an + ~22 + e33 = 0, (3.3) 

where the component form is again related to the Cartesian frame, must be satisfied for arbi- 
trary stresses 0. In view of (3. l) the incompressibility condition (3.3) imposes 6 additional con- 
straints on the compliance tensor 

3 
H : I = 0  ~ EHki jk=0 ,  ( i , j=1,2,3) (3.4.1-2) 

k=l 

and reduces the number of its independent components to 15. 
For compressible materials the constitutive (stress-strain) relations at small strains can be 

obtained through the direct inversion of the Hooke's law (3.1) leading to 

o = C :  e =  H -1  : e ,  ( 3 . 5 )  

where C denotes the super-symmetric fourth-order elasticity tensor. On the contrary, for 
incompressible materials the constitutive relations are given by 

o = C :  e - p I ,  (3.6) 

where the unknown parameter p cannot basically be determined from the constitutive law. In 
this case the elasticity tensor C cannot be obtained through the direct inversion of the singular 
compliance tensor H which requires a special procedure to be considered in the following. 

The key point of this procedure is the spectral decomposition of the material tensors, the 
idea of which goes back to Lord Kelvin [10]. 

The incompressibility condition (3.4) requires that at least one of eigenvalues of the com- 
pliance tensor is equal to zero A1 = 0 and the associated eigentensor is proportional to the 

1 
identity tensor M1 = ~ I. Hence 

1 I 1 E A r M r  Mr (3.7) H = 0 .  ~ x I + x . 
r=2 

Since H is symmetric all its eigenvalues are real. Henceforth we assume that the incompressi- 
bility condition is the only internal kinematical constraint of the material. The condition of 
positive semi-definiteness of the compliance tensor reads in this case as 

A t > O ,  ( r = 2 , 3 , . . . , 6 ) .  (3.8) 
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It can easily be shown that the elasticity tensor C should also be singular. Otherwise the con- 
stitutive relations (3.6) could be inverted by e = C 1 : (~ + pI). By comparing with (3.1) this, 
in turn, would lead to the condition C-1 =/_/which cannot evidently be satisfied in view of 
singularity of the compliance tensor. 

Since the tensor C is singular at least one of its eigenvalues is equal to zero. The corre- 
sponding eigentensor remains, however, undetermined such that the elasticity tensor can gen- 
erally be given by 

6 

C =  0. N I x  N1 + ~ ArNr • Nr .  (3.9) 
r = 2  

Now, putting the relation (3.6) into (3.1) we obtain: 

e = H : C : e  ~ ( H : C - l S ) : e = O .  (3.10.1-2) 

Keeping in mind that the strain tensor e underlies the incompressibility constraint (3.3) one 
can see that the identity (3.10.2) holds if only the fourth-order tensor H :  C has the form 

H : C = I S + A x I ,  VA C Sym, (3.11) 

where A is an arbitrary symmetric second-order tensor. Contracting Eq. (3.11) with N1 we 
obtain: 

Nz 
A - tr (N1) ' tr (N1) # 0. (3.12.1-2) 

The inequality (3.12.2) is the only condition (apart from (2.9.2) and (2.9.3)) imposed on the 
eigentensor N1. In other respect the choice of N1 is arbitrary. 

Remark 3.1. It follows from (3.11) that the compliance and elasticity tensor of an incompres- 
sible material are in general (except for the special case A = - 1 / 3 )  non-coaxial such that 
H : C r C : H. Since furthermore the eigenstate N1 remains undetermined the analysis of the 
elasticity tensor can only reveal that the material under consideration has some internal kine- 
matical constraints (zero eigenvalues) but the character of these constraints (e.g., incompressi- 
bility or inextensibility) cannot basically be deduced. Thus, various solids obtained by impos- 
ing different internal kinematical constraints on one virgin material can be described by 
coinciding elasticity tensors. [] 

To avoid the non-uniqueness of the elasticity tensor (3.9) one needs an additional assumption 
concerning its zero-energy eigenmode. It is reasonable to assume that the only zero-energy 
eigenmode of an incompressible material is purely volumetric. This means that 

1 
N1 = ~ I .  (3.13) 

Under this assumption the fourth-order tensor H :  C (3.11) coincides with the super-sym- 
metric deviatoric projection tensor (2.8). Thus, the elasticity and compliance tensor become 
coaxial which is rather general assumption in the theory of internally constrained materials 
(see, e.g., [11], [12]): 

