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Summary 

Diffuse and localized bifurcation modes in axisymmetric, rectilinear deformations 
on rigid-granular dilatant material are analyzed. Rigid-granular behavior is described 
by a Mohr-Coulomb, single-hardening, rigid-plastic model with non-associated flow rule. 
Diffuse bulging in the compression test and diffuse necking in the extension test are always 
possible in the vicinity of the plastic limiting state. Localizations in the compression 
test occur in the softening regime, and in the extension test they occur in the hardening 
regime of the considered stress ratio-strain curve. 

Introduction 

In recent publications /qeedleman [1] and Vardoulakis [2] showed that  the 
mathematical structure of the bifurcation problems related to plane-rectilinear 
deformations on pressure-~ensitive and dilatant materials is the same as the 
one for pressure-insensitive and incomporessible materials, presented earlier 
by Hill and Hutchinson [3] and Young [4]. Concerning axisymmetric motions 
of extension, Cheng et al .  [5] a n d  Hutchinson and Miles [6] formulated the 
bifurcation problem for cylindrical specimens of elastic-plastic and incompressible 
material. In recent years the author published a paper [7] concerning the bi- 
furcation phenomena in the triaxial test on dry "sand samples, i.e., pressure- 
sensitive, d i l a t a n t  material. The ~esultant differei~tial equation, governing 
diffuse bifurcation modes, was different from the one  holding for elastic-plastic 
and incompressible material. This anomaly in the mathematical structure 
triggered a reconsideration of the problem. I t  was concluded tha~/the difference 
in the governing differential equation arose from unnecessary approximations, 
introduced by  the author, in the linearization procedure of the incrementally 
non-linear constitutive equations, (see second chapter). In  this paper the correct 
linearization is used, and the solution of the problem regains its simplicity. 

:Based on the constitutive model presented by  StSren and Rice [8], the au thor  
has shown [9] tha t  a small-strain deformation theory of plasticity for  rigid 
granular and dilatant material can produce the total-strain formulation of 
the deviatoric par t  of the yield-vertex model studied by  Rudnicki and Rice 
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[10]. In a recent publication [11] the author has presented a modification of the 
rigid-granular model by incorporating in it a more general deviatoric flow rule. 
This modification allows for the description of anisotropic behavior for small 
perturbations of the strain rate in the vicinity of triaxial compression or extension; 
this anisotropy is expressed by two different incipient shear moduli # and /~ 
in (r, z) -- and (r, 0) - -axes ,  respectively. In the present paper the rigid granular 
constitutive model, presented iri Ref. [11], is used. The main characteristics 
of this mode] are 1) a Mohr-Coulomb yield condition, 2) a non-associated vo- 
lumetric and deviatoric flow rule, and 3) the assumption that  dilatancy is an 
internal constraint. Consistent with (3) is the assumption that  the mean pressure 
increment is kinematieally indeterminante. 

The bifurcation problem is formulated semi-inversely in terms of a pertur- 
bation solution. At the moment of bifurcation, nearly proportional loading 
in the sense of Shanley [12] is assumed; i.e., this perturbation technique allows 
a linearlization of the constitutive equations, which holds for small deviations 
from the "straight ahead" continuation of the preceding loading history (see 
Refs. [2], [7], [9]). 

In the next chapter the bifurcation problem is formulated, and the field 
equations and compatibility conditions are given. Subsequently, the constitutive 
equations for the rigid-granular, dilatant material are presented and discussed. 
The field equations for the perturbation solution are then expressed in terms 
of an appropriate s t ream function T, and the governing differential equation 
or ~Y is derived. Discontinuous modes analysis and classification of regimes 

are then presented. Diffuse bifurcation modes of the triaxial with mixed boundary 
conditions are analyzed, and the corresponding eigenvalue equations for the 
physically significant cases are formulated. The eigenvahe equations are then 
numerically solved for special values of the material properties, which are 
characteristic for medium-grained sand. The numerical results are finally dis- 
cussed in the light of the experimental evidence. 

Kinematic and Static Considerations 

Let a homogeneous, cylindrical, dry-sand specimen in an undistorted initial 
configuration ~1 be subjected to a smooth, quasi-static, axisymmetric motion 
of extension. Call the resultant configuration of the speciment ~. Let u be the 
reference configuration, R the radius, and H the height of the sand specimen 
in ~ (Fig. 1 a). A single, fixed, cylindrical coordinate system is introduced, with 
its z-axis along the axis of the specimen. 

Let 
xl = r ,  x~ = 0 ,  x3 = z (1) 

be the cylindrical coordinates of a particle X in ~. Let  v~ be the velocity field 
in u. The bifurcation mode is assumed to be a linear combination of a homogeneous 
axisymmetric motion of extension v~ 0 and an inhomogeneous perturbation solution 
Av~ [2], [7], [9]: 

v~ = v~O + ~v i  (lIAv~l] ~ I]v~~ (2) 
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Fig. 1. a Geometric properties of the sample, b Bulging mode for compression, c Necking 
mode for extension 

This restriction is necessary for linearizing the incrementally non-linear consti- 
tutive equations discussed here [see (34) and (37)]. 

vi ~ is called the trivial mode and has the following form: 

vr0 = ~ r  R ;  r o e : O ;  v ~ ~  (3) 

where qr and qz are constants. The non-trivial mode Av~ is a small perturbation 
with respect to the trivial mode vi ~ Let  

v~ = v~(r, z) ,  v~ = O, v~ = v~(r, z) (4) 

be the physical components of the considered velocity field (2). The phyiscal 
components &i of the strain-rate tensor and the physical components &ii of 
the spin tensor are: 

All other components not listed above are zero. The deviator of the strain rate 

tensor is denoted by eij- 
The physical components of the Cauchy stress in ~ are denoted by aii: 

where 

and 

[!0:] 
(~0 = a0 

~rz < ao = ~r < 0 /or compression 

6r -- c;o < az < 0 /or extension. 

