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Wave propagation in sheared rubber 

Ph. Boulanger, Brussels, Belgium, and M. Hayes, Dublin, Ireland 

(Received November 18, 1995; revised March 4, 1996) 

Summary. The speeds of propagation and polarization amplitudes are presented for finite amplitude plane 
shear waves propagating in rubber which is maintained in a state of static finite simple shear. The 
Mooney-Rivlin form of the stored-energy function is used to model the mechanical behaviour of the material. 
General relations are obtained between the speed of propagation of the fastest and slowest waves and the 
speed of propagation of the finite amplitude circularly polarized waves which may propagate along the 
acoustic axes. The slowness and ray surfaces are also presented. 

1 Introduction 

The propagation of finite amplitude waves in finitely deformed rubber is considered in the 
context of the theory of finite deformation of homogeneous isotropic incompressible elastic 
materials. The Mooney-Rivlin form of the stored energy function is used to model the properties 
of the rubber. It  has been shown [1] that two linearly polarized finite amplitude plane shear waves 
polarized in directions orthogonal to each other and to the direction of propagation may 
propagate in any direction in a Mooney-Rivlin material which is maintained in a state of 
arbitrary finite static homogeneous deformation. Also, even though the theory is non-linear and 
the two waves are of finite amplitude, they propagate independently of each other, i.e., they do 
not interact. There are in general two directions, the directions of the acoustic axes, such that for 
each of them the two waves propagate with the same speed. These directions are determined 
soley by the basic static deformation and do not depend upon the two material constants which 
occur in the stored-energy function. Finite amplitude circularly polarized plane waves may 
propagate along the acoustic axes. 

Here, the special case when the basic static deformation is a simple shear is considered. Then 
there is only one parameter, the amount of shear, K, determining the deformation. It is equivalent 
to the case when one principal stretch has the value one and the product of the two other 
principal stretches is also one. All these principal stretches are different from each other provided 
K ~ 0. The speeds of propagation and the amplitudes of the waves are written down explicity for 
an arbitrary propagation direction. Some general results, independent of the material constants 
describing the material, are obtained relating the maximum and minimum wave speeds and the 
speed of propagation of circularly polarized waves. It is shown that irrespective of the amount of 
shear, the speed of propagation is constant for circularly polarized waves, whether of finite 
amplitude or infinitesimal amplitude. It is also seen that the product of the fastest and slowest 
wave speeds is equal to the square of the speed of circularly polarized waves. Thus this product is 
independent of the amount of shear - like the speed of circularly polarized waves, it is an 
invariant of the material. Finally, explicit equations for the slowness and ray surfaces are written 
down. The sections of these surfaces by the plane of shear, the shearing plane, and the plane 
orthogonal to both are presented. 
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2 Basic  equat ions  

Incompressible homogeneous isotropic elastic materials of the Mooney-Rivlin type are 

characterized by a strain-energy Wper  unit volume given by 

2 W =  C(I - 3) + O(H - 3). (1) 

Here, C and D are material constants assumed to satisfy C > 0, D > 0 or C > 0, D >_- 0 (strong 

ellipticity conditions). If D = 0, the material is said to be "neo-Hookean".  Also I and I I  are 
principal invariants of the left Cauchy-Green strain tensor given by 

I = trB, 21I = (trB) 2 - trB 2. (2) 

If the deformation in which a particle at X is displaced to x is given by x = x(X), or x i = xI(XA) in 
terms of components with respect to a rectangular Cartesian coordinate system, the components 

of B are 

Bit = (axi/OXa) (Ox flaXa). (3) 

The constitutive equation is 

t = - p l  + C B -  DB -1 ,  (4) 

where t is the Cauchy stress tensor, and p is an indeterminate pressure corresponding to the 
incompressibility constraint det B = 1. 

If the material is maintained in a state of static homogeneous deformation, two finite 

amplitude plane transverse waves may propagate in any direction n. The two possible unit 

amplitude vectors, denoted by a and b, form an orthogonal triad with n and are along conjugate 
directions with respect to the " B -  t-ellipsoid", x- B -  tx = 1, associated with the strain tensor B -  t 

of the static homogeneous deformation. Indeed, a and b are along the principal axes of the 
elliptical section of the B-t-ell ipsoid by the plane n. x = 0. The phase speeds of the waves 

propagating along n with amplitudes along a and b are denoted by v(n; a) and v(n; b), respectively, 

and are given by [1] 

