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Summary. The present paper focusses on five phenomenological approaches in gradient-enhanced 
damage, several of which have been proposed in the literature to simulate material degradation. These dif- 
ferent gradient-damage based nonlocal models are examined with respect to their ability to describe crack 
initiation and crack propagation. The models are applied to identical mechanical benchmark tests, where 
the material damage evolution law is taken as good as possible equal for each model. Interesting differ- 
ences between the different models arise, and it is shown that care must be taken in the interpretation and 
application of these models. One-dimensional results cannot be extrapolated in a straightforward fashion 
to two dimensions, and the physical relevance of some results is in some cases debatable. Furthermore, it 
is shown that the response of some models is strongly influenced by small differences in the applied 
damage evolution law. A discussion is made on the use of two different types of such evolution laws, 
which are frequently applied in the literature. 

1 Introduction 

Significant progress has been made in the development of  constitutive models which are 

capable to describe the damage process in a quasi-brittle material. A variety of  models are 

nowadays available, and it is not  always clear which model is best suited for real engineering 

problems. Nevertheless, the necessity for the use of  models which rely on the principle of  

nonlocal action has become clear in recent years. Although often motivated by computa- 

tional arguments, more and more examples become available which justify the principle of  

nonlocal action on a physical basis [1]-  [4]. The nonlocal continuum was already introduced 

in the sixties to describe elastic material behaviour, see for instance Eringen [5]. Maugin [6] 

was one of  the first to underline the importance of  nonlocal theories in different fields of  

physics. The main argument for nonlocality resides in the fact that a perfect continuum 

(satisfying the principle of  contiguity) does not  really exist, and that at some scale each 
material will have a discrete character which does not permit application of  the classical 
principle of  local action (which is one of  the main assumptions in classical continuum 

mechanics). Damage is a typical example of  a physical phenomenon which takes place at the 
discrete level of  the material, i.e. in the microstructure, or more specific at interfaces, bonds, 
molecular chains, etc. Hence, damage theories cannot  be developed consistently without tak- 
ing into account  this microstructure, which justifies a nonlocal constitutive model in damage 
mechanics. The complexity of  the physical damage process is often simplified to a high 
extent in nonlocal constitutive models. Most  nonlocal models are limited to the addition of  
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one extra variable, which is commonly denoted as the intrinsic length scale of the conti- 
nuum. It is not trivial to link this length parameter to all the geometrical and physical prop- 
erties of the microstructure of a material, since this length scale is not solely a geometrical 
characteristic of the microstructure, but also depends on the mechanics of the discrete bonds 
in the microstructure [7]- [9]. A more thorough insight in the relation between microstruc- 
tural properties and nonlocal continuum models is needed to clarify the physical back- 
grounds of this length scale. 

Amongst the gradient-enhanced damage models, the so-called implicit gradient-enhanded 
models (i.e. where the nonlocality ensues from the solution of a partial differential equation) 
appear to be most successful, since they present all characteristics of the earlier developed 
nonlocal damage models while preserving the computational advantages of the gradient type 
models. Indeed, it has been shown that these implicit gradient-damage formulations can be 
easily recast in an integral form, which is characteristic for the nonlocal damage approach 
[10]. Furthermore, the Neumann boundary condition which is commonly used to solve the 
partial differential equation (of the Helmholtz type) for the nonlocal variable automatically 
involves larger nonlocal weight factors for the material close to the boundaries of the consid- 
ered continuum [10]. This is particularly advantageous from a physical point of view, since 
the model will then be more sensitive to surface defects compared to classical nonlocal 
damage models. 

A comparison of some (integral) nonlocal models for damage and fracture has been per- 
fomed by Jirfisek [11], for uniaxial tension. It was shown that some of the analyzed formula- 

tions inevitably lead to residual stresses and that they are not capable of modeling a com- 
plete macroscopic crack. This paper concerns different types of damage formulations, which 
are all casted in the implicit gradient form. Various choices and possibilities have been pro- 
posed in the literature, where separate examples with different materials were used for each 
model. An in-depth comparison has not been performed, and the consequence of the use of 
one model or another is not clear, Using identical examples and nearby similar damage evo- 
lution laws, this paper reveals hidden properties of the proposed models and clarifies the 
influence of various choices in gradient damage modelling. The analysed benchmark exam- 
ples permit to investigate crack initiation and crack propagation, in a one-dimensional and 
two-dimensional context. Variable or so-called transient length scales [7], [12] have been 
introduced in some of the models to investigaste the influence on the mechanical behaviour 
during the fracture process. The comparison is made for an isotropic quasi-brittle elasticity- 
based damage formulation. The description of each model is limited to the essence which is 
necessary to understand the sequel of the paper. The detailed numerical implementation of 
some models has been elaborated in the literature [12]-[15], while the numerical scheme for 
the other models can be easily derived on the basis of the similitude between the applied 
Helmholtz partial differential equations. Practical applications have been reported for some 
models [8], [9], [16], [17]. It is emphasized that all the presented models correctly regularize 
the energy dissipation. 