= s . (3.14) H : C  C : H = P d e  v 

Now, under consideration of (3.7), (3.13) and (3.14) the spectral decomposition of the elasti- 
city tensor takes the form 

C =  0. 1 I x I q- E A r - I M r  x Mr .  (3.15) 
r = 2  



86 M. Itskov and N. Aksel 

The elasticity tensor (3.15) can also be expressed in terms of the compliance tensor without 
explicit use of the spectral decomposition 

C =  H + - f  I • I I x I ,  (3.16) 

which enables to avoid the general solution of the eigenvalue problem. It can easily be proved 
that the expression (3.16) gives the elasticity tensor (3.15) after inserting the compliance tensor 
(3.7). The closed-formula for the elasticity tensor (3.16) can also be obtained by means of the 
so-called Moore-Penrose generalized inverse [3], [13] also assuming that the original and 
inverse matrix commute. 

4 Slightly compressible anisotropic materials 

The bulk modulus of an anisotropic material can be defined as a function of stress by 

p 1 t r o  (4.1) 
z ( o ) -  t r y -  3 I : ( H : , ) '  

where p denotes the hydrostatic pressure. In the special case of isotropy the definition (4.1) 
leads to the classical relation z = E/3(1 - 2@ 

For slightly compressible solids z is large in comparison with other stiffness moduli. This 
condition can be formulated by means of the inequality 

1 
- -  <<IIHll, V o l t r - r  0, (4.2) 

where the quadratic norm I[ HII = (H :://)1/2 can be expressed using the spectral decomposi- 
6 

tion of the compliance tensor H = ~ A~M~ x M~ through its eigenvalues by 
r=t 

II/-II1= a,. (4.3) 

The condition of slight compressibility (4.2) must be fulfilled for all stress states satisfying the 
condition p = ( -1 /3 )  tr o r 0. 

Using the representation of the stress tensor 

6 
" = E c~M~, (4.4) 

r=l 

where ~ = tr (oM~), and taking into account (4.1) and (4.3) the condition (4.2) takes the 
form 

6 

1 (4.5) 
~-- 6 << Ar 

E ~,.tr M~ 
r=l 

Since the condition of slight compressibility (4.5) holds for arbitrary ~ for which 

6 
E c~tr M~ r 0, (4.6) 
r=l 
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we can obtain setting ~k = 1, (~i = 0 (i = 1, 2 , . . . ,  6, i r k) 

3A~ << A~ , Vk = 1 , 2 , . . . , 6  I t r M k  r 0. (4.7) 

This inequality can be satisfied in the two following cases. 

Case 1. The spectral decomposit ion of  the compliance tensor can be given in terms of  the 
eigentensors among which only one (say, M1) is not  traceless: 

t r M 1  r 0, t r M ~  = 0, (k = 2 , 3 , . . . , 6 ) .  (4.8) 

Considering the identities 

6 6 

2 ( t r M T )  M~ = I ,  ~ ( t r M r )  2 = 3 (4 .9 .1-2)  
r - 1  r - 1  

following f rom (2.10) we immediately obtain for M1 

1 
MI = ~ I .  (4.10) 

It  is observable that  the volumetric response of  the material is strictly isotropic in this case. 
Under  consideration of (4.8) the condition (4.7) leads to 

/ "~6 2 i/2 
3AI 

It is worth mentioning that in this case the bulk modulus (4.1) x = 1/3A1 is independent of  
the stress tensor and, hence, represents a material  constant. 

Case 2. The spectral decomposit ion of  the compliance tensor cannot be given in terms of the 
eigentensors among  which only one is not tracetess. Thus, two or more  (n) eigentensors are 
not traceless 

t r M k r  t r M l = 0 ,  ( k = l , 2 , . . . , n ;  l = n + l , . . . , 6 ;  l < n < 6 )  (4.12) 

and as a result of  (4.7) two ore more  eigenvalues of  the compliance tensor are of  negligible 
magnitude order in comparison with the remaining ones and do not all coincide: 

Ak << ,kz, ( k = l , 2 , . . . , n ;  l = n + 1 , . . . , 6 ;  1 < n < 6 ) ,  
(4.13) 

Br, k C [ 1 , 2 , . . . , n ] ,  r~/=k: ArT~Ak. 