~v2(n; a) = Cn.  Bn + Da.  B - t a ,  

0v2(n; b) = C n . B n  + O b . B - t b ,  (5) 

where Q is the material density. These two speeds of propagation are equal 
( a - B - l a  = b . B - l b )  if and only if n is along the normal to a plane of central circular 
section of the B-a-ellipsoid [1]. When the three principal stretches 21, 22, 23 of the 
basic static homogeneous deformation are all unequal, as is the case in simple shear, 
there are two such plane central circular sections. The unit normals to them are n +, 

given by [1] 

1/23 -z  - 2a -2 n + = ]/22 -2 - 21-2 el _+ V23 - z  - 22 - z  e3, (6) 

where e, are the unit vectors along the principal axes of strain, corresponding to ,~,, (~ = 1, 2, 3), 
assumed to be ordered 21 > 22 > 23. The directions of n + and n -  are the acoustic axes of the 
deformed Mooney-Rivlin material. 
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Also, it has been shown [3] that  the velocities corresponding to the direction of propagat ion 
n are given in terms of n by 

2 o r  2 = 2Cn. Bn + D(tr B -  1 _ n- B -  in) 

• D ]/(tr  B -  1 _ n. B -  ~n) 2 - 4n. Bn, (7) 

and the equation for the slowness surface is [3] 

O(s) = C2(s-Bs) 2 + CD(s.Bs) {(tr B -1) s -s  - s . B - l s }  + D2(s.s) (s.Bs) 

- 20C(s- Bs) -- 00  {(tr B -  1) s . s  -- s. B -  is} + 02 = 0, (S) 

where s = n/v is the slowness vector. 
The energy flux velocity g of a wave with given slowness is s is normal  to the slowness surface 

at the extremity of the vector s, and such that  g. s = 1 (see [2] and [8] for details). Thus 

g = ~ s  S ' ~ s  (9) 

For  homogeneous waves of infinitesimal amplitude, g is the group velocity (see [8] and [9]). When 
s is varied, the extremity of the vector g, located at the origin, describes a surface called the "ray 
surface". I t  is the envelope of the planes s. g = 1 (regarding gl as the independent variables) for all 
the possible s satisfying f2(s) = 0. It  has been shown [3] that  the equation for the ray surface is 

~(g) ---- 02(g-B- lg)  (Cg -B-~g  + Dg-g)  

- o [ 2 C 2 g . B - l g  + CO{(tr B) g - B - l g  + g . g }  + O2{(tr B) g . g  - g ' B g } ]  

q- C a + C2D tr B + CD 2 tr B -  1 + D 3 = 0.  (10) 

Finally, we recall that  for the two waves propagat ing in the direction n with phase speeds v(n; a) 
and v(n; b) given by (5) the energy flux velocities, denoted by g(n; a) and g(n; b), respectively, are 
given by [3] 

or(n; a) g(n; a) = CBn - Db x B - i a ,  

~v(n; b) g(n; b) = CBn + Da  x B - l b .  (11) 

3 S i m p l e  shear  

Let the basic static deformation be a simple shear of amount  K. Thus let 

x = X + KY, y= Y, z = Z, (12) 

in a rectangular Cartesian coordinates system Oxyz. Without  loss of generality we take 
K > 0. Then 

(KK+I K i ) (  1 -K i )  
B =  1 , B - l =  - K  K z + l  . (113) 

0 0 0 
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The principal  stretches, 2,, are given by 

221 = ~/K2 + 4 + K ,  2 2 = 1 ,  223 = ~ K 2  + 4 -  K .  (14.1,2,3) 

We note 21 > 22 > 23, because K > 0. Also, 23 = 1/21. The unit vectors % along the 

corresponding principal  axes of strain are given by 

~ ( K  2 +4) '/4 el = r  4 + Ki+r  2 + 4-- K j ,  

e2 = k,  (t5) 

~ ( K  z + 4) TM e3= r  y + 4-- K i - ] / / l ~  2 + 4  + K j, 

where i, j, and k are mutual ly  or thogonal  unit vectors along the rectangular  Cartesian coordinate  

axes Oxyz. 