2 Phenomenological approaches in implicit gradient-enhanced damage 

The spatially nonlocal concept has been embedded in various ways into damage models. The 
nonlocal character or gradient enhancement can be applied to different types of variables: an 
equivalent strain measure [12], [13], a history parameter [14], [18], or the damage variable [4], 



Phenomenological nonlocal approaches 3 

[19], [20]. Furthermore, formulations exist in which the intrinsic length scale is treated as a 
constant [13] or alternatively as a variable [8], [12]. Since implicit gradient formulations are 
best suited for numerical analyses, attention will next be given to five implicit gradient- 
enhanced damage formulations which are based on a nonlocal equivalent strain geq, a nonlo- 
cal history parameter 2 and a nonlocal damage variable/) .  Two of the considered models 
have a constant length scale while the three remaining models introduce a variable character 

to the length parameter. 
All formulations are developed within an isotropic strain-based damage mechanics frame- 

work. The classical total stress-strain relation then reads 

= (1 - D)  E. (1) 

Herein, a represents the Cauchy stress tensor, e the infinitesimal strain tensor and 4C the 
fourth-order elastic stiffness tensor. The damage is denoted by a scalar-valued variable D, 

which satisfies the constraint 

0 < D < 1. (2) 

In the local damage mechanics concept, the influence of the current deformation state on 
the damage is quantified by a local equivalent strain eeq, which is a scalar function of the dif- 
ferent components of the strain tensor. The equivalent strain is used to map the tensorial 
strain state to a scalar-valued variable which can be used to drive the damage growth. This 
permits to give a triaxial character or a compression-tensile sensitivity to the damage growth. 
The scalar definition of e~q may take various forms, depending on the material considered. 
For an overview of some definitions, see [16]. Here, the normalized energy release rate is used 

to compare the different models: 

= ? :  4C: 
(3) 

The damage D is then coupled to the loading history through a monotonically increasing 
deformation history parameter • that equals the maximum value of e~q throughout the entire 
loading history. The damage evolution is then fully described by the scalar function D(~). 
The relation between the history parameter g and the equivalent strain C~q is given by the 

Kuhn-Tucker loading-unloading relations 

_> 0 ,  ceq - _< 0 ,  - 4) = o. (4) 

The nonlocal character is generally implemented in the damage evolution. However, this 
can be realized in various ways. Each approach starts from a local variable r which is trans- 
formed into a nonlocal variable r by means of a Helmholtz-type partial differential equation, 

~; - c V 2 ~ ;  : r  (5) 

where c is a positive scalar, related to the square of the length parameter. Such a differential 
form can be derived from the nonloca~ integral form through a Taylor series expansion, see 
[13], [21]. The partial differential equation (5) is complemented with the following Neumann 

boundary condition on the boundary F: 

~ r  ~ = 0. (6) 

In the following subsections, five different approaches to embed a nonlocal character into the 
damage formulation, based on Eq. (5), will be analyzed. 
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2.1 Nonlocal equivalent strain model 

The most used choice in nonlocal damage mechanics is to adopt 4' = c~v, which leads to the 
use of a nonlocal equivalent strain g~q. Equation (5) is then transformed into 

~q - eVZg~q = e~q, (7) 

with the boundary condition 

~ g ~ - ~  = 0 (8) 

on P. Note, that the intrinsic length scale g~ = x/~ is here treated as a constant. The damage D 
is computed from the history parameter z, which is now determined by 

>_ O, g~q - z < O, :2(g~q - z) = 0. (9) 

Computational details and numerical results for this model can be found in [13]. 

2.2 Nonlocal history parameter model 

A second choice is to take the local history parameter determined from (4) as the source term 
for (5), i.e. ~b = ~, see [14], [18] 

- cVZ2 = ~, (10) 

with the Neumann boundary condition 

V ~ . ~ =  0. (11) 

Since Eq. (10) can be rewritten in the nonlocai integral form, it is clear that ~ will preserve the 
monotonically increasing character of  g. This ensures that the damage D never decreases, as 
required by the Clausius-Duhem inequality. 

