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Some lattice models of  bilinear logic 

J. L A M B E K  

Dedicated to the memory of Alan Day 

The aim of  this article is to present to universal algebraists a generalization o f  Boolean algebras 
which do not obey Gentzen's three structural rules. These so-called Grishin algebras are models of 
classical bilinear propositional logic, a non-commutative version of linear logic which allows two 
negations. Examples in which these negations coincide are easy to come by, but examples in which they 
are distinct are more elusive. To this purpose, it was found necessary to generalize the notion of  a group 
to that o f  a lattice ordered monoid with adjoints. While the left inverse and the right inverse of a group 
element necessarily coincide this is not so for the left adjoint and the right adjoint of an element in a 
lattice ordered monoid. 

I. Preliminaries 

Some surprising algebraic varieties arise from considerations in logic. Here we 
shall confine attention to a class of algebras which arise as models of bilinear 
propositional logic, by which I mean logic without the usual structural rules 
postulated by Gentzen [Kleene 1952]: interchange, weakening and contraction. In 
the presence of these structural rules, the models are well-known algebras, namely 
Heyting algebras and Boolean algebras, depending on whether our logic is intu- 
itionistic or classical. When the contraction rule is dropped, the intuitionistic 
models are called BCK algebras. Computer scientists appear to be interested in 
models of classical linear logic, in which both weakening and contraction are 
dropped, but interchange is retained, while some philosophers are interested in 
relevance logic, in which only weakening is forbidden. From now on we shall 
concentrate on bilinear logic, a non-commutative variant of Girard's [1987, 1989] 
linear logic, but we will ignore quantifiers and modalities. 

The intuitionistic version of bilinear logic has been called "syntactic calculus", 
because of its application to linguistics [L 1958, 1989]. Its models are "residuated 
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lattices" (see Birkhoff's Lattice Theory [1967]), which are said to have been 
introduced by Dilworth. A residuated lattice ordered monoid, as it is more com- 
monly called now, is a poset with operations (/, |  /, \ ,  T, A, _L, v) ,  where 

the first two describe a monoid, the last four a lattice, and the remaining two 
operations, called "over" and "under",  satisfy 

A |  <~ A < C / B  <=> B < A \ C .  ( ,)  

These conditions assert, in the language of category theory, that - / B  is right 
adjoint to - |  and that A \ -  is right adjoint to A | - .  From this it follows, 
in particular, that A<_B and C < D  imply A | 1 7 4  and A / D < B / C  

(functoriality). 

Complete residuated lattice ordered monoids are also known as "quantales" 
(see Rosenthal [1990]). Our reason for using capital letters to denote the ele- 
ments of a residuated lattice ordered monoid is that, in the most familiar exam- 
ples, they are subsets of a monoid or, more generally, sets of arrows of a 
category. Somewhat less familiar are the downward closed subsets of a partially 
ordered monoid studied by Dogen [1985] and Buszkowski [1986], of which the 

subsets of a monoid are a special case, and, more generally, the downward 
closed sets of arrows of a category. 

Why is the class of residuated lattice ordered monoids an equational class of 
algebras? That is, why is a residuated lattice ordered monoid a set with opera- 
tions satisfying certain identities, and not just a poser with additional structure? 
Evidently, a lattice can be presented equationally if the partial order is defined 

as usual by 

A <B  <=> A A B = A .  (**) 

Moreover, the conditions (*) can be replaced by the inequalities 

(C/B) | B <_ C, 

A |  <_ C, 

A ~ (AQB)/B,  

B < A \ ( A |  

***) 

which themselves can be replaced by equations with the help of (**), and func- 
toriality, which can also be presented by equations such as (A v B ) |  C = 

( A |  v ( B |  
Models of intuitionistic bilinear logic are thus seen to be well-known; so let 

us turn to the classical version of bilinear logic, that is, noncommutative linear 
logic, again without quantifiers and modalities. 
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2. Grishin algebras 

Models of classical bilinear logic, in several different variants, first turn up in the 
work of Grishin [1983]. They also appear in various guises in Abrusci [1991], Ono 
[1993] and Blute and Seely [1991]. These authors speak of "pure noncommutative 
linear logic", "Gentzen linear logic without interchange" and "non-commutative 
planar * autonomous categories" respectively. Such models were also studied in 
[L1993] as "models of BL2". 