The stretches 2x and 2y along the x and y-axes (that is the stretches of material  line elements 

which are along the x and y-axes in the deformed state of the material), are given by 

1 1 1 
;~2 _ Bx-~ 1 _ 1, 2Y2 - Br~ 1 - (K 2 -}- 1 )  (16) 

The unit normals  n -+ to the planes of the central circular sections of the B- l -e l l ipso id ,  

x .  B - i x  = 1, are given by 

I ~ Y +  4 n + = 2 i -  Ki, n- = j .  (17) 

n -  

O 

K / 

/ 

\ 
\ 

\ 
X 3 

Fig. 1. Directions in the plane of shear (xy-plane) depending solely on the amount of shear K: principal axes 
of strain xl, x 3 corresponding to 21, 23; acoustic axes n + and n-  ; energy flux velocities gxy and grx" K = 0.614 
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They are determined solely by the amount  of shear. Note  that  e~, e3 are along the internal and 
external bisectors of n + and n -  (see Fig. 1). The angle 7 ~ between n + and n -  is given by 
cot ~P = - K/2. 

Also, from the constitutive Eq. (4), we have 

t~y = (C + D) K ,  t , ~ -  ty r = (C + D) K 2, (18.1,2) 

and from Eq. (18.1) it follows that  C + D = # (say) may  be interpreted as the shear modulus. 

4 Wave speed and polarization 

Here, the speeds of propagat ion  are written down explicitly for arbi trary propagat ion directions 
n. Special attention is given to the wave speeds and energy flux velocities for propagat ion along 
a coordinate axis. Also using the results of Boulanger and Hayes [5] the directions of the 
amplitude polarization are written down explicitly. 

4.1 Wave speeds. Waves propagating along the coordinate axes 

For  an arbi trary propagat ion direction n = nxi + nrj + nzk, we have 

n-Bn = 1 + 2Knxnr + KZnx 2, 

t rB-1  _ n. B - i n  = 2 + 2Knxny + K2(1 - nr2), (19) 

and then from Eq. (7), the speeds of propagat ion of the two waves propagat ing along 
n are given by 

Qv 2 = C(1 + 2Kn~nr + K2nx 2) 

+2-D {2 + 2Kn~n r + K2(1 - -  ny 2) _+ K ~ ~/4 + K 2 - -  (2n~ -- Kny) 2 } . (20) 

We consider in particular propagat ion along the axes Oxyz. 
For  n = i, it follows from Eq. (13) that  the elliptical section of the B -  1-ellipsoid, x .  B -  ix = ]~, 

by the yz-plane has its principal axes along the y and z-axes. Hence a = j, b = k. Using Eq. (5) or 
Eq. (20), we have 

Qv2(i; j) = (C + D) (K 2 + 1), Qv2(i; k) = C(K 2 + 1) + D, (21.1,2) 

and using Eq. (11), we have for the corresponding energy flux velocities 

g(i;j)=v(i;j){i+ K(K2 + l)-lj}, g(i;k)=v(i;k){i+CK[C(KZ + l)+ D]-lj}. (22.1,2) 

Similarly, for propagat ion  along n = j ,  we have 

Q/)2(j; k) = Q/)20;  i) = C -q- D = #,  (23) 

with 

g(j; k) = v(j; k) {j + C(C + O)-aKi} ,  g(j; i) = v(j; i) {j + Ki}. (24.1,2) 

Also, for n = k = e2, we have a = e3, b = e l ,  and 

Qv2(k; e3) = C + D23 -2 ,  Qv2(k; el) = C + D21-2,  (25) 
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with 

g(k; e3) = v(k; e3) k,  g(k; el) = v(k; el) k. (26) 

We note that for the waves propagat ing along the axes 0x and 0y, the energy flux velocity is 
not along the propagat ion  direction, whilst for the wave propagat ing along the principal axis 0z, 
the energy flux velocity is along the propagat ion direction and thus is the same as the phase 

velocity. 
Writing now vx r = v(i; j) and vr~ = v(j; i) for convenience, we have Qv2y = kt(K 2 + 1) and 

Qvr 2 = # (see Eqs. (21.1) and (23)), and recalling Eq. (18.2) it follows that 

Ov z, Ov2x t~x - tr, (27) 
).x 2 j, y2 j,x 2 __ j.y2" 

This result is analogous to Ericksen's relations for principal waves [4], although here the x and 
y axes are not principal axes of strain. Writing also g~r = g(i; j) and gy~ = g(j; i), we note from 
Eqs. (22.1) and (24.2) that  the directions of g~y and gr~ depend solely on the amount  of shear, 

and that  

~,~j. gx,  = 2 , i .  g ,~ ,  ;,ri. g~r = )~ j .  gy~. (28) 

Also, grx = vrx(J + Ki) is along the direction into which the y-axis is transformed by the simple 
shear (by the simple shear, X = Z = 0 is t ransformed into x = Ky, z = 0; see Fig. 1). 