Note that  throughout this paper compression is taken as negative. 

(6) 

(7) 

(s) 
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Constitutive equations are formulated in terms of a stress rate which is 
invariant in respect to rotation [13]. Let d~1 denote the rate of the Cauchy stress 

tensor and v~i denote the Jaumann derivative of the Cauchy stress tensor: 

V 
(r~j = ~ j  - -  coi~a~j -~ a~d)~. (9) 

Continued equilibrium is expressed in terms of the rate 2~  of the 1. Piola- 
Kirchhoff stress tensor [14]: 

2~1, = 0, (10) 

where (.)]i denotes covariant differentiation. The physical components 2i~" of 
the rate of the 1. Piola-Kirchhoff stress tensor are related to the co-rotational 
stress rate by the following Eqs. [14], [15] : 

t 

(11) 

For the considered state of prestress (6), (10) and (11) yield [7]: 

~rr  6qVrz 1 (Vrr av00) @ 2t ~ = 0 
.... ~r + ~ + -7 - ~ 

where 

( .. ~ z  1 ~ + 2t ~ " e~ + - ~  + T  ~ +  = o  

(12) 

t = (an -- az)/2 (13) 

is positive for compression and negative for extension. 
Let S be a stationary discontinuity surface of the velocity gradient, and 

let ni be the unit normal vector on S in ~. Denoting the physical components 
of the velocity gradient by V(~lj), the geometrical compatibility conditions across 
S read [13], [15]: 

[v<q~>] ---- 9~n~, (14) 

where [-] denotes the jump of a quantity across S. Continued equilibrium across 
S is expressed by the following statical compatibility conditions [13], [15] : 

[2~i] n~ = 0. (15) 

The observed discontinuous deformation modes in the triaxial test are: 1) rigid 
cones at the ends of the specimen and shear bands in the compression test, and 
2) localized necking in the extension test. I t  is assumed that  all these formations 
are bounded by weak, stationary, discontinuity surfaces in the displacement 
gradient. Axially symmetric discontinuities are discribed by the conditions [9]: 

f ro=no  = 0 .  (16) 
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The above conditions describe also a set of shear bands, equally inchned against 
the z-axis. 

For the considered state of prestress (6), the statical compatibility conditions 
(15) with (11) and (16) yield [9]: 

+ + 0 

7]  a,,  + 2t[o]) n~ + a= n, = O. 

(171 

Constitutive Equations 

F o r  the considered state of prestress (6), the Mohr-Coulomb yield condition 
for a material full of friction can be expressed in terms of the mobilized friction 
angle qb~, defined by:  

[(~r -- ~z (18) sinqb,~ : ar + az I 

Let  

= st~s~t ; p = ~k~/3 (19.1,2) 

where sij is the deviator of the Cauehy stress tensor flip The friction law can 
also be expressed in terms of the stress obliquity r defined by 

(20) sin r -- 3 [P]" 

For the considered state of prestress (6) 

sinqS~= 2sinr ," (21) 
3 =F sin qb m 

\ 

when two signs appear, the upper sign applies for the triaxial compression (7) 
and the lower sign applies for the triaxial extension (8), unless otherwise stated. 

I t  is assumed that  for continuous loading, r obeys a strain-hardening rule 

sind qb m ---- F(g) ,  (22) 

where F( .  ) is a hardening function and g a finite Eulerian measure of the shearing 
intensity of the deformation measured from the initial configuration ~1. g is 
defined here as logarithmic strain: 

(23) 



62 I. Vardoulakis: 

where Ra and H1 are the radius and the height, respectively, of the specimen 
in the initial configuration ~1. 

Let hm be theslope of the stress ratio-strain curve (22), given by 

hm = d sin r (24) 
dg 

Using (21) and (24), we introduce the following tangential hardening modulus: 

ht = d sin r -- 6hm . (25) 
dg (3 =F sin ~bm)~ 

With the notation given in (19), from (20) and (25) it follows that:  

~ 3p sin ~b, + 3phtO = O. (26) 

~'or the considered motions of extension g l -+  z, 0 coincides with the shearing 
intensity ~o of the strain-rate tensor. With 

= ei~eji) (27) 

and the perturbation solution (2), ~ can be linearized as follows: 

0 

Similarly, from (19.1) one can deduce 

3 A v 
= o - T T (29)  

In our previous analyses [7], [9], we introduced the approximations ezz ~ 2 
V "(~zz -- ~r,)/3and szz _~ 2 (vazz - -  v~)/3. As mentioned in the introduction, these 

approximations, yielded finally to a more complex mathematical model, since 
the governing differential equation did not become a well-documented one. 