2.3 Nonlocal damage model with a transient length scale 

Inspired by Fr6mond and Nedjar [20], and de Borst et al. [14], the nonlocal variable can aiso 
be derived from the damage, i.e. q5 = D. This suggestion was also made by Ba~ant and Pijau- 

dier-Cabot [19]. However, Jirfisek [11] already showed that such a nonlocal model cannot pro- 
vide meaningful results with a constant length parameter. A partial differential equation (5) 
with a variable length scale is therefore used instead 

D - c(D) V2D = D ,  (12) 

while the boundary condition on / "  is given by 

V D . ~ = O .  ( ta)  

The nonlocaI damage variable is then used in the constitutive relationship 

,, = (1 - 1)) ~ c :  e .  (14) 

The latter relation shows that it is no longer possible to keep the gradient parameter c = ge 2 
constant. If  this would be the case, the nonlocal damage Z) which enters Eq. (14) will never 
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reach the ultimate point of failure (/9 = 1) since the local damage D is bounded by the 
relations (2), see also [11]. Accordingly, a nonlocal damage model in this sense can only be 
realistic if /9 approaches unity when its local counterpart D does so. The gradient parameter 
must therefore depend on the local damage variable D. If the local damage equals unity, 
the intrinsic length scale will equal zero, and the nonlocal and local damage variables will 
then coincide. Since the gradient term vanishes only after the crack is fully initiated, the 
well-posedness remains preserved during the initiation phase. In the present analysis, the 
gradient parameter c decreases linearly with the damage D, according to the following rela- 
tionship: 

c(D) : (1 - D) e . . . .  (15) 

2.4 Nonlocal equivalent strain model with a damage-dependent transient length scale 

If tile nonlocal equivalent strain model (7) is combined with the transient character for the 
gradient parameter adopted in Eq. (12), the following formulation is obtained: 

g~q -- c(D) V2geq : eeq. (16) 

This. equation is solved in conjunction with Eqs. (8) and (9). The length scale diminishes with 
the increase of damage, as described by relation (15). Once damage is fully developed, the 
model again coincides with the local model, since then g~q = r 

2.5 Nonlocal equivalent strain model with a strain-dependent transient length scale 

A strain-based transient gradient-damage model (or nonlocal equivalent strain model) has 
been proposed in [12] and has been successfully applied to composite materials [8], [9]. The 
analysis of damage in discrete models with respect to the consequences on continuum models 
has shown that the internal length scale of a continuum increases with the damage of the sys- 
tem [71. This observation is in agreement with the transient nature adopted in [I2], where the 
gradient parameter increases with the local equivalent strain eeq. It has also been shown that 
the transient character of the length scale alleviates spurious damage development with the 
use of exponential damage evolution laws [12]. The transient character of the intrinsic length 
scale', in this case is thus opposite to the two previous models, where the length scale decreased 
with increasing damage. The equation to solve is rewritten as 

while the boundary condition (8) is applied. The gradient parameter increases linearly with 
r which means that the nonlocal interaction becomes more important for increasing local 
strains. 

For the considered model material in the next section, the transient evolution of c is 
described by the following bilinear relationship: 

(]max g e q  if eeq _< ema~ 
C(geq) = ~max (18) 

Cmax if  Ceq > s 

where emax is the equivalent strain level at which the maximum length scale ~ is reached. 
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3 Damage evolution law 

It is known from the literature that the adopted damage evolution law D(z) or D(2) is an 

important charateristic to describe the global mechanical response, especially after the ulti- 
mate load has been reached, i.e. the post-peak behavior. Here, two damage evolution taws 

will be used, a power-law and an exponential softening law. Both evolution laws match well 

in the initial post-peak regime but exhibit some small differences in the final failure stages. 

Damage initiates (/) > 0) for both cases when the history parameter z exceeds a threshold 

value ~ ,  which is the initial value of x at time t = 0. This threshold value represents the ulti- 

mate (local or nonlocal) equivalent strain or nonlocal history parameter that characterizes the 

elastic material behavior prior to the occurrence of damage. The power-law damage evolution 
law used in the analysis is given by 

D = l - - - x i  __xc-x , (19) 

where the ultimate damage level (D = 1) is reached for a finite value of the history parameter 

• The parameter c~ is the decay parameter. In the exponential law, on the other hand, the 
damage variable approaches unity but the limit value D = 1 is never reached, 

D = 1 - ~ e [-~(~-xd] . (20) 

This type of evolution law reduces a long tail in the stress-strain softening curve. The expo- 

nential development of damage is described by the material parameter ft. The material which 
will be examined using the different damage models in the subsequent Sections is character- 
ized by a Young's modulus of 10 000 MPa, a Poisson's ratio equal to 0,3, a damage initiation 

threshold ~ = 0.001 and a gradient parameter c = 5 mm 2. The transient evoIufio~ of c for 
the models presented in the Subsects. 2.3 and 2.5 is characterized by a maximum gradient 

parameter c ~  that equals 5 mm 2, and the corresponding equivalent strain level emax is 0,01, 