4.2 Polarization directions 

The polarization directions a and b for an arbitrary propagat ion direction n are along the 
principal axes of the central elliptical section of the B -  a-ellipsoid by the plane n. x = 0. Using the 
results of Boulanger & Hayes [5] these may be written explicitly. 

There are two cases: 

Case  (i) n . ( n  + • n - )  r O. 

Here, n is not coplanar with n + and n - ,  or equivalently n is not in the plane of shear 
(xy-plane). Then, a and b are unit vectors along the vectors a' and b' given by 

.'} 
b' = n x n + / 6 +  _ n x n - / 6 _  

= {Knzi+2nzj-(Knx+2n,)k}_~ K 2 - ~  6+_ 1 

+ {--nzi + n~k} ~ _ - 2 ,  (29) 

where 6 + and 6 -  are given by 

6+ 2 _ (K 2 + 4) nz 2 + KZnx 2 + 4ny 2 + 4Knxn r (30) 

K z + 4  

6 _  2 = nx  2 + nz 2. 

Case  (ii) n .  (n + • n - )  = 0. 
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Here, n lies in the plane of shear, so that  n = nxi + nrj, n~ = 0. Then, a and b are unit vetors 
along a'  and b' given by 

2 a'=n § x n - - - - k ,  
1/ § 

(31) 
b ' = .  • B- (n § • n-)  = 

~/K 2 + 4 

and hence, 

a = k ,  b = n r l - n ~ = n •  (32) 

Thus, for example, i fn lies in the shearing plane (zx-plane), n = nxi + nzk, ny = 0, then from 
Eqs. (29), (30), 

K2 -1- 4nz2 0_ 2 = 1, (33) 
6+2 = K 2 + 4 ' 

a'} 2n~ j, (34) 
b' = ~(n=i  - nxk) + ]//K 2 + 4nz 2 

where 

K 
~z- -T- 1. (35) 

]//K a + 4n~ 2 

We note from Eq. (32) that for any direction of propagat ion n, lying in the plane of shear, one 
wave is always polarized along the z-axis (orthogonal to the plane of shear) and the other is 
polarized along the direction perpendicular to n in the plane of shear. F rom Eq. (5) or (20) we also 
note that  the wave speeds of these two waves are given by 

QvZ(n; k) = C(1 + KZn~ 2 + 2Kn~ny) + D, 

Ov2(n, n x k) = (C + D) (1 + K2rtx 2 -Jr 2Kn~,ny), (36) 

with n = n~i + nrj. 

5 General relations amongst wave speeds 

On using Eqs. (20) and (17) we note that  the wave speed vo (say) of the waves which may  
propagate  along n § or n - ,  the acoustic axes, is given by 

~DG 2 = C -11- D = # .  (37) 

We note that  vo is independent of the amount  of shear K, and is precisely the speed of the waves 
that  may  propagate  along any direction in the undeformed Mooney-Rivlin material. We recall [1] 
that  finite amplitude circularly polarized plane waves, of either handedness, and finite amplitude 
elliptically polarized plane waves, of either handedness, may  propagate  along n + and n -  with 
speed vo. All of these waves travel with the same speed as do waves in the undeformed material. 
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Thus, if two specimens of the same piece of rubber are stretched by different amounts, both 
with one principal stretch 22 fixed, with 22 = 1, then finite amplitude circularly polarized waves 
may propagate with the same speed in each specimen, which is also the speed of waves in an 
unstretched specimen of the same piece of rubber. Equivalently, the speed of propagation of finite 
amplitude circularly polarized plane waves is not altered as the amount of shear is altered. Of 
course, one of the acoustic axes, n +, is altered as K is altered, but the other, n- = j remains 
unchanged. 