Introducing (28) and (29) into (26), we obtain the following condition for 
continued yielding: 

AVazz = (1 ~: 2 sin 4,) A~ ~- 2#,Ae,z, (30) 

where the tangent modulus #t is given by 

3 
#, = -~ [Pl hr. (al) 

In order to describe axisymmetric bifurcation modes, we introduce two further 
incipient shear moduli /~ and /~, describing shear in (r, z)-axes and (r, 0)-axes 
respectively. The constitutive equations for the considered perturbations take 
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the following form: 

Vrr = (1 T sin r ~ + fi(err - -  ~oo) --/*t~zz 

V 
azz = (1 ~ 2 sin $~) ~ + 2/x#z~ (32) 

V V 
~ .  - -  zoo ---- 2p(4~ - -  ~oo) 

V 
(~rz = 2,U~rz. 

The small-strain deformation theory of plasticity, derived in l~ef. [9], reduces 
to (32) if the state of prestress (7) or (8) is assumed. In this case the  incipient 
shear moduli # and fi are e:qual ( i so t ropy)and  proportional to the governing 
mean pressure, and also proportional to the secant modulus hs of  the assumed 
(sin r g)-curve: 

3 sin 6~ 
= ~ = -~ [Pl hs; hs --  (33) 

g 

This isotropy property is a direct consequence of the yon Mises deviatoric flow 
rule, inherent in the constitutive,equation of this type. As has been found ex- 
perimentally by Goldscheider [16], the deviatoric flow rule for dry sand deviates 
essentially from that  of yon Mises. Following the investigations by  Kolymbas 
[17] on constitutive equations of the rate t y p e  for soils, the author has recently 
presented a modification of the rigid granular model, in which the correction 
to the von Mises deviatoric flow rule is incorporated [11]. Th e  deviatoric stress 
rates are then given by the following constitutive equations: 

8 ~ j =  + 3 p ( 4  - - h )  ~ -. 
8mnSnm I ~ 

( 3 4 )  

where the hardening parameters h and h i are functions of g. 
The constitutive Eqs. (34) can be evaluated for the state of prestress (7) 

or (8) and linearized in the sense of (28) and (29) for the considered perturbatigns. 
The linearized equations yield to (32) with the following expressions for the 
incipient shear moduli: 

3 
/zt ~ -~  IP] ht;  h t = h ~ z h i / 2  

( 3 5 )  
3 3 

# -~ y [p] hx(1 4- g/2); /~ = -~- [p] h~(1 ~: Z). 

From (35) it follows that  the shear-modulus ratio f t / #  is fully determined from 
~he deviatoric flow-rule parameter g: 

_ i T z ( 3 6 )  
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For Z ~ 0 this model reduces to the isotropic one corresponding to (33). 
The experimental results from Goldscheider are approximated with g--~ 0.55 
[11], [17]. As can be seen from (32) and (35), the hardening function hi can be 
measured in the strain-controlled, 'true-triaxial' test (cf. [16]): at a state u, 
reached by an axisymmetric motion of extension, an infinitesimal motion of 
extension is superimposed with, e.g., Aezz ~-0 and A~r~ 0= Ae~. Experimental 
results o f  this type are not available in the literature. This means that  in our 
following eva!uations, hi will be an open parameter. Especially here h~ is under- 
stood as a secant-type modulus, i.e., hi > 0 [18]. However, in a recent paper 
by Mehrabadi and Cowin [19] comparisons of rigid-granular model with the 
sliding-plasticity models for plane problems yielded to the suggestion of h~ 
beiflg negative. The author has shown in l~ef. [11] that  the present constitutive 
model (34) is not compatible with the assumption of a negative h~. This is a 
direct consequence of the characteristic regimes of the localization condition 
for plane strain (see also Fig. 4). 

The rigid-granular behavior is not completely described by the constitutive 
Eqs. (34). In addition to (34), the following assumptions must be made [7], [9]: 

1) the mean pressure rate ~ in (34) is kinematically indeterminate, and 2) the 
strainrate obeys a geometricconstraint of the form: 

emnenm) (37) 

where the dilatancy parameter fl is a function of g. 
For the considered perturbation solution (2), the dilatancy constraint (37) 

can be linearized using (28) and (29) as follows: 

where 

�9 1 (~. + ~oo), ~ z z  ~ ~ ~"~ (38) 

52 = 1 ! fl (39) 
1 :F 8/2" 

The Volumetric Flow-Rule 

The volumetric flow-rule is expressed by means of a non-associated flow-rule 
in which Rowe's [20] stress-dilatancy principle is incorporated. The stress- 
dilataney principle for the triaxial test reads: 

a~z = _ ~ ,  (40) 
2o'r~ r 

where ~c 2 is a material constant. Let ~ denote the principal stress ratio in ~: 

~2 _~ a~z __-- 1 -4- 2 sin r = t a n s  (45  ~ i q~m/2). (41)  
~r I :F sin qb~ 
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Fig. 2. Yield condition and non-associated flow rule (qbp 
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= 40~ @c = 30~ 

:From (40) and (41) it follows that  2c 2 denotes the stress ratio in a state of isochorie 
deformation. :From (38) to (41), a simple formula for 6 follows [2], [18] : 

= 2 /~ .  (42) 

:Fig. 2 illustrates the assumed linear Mohr-Coulomb yield condition and the 
corresponding non-associated volumetric flow-rule. 