In this case none of the eigentensors coincides with the identity tensor. Thus, the slight com- 
pressibility is caused by the superposition of  several weak internal material  constraints, none 
of which alone is related to slight compressibility. A typical example of  this is a material  
slightly extensible in three or thogonal  to each other directions with different stiffness moduli. 
Thereby, the bulk modulus (4.1) depends on the stress tensor and does not represent a mate- 
rial constant. This case requires an a priori knowledge and a separate t reatment  of  each weak 
internal material  constraint and on account of  this will not be considered in the following. 

Remark 4.1. In the case of  coalescence of  eigenvalues ,kl = A2 . . . . .  A~ = A, we have in 
view of  (4.9.1) and (4.12) 

H :  I = ~ Ak ( t rMk)  M~ = ) J .  (4.14) 
/c=1 
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This means that the identity tensor represents the eigentensor of the compliance tensor such 
that we again deal with the Case 1. For example, in the special case of orthotropy such a solid 
can be characterized by the material constants E1 = E 2  = E  a, u12 =//23 =//31 ~,'~0.5, 
G12 :~ G23 r G31. [] 

5 Isotropically compressible anisotropic materials 

In what follows we consider anisotropic materials with strictly isotropic volumetric response 
specified in the previous section under the Case 1. The isotropic volumetric response means 
that under a uniform hydrostatic pressure the deviatoric part of the strain tensor vanishes as 
it is also the case for incompressible materials. As we have shown in the previous section only 
in this case the slight compressibility can be considered as a result of only one weak internal 
material constraint. Furthermore, the bulk modulus of an anisotropic material is independent 
of the stress state and represents in this case a material constant. 

The isotropic volumetric response is described by the condition 

3 1 
H : I - - 3 ~ l  I ~ Z H k i j k = ~ ,  ( i , j :1,2,3) .  (5.1.1--2) 

]:=1 

Thus, for isotropically compressible anisotropic solids the number of independent compo- 
nents describing the compliance tensor (3.2) is one more (~) than for incompressible materials 
and is equal to 15. 

In view of (5.1) and (3.5) the spectral decompositions for the compliance and elasticity ten- 
sor take the form 

H =  i I I • I + ArM~• 

r=2 (5.2) 

C = 3 ~  1 I • 1 I +EA~-ZM~ • 
r=2 

Thus, the condition of isotropic compressibility (5.1) is given in terms of the elasticity tensor 
by 

C : I = 3xI. (5.3) 

In view of (4.11), for isotropically slightly compressible materials one eigenvalue of the com- 
pliance tensor is negligible by comparison with another ones. Thus, the compliance tensor 
becomes ill-conditioned and could hardly be inverted numerically according to (3.5). That is 
why it is reasonable to refer again to the dosed formula solution (3.16) which can be specified 
for isotropically compressible materials as follows: 

C =  [ H + ( 1 - 1 )  ~1 I •  I •  (5.4) 

This formula can easily be proved directly inserting the compliance tensor (5.2). If the slight 
compressibility is the only weak internal constraint of the material the tensor to be inverted in 
(5.4) is well-conditioned which avoids any difficulties by the numerical calculation of the elas- 
ticity tensor. 
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6 Special case: orthotropic material 

6.1 General description o f  orthotropy 

A material  is said to be orthotropic if there exist three planes orthogonal  to each other, by 
reflections with respect to which material  properties remain invariant [1]. The axes normal  to 
these planes are called principat material  directions. With respect to the principal material  
directions the compliance tensor of  an orthotropic solid can be represented in the matrix form 

by 

1 //~2 1/13 

E1 

symm. 

H =  

E2 

1 //23 

E2 E.3 
1 

E3 

0 0 0 

0 0 0 

0 0 

1 
0 

2G23 

1 
2 G a  

0 

1 

2G12 

(6.1) 

and involves 9 independent material  parameters,  the so-called engineering elastic constants: 

Ei (i = 1, 2, 3): Young 's  moduli  referred to the principal material  directions; 

G# = Gji (i # j = 1, 2, 3): Lam6's  shear moduli  referred to the principal material  planes; 

Ej  (i # j = 1, 2, 3): Poisson's ratios referred to the principal material  planes. 