It has been shown [3] that the fastest wave propagates in the direction of greatest stretch with 
its amplitude in the direction of least stretch. Thus, in the present case, the fastest wave 
propagates along n = el and is polarized along a = e3. Hence, from Eq. (5) the greatest speed, 
/)max (say), is given by 

2 (C +D)  212 QVma x = = # 2 1 2 ,  (38) 

with 21 given by Eq. (14)1. Similarly, the slowest wave propagates along the direction n = ea of 
least stretch and is polarized along the direction a = el of greatest stretch. Hence, the least speed, 
vml, (say), is given by 

2 : ( c  + D) Q/)min 2 3 2  = # 2 3 2 ,  (39) 

with 23 given by Eq. (14.3). 
From Eqs. (38) and (39), we note, using the constitutive Eq. (4) and recalling 2 1 2 3  = 1, 

--2 2 - 2  2 t l -  t3 
Q21 Vmax : ~ 2 3  Vmin - -  2 1 2  - -  2 3 2  - -  # ,  (40) 

where q and t3 and the greatest and least principal stresses, respectively. This result is in 
agreement with results known for infinitesimal waves [6]. More suggestively, if we write 21 = 2max 
and 23 = 2mi,, Eq. (40) yields 

2min/)ma x : 2max/)ml n . (41) 

Using the fact that 2123 = 1, we also note from Eqs. (38) and (39), 

# (42) /)maxVmin ~--- VQ 2 ~ - -  
Q 

Thus the product of the largest and smallest speeds of propagation of finite-amplitude plane 
waves propagating in a Mooney-Rivlin material which is maintained in a state of simple shear is 
independent of the amount of shear. 

Also, we have 

2 2 Vma x + Vmi n = (K 2 + 2) vo z, 

2 - -  2 1 / / ~  /)max /)min = K + 4 vo 2, 

and, using Eq. (14), Eq. (41) may also be written in the form 

(43) 

] /~ 2  + 4 (Vmax -- Vml,) = K(Vmax + Vmi,). (44) 
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Using Eqs. (36) and (37), we note that  the constitutive constants C and D may be expressed in 
terms of vo and of the speeds of the two waves propagat ing in any direction n (other than n + and 
n - )  in the plane of shear. Indeed, we have 

v2(n; k) - ve 2 
C = 0/ )C)  2 v2(n; n x k) - vo 2' 

vE(n; n x k) - v2(n; k) (45) 
O = Q v o  2 v2(n ; n x - k  5-v--oo z ' 

where n = n~i + nyj. 
Finally, Knowles [7] has shown that  the period To of large amplitude free oscillations of a very 

thin hollow tube of Mooney-Rivlin material  of undeformed radius r0 is 

To = ~z ~ to. (46) 

Thus, 

g r  0 
T o -  v o '  (47) 

so that  twice the period is the time it would take a finite amplitude circularly polarized wave to 
travel the length of the circumference of the tube in the undeformed state. 

6 S lowness  and ray  surfaces  

Here, the equations for the slowness and ray surfaces are written down explicitly, and special 
attention is given to the sections of these surfaces by the coordinate planes. 

6.1 Slowness surface 

Recalling that  s = sxi + srj + szk is the slowness vector, from Eq. (13) we have 

(tr B -  1) s- s - s. B -  is = s. Bs + s. s + K2sz 2 . (48) 

Using this in Eq. (8), we obtain the equation of the slowness surface in the form 

f2(s) - {(C + D) s ' B s  -- 0} {Cs 'Bs  + D( s ' s  + K2sz 2) - -  ~ }  - -  O 2 K 2 s z 2 ( S . B $ )  = O,  (49) 

where s. Bs is given by 

$" US = $" S + K2sx 2 + 2Ksxsy. (50) 

We briefly consider the intersections of the slowness surface with the coordinate planes. F rom 
Eq. (49), it is clear that  the intersection with the xy-plane (plane of shear) is made of the two 
ellipses 

(C + D) {sx2(1 + K 2) + sy 2 + 2Ksxsr} = O, 

C{s~2( 1 + K2) + sy z + 2Ks~sr} + D(s~ 2 + sy z) = O, (51) 
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/ /  \ -7 

Z 

~2 

2g 

Fig. 2. Sections of the slowness surface by the xy-plane (plane of shear), the yz-plane, and the zx-plane 
(shearing plane). The axes xl, x2, x 3 are the principal axes of strain; n + and n- are the acoustic axes. 
C/D = 1.5, K = 1.1 

both of which have their major  axis along ea and their minor  axis along el,  where el and e3 are the 
principal axes of strain given by Eq. (15). These two ellipses intersect in the directions of the 
acoustic axes n + and n -  given by Eq. (17) (see Fig. 2). 

The equation of the intersection of the slowness surface with the yz-plane is 

{Q - (C + D) (sy 2 + sz2)} 2 - DK2sz2{O - C(sr 2 + sz2)} = 0. (52) 

This curve, represented in Fig. 2, has two singular points (self-intersection) on the y-axis. 
The equation of the intersection of the slowness surface with the zx-plane is 

{e - (C + D) [s~2(1 + K 2) + s.21} {0 - C[s~2( 1 + K2) + sz 21 - D(s~, 2 + s~2)} 

- -  DK2sz2{O -- C[s~2(1 + K 2) + s~21} = 0. (53) 

It  consists of two non intersecting closed curves (see Fig. 2). 