The power-law damage evolution is used with a critical value • = 0.05 and a decay parameter 

c~ = 5. The exponential law which fits closest to this power-law is obtained with fl = 109.525. 
Both evolution laws are depicted in Fig. 1 and 2. Figure 1 shows the relation D versus z, while 

Fig. 2 shows the associated stress-strain paths in the one-d~mensional, homogeneous case. 
Figure 1 highlights that both evolution laws are very close. The corresponding responses for a 

uniform damaging bar are depicted in Fig. 2. 
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4 Damage and crack iaitiation 

Damage initiation properties can be examined efficiently with a classical one-dimensional bar 
with a central imperfection. To this purpose a bar with a length of 100 mm and a cross-section 
A of 10 mm 2 is analyzed. The bar is weakened over a length of 2.5 mm at the centre by a 
reduction of A by 10%. One end of the bar is fixed and the other end is loaded with an axial 
force in tension. A similar one-dimensional analysis has been performed by Peerlings et al. 
[13] for Eq. (7) and by Geers et al. [12J for the damage model based on Eq. (17). 

A first comparison is made between the gcq (7) and the 2 (10) formulations. The results are 
shown in Fig. 3. This figure shows the force-displacement curves that ensue from the mechani- 

cal response of the bar. The main difference between these two models originates from the 
fact that g~q increases in loading and decreases in unloading material, while 2 never decreases. 
The exponential damage evolution laws yield almost identical results, which is not the case for 
the power-law damage evolution. The final crack opening upon complete failure (which 
equals the final displacement of the bar end) differs for both cases. This difference becomes 
more apparent if the comparison is made for different values of c~ in Eq. (19). It can be 
noticed from Fig. 4, where the response of the g~q (7) model is shown, that the final crack 
opening of the bar is independent of the value of c< In this case, the local equivalent strain 
approaches a Dirac delta function w(5(x), where w equals the crack opening upon complete 
rupture of the bar. The analytical solution of Eq. (7) is easily found for a homogeneous bar 
with an infinite length and equals the product of w with the Greens's function associated with 
the Helmholtz equation (7), 

w e -t=l/~ 
' (21)  

with Ix] the axial distance measured from the centre of the crack. This relation is a very good 
approximation for bars with finite lengths if the damaging zone is far enough from the bound- 
aries (e.g., ten times the internal length scale). The final crack opening w / a t  x = 0 is obtained 
from (21) by setting g~q = ~ and solely depends on the gradient parameter c and the critical 
history parameter z~, 

w = (22)  

8o 

eo 

0 

,9 40 

1 0 o  T 

F\ 

. . . . . . . . . . .  $ .  : . . . .  

/ 
,g i 

/ 

J / 
g ...... 2 0  -~, . . . . . . . .  

/ 
0 
o 

Power-law (gea) I 
Exponential (geq) 

............. Power-law (g) [ 
Exponential (g) ] 

0.1 0.2 0.3 0.4 0.5 
Displacement [mm] Fig. 3. Softening curves for g~q and 2 



8 M . G . D .  Geers et al. 

1 0 0  , , , , 

~01 !i /?;i', ! ~i ] 
I . . . . . . . . . . .  :......; . . . ; . . .  i } . . . . . .N. . . . .  : ~ . . . .  ; . . . . . . . . . . . . .  : 8 0  i t i "; ~ '~. i ~ , ,  i i : 

7 6  . . . .  ~"  a= l  

T ! . . . . . . .  i /  : f  : ~ ~ N  ] ....... ':~: ........ <": ......... ~;: ............ : . . . . . . . . .  " . . . . . . . . . .  

60  . . . . . . . . . .  ~ -#  . . . . . . . .  ? . . . . . . . .  i q  . . . . . . . . .  ~ ,  . . . . . . . . . . .  b ,  . . . . . . . . .  " . . . . . . . . . . . .  i . . . . . . . . .  

5oL . . . . . . . . . .  :,~ . . . . . . . . . . .  ~ ~ - - . . :  . . . . . . . .  ~.J 
i . i  ~. : ~  ~ : 

e~.s  ~ " : : ' ;  , :: 
~"  4c . . . . . . . . .  ,, . . . . . . . . . . . . . . . . . . . . . . .  : : . . . . ; . . . . . . : . . . ~ ;  . . . . . . . .  ; . . . . . ~ . .  ; . . . . . . . . . . . .  ; . . . . . . . .  

} ~ ', : m 

3 0  } ~ ! . : ~ / m  : . . . . . .  t " i  ............ ~ ........... ! i i : : ~  ! . . - . , . - . !  ............ :: . . . . . . . . .  
: : : :  .; : ~ : ! : : 

: i : :  , : ~ i ~ i " 
20 - .g . -- . .  :: . . . . . . . . .  ! . . . . . . . . . . .  :: : ; . : :  ~ �9 ! "  i . . . . . . . . . .  ! . . . . . . . . .  