For  compressible materials the elasticity tensor C = H -1 directly results from the inversion of 

a12 a13 0 0 0 

a22 a23 0 0 0 

a33 0 0 0 

2G23 0 0 

symm. 2 G a  0 

2G12 

(6.1). Thus, 

"all 

C =  (6.2) 

with the components  aij (i, j = 1, 2, 3) expressed by (see, e.g., [7]): 

aii Ei 1 -- //jk//kj = , aij = aft = E i //ij -~- //kj//ik A A , ( i C j C k r  i , j = 1 , 2 , 3 ) ,  (6.3) 

where 

A = 1 -- u12u21 - v23/~32 -- u31//13 - 2//21u32u13 �9 (6.4) 
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6.2 Incompressible orthotropic material 

Three of six incompressibility constraints (3.4.2) are satisfied in this case identically. By means 
of the three remaining ones the Poisson's ratios can be expressed through the Young's moduli 
by [31 

1 Ej ( 1  1 )  ( i r  i , j=1,2 ,3  ) (6.5) ~ ' ~ 5 : 7 +  ~- ~ - ~  , 

which reduces the number of independent material constants of an orthotropic incompressible 
material to 6. 

The closed formula (3.16) yields in this case the elasticity tensor with the matrix represen- 
tation of the form (6.2), where 

1 ( ~ j  2 1 )  1 ( ~  1 ~---~), ( i ~ j C k ~ i ,  / , j : 1 , 2 , 3 )  
~ = 5~  ~ Ek Jgi ' aij = ~ + z j  

(6.6) 

with the abbreviation 

3 ( 2  2 2 1 1 1 )  
. (6.7) D:~-E-~+~+E~E~ Zl ~ z~ E3 

The requirement of positive semi-definiteness of the compliance tensor imposes some addi- 
tional restrictions on the engineering elastic constants. These restrictions are well-established 
in literature for compressible orthotropic materials (see, e.g., [6], [7]) but, to our best knowl- 
edge, absolutely unknown for incompressible ones. 

The condition of positive semi-definiteness (3.8) is formulated in terms of the eigenvalues 
of the compliance tensor. For the compliance matrix of the form (6.1) the eigenvalue problem 
can readily be solved considering separately the upper left and lower right 3 • 3 sub-matrices. 
For the lower right sub-matrix in (6.1) we have 

1 1 ] 
- , t 5  - , i s  - , ( 6 . 8 )  

14 2G23 2G13 2G12 

which leads to the well-known restrictions for the shear moduli 

G# > O, (i T~ j , i , j =  l,2,3). (6.9) 

The eigenvalues of the upper left sub-matrix in (6.1) specified according to (6.5) 

1 ( 1  1 1 )  l ( 1  1 1 )  
1 ]~3 E2 ]~1 /~2 J~3 El E~ ~ Y 

E2 2 E2 
A = 

symm. 
1 

can be determined from of the corresponding characteristic equation 

A 3 - A2IA +AIIA -- EIA = 0, 

1 [(trA) 2 _ tr(A2) ] and IIIA ---- detA. where IA = tr A, IIA = ~- 

(6.10) 

(6.11) 
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Fig. 1. The admissible value domain for the 
Young's moduli of incompressible orthotropic 
materials (the boundary curves are excluded) 

Under consideration of  the relation I I IA=  0 following from the incompressibility condi- 
tion the solution of Eq. (6.11) yields: 

/~1 = 0 ,  /~2,3 = ~- IA ~ ~ -- 4IIA . (6.12) 

For  positive Young's moduli Ei > 0 (i = 1, 2, 3) the conditions t~,3 > 0 are satisfied if only 

= -b5 > O. (6.13) n ~ : D  ~ + E ~  ~ E~E, E~ E~ E3 

This inequality yields an admissible value domain (Fig. l) the Young's moduli Ei (i : 1, 2, 3) 
of  an orthotropic incompressible material belong to. Since this domain is bounded by the 
curves 

f(x) = (1 • x-1/2) -2 , (6.14) 

the condition (6.13) can equivalently be represented by 

1 1 1 
v / ~ + ~ > v / ~ , X / t ~ j  (i C j C k r i, i , j , k=  l,2,3). (6.15) 

6.3 Isotropically compressible orthotropic material 

For isotropically compressible orthotropic materials the Poisson's ratios can be expressed by 
means of  the conditions (5.1.2) and depend additionally on the bulk modulus z: 

1 Ej 
( 1  1 1 )  (i Ts j Ts k r i i , j=1,2 ,3)  (6.16) a j = ~ - + ~ - ) ? i  Ek a-~ ' ' 

By means of the closed formula (5.4) the components of  the elasticity tensor (6.2) take the 
form: 

1) 
aii = ~ ~ Ek E~ ~ + z,  

1 1 1 5 + ~  + z ,  
a~j = ~ -~ Ej Ek 

( i ~ j ~ & k r  i , j ---  1 ,2 ,3) ,  (6.17) 
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Fig. 2. Admissible value domains for the Young's 
moduli of isotropically compressible orthotropic 
materials (the boundary curves are excluded) 

with the abbreviation 

D* = D -  ~ + ~ +  + 3 6 ~ .  