6.2 Ray  surface 

Recalling that  g = g~i + grJ + g,k is the energy flux velocity, from Eq. (13) we have 

(tr ]3) g . g -  g .Bg  = g - B - l g  + g . g  + K2gzZ. (54) 
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27 
Z~ 

Fig. 3. Sections of the ray surface by the xy-plane (plane of shear), the yz-plane, and the zx-plane (shearing 
plane). The axes x l, x 2, x 3 are the principal axes of strain; m + and m- are the ray axes. C/D = 1.5, K = 1.1 

Using this in Eq. (10), we obtain the equation of the ray surface in the form 

,/,(g) = { c  ~ + cD(2 + I(~) + o ~ - Q(cg. B - ' g  + Dg-g)} {C + O - Qg. B -  ~g} 

- -  D2K2Ogz2 = 0, (55) 

where g - B - l g  is given by 

g - B - l g  = g . g  + K 2 g y 2  _ 2Kgxgr. (56) 

We also briefly consider the intersections of the ray surface with the coordinate planes. From 

Eq. (55), it is clear that the intersection with the xy-plane (plane of shear) consists of the two 
ellipses 

QC{gx z + (1 + K 2) gr2 _ 2Kg:,gy} + QD(g~ 2 + gr2) = (C + D) 2 + K2CD, 

O{gx 2 + (1 + K2)gf - 2Kg~,gy} = C + D, (57) 

both of which have their major axis along el, and their minor axis along e3 (see Fig. 3). These two 
ellipses intersect in the directions given by 

Kc(g~)=C(I+K2)+D++_I//(C+D)2+K2CD (58) 
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These directions are called "ray axes" [2]. Unlike the acoustic axes, these depend on the 
constitutive coefficients C, D as well as on the amount of shear K. The duality between slowness 
surface, acoustic axes and ray surface, ray axes, is explained in detail in [3]. 

The equation of the intersection of the ray surface with the yz-plane is 

{(C + D) 2 + K2CD -- 0C[(1 + K 2) g2  + g2] 

-oD(g ,  2 + gz2)} {C + O - 0[(1 + K 2) gy2 + gz2]} _ D2K20g2 = 0. (59) 

It consists of two non intersecting closed curves (see Fig. 3). 
The equation of the intersection of the ray surface with the zx-plane is 

{(C + D) 2 + K2CD - o(C + D) (gx 2 + g2)} {C + D - Q(gx 2 + g2)} _ D2KZogz2 = 0. (60) 

It also consists of two non intersecting closed curves (see Fig. 3). 

7 Concluding remarks 

Explicit expressions have been given for the speeds of propagation and the polarization 
amplitudes for the two finite amplitude plane transverse waves which may propagate in any 
direction in rubber maintained in a state of finite static simple shear. Explicit expressions have 
also been given for the slowness surface and the ray surface. 

A striking result relates to the fastest and slowest plane transverse finite amplitude waves, for 
a given state of shear. The slowest wave propagates along the direction of least stretch and is 
polarized along the direction of greatest stretch while the fastest wave propagates along the 
direction of greatest stretch and is polarized along the direction of least stretch. The product of 
the speed of the fastest and the slowest wave is a constant of the material (g/e), and is independent 
of the amount of (finite) shear. 

For 'small' shear, i.e. K 2 ~ K, it follows from (42) and (44) that 

- 1 K )  X/~, = ( 1 +  2 K )  k /~ '  Vmin=(1 ~ vm,x (61) 

both values coalescing to the speed (#/e) 1/2 as K ~ 0, in the limit of no shear. On the other hand, 

for large values of K, 

(62) 

The larger the shear the greater the value of Vma x and the smaller the value of Vmin. 
It is remarkable that the speed of propagation of circularly polarized finite amplitude waves is 

constant, irrespective of the amount of shear. In the virgin state, finite amplitude circularly 

polarized waves may propagate in every direction, with speed [/)-~.  In the state of simple shear, 
there are two acoustic axes both of which lie in the plane of shear and are determined only by the 
amount of shear. Circularly polarized waves may propagate along either acoustic axis with the 

same speed ~ ,  as in the undeformed state. 
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