Normality and Experimental Evidence 

:Fig. 3 shows the.experimental results from a triaxial compression test, per- 
formed by  Hett ler  [21] on Karlsruhe sand that ,was dry, medium-grained, and 
dense. The dimensions of the specimen were chosen in such a fashion that  disturb- 
ances in the homogeneity of the deformation due to bulging or due to imper- 
fections in the specimen's height should not be influential. 

:From Fig. 3 it follows that  2c ~, computed using ~(42) and the experimental 
results at  the 'peak' state of maximum stress-ratio and dilatancy, coincides 
with the value of the stress-ratio at the state of initial isochoric deformation. 
B y  introducing the mobilized friction angle ~b c at  the state of initial isochoric 
deformation, 2c is given by 

2c 2 : (~--~/ : tan S ( 4 5 ~ 1 7 7  r  (43) 
~ = o  

Normality, expressed by the requirement ~ii~q ---- O, would yield the condition 
6 = 2 or, according to (42) and (43), 2c = 1 and r --~ 0, respectively. :Fig. 3 b  
shows a well-established experimental finding which falsifies normality. Starting 
from an isotropic state uz, a small, superimposed deviatorie stress will always 
produce an initial contraction. This can be explained microscopically by the 
change in fabric induced by  the superimposed deviator. 

5 A c t a  Mech.  49/1-2 
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Fig. 3. Experimental results by ttettler [21] 
(n 1 = 0.366; a c = 400 kN/m~; R/H = 39.5 em/27.5 era) 

a Stress ratio-axial strain curve, b Volumetric strain-axial strain curve 

Field E q u a t i o n s  

Assuming tha t  the trivial mode (3) satisfies the di la taney constraint  (38) 
and introducing a s t ream funct ion ~(r ,  z) such tha t  

Avr = a--~ and Avz = 1 _ _  1 ~(rT) (44) 
~z 62 r ~r ' 

it follows tha t  the non-tr ival  mode dvi also satisfies the di la tancy c6nstraint.  
In t roducing  (44) into (5) yields: 

A~,,----- ~ V "  A~0~-- - 1 ~ "  A & - -  1 e / ! ~ ( r T ) ~  

~2 V;  2 A  ~ = - -  L r ( T )  , 2 A ~ r z = - -  L~(W)+  ~z ~ '  ~z ~ 

(45) 
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where the operator L~ is defined as follows [5], [6]: 

L, 
Or "-~ na r Or r ~" (46) 

From (45) and (32) the stress-rate increments can be computed: 

ff~. = (1 :~ sin 4~) A~ + p N ~ N + - - ~  ~, N N (~) 

AVzz= (1 :~: 2 sin qb~)A~ -- 2 2 -t-r 0 { 1  ~r(rgl) } 3~--- 7 - / h  

~,,  - ,  ~Oo = 2~ T~ ~ Tr 

v _ ~-~ ~ z  z J Aarz = /~  Lr( ~rfl) -~- �9 

(47) 

Taking into account that  the trivial' mode (3) produces a constant strain field, 
from the field Eqs. (12) and the above representations (47) it follows t ha t  

0-'7 ---- az fi - t - ~  #t --  ~ (/* -}- t) Lr(~) + (/, --  t) -~z~ ] 

- -  (1 4- 2 sin ~ )  OA~ t) 2 1  ~r (rL~(T)) (48) 
~z =--(~u -~ ~ r 

#t Oz"-'- ~ -~r (rT) . 

Differentiation and combination of the above field equations to eliminate A~, 
which is kinematieally indeterminate, yield 
function gl: 

~ Lr (T  ) -[- B L~2(T) + A Oz---- ~ 

where 

A--~ (ao~-]-a1)/(1-~- -~) 

Eq. (49) 

one equation for the stream 

~ 4 T  
--:" 0, (49) 

~ z  4 

a = (2 + r (2 + ;~2)/(3 sin ~b.) 

--22 02 + 2~  2 ~ (50) 
a l  z - -  - -  

is a 4th-order, partial differential equation of the mixed type. The 
above derivation illustrates that  the particular linearization described here 
yields a governing equation having the same form as that obtained by Cheng et a]. 
[5] and in Hutchinson and Miles [6] in the analyses of axisymmetric bifurcation 

5* 
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modes in elastic-plastic incompressible cylinders. The same conclusion is drawn 
from the corresponding bifurcation analyses of plane-strain rectilinear defor- 
mations [1], [2], [3], [4]. 