Additionally to (6.9) the conditions of  positive definiteness of  the compliance tensor can be 
obtained from the consideration of the upper left 3 x 3 sub-matrix A in (6.1) specified accord- 
ing to (6.16). One of the eigenvalues of  this matrix is a priori known so that  the solution of the 
corresponding characteristic equation (6.11) yields 

A1 = 3~ ' , ~ IA - -  :[: IA -- -- 3MIIA, (6.19) 

which requires in view of  (3.8) that 

I i 1 1 1 
> 0, IA -- + ~ - - [  > 0, (6.20) 

3Z E3 E1 3z r~2 

3~4IIIA = D* > 0 =a 

3 ( 2  2 2 1 1 1 )  1 ( 1  1 1 )  1 
~lE2+~-~E3E1 E 2 E~ / ~ a 2 - - ~  ~ - 1 + ~ - ~ 2 + ~  + 3 ~ 5 ~ 2 > 0 .  (6.21) 

For  the Young 's  moduli  Ei (i = 1, 2, 3) the inequalities (6.20) and (6.21) yield a set of  admis- 
sible value domains depending on the bulk modulus z (see Fig. 2). 

F rom the consideration of the Fig. 2 one can observe, that for z = (1/9) E1 the admissible 
value domain for the Young 's  moduli  reduces to the line E2 = E3. Since the boundary  curve 
is excluded the domain becomes empty in this case. Physically this means that  there exists no 
isotropically compressible orthotropic solid with these material  parameters.  F rom the condi- 

tions (6.20) and (6.21) it follows moreover  that  

1 1 -b-ff + ~ + -  - = - - 2  < = ,  , 
3 X <  El l  " E 3  < E l  /~2 E2 E 1 E 2  E2E3 E3E1 (i 1 , 2 , 3 )  
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and hence 

Ei (i = 1, 2, 3) (6.22) 

which is completely analogical to isotropy, where n > El9  due to the thermodynamic restric- 
tion for the isotropic Poisson's rat io/"  > - 1 .  

In the context of  thermodynamic restrictions strongly anisotropic materials are of  special 
interest. In the case of  or thot ropy they can be obtained setting e.g., t?,2/E1 --+ 0 or vice versa 
E2/E1 --+ oc. Under  consideration of  (6.20) and (6.21) (see also Fig. 2) we obtain in the last 
case 

E 2 
- - - - - + O G  z=~ E 3 = E 1  ' - - - - ~ 0 0 .  (6.23) 
E1 E1 

By considering the restriction (6.22) it can also be observed that the bulk modulus of  a 
strongly anisotropic material  must  be at least of  the magnitude order of  the largest Young 's  
modulus.  

7 Special case: transversely isotropic material 

7.1 General description of  transverse isotropy 

Transverse isotropy is characterized by the material  symmetry with respect to one selected 
direction (the principal material  direction). By rotations about  as well as reflections with 
respect to planes or thogonal  or parallel to the principal direction the material  properties 
remain unchanged. 

Constitutive relations for transversely isotropic materials can be obtained specifying those 
ones for orthotropy.  Thereby, the following relationships between engineering elastic con- 
stants should be taken into account: 

E2 
E2 = E 3 ,  /'12 = / ' 1 3  (/'21 = / ' 3 1 ) ,  G12 = G31,  G23 2(1 _L/'23) ' (7 .1)  

where the index 1 corresponds to the principal material  direction. Further,  it holds 

E2 
/'23 =/ '32-  (7.2) /'12 = /'21 E1 

The components  of  the elasticity tensor (6.2) become in view of  (6.3)-(6.4)  

all  = E1 1 - / '~3 1 - u12u21 
A ' a22 = a33 = E2 A ' 

/'23 -~- /'12/221 /'12(1 -~- /'23) 
a23 = E2 , a12 = a13 = E1 

A A 

with 

(7.3) 

A = (1 +/'23) (1 - / ' s 3  - 2/'12uSl) �9 (7.4) 
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7.2 Incompressible transversely isotropic material 

In this case, only two of six incompressibility conditions (3.4.2) are not identically satisfied. 
Under consideration of (6.5) and (7.1) one obtains 

