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§ 0. Introduction and Notation

In this paper the scattering operator which belongs to the pair of equations

U, +Au+ f(u)=0 1)
and
U, +Au=0 @)

n 2
is studied. Here 4 denotes the operator — ) —
—J|ul*~"u, where AeR, p> 1. j=1 0x;

Given arbitrary initial data (¢ ~, ¢ ) of finite small energy it is shown that
there exists a solution ¢ in R”"xIR of (1) which behaves asymptotically as t—
— oo like the solution ug () of the Cauchy problem for (2) with data (¢, ¢ ™)
at t=0 in the sense that |u(t)—ug, (t)],—»0 as t— — oo, and moreover there
exists a solution ug (¢) of (2) with corresponding data (¢, y*) at t=0 such that
lu(®) —ug @){,—0 (= + ). Here ||-||, denotes the energy norm, defined by

lo@1Z: =242 0@+ [0, O)1?).

+m?, meR and f(u)

The mapping S: (¢, )—=(¢d ™, ™) is called the scattering operator. The exis-
tence of this operator is shown, if (¢ ~, ¥ ~) are given in a whole neighbourhood
of the origin in energy space, provided the following conditions are fulfilled:

a) in the case m=0 (nonlinear wave equations):

<ns5 d p=
3=n<5 and p 1+n—2

b) in the case m=+0 (nonlinear Klein-Gordon equations):

2< <5 and 1 ——‘<ﬂ<1 - 2< <
=ns —I— =0 = + }) 0.
== 1_ = 27
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4
In the case of the nonlinear Klein-Gordon equation the range 1+£§ p=1

4 . .
+——1 was considered for arbitrary n by Strauss in [5, 6], and the same results

were proven. For smooth and small data most of the results were known
before. Brenner proved in [1] the existence of everywhere defined scattering
operators (i.e. for possibly large data) in the Klein-Gordon case for n=3 or 4

4
and po(n)<p§_1+‘—4—1, provided 1=0, where py(n)>1+4+- has to be chosen
n— n

. . 4
appropriately. He remarks that the result remains true for some p>1 +~—1‘
n—

Moreover it is shown that the ordinary Cauchy problem for the wave and
Klein-Gordon equation has a unique global solution for small data of finite
energy under the same assumption on the nonlinearity f and the dimension n
and there exist so-called asymptotic scattering states in the sense of energy
norms. Finally a uniqueness result for the Cauchy problem is proven for
arbitrary data of finite energy within a regularity class V which has the
property that a solution of the corresponding linear problem with data of finite
energy belongs to it.

The key estimates for the results presented here are the decay properties (in
time) and a space-time estimate for solutions of the linear problems, which
were essentially known before (see §1 below).

We use the following notation: " and % ~! denote the Fourier transform
and its inverse resp. with respect to space variables. For seR, 1<p=< oo let
H*> ”(IR") H*? be the completion of CF(R") with respect to |Z (1

+|f|2)2 FE L@ and H>P(R")=H*>" is the completion of Cy(R") with re-
spect to [|F ~1(EFFE)] Le@e- Conjugate exponents are denoted by p,p’; ¢,q';
etc. Constants are denoted by ¢ and change from line to line.

§ 1. Estimates for the Linear Wave and Klein-Gordon Equation

For convenience of the reader we repeat first of all well-known results on
decay of solutions of the linear wave and Klein-Gordon equation.

n 2

Theorem 0. a) Let A denote —A:=— ppes Then for any yeCP(R") and

>0, l<p=2<p' <o, the following estimate holds:

A-*sin(A* <cr- 0G5
“ Sln( t)‘p”LP'(]R”)ZC P “wllH’l;l*":rl’P(]Rn).

b) Let A denote —A+m?*, m#0. Then for any YyeCT(R"), 1<p<2<p' <0
the following estimate holds:

A~ *sin(4* t)WHLumﬂ)SK(t)WH = HF#J(IR")’
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where
A(n_l_a)(i_}__)
t 2 0<t=zl
(t):c{ a(L_1
0G5 =1

The proof of a) and b) is done e.g. by the stationary phase method and can
be found in [3], Theorem 2.2, and in [1], respectively.

The following theorem is a generalization of a result due to Strichartz [7]
and is closely related to the arguments of Marshall [2] in the case of the
Klein-Gordon equation.