Discontinuous Modes and Classification of Regimes 

The analysis of discontinuous bifurcation modes in the triaxial test on pressure- 
sensitive material appeared firs t in a paper by Rudnicki and Rice [10] and later 
in Vardoulakis [9]. The compatibility conditions for the stress and strain field 
across a given weak, stationary, discontinuity surface S in z are expressed by 
(14) and (17). By introducing the geometrical compatibility conditions (14) 
and the symmetry condition (16) into the dilatancy constraint (38), the following 
kinematical constraint is derived: 

grnr = --~2gzn z. (51) 

The statical compatibility conditions (17) are evaluated using the constitutive 
Eqs. (32) and the jump conditions (14), (16), and (5I). Elimination of the jump 

[A~] from the statical compatibility conditions finally yields the following wells 
known form of the condition for discontinuous solutions: 

nr 4 § Anr~nz ~ § Bnz a = 0, (52) 

where A and B are given by (50). Eq. (52) is called the characteristic equation. 
The type of the governing differential Eq. (49) depends on the type of the 

roots of the characteristic Eq. (52). Let 

1" = nr/nz; Do : A s ~ 4B.  (53) 

The characteristic regimes of (52) are classified as follows: 

EC (elliptic-complex): B > 0; D o < 0 

f i / 2  = =~c; I'~/~ = •  c = M + i N ;  i = ]/_--Z~ 
(54) 

A / 2 ) / 2 p ;  N = ( @  + A/2)/2)'" 

E I  (elliptic-imaginary): A > 0 (B > 0); Do > 0 

F1] 2 = - I - i t 1 ;  /n3/4 = •  2 (55) 
C1] 2 : ((A • ] /~oo) /2)  1/2 

P (parabolic): B < 0 (Do > O) 

/hi/2 ~--- •  /13/4 = •  2 (56) 
= T 

H(hyperbolic): A < 0 ;  B > 0 ;  D o > 0  

./nl] 2 : •  F3/4 : •  2 (57) 
= ( ( - A  • 
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The boundaries between the characteristic regimes are classified as follows: 

EC/EI: A > 0; Do = 0 

]"112,314 ~-- •  V = (A/2) 1l~ (58) 

EC/H: A < 0 ;  D o - - 0  

lPU2.al4 = •  c -~ (--A/2) 112 (59) 

E/P: A > 0 ;  B = 0  

H / P ~ H :  A < 0 ;  

r ~  = o; & ~ ,  = •  (60) 

B--~0  

Fll2 = 0; F314 = • (61) 

Discussion o] the Characteristic Equation 

The discriminant Do, given by (53)~, can be looked upon as a rational function 
of t/~: 

D o = { A o ( ~ ) 2 + 2 A 1  t-~ ~ - A 2 } / ( 1 - ~ - f f  ' t )  (62) 

Ao -= ao u -t- 422(52; A1 = aoal; A2 ---- al 2 --  422~ 2, (63) 

whereaoandalaredefinedby(50).Let~i,~2betherootsoftheequationDo(~) = 0 ,  
thereby characterizing the EC/EI- and EC/H-boundaries: 

~1[2 = ( - -  .A1 -{- 1/5-;)/-,'lo, 
where 

D1 = A12 -- AoA2. (65) 

The characteristic regimes of (52)are represented graphically in a ( ~  vs .h@ 

state diagram. [Fig. 4 shows the characteristic regimes in the vicinity of the 
'peak' of the stress ratio-strain curve (ht = 0) and for a triaxial extension test. 
The assumed values for the peak friction angle q~p and the dilatancy parameter 
fl are taken from l~eads and Green [22], [Fig. 6 and Fig. 10, respectively; i.e., 
q~p = 46 ~ fl = 0.273 (qb c = 36.4~ With Z = 0 (/~ = if) Fig. 4 is characteristic 
for a dense sand obeying the y o n  Mises deviatoric flow rule. On this diagram 
one recognizes two characteristic points/~1 and R2 with the properties: 

t 
_ _  ___~ ~R; ~/~ = - - A I / A  o ( 6 6 . 1 )  

h, = h,52 = ((• - -  • V N ) / a  (66.2)  

D2 = 24d" (-~ -- M,)  (-~ -- M,)  (66.3) 

= (~ • ~ (66.4) Ml12 \ ~r3 ]" 
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L-O.OI - I  

- - 0 . 1  

- - I . 0  

Fig. 4. Characteristic regime in the triaxial extension test and in the vicinity of the plastic 
limiting state (~bp = 46~ ~b c = 36.4~ g ~ 0) 

The alternative sign in parentheses in (66.2) holds for  compression or extension, 
respectively. From (66.3) it follows that  for 0 < / ~ / #  < M1 or M,  </~//~, the 
characteristic diagram will show a 'closed' E-regime. In  this case localization 
is inevitable since the actual state pa th  will always intersect the EC/H-boundary. 
Fig. 4 shows that  localized necking in the triaxial extension test  on the considered 
sand will always occur in the hardening regime of the corresponding stress ratio- 
strain curve, i.e., for ht > h l n >  O. From (66.2) it follows that  this porper ty  
is a direct consequence of the assumed non-associated volumetric flow rule 
(~t < (~). These theoretical results are in accordance with the corresponding 
experimental findings by  Reads and Green [22], who on p. 564 state that  "... 
necking in an extension test  sample increases rapidly post-failure, when de- 
formations become concentrated in a small portion of the sample . . . "  From 
the corresponding, stress ratio-strain curves, which show a sharp peak (Fig. 15 
in Ref.  [22]), one recognizes the fact that  localized necking is actually occurring 
in the hardening reigme as predicted. Fig. 4 shows, howeTcer, that  localized necking 
is occurring very close to the  plastic limit state (h t -~ 0). 