1 E2 E2 E2E1 
t'21 = ual 2 ' u12 u,a 2E1 u2a = u39~ = 1 2E1 ' G2a 4E1 - E2 ' (7.5) 

such that only 3 material constants remain independent. 
The components of the elasticity tensor (6.2) take in view of (6.6)-(6.7) the form 

4 1 ( 2 1  ~ )  
a l l  = ~ -  E l ,  a22 = a33 : ~ @ , 

(7.6) 

0,% = 6 D  , 0,12 = 0,1a - ~  z l ,  

where 

- 4 <  

Under consideration of (7.7) the condition of positive definiteness (6.13) can be simplified as 
follows (see also [2]): 

E~ < 4El.  (7.8) 

7.3 Isotropically compressible transversely isotropic material 

In this case the number of independent material constants is one more (z) and equal to 4. By 
virtue of (7.1) and (6.16) we have 

u 2 1 = u a l -  2 6 ~ '  ~ ' i 2 = u l a = T  - ' 

E,  E2 

G2a = 4E1 - E2 - E1E2/3~ " 

The components of the elasticity tensor (6.2) take in view of (6.17)-(6.18) the form: 

u2a = ua2 = 1 - ~ -  + , 

(7.9) 

1 ( E  2 1 3_1) 1 ( ~  1 1 )  all = ~ E1 -}- x, a22 = a33 = ~ -}- E2 -I- :g, 

1 ( 2  5 ~ )  1 ( 1  7 4 1 )  

where 

3 (42 E~-) 1 (~1 ~--~-) 1 
4E1 - ~ + + 36~ ~ " 

D* = 

(7.10) 

(7.11) 

The positive definiteness of the compliance tensor requires in view of (6.20)-(6.21) that 

- - <  
3~ ' 3• < El 

( 7 . 1 2 /  
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Fig. 3. The admissible value domain for the mate- 
rial constants El, E2 and g of transversely isotropic 
materials with isotropic volumetric response (the 
boundary curves are excluded) 

Accordingly, the material constants El, E2 and z belong to the open domain of admissible 
values represented graphically in the Fig. 3. 

8 Concluding remarks 

The constitutive (stress-strain) relations for incompressible anisotropic materials cannot be 
obtained through the direct inversion of the generalized Hooke's  law since the corresponding 
compliance tensor becomes singular in this case. The problem requires a special procedure dis- 
cussed in the paper. The procedure is based on the spectral decomposition of the material ten- 
sors but finally leads to a closed formula for the elasticity tensor without explicit use of the 
eigenvalue problem solution. 

Considering the material tensors in the case of incompressibility (this is valid also for any 
other internal kinematical constraints) we have shown that the elasticity tensor is defined only 
up to the zero-energy eigenmode. Thus, the material tensors can  be in general non-coaxial. 
The analysis of the elasticity tensor can only reveal that the material under consideration pos- 
sesses internal kinematical constraints (zero eigenvalues) but the character of these constraints 
cannot basically be deduced and requires knowledge of the compliance tensor. Moreover, var- 
ious solids obtained by imposing different internal kinematical constraints on one virgin 
material can be described by coinciding elasticity tensors. 

For slightly compressible anisotropic materials the case of isotropic volumetric response is 
of special attention. We have shown that only in this case the slight compressibility can be 
considered as a result of only one weak internal material constraint. Furthermore, the bulk 
modulus of an anisotropic material is independent in this case of the stress state and repre- 
sents a material constant. To obtain stress-strain relations for isotropically slightly compres- 
sible materials without numerical inversion of the ill-conditioned compliance tensor we have 
specified the closed formula for the elasticity tensor such that it additionally involves the bulk 
modulus. 

Applying these solutions to the important special cases of orthotropic and transversely iso- 
tropic materials one can easily obtain the corresponding elasticity tensors in analytical form. 
Further, examining these tensors on the positive definiteness (or semi-definiteness in the case 
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of  strict incompressibility) we have formulated the resulting restrictions imposed on the elastic 
constants. These restrictions yield an admissible value domain the elastic constants must 

belong to. For  the Young's  moduli of  orthotropic and transversely isotropic incompressible 

as well as isotropically compressible materials these domains are illustrated graphically. One 

important  result should also be mentioned in this context. In the case of  isotropy the Poisson's 
ratio lies between - 1  and 0.5 which requires that z > E/9. In complete analogy we have also 

obtained for isotropically compressible orthotropic materials that ~ > Ei/9 (i = 1, 2, 3). 
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