2

0
Theorem 1. Let A denote —A:=— 21 o 2, and assume fel*(R"). Then the
J=
solution uy, of the Cauchy problem

g, +Auy=0, u(0)=0, u, (O)=f
fulfills the estimate

1-b
A4 4 uOHL"(]R,Lq(IR")) Hf”LZ(]Rn),
2 1 n—1 n+l
ided 2 b=
provided 2 <r < o0, 3 Dy q’ 5 4

Corollary. If u, is the solution of the Cauchy problem
Ug,, +Auy=0, uy(0)=g, u, (0)=1,
2(n—1)
3

and 2<g< , q<o0, the following estimate holds:
n —_—

U 2(n+ n—3)q éc n + 71, ny Je
“ OHL(n Dia- 2)(1RH( x q( . “(R™) (HfllLZ(]R) “g”HI e ))

Proof of Theorem 1. In the sequel we denote by ~and * the Fourier transform
and convolution resp. with respect to space variables whereas ~ and # denote
the Fourier transform and convolution resp. with respect to space and time
variables,

With R(&,t): =

e ilel
|€Ib+1 we have

IK#F| L*(R, L4(IR")) =

+ oo

]

-

=1 no1 net
a |IE17E2 T F(Gs)

—i(t—8)¢
i———ﬁ@ﬁ» ds

La(R™y Lr(Ry

ds

Le'(R™)

<c

+ oo n—1
[ =52 "
—o0

LRy

—1
g [F(-,s) ds

La'(Rm)

=+ 00 n—1
[t—s)"2 7
— 0

E
LR

where we used Theorem Qa). The generalized Young’s inequality is now ap-

. , . . 1 1 1
plied and gives an estimate by c| F| L@ L' @®ey)> Provided —=———, where p
r

’ ’?
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n—1 n-1
B ( 2 q
theorem.

Consequently Plancherel’s theorem in n+1 variables gives:

1 ’
) . This condition is fulfilled under the assumption of the

+joo j|17’(£, 7)2K(&,1)dédt|= To jF(x,t)(K:HcF)(x, t)dxdt
—_oo Rn —oo R
SclFllEr @ po gy
Because of
R(& )= | ab“ 5 e el ’>dr—| é|b+1 8(1¢]—7)

we arrive at

_f IF(f |€|)| |f|b+1 ECHFHU "(R, L2’ (RY) -

Thus the following duality argument holds by Plancherel’s theorem:

| [ KeDxnFndxde =) [ ]FOREDFE s
—oo IR® —oo R7
2 * 7 2 df g
<({IFeia ) (§17@r )
o dE
<Pl s ({1 7OF )
consequently
g dENE bl
S Ly anon S (1O r) =e14™ 5 sy
The same estimate holds for K L& D) =é;;;li, thus

_b K+K
A 2u0=97€—1( +

t)f(é))
fulfills

_b _ptl
“A 2Ug HLr(;R,Lq()Rn))_S_CHA 4 f“LzﬂR")'

The proof is complete.

Remark. In exactly the same manner for solutions u, of the Klein-Gordon
equation u, +Au,=0, us(0)=g, u,0)=f with A:=—A+m? m=+0, the fol-
lowing estimate can be proven:

u ot = =c m T 2R
i O“L(n—ltfq—z)(]R, z(+1)4q( 3)4"’(11("))_ (“fHLZ(IR) gl g 2R ))7

2(n—1)

if2<¢g< 3 g < . For details we refer to Marshall’s paper [2].
n —_—
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§2. The Wave Equation with Power Nonlinearity

We consider the Cauchy problem for nonlinear wave equations of the type
u,—Au+Auf’~'u=0 where lcR.
We use the abbreviations f(u)=A|u|’"'u, 4:= — 4, and assume throughout p

4
=1l4+——and 3<n<S.
n—2

Theorem 2. Let (¢, )eHV2(R")x [2(R") be given with [ |gu-
+ [~ 2 <8, where >0 is sufficiently small, and let ug (t) denote the solution in
HU2(R™) with Vug (0)=Ve~, ug )=y~ of the linear wave equation u,, —Aug
=0. Under these assumptions there exists a unique solution u of the integral
equation

u(t)=uq (1)+ jt" A~ tsin[A%(t —1)] f (u(x))d

with  (u,u)eV.x [*(R,[*(R"), where V:=I/(R,H*"(R")nL*(R,H"*(R"),
_n=Dp-@m+1) _ 2m-1)p
m—=Dp 7 (m—Dp—4
Proof. We want to apply the contraction mapping principle and first remark
21— 1)p

-Tp—4
moreover |ug |y =cd. This choice of g is possible because 2<p<oco for
3<nZ5. Now consider u,#ieV and estimate as follows:

where s:

that uyeV if we choose g= in the Corollary to Theorem 1, and

“rsin[A* (e —1)] [f (w(z) — f (@(c)] d= o
n+1
(n—1p
Here we used Theorem Oa). The imbedding H“" < H>" holds provided i
¥

+2 2 .
=%— (cf. Stein [4], p. 119, Theorem 1), and thus

<c [ (-0 71 f @)~ f @@)lyerdr, where 5=

If @)= f @ gsrSc Y, If"@)D*u—f' @D

la]= 1
<c Y (u—@)(ul? =2 +1@lP 2 D*ull iz + ||l ~*(D*u— D*h)|| ;7).
laj=1
The first term is estimated using Holder’s inequality by

flu— u”L" p"(”””};r (e~ 2)4+”u“1} “(p~ 234, “Dau“ﬁ’;-

_np(p—1)

. Now the
+1

A 2 . u SR
[he choice F=— and p=(p—2)4 leads to #p=F(p—2)4=
r

2
imbedding H S p+1 holds if and only if p= nt — %0 that we have
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IS (W) — f @ gs.
(| —l go. (1l + NB1G 2 Nl o2+ 18] 527 v — il g1.2).