Orientation o] Locaiizations 

As already implied, localizations are assumed to  occur as soon as the state 
pa th  intersects the EC/H-boundary [3]. Le t  ~b be the inclination angle of the 
discontinuity plane bounding the localization, @ being measured with respect 
to the r-axis: 

~b = arctan (nr/nz). (67) 

For D o ~ 0 from (59) and (52) it follows tha t  

~b = •  ~Bi) lla, (68) 



Rigid Granular Plasticity Model 71 

where B~ is the value of B for t ---_ ~i. A formula similar to (68) also holds for 
/x 

the plane-strain test  [2], [18]. Fig. 5 shows the evaluation of (68) for the same 
material  properties as the ones holding for the graph on Fig. 4 and for ht > hz R. 

For __t ~ 1 from (68) the following approximative formula for the orientation 
# 

angle ~b _~ -4-~b B can be deduced; 

~b B = arctan (~)1 /~ .  (69) 

Eq. (69) illustrates the fact  that  the orientation of the localization is governed 
by  both the dilatancy and frictional characteristics o f  the material.  

4 0  ~ 

20" 

Z 

~ ~  30* 

~ - - ~  . . . .  r ,2 R' 

h i R 

0 ~ I ~ I 
0.5 0 

l 

ht 

Fig. 5. Orient~ation of the localization in the triaxia| extension test 
(~p = 46~ ~bc = 36.4~ Z =  0) 

Diffuse Bifurcation Modes 

In  this chapter we consider the physically significant, axisymmetric bi- 
furcation modes in the triaxial test  using cylindrical samples, mixed boundary 
conditions, and non-tilting top platen (Fig. l b and l c). On the edges z = 0 
and z = H lubrication prevents the build up of frictional constraints, so tha t  
a t  any  state ~ ~rz = 0. On z- - - -H a uniform velocity qz is prescribed, and the 
cylindrical surface is subjected to a hydrostatic confining pressure ar = - - 0 0 .  
As already mentioned, the trivial mode vi ~ is a motion of extension, expressed 
by  (3), which satisfies the boundary conditions. For the non-trivial mode Avi 
the following displacement field is tested: 

Av~ = u(o~) cos ~, Avz = w(~) sin ~, (70) 

0 - -  r /R ;  $ = m ~ ( z / H ) ,  m = 1, 2 . . . .  (71) 

This field automatical ly satisfies homogeneous boundary conditions at  the 
ends of the specimen: 

Av~ 0; A v = ar~ = 0 for z = 0 and z = H .  (72) 
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From (44) and (70) it follows that  

= t t  u(o) sin 
m~ 

and Consequently 

where 

(73) 

- - I  d(~u) (74) 
K(~2@ d e 

K = m~(R/H) (75) 

is the physical slenderness of the specimen. The following representation of 

the mean pressure increment A~ is consistent with the displacement field (70): 

~ = p(e) cos ~. (76) 

For the considered stream function (73), (48) then yields the following expression 
for p(@): 

. I  1 / 1 d 
P ---- 1 ~ 2 sin ~b, K2R~ ~ ((l~ + t) -~ -~  (@L~(u)) 

(77) 
+ K 2 ( _ 2 2 + ~  2 ) 1 d } 

3 ~' + ~ % - 0  - ~ ( e u ) .  

Substitution of k ~ from (73) into (49) yields finally the well-known governing 
differential equation for the considered bifurcation problem [5], [6]: 

Lo~(u) - -  K~AL~(u) + K4Bu = 0. (78) 

Due to the boundness condition of u at  @ = 0, the solution of (78) has the form 

u --= Clu (1) + C2u(~) and u(O =_ JI(KFI@), (79) 

where Jl(" ) is the Bessel function of the first kind and first order a n d / ' i  satisfies 
the characteristic equation: 

F~ ~ + AF~ 2 -t- B = O. (80) 

Boundary Conditions 

For the considered infinitesimal transition u--> u' the boundary conditions 
for the unconfined sides of the specimen express the fact that  a traction of constant 
intensity always acts normally on these boundaries. This condition then yields 
to the following requirements [7]: 

for @ ---- 1 : A~z --= 0; AVarr = 0. (81) 

From (45), (47), (73), and (77), the above boundary conditions (81) yield 

O(u) = -~ ~ (@L0(u)) -- K 2 q! ~ + q2 0= 1 

P(U) = {Le(U ) @ K26~2u}]0= 1 ~-~ 0, (83) 
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, where 

and  

( -, q~ ~ qio # i = 1, 2 (84) 

qlo ~- q2o ~ ~ 4- ahe 

q,1 ---- ; t ~  --# - -  ~2. (85) 

q21 ----_~2~2 __P _ ~2 

B y  in t roducing u f rom (79) into (82) and  (83), the bi furcat ion condit ion can 
be derived if we ask  for non-tr ivial  solutions for C~ and C2: 

Q(u(~)) P(u(~)) - Q(u(~)) P(u(~)) = 0 .  (86) 

Eigenvalue Equations in the Elliptic Regime 

Since soil specimens in t r iaxiM test ing a lways show localized failure pat terns ,  
it is meaningful  to discuss on ly  the diffuse b i furcat ion modes occurring prior  
to  localization. Assuming tha t  localization takes  place on the EC/H-boundary ,  
we will discuss here only  the  diffuse modes in the elliptic regime. 