: . . . .  : . . . . . . . . .  : . . . . . . . . . . .  i . . ; , . . . :x i - . . .~- . - - .b .#  ..... . . . . . . . . . . . . .  ; . . . . . . . . .  10  : , : ~ : ~  : : 

i .... 2;.....~.., 
0 . 0 5  0.1 0 . 1 5  0 . 2  0 . 2 5  0 . 3  0 . 3 5  0 . 4  

D i s p l a c e m e n t  [men] 

Fig. 4. Nonlocal g~q-approach 

1 0 0  ! ~ , ! 

9 0  . . . . . . . . . .  . . . .  , , ' - . . . . : ~ : :  �9 i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
i / }  T , \  - ~ ~ i ; 

80 ........... i /  . . . . . .  ' ........... 
/ 

70 } -  . . . . . . . . . .  ~ I I - - ~ . . . . . . . . . . .  
{ ,e : i " ,  ~, : ~ : : : 
. ;  : . . ~  , , , :  , ~ :  : : 

8 5 o r . . . . . . . . . .  } . . . . . . . . . . . . . . . . . . . . . . .  : l l l ~ l  . . . . . . ~ . . . . . . . . . . . . .  j . . . . . . . .  ] . . . . . . . . . . .  : . . . . . . . . . . .  

U ~  ~: : :: :}, : t : : / 
40".. Zi ::..~ i ~,,=n5 ~s:: . . ; ~  : : . ~ - 1  

I ' ' ' '  " ~ ' ' :  ' ' '  : } '  ~: ~: ~::: :: ~ : :  ~ ~: " ~ ........ ~ : ' : 7  3 0  " . # - !  . . . . . . . . . . . .  ! . . . . . . . . . . .  ! :  . . . . . ~ . . . . ! . . . . ~ .  �9 -.!..-..m i . . . . . . . . . . . .  ! 
| 

2Oh@"  -~  . . . . . . . . . . . .  ~ . . . . . . . . . . .  , . . . . . . .  v -:. . . .-T: . .  - .~ . -  - ,  . . . .  
: i "  :. i ~ t ' i 

t : ! : : ' . :  ! : ~ ,  : : 
. . . . . . . .  i . . . . . . . . . . .  10 , i  . . . . . . . .  i . . . . . . . . . .  i . . . . . . . . . . .  F - . L  . i . i - - . } . . - -  " . . . . . . . . . .  ; . . . . . . . . . . .  : . . . . . . . . .  

0 
0 0 . 0 5  0.1 0 . 1 5  0 . 2  0 . 2 5  0 . 3  0 . 3 5  0 .4  

D i s p l a c e m e n l  [men]  

Fig. 5. Nonlocal z-approach 

100 

! !:!4 80 . . . . . . . . . . . . . . . . .  ; t . . . / i . . . x  . . . . . . . . .  . . . . . . . . . .  

-oot / , , i  
u~ 40 . . . . . .  ] ! - , ' , :  . . . . . . .  i . . . . . . . . . .  ~'~ . . . . . . . . . . .  :: . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . . . .  

/ } . : /  ; i 
20 / .,;: ~ ! r 

0 0.1 0.2 0.3 0 .4  
Displacement  [mm] 

g e q ~  C 

---,-, D, c(D) 
........ g ,q,  c ( D )  

Fig. 6. Power-law softening responses 

For the applied gradient parameter c = 5 m m  2 and the critical history parameter z~ = 0.05, 
the theoretical final crack opening equals w i = 0.224 ram, which is well approached in Fig. 4. 