Let us define a Grishin algebra as a poset with operations (/, |  • T, O, T, 
A, 2 ,  V ), where the first two operations describe a monoid, the last four a lattice, 

while the remaining operations satisfy the equations 

A I T = A  = A r i  ( t)  

and the conditions 

A<_B ~ A |  ,~  BT| (#t)  

Of course, we expect that these conditions can also be replaced by equations. 

PROPOSITION 2.1. A Grishin algebra may be described as a residuated lattice 
ordered monoid with two unary operations z and �9 satisfying the identities ( ~) and 

I •  v, C / B = ( B  | C l )  T, A \ C = ( C T |  • 

Proof. In any Grishin algebra we have I _< I, hence I • = I  | I •  O. But also 
I • 1 7 4  = I |  <_ O, hence O < I  • Therefore I •  and similarly IT=O,  SO 
I • = I T. Moreover, 

A |  <=~ A | 1 7 4 1 7 7  

~=~ A < ( B |  T. 

This shows that we may write ( B | 1 7 7  and the remaining equation 
follows from symmetry, yielding a residuated lattice. 

Conversely, assume as given a residuated lattice ordered monoid satisfying ( t)  
and the new identities. We write I •  O = I T and argue as follows: 

A | = I  T 

<=~ A <_IV/B • 1 7 7 1 7 4  T • 1 7 7 1 7 4  z � 9  

and similarly B T | A < 0 ~=~ A < B, so (]'t) holds. 
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LEMMA 2.2. In any Grishin algebra, 

(B•177 T=(BT @A T)• 

Proof For any element C, 

C <_(Bi|177 v ~=~ C |174177  

r C | B• <_A 

~:~ A v | 1 7 4 1 7 7  

r A T |  <_ B 

B T | 1 7 4  <O 

C <(BT|  • 

This suggests the definition 

A @ B = ( B • 1 7 4 1 7 7  v |  ) , v  �9 

making G a kind of De Morgan dual of | 

LEMMA 2.3. /n any Grishin algebra, 

A <_B <=> Bi<_A • <=> BT<_A m. 

Proof From A<_B we obtain A Q B •  that is, A • 1 7 4 1 7 7  hence 
B• • The other implications are shown similarly. 

PROPOSITION 2.4. The opposite of  a Grishin algebra, in which < is replaced 
by >_, is also a Grishin algebra, with operations (0, 0 ,  v, • I, I ,  v ,  T, A ). Both • 
and �9 are anti-isomorphisms between the Grishin algebra and its opposite. 

Proof The second assertion follows from Lemma 2.3 and facts established 
earlier. We illustrate the proof  of the first assertion by proving two of the identities 
it comprises: 

A O O = A ,  A > B  <* AOBT>_L 

Indeed, 

A �9 O = (O•174177 T = ( I | 1 7 7  T=A �9 = A  
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and, by Lemma 2.3, 

O T = I < A O B T = ( B @ A •  v .e~ B | 1 7 7  .~ B < A .  
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3. Cyclic Grishin algebras 

If  we postulate A •  v in classical bilinear logic, we obtain the "cyclic 
(non-commutative) linear logic" of Yetter [1990], called BL3 in [L1993]. Exam- 
ples of Grishin algebras with A •  T are easily found [ibid.], e.g., the set of 
subsets of a group, with O defined as the complement of {1}. More generally, 
one has the set of subsets of a Brandt groupoid, i.e., the set of sets of arrows of 
a category in which all arrows are isomorphisms. All these are instances of an 
abstract relation algebra as axiomatized by Tarski and Givant [1987]. Of course, 
the usual algebra of binary relations on a set is a concrete example of their 
axioms. Let me discuss here only one class of models, which generalize the 
known concrete relation algebras and which appear not yet to have been consid- 
ered. 