EC-Regime 

The solution (79) in EC has the fo rm 

u = CJl(KCe) + CJI(K-d~), (87) 

where c is given b y  (54). For  this represen ta t ion  of u, the b i furcat ion condit ion 
(86) can be wr i t t en  as follows [6]: 

I m  {(82 = e ~) 4 ( K e )  ((c 2 + ql) K c 4 ( K c )  + qJ~(Kc))} ~- O, (88) 

where 

q ----- q2 - -  q~. (89) 

B y  int roducing the symbols  

Berk = Re  {Jk(Kc)}; Bei~ = I m  {J~(Kc)}, (90) 

the  eigenvalue Eq. (88) can be wr i t ten  in the following fo rm:  

(dl Berl  + d2 Beil) (d4 Beio + d5 Bero + q Bell) 
(91) 

- -  (dl Beii - -  d2 Berl) (d4 Bero - -  d5 Beio -]- q Berl) ~ 0, 

with 

dl ~ ~2 __ M 2 _[_ N2, d2 ---- 2 M N ,  d3 • ql + MS - -  N2, 
(92) 

d4 ~ K(Mda --  Nd2), d5 -~ K(Md2 + Nd3). 
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The above representat ion (91) of the eigenvalue equat ion differs f rom the one 
presented by  Cheng et  al. [5], where, as also s ta ted  by  Hutchinson  and Miles 
[6], some misplacement  is contained. 

EI-Regime 

In  E1 the solut ion of (78) reads: 

= ClI1(Kc1~) + C211(Kc2~), (93) 

where 11 is the modified Bessel funct ion of the first order  and first  kind, and 
clle are given by  (55). The eigenvalue equat ion in E1 takes the following form:  

{Kcl(cl 2 - -  ql) /0(KCl) - -  qIl(KCl)} (c22 -~ ~ )  Ii(Kc~) 
(94) 

- -  {Kc2(c22 - -  ql) Io(Kc2) - -  q[l(KC2)} (cl 2 + ~2) I i (KcO = O. 

wi~h 

EC/H-Boundary  

With  ~ from (59) and Jk----- Jk(Kc), the eigenvalue equat ion on E C / H  reads:  

b(KcJo) 2 ~- 2(51 - -  b) KcJoJ1 -~ (52 + b(Kc)2) J12 = 0, (95) 

b = (c 2 -~ ql) ( c~ - -  ~2) 
(96) 

b 1 = c2(ql ~ ) ;  b 2 = 2c2q. 

Short Wave-Length L imi t  

For  m--> c~ (K--> oo) the eigenvalue Eqs. (88) and (94) degenerate to the 
same equation,  thereby  characterizing the ~ short  wave-length limit in E :  

t, 
(2(~ ~ :~ aht) t__ -~ ~ 2  ft 

From (96) it can be seen tha t  on E C / H  

c2 = 6~ r ~ ~i,o~ ---- ( 22 - -  62)/(2~ ~_ 63) @ b = 0, (98) 
ff 

and consequent ly  (95) yields 

JI(KO) ~- O, (99) 

which asymptot ica l ly  is satisfied by  

K~ = (n + 1/4) ~ (n --> oo). (100) 

This means tha t  ~i,~ is an accumulat ion point  of solutions on EC/H,  and con- 
sequent ly  a t  this point  K -> co is also a solution. 
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Computational Results and Discussion 

The main par t  of the computational effort refers to the evaluation of the 
eigenvalue equation in  the EC-regime (91). For  the computation of (90), the 
complex Bessel-funetions subroutine by  Zimmerman et al. [23] has been used. 
The results are plotted in (t/it vs. ht)-diagrams, where contours of constant 
maximum critical slenderness (R/H) are depicted. 

The eigenvalue Eqs. (91), (94), (95), and (97) are evaluated for some material 
properties which are characteristic for dense, medium-grained Karlsruhe sand. 
The corresponding material properties are gaken from Goldseheider [16], [24]. 
The computations showed tha t  the analysis can be restricted in the vicinity 
of the peak of the assumed stress ratio-strain curves, where the mobilized friction 
angld is approximately equal to its maximum value ~p. From the Mohr-Coulomb 
limit condition given in [16] it follows that  q~ _~ 40 ~ (initial porosity nl ~ 0.365). 
As mentioned above, the deviatoric flow rule given in [16] can be approximated 
by  g = 0.55 [11]. The dilataney characteristics of this sand are taken from 
[24], and thus the computations are performed with fl = 0.3 (qb c ~ 30r 

/ " ' : ~ . . ~ ~  R/H = CO 

"~ .... 0.5 ~ ~  ~"~ 

I i I I 
0.5 0 5  03 0 0.t 

ht 

I I I 

- 0 , 3  -0 .5  

Fig. 6. Diffuse bulging in the triaxial compression test 
(m---- 1; Cp = 40 ~ , qS~ = 30 ~ Z = 0) 