The final crack opening which is obtained from the ~ (10) model ,  presented in Fig. 5, 
clearly tends towards zero for each value o f  o~, which leads to a severe snap-back behaviour in 
the final loading stage. For large values o f  a ,  the snap-back occurs later. This can be easily 
understood,  since the source term in Eq. (10) no  longer equals a Dirac delta function, but the 
envelope o f  the max imum strains throughout  the loading history. This means that the nonlo-  
cal history parameter 2 may reach its critical value ~c even before the discontinuity at the cen- 
ter o f  the bar arises, and hence no  crack opening is observed. If all models  (7), (10), (12), (16), 
(17) are considered and a power-law damage evolution with c~ = 5 is adopted, Fig. 6 is 
obtained. Not ice  that three o f  the five models  snap back to the origin, while the two other 
models  have a typical snap-through behavior. It can be concluded that the Eeq (7), the 2 (10) 
and the [g~q, c(e~q)] (17) approaches lead to similar results in the initial failure stage, but to dif- 
ferent final crack openings in the ultimate stage. The [geq, C(geq)] (17) model  converges to a 
large undetermined crack opening, since the process zone  (where deformations localize) keeps 
narrowing because of  the decrease o f  c in the unloading material next to the final crack. The 
nonlocal  equivalent strain approaches its limit value z~ asymptotically,  and the local strains 
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increase strongly. The two remaining transient models. [/), e(D)] (12) and [geq, c(D)] (16) give 
a zero crack opening with a sharp snap-back response shortly after the initiation of damage. 
The zero crack opening is also the ill-posed final solution which is obtained from a local 
damage model. In the crack, the model converges towards a local model where D approaches 
unity. However, the dissipated energy now remains finite and nonzero during the entire crack 
initiation stage. A similar comparison can be made for the exponential damage evolution law, 
as depicted in Fig. 7. Notice that two of the five models snap back to the origin, while the 
three other models have a typical snap-through behavior. The two models with a constant 
length parameter and the [ceq, c(eeq)] (17) model now lead to similar mechanical responses. 
The final crack opening for both the geq (7) and the 2 (10) model is now undetermined and 
approaches infinity. This clearly illustrates that small differences in the tail of the applied 
damage evolution law lead to considerable differences in the deformations of the bar. This is 
typically due to the fact that the crack opening (i.e, a displacement discontinuity) with an 
exponential law is only approximated, since the displacement jump remains smooth (theoreti- 
cally there is no true crack opening at all). This seems to have a large influence on a one- 
dimensional bar, where the load cannot be taken over by another structural element. Indeed, 
the stress level is low, and in a multi-dimensional analysis the effect of this approximation is 
expected to vanish. For the [/), c(D)] (12) and the [gee, c(D)] (16) models, there is almost no 
difference with the power-law damage evolution. At this point it is not yet clear what will be 
the influence of these one-dimensional results on the crack propagation. This topic is further 
analyzed in Sect. 5. 

The final damage profiles in the bar are shown in Fig. 8 for the power-law damage evolu- 
tion. It is noticed from this figure that the [/), c(D)] (12) and the [geq, c(D)] (16) formulations 
both yield a sharp localized damage pattern in the bar, while the damage distribution is 
smoother for the three other models. The two models with a constant c have a wider damage 
band, which is most pronounced for the 7. approach. This is not surprising, since the source 
term in Eq. (10) will always supersede the source term in (7), and thus the nonlocal variable 
used to compute the irreversible damage will always be larger with 2 compared to geq. The 
fact that the damage is confined to a smaller region for the [geq, c(eeq)] (17) formulation stems 
from the fact that the length parameter is zero in the unloaded state, which leads to a smaller 
averaged nonlocal effect compared to the constant c models. Furthermore, the process zone 
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stops narrowing for geq and s as soon as the critical value zo is reached, while the narrowing 
process continues for the [g~q, c(e~q)] (17) case. This is illustrated in Fig. 9, where the final 
strain profiles (in the central 10 mm of the bar) obtained using the power-law damage evolu- 
tion are depicted for the five models. Both the [t3, c(D)] and the [e~q, c(D)] lead to relatively 
small final strains compared to the three other models. The [geq, e(eeq)] approach gives the 
most localized response with a peak value (not shown in the Figure) which is approximately 5 
times higher than the peak value of the geq ( 7 )  model, and 17 times higher than the peak strain 
of the s (10) model. Furthermore, it was still possible (at an almost zero stress level) to con- 
tinue the computation with the [g~q, c(e~q)] model, which would then lead to even higher peak 
values in a progressively smaller zone. Notice that the response of the latter model obtained 
with an exponential damage evolution law (Fig. 7) hardly differs from the result obtained 
with the power-law damage evolution (Fig. 8). Analysis of the damage profiles for the expo- 
nential damage evolution law showed that no remarkable differences occur (these profiles are 
therefore not shown), with the exception of the spurious widening which is inevitable with 
constant c models [12]. 
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5 Crack propagation 