EXAMPLE 3.1. With any poset A we associate the poset P(A) consisting of 
all downward closed subsets of A, ordered by inclusion. Alternatively, P(A) may 
be described as the set of all monotone mappings from A to the two-element 
poset. Now consider the monoid M(A) of all monotone mappings f t  of P(A) 
into itself which have a right adjoint f* :  

f t ( X )  < Y ~ X < f * ( Y ) ,  

for all X, Y ~ P(A). An equivalent assertion is that f *  preserves suprema. As a 
poset, M(A) is isomorphic with P(A ~ x A), where A ~ is the opposite poser of A, 
or with the poset of all monotone mappings f:  A - * P ( A ) .  Indeed, for any 
X ~ P(A), 

f * ( X )  = {a e A If(a) <_ X}, 

f * ( X )  = U {f(a) I a e X}. 

Conversely, f = f * L  where 

I(a) ={b  c A  Ib <a} .  
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We define g |  by 

(g |  = g t f *  

(the categorically trained reader will smell a Kleisli category here) and 

O(a) = {b E A I a ~ b},  

f • = {b ~ A I a Cf(b)} 

and leave the reader to check that we have a cyclic Grishin algebra. 

I f  A is a set, viewed as a discrete poset, M ( A )  is of  course the usual algebra of  

binary relations on A. 
Example 3.1 suggests several generalizations, to which I hope to return on 

another occasion. In place of the mono id  M ( A )  one may look at the category of all 

posets, with arrows A ~ B defined as monotone mappings A ~ P(B) .  Moreover, 

one may replace the category of posets by the metacategory of locally small 

V-categories for a suitable closed category V, so that the arrows A ~ B turn out to 

be Lawvere's [1973] bimodules.  The consideration of these has already been 

suggested by Trimble [1993] and by Rosenthal [1993] in a similar context. Finally, 

one may give an axiomatic treatment of this whole setup in the language of 

2-categories. 

4. Lattice ordered monoids with adjoints 

To find examples of  Grishin algebras in which A • CA v we have to go beyond 

groups or groupoids. 

D E F I N I T I O N  4.1. By a lattice ordered mono id  with adjoints we shall mean a 

lattice ordered monoid in which every element a has both a right adjoint a r and a 

left adjoint a t, in the following sense: 

a �9 a r <_ 1 <_ a r �9 a, a l �9 a <_ 1 <_ a .  a l. 

It  is easily seen that both a r and a t are uniquely determined by a. Yet, in 

general, a t #  a t, as is seen from the following example. 

E X A M P L E  4.2. Consider the monoid of all unbounded monotone mappings 

f :  Z ~ Z. Each such mapping has a right adjoint f r  and a left adjoint f t ,  both of  
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which are again unbounded ,  namely  

f r (y)  = max{x  E Z If(x) < y}, 

f l (x)  = min{y ~ Z I x _<f(y)}.  

Indeed,  it is easily seen tha t  

f f r  ~ 1 < fr f ,  fir<__ 1 < f f l .  

T O  show tha t  f r  4 f l  in general take f(x) = 2x; then 

f r ( y )  = [y/21, f~(y) = [(y + 1)/21. 

I t  is an amusing  exercise [L 1994] to prove  that,  for  any unbounded  m o n o t o n e  
m a p p i n g  f :  Z --> Z, the following two sets are complemen ta ry  subsets o f  Z: 

{f(x) + x l x 6 Z}, {fr(y) + y + l l y 6 Z}. 

I t  is easily seen that  a lattice ordered mono id  M with adjoints is a Grishin  
algebra,  in which 

I =  O = 1, a r = a  • a / = a  T, 

a |  = a @ b = a . b .  

To obta in  a Grishin  a lgebra  in which I ~ O and | does not  coincide with |  we 
shall pass to P(M). 

P R O P O S I T I O N  4.3. The lattice o f  downward closed subsets o f  a lattice ordered 
monoid with adjoints is a Grishin algebra. 

Proof. We define 

A |  {c ~ M [ ~a~A 3b~sc <a"  b}, 

I : { c ~ M l c < l  }, 

O:{c MIl e}, 
A •  

A ~ = { c e M ] V ~ A l ~ c ' a } ,  
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The fact that  | and I determine a mono i d  is easily seen. We will show (i) that  
A • V=A and (ii) that  A | 1 7 7  O <=> A < B; the other propert ies  that  follow by 

symmetry .  
(i) Suppose c ~ A  • that  is, Vd~A• Thus,  for  all d ~ M ,  l < c . d  

implies d r A • However ,  1 _<c. c ~, hence c~r A • that  is, there exists a c A  
such that  1 < a �9 c(  Therefore,  e < a �9 c t- c < a and so c ~ A. Thus  A • V_<A. 