Fig. 6 and 7 show the computational result for triaxial compression and 
for the 'half-wave length mode' (see Fig. l b ;  m = 1 in (75)). Fig. 6 corresponds 
to the yon Mises deviatoric flow rule Z = 0. ; whereas, Fig. 7 corresponds to 
the true one for X-----0.55. By comparing these two Figs., it follows that  the 
deviation from the yon Mises deviatoric flow rule is destablizing the system 
by reducing the critical bifurcation stress (t/#)R/H, which corresponds to some 
slenderness (R/H) and hardening rate hr. Taking into account that  diffuse bulging 
modes are observed experimentally for R / H - ~  0.6 [7], Fig. 6 can be used to 
show that  the deformation theory of plasticity, holding for g----0., cannot 
predict the experimental findings. From (33) it follows that  in this case (t/#) = g, 
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Fig. 7. Diffuse bulging in the triaxial compression test 
(m = 1; ~bp = 40 ~ ~c --'-- 30% Z -~ 0.55) 

and f rom Fig. 3a a nd  3b it follows tha t  the shearing strain intensi ty  is at  peak 
g~ ~ 0.13. On the other  hand, (35) can yield an  expression for hi:  

hi _ =t=1 sin ~b~ (101) 
1 -4- z12 ( t i f f )  

From Fig. 7 and  for R I H  = 0.6 an est imate for hi at  the plastic limiting state  
(h t = 0) can be derived: 

1 0.545 0.545 
hi ~-- 1 § 0.55/2" 0.2--'-~ ---- 1.71 < hs : 0.1----3 ~- 4.19. (102) 

At peak the true hardening rate  hi is about  2.5-times lower than  the corre- 
sponding secant  modulus  h~. 

Taking into account  t ha t  bulging in the compression test  is not, observed 
for R / H  ~ 1.44 [21], f rom Fig. 7 it follows tha t  the true (t/# vs. ht)-state pa th  
will no t  intersect  the R / H  ~ 1.5 contours.  Consequently,  the true state pa th  
will intersect  the EC/H-boundary  in the softening regime (ht ~ 0); i.e., locali- 
zations in the tr iaxial  compression test, with lubricated end platens, will occur 
in the softening regime. This result  is also in accordance with the experimental  
evidence [7]. 

Figs. 8 and  9 show the computa t iona l  results for triaxial extension and  for 
the ' full-wave length mode '  (see :Fig. l c ;  m ~ 2 in (75)), as well as for g ~ 0. 
and Z ~ 0.55, respectively. :For extension the consideration of the true deviatoric 
flow rule has a stabilizing effect. Wi th  hi es t imated f rom (102), the actual  value 
of (t/if) in the  vicinity of the plastic limiting state  can be computed  by  means 
of (101) : 

~ --0.21 for Z ~ 0. 
t/ff = [ - -0 .29  for g --~ 0.55. 

(103) 
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Fig. 8. Diffus e necking in the tri~xial extension test 
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Fig. 9. Diffuse necking in the triaxial extension test 
(m = 2; ~bp = 40 ~ ~b c = 30 ~ 7. = 0.55) 

These values are indicated in Figs. 8 and 9 as the es t imated ' s ta te  pa th ' .  
Consequently,  diffuse necking will always precede localized necking, the,' la t ter  
always occurring in the vicini ty of the peak  state  of stress. 

Fig. 10 shows the computed  orientat ion angle ~b of the localization on EC/H 
as a funct ion of  the hardening rate. As a l ready mentioned,  ~ tends for small 
t//z-values to the value CB given b y  (69). Le t  

~c = 45 ~ J: r  (104) 

denote the so-called Coulomb value of r The under lying Coulomb failure criterion 
is tha t  the or ientat ion of the localization coincides with the planes of m a x i m u m  
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Fig. 10. Orientation angle of the localization in triaxial compression and extension 

(~bp = 40 ~ ~b c = 30 ~ g = 0. and g ----- 0.55) 

stress obliquity, i.e., of max imum shear stress/normal stress ratio. For  the con- 
sidered computa t ional  examples it is: 

= ! 65o j 58.50 
@c [ 2 5  o ; @B ---- [31 .5  o, (105) 

for compression and extension, respectively. :From (105) it follows tha t  the 
Coulomb criterion is not  compatible with an  exact  bifurcation analysis. The 
same result  was also obtained f rom the bifurcation analysis of plane rectilinear 
deformations [2], [18]. The present  theoretical prediction for ~b ~ ~b~, can be 
supporte  d f rom the experimental  evidence. :From Bishop and Green [25], :Fig. 7a, 
it follows tha t  a slender lubr i ca ted  specimen of medium-dense,  Ham-River  
sand has failed along a shear band  inclined at  an  angle ~b ~ 58 ~ F r o m  :Figs. 12 
and 14 of the same reference, it follows tha t  for the considered sand (n I ~__ 0.414) 
Cp ~ 39~ r 31~ ( ~ 2 ~  1.41). In t roduc ing  these values into (69) and ~ (104) 
yields: ~b B ~ 57.6 ~ @c ---- 64.5~ which means tha t  the bifurcation analysis pro- 
duces the correct value for ~b. I t  should be noted tha t  f r o m  the information 
given in [25], it follows tha t  localization in the considered compression test  
took place in the softening regime; i.e., the present  theo .ry is fully consistent 
with the experimental  evidence. 
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