Once a crack is initiated, it will propagate through the continuum. Modelling differences with 
respect to the initiation process were highlighted in the previous section, and the consequences 
on the propagation stage will now be further examined. To this purpose, a simple, two-dimen- 
sional, plane stress, crack propagation example will be analyzed. The specimen for this 
analysis is depicted in Fig. 10. The length L and the height of the square specimen both equal 
60 turn, while the notch length a~ measures 12 mm. The width w~, of the notch equals 7.5 mm, 
and the specimen thickness ~ equals 1 ram. The load is applied to the left upper and lower 
edges of the specimen and is placed at a distance of 4 mm from the left edge. The force-dis- 
placement curves, determined at the point where the load is applied, are shown for the five 
formulations in Fig. 11, where the exponential damage evolution law has been adopted. It is 
observed that the geq (7), the ~2 (10) and the [geq, C(geq)] (17) models give almost identical 
resu!ts. The tail of the load-displacement curve of the transient model is slightly higher, which 
is in agreement with the one-dimensional results. The [/), c(D)] (12) formulation clearly fails 
to describe the crack propagation process, since it keeps converging to a zero crack opening 
accompanied by a perfectly brittle crack propagation. The [g~q, c(D)] (16) approach shows a 
remarkably different response, which is more brittle than the first three cited models. Snap- 
back behaviour, which was already observed in the initiation stage, persists but is now fol- 
lowed by an apparently stable softening path. The transition from the unstable snap-back 
part to the snap-through part of the loading curve is related to the transition from crack 
initiation to crack growth. A similar analysis can be made for the power-law damage evolu- 
tion. However, as already mentioned in the crack initiation analysis, the critical damage level 
D = 1 is reached at a finite strain for some models. Since the material has then entirely lost its 
stiffness, the equilibrium equations locally become meaningless, and the FE formulation may 
become singular. This singularity may be avoided by introducing a small residual stiffness, 
but the (nonphysical) deformations in the crack then give rise to a (nonphysical) widening of 
the damage zone [12]. Such a singularity can also be eliminated through a modification of the 
mesh (element removal) or of the nodal connectivity (decoupling of nodes). Some form of 
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Fig. 10. Two-dimensional test specimen 
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Fig. 13. Convergence of the geq model 
with a damage-dependent length scale 
upon mesh refinement 

mesh adaptation is therefore recommended to continue the computation using the g~q (7) and 

the 2 (10) model. Due to the specimen symmetry, only half the specimen is modelled, and the 

fully damaged nodes along the symmetry-axis are progressively released which enables further 
damage development and crack propagation. This modification is not necessary for the 
[~eq, c(eeq)] model, since the critical value ~c is reached at high strain levels only. The results 
are similar to those obtained with the exponential law. Remarkably, there is almost no differ- 
ence between the geq ( 7 )  and the 2 (10) formulations, in spite of the different crack openings 
found in a one-dimensional initiation analysis. Again, the [/), c(D)] (12) model fails, and a 
doubtful result is obtained with the [g~q, c(D)] (16) approach. In order to make sure that the 
obtained results are fully converged, a mesh sensitivity analysis has been performed. Conver- 
gence has been achieved for the g~q model, the 2 model and the [~eq, c(e~q)] model. The 
[geq, c(D)], however, now clearly presents an unacceptable behavior. Figure 13 illustrates the 
convergence of the latter formulation with the use of progressively smaller elements along the 
axis of symmetry of the specimen. This figure shows that the crack initiation stage tends to 
converge towards a zero crack opening, as was already observed in the one-dimensional ana- 
lysis. The propagation phase is postponed and requires a decreasing energy upon mesh refine- 
ment, which implies that this phase is again ill-posed and converges to a brittle crack that 
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moves with an infinite speed. A similar behavior occurs for the [1!), c(D)] (12) model as shown 
in Fig. 14, although the influence of the element size appears to be less dramatic in this case. 
It is clear that transient models, for which the intrinsic length scale diminishes with an increas- 
ing damage, do not provide a numerically reliable and a physically meaningful solution for 
the analysis of crack propagation phenomena. Indeed, infinite crack propagation speeds with 
zero-energy dissipation are physically non-existing. 

The damage profiles in a vertical cross-section taken at 20 mm from the left edge (see 
Fig. 10) are presented in Fig. 15 and 16 for the exponential and power-law damage evolution 
laws, respectively. The already reported damage widening [12] using exponential damage evo- 
lution laws has ied to a damage zone which occupies 2/3 of the specimen height for the ~ and 

models (Fig. 15). In the [f~q, c(r model this width remains smaller. The profiles obtained 
with the power-law damage evolution confirm the results that have been obtained in the one- 
dimensional crack initiation analysis. Moreover, it should be remarked that two-dimensional 
analyses with this type of damage evolution for the g~q and the 2 model are only possible if 
appropriate mesh adaptation or remeshing techniques are used during the propagation of the 
crack. 

1 O0 , , ~ , , - -  

i f -  -'i..i. ............ 

i ........ ............ 

~, 60 

o ~ : ,,,": / : " /  
~- 4ot- . . . . . . . . . .  . . . . . . . .  /~: . . . . . . . . . . . . .  i . . . . . . . . . . . . . . .  

/ , ; r  i . ! . . . . . . . . . . . . . . .  
2 ~  .......... ~ - - i  . . . . . . . . . . . .  i . . . . . . . . . . . . . . .  