The converse inclusion is s traightforward.  
(ii) Suppose A | 1 7 7  that  is, 1 CA |  • that  is, for  all a ~ A  and c E B  • 

1 :~ a �9 c. Given any a ~ A, it follows that,  for  any c E M, 1 < a �9 c implies 
c C B  • But l < a . a  t, hence a l C B  • that  is, for  some b~B,  l < b . a (  
Therefore,  a _< b - a t- a < b, and so a E B. Thus  A _< B. The converse impli- 

cat ion follows f rom B | B •  O, so we have to show that  1 ~ B | B • Thus,  
supposing 1 < b .  c with b ~B ,  we wish to show that  c r B • But this is 
evident f rom the definition of  B • 

A somewhat  tedious calculation shows that  

A Q B = { c 6 M I V ~ , b ~ M ( a - b < c  ~ ( a ~ A  v b ~ B ) ) } ,  

which is not  the same as A | B. 
Proposi t ion  4.3 can be generalized in two ways: by replacing "latt ice ordered"  

by "par t ia l ly  ordered"  and by replacing " m o n o i d "  by "ca tegory" .  A partially 
ordered category is a special kind of  2-category, namely  a category where, for any 

two objects ~ and fl, Hom(~,/3)  is a poset  such that,  for any f ,  g: ~ ~/3 ,  h: 7 ~ and 
k:/3 ~ 3, f_< g implies fh  < gh and kf_<_ kg. In a part ial ly ordered category with 
adjoints, for every a r row f :  ~ ~ /3  there are given arrows f r ,  f :  /3 ~ e such that  

m ~ r f f ~ <  1~, 1~ _ f ~ ,  f ~ ( <  1~, 1~ <_ff( 

P R O P O S I T I O N  4.4. The lattice of downward closed subsets of a partially 
ordered category with adjoints is a Grishin algebra. 

The p r o o f  is the same as for Proposi t ion 4.3, only now M is the set o f  all ar rows 
of  the category and the definitions o f / ,  O, A • and A v have to be modified as 

follows: 

c ~ I r 3~c_<1~, 

c E O  ~ V~I~:~c,  

c E A  l ~ Va~A V~l~flLac, 

c ~ A v <=~ Va~A V~ I~ 5~ ca. 
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5. Some final remarks 

We have discussed certain lattice models of bilinear logic, both intuitionistic and 
classical. Had we not insisted on their forming a variety, we could equally well have 
talked about poset models, by dismissing the lattice operations T, A, L, v from 
consideration. (These are called "additives" by computer scientists, following Girard.) 

As mentioned before, bilinear logic differs from ordinary logic by the omission 
of Gentzen's three structural rules. These may however be added to our lattice or 
poset models as follows: 

A < I (weakening), 

A < A | A (contraction), 

A |  <_ B |  (interchange). 

If all three rules are postulated, a residuated lattice becomes a Heyting algebra and 
a Grishin algebra becomes a Boolean algebra. Of course, one is at liberty to postulate 
only some of these rules, as is the case for BCK-algebras, where only contraction 
is absent, and for models of linear logic, where only interchange is present (which 
follows from the other two rules in this form). If one postulates weakening and 
contraction, but not interchange, one obtains a noncommutative version of Heyting 
or Boolean algebras. A noncommutative generalization of Boolean algebras, along 
apparently quite different lines, has recently been investigated by Diers and Koudsi 
[19921. 

The anti-isomorphism in Proposition 2.4 can be replaced by an isomorphism, 
provided we write B G A in place of A | B; but this would contradict the notation 
of [L 1993]. 

The proof of Proposition 4.3 can be refined to yield a stronger result. 

PROPOSITION 5.1. The lattice of  downward closed subsets of  a Grishin algebra 
is a Grishin algebra. 

To show this one should replace the multiplication symbol appearing in the 
definitions of A | B, A z and A �9 by O. Hopefully, this is not the last word on the 
subject. 
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