/ , ' 2 ~ . .  i i i : 

o [ / Y _ _ _ _  i , 
0 0.01 0 . 0 2  0 . 0 3  0 . 0 4  0 . 0 5  

D i s p l a c e m e n t  [mm]  
0 . 0 6  

Fig. 14. Convergence of the transient 
/)  model upon mesh refinement 

i i: ; t  - = -  ~ c 

o.~ . . . . . . . . .  ............. / : i  . I  . . . . . . . . . . . . .  \ - . . i  . . . . . . . . . . . .  ~ . . . - -  .---~.i 
E i eii! :.i ', :: 

, ,o .6  . . . . . . . . . . . . .  ; ~  I . . . . . . . .  ; ....... I - . ~ :  .......... :. ............... 

#0.4 . . . . . . .  i ......... ; - . : ! i . .  -~,--: . . . .  i . . . . . . . . . .  

~ . " - " l  ......... i .......... 1 0.2 . . . . . . . . . . .  . . . . . . .  ~ - ~  ..~i .'~ . . . i  . . . . . . . . . . .  

o-- . ; , '  / ~i~ "- i  . . . .  
- 3 0  - 2 0  - 1 0  0 1 0  2 0  3 0  

Y-coord [mm] 

Fig. 15. Exponential 

• 

1 r 

:: ! J :~ j :i, t ~geq c(~ : : s  ' : : l  : L - - - -  

E 0 '8  i : , : :  : z,: 
i f f  :: I 

E : ~ : : i: i: : 
o ~ 0.6 : �9 .i " ~ : 

~ o.4 . . . . . . . . . . . . .  . . . . . . . . . .  ~ - i  -- :: . . . . . . .  ~:--; . . . . . . . .  i . . . .  

N . . . . . . . .  ', : 

0 . 2  : , ~ ~:, , 
i # i : : : ; it 

0~0 - 2 0  ~ 1 0  0 10 20  3 0  

Y - c o o r d  [ r a m ]  

Fig. 16. Power-law 



14 M.G.D. Geers et al. 

6 Conclusions 

Five mutually different implementations of implicit gradient-enhanced damage constitutive 
models have been examined with respect to their ability to describe crack initiation and 
crack propagation. The formulations are nonlocal in the sense that an equivalent integral 
form exists. Three of them contain a variable intrinsic length scale which is either coupled 
to the damage or to a suitable equivalent strain measure. Two types of damage evolution 
laws, which resemble well with the exception of the tail of the evolution curve, have been 
scrutinized, and the results have been discussed. The models were confronted in typical 
benchmark tests, where the damage evolution laws have been equalized as much as possi- 
ble. 

It has been shown that a model based on a nonlocal equivalent strain with a constant 
length parameter and a power-law damage evolution leads to a well-defined crack opening in 
a one-dimensional crack initiation analysis, which can be predicted analytically. Models 
based oa a nonlocaI history parameter, a nonlocaI damage variable or models with a decreas- 
ing length parameter upon increasing damage, systematically yield a zero crack-opening using 
a power-law damage evolution. If exponential evolution laws are used instead, the nonlocal 
equivalent strain model and the nonlocal history parameter model, both with a constant 
length scale, tend to converge to an infinite crack opening. This is typically due to the fact 
that the crack opening or displacement discontinuity is only approximated in a smooth way. 
Such a large crack opening is also obtained for a nonlocal equivalent strain model with a 
length parameter that increases with the strain, but this time the result is less dependent on 
the type of damage evolution law that has been used. Although one-dimensional results 
clearly reveal the influence of the tail of the damage evolution curve, this does not necessarily 
imply that large differences have to be expected in a two-dimensional configuration, where 
the load is redistributed upon damage evolution. 

The analysis of the presented models during crack propagation has revealed the inability 
of the damage models with a decreasing length parameter upon increasing damage to 
describe real failure processes. The results indicate that the well-posedness of the problem is 
again lost after the crack initiation stage, which subsequently leads to a mesh dependent 
result. The nonlocal equivalent strain model and the nonlocal history parameter model with 
a constant length scale, and the nonlocal equivalent strain model with a length parameter 
that increases with the strain, are well capable to describe the crack propagation phenomena. 
Unless crack openings remain small, the use of exponential damage evolution laws in com- 
bination with constant length scales is discouraged. A power-law damage evolution is a versa- 
tile alternative, provided appropriate remeshing ~echniques are used. NonIocaI equivaIent 
strain models with a length parameter that increases with the strain are less sensitive to the 
type of damage evolution law, and do not require remeshing techniques in the early stage of 
crack propagation. 

Conclusions which are made from one-dimensional analyses may not be extrapolated ad 
hoc to a two-dimensional problem. It is shown that although the crack initiation may be well- 
posed, this does not imply that the crack propagation will be so. If the solution at the end of 
the crack initiation stage approaches the local solution, the damage rate will become singular 
which leads to a crack that propagates at an infinite speed without any further energy dissipa- 
tion. 
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