Therefore the following inequality holds:

—y A3 sin[ A% — )] [ f (u(7)) - f (@(x)) 1de

Hs.r

t 2
<c _j (t =) "o [lu(@) = &) | gl 52 4 180 507 l] oo 1.2y
+ () Gt e — ]| oo g g, 2y ] AT

Now we use the generalized Young’s inequality

1
||K*g||Lq(m)§C||gHLp<m) for K(t)zw’ O<a<l,

1 111
where f)=& and EZTLF We have f)=%, q=p, P=p’%1, thus

_j‘ A~ sin[A¥(e— )] [f (u(x) - f ()] do

Lo (R HS:"(RY)

+ o0 » R &__l
éc{[_f ”“(f)—ﬁ(r)||§<l|u(r)u§§“"2’+uamnﬁ“’-zw] z

+00 p=1
. ”u“Lm(m’Hl,zORn»"‘[j. ||ﬁ(f)i|p's,rd’c] p “u—aHLm(]R’Hl,z(]Rn))}

<cllu—daly(fuly* +li]5). 1)

Furthermore one has

| A~¥sin[A¥e LS ()~ f @)1

Lo(R,H 2 (R7)

<c [ 1f (u®)~ S @O ey d

<c [ (@t + 112D u(e)— () s de

Sc(lully=* + laly " fu—ily,

. 2
because the imbedding H*" < L* holds if and only if p=Z—+§.
If we denote the transformation which maps u into the right hand side of
the considered integral equation by T we have shown

I Tw)— T@y Zc(ulip™+ @l ") u—ily
as well as
ITWly=cd+clulif.
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Assume now that c6 <38, and 2¢6{~ ' <. If then |ull,, [d]l, £, we conclude

that
ITw)— T@,<5llu—il, and [T, <d,.

The contraction mapping principle shows the existence of a unique solution
within the ball ||#{;,£J,. For uniqueness within the whole of V we remark that
any two solutions u and # satisfy the estimate (in analogy to (1)):

“u“’j”ma,H&r(mn))
§C[Hu“Lw(I,H1»2(1R"))(Hu“z;(ilis’r(mn))+ Hﬁ”z;(%,}i”(m")))

: H”_ﬁ“Lp(I,Hs,r(mn))‘i” “a“zp_(},ﬂw(mn)) ””"ﬁ”Lw(l,Hi,Z(mn))]

as well as
“U—ﬁHqu HL2(R")

<C(”“”La(1 Heoraey) T ”ﬁ“iﬂ—(},mvr(mﬂ))) flu— a”LP(I,H’f’([R")))

where I =(— o0, T). _ ~
The condition w, e I*(R, H>"'IR")) allows us to choose |T| so large that

lu—dlly, <3 u—illy.,

where Vyp=1°(I, H® "(R")~L>(I, H*(R"), so that u=i in Vy. Step by step it is
possible to replace T by T +¢ where & depends possibly on u and #, but is the
same for all steps. Thus u=4 in ¥, and the proof is complete.

Corollary. [u(t)—ug (8)] ,=0 (t— — o).

Proof. JJu(t)—ug (). =c j | f )| 2dr=c j Ju(r){|¢2.d7. This tends to zero,

because If RAI(R™) < PR, [2*(R").
Define now

ué’(t):=u(t)+OjOA‘%sin[A%(t~r)]f(u(r))d*c, and ug(0)=¢%, ug(0)=y*.

Then we show in exactly the same manner as above |u(t)—ug (2)] ,—~0 (t— c0),
so that we have proven

Theorem 3. The scattering operator S: (¢~ , ¢~ )—(p™, Y*) exists in the sense of
energy norms in a whole neighbourhood of the origin in H'>*(R") x I2(IR").

§3. The Nonlinear Klein-Gordon Equation

In this section we consider the Cauchy problem for equations of the type
U+ Au+ f(u)=0,
where A:=—A+m? m=*0, f(W):=Alul’"*u, lcR.
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We assume 2<n<5 and 1

Theorem 4. Let (¢, ¢ )eH2(R")x L*(R") be given with |07 |z1.2qm
+ 1Y 2@y £ 0, >0 sufficiently small, and let ug (t) denote the unique solution
in H“2(R" of ug, +Aug =0, ug (0)=¢~, ug(0)=y ~. Under these assumptions
there exists a unique solution u of the mtegral equation

u(t)=ug (t)+ jt" A% sin[A%(t —1)] f (u(r))de

with (u,u)eV x [°(R, LX(R™), where V:=I/(R, H*"(R")nL*°(R, H»*(R") and
s,r as in Theorem 2.

Proof. In analogy to the proof of Theorem 2 we have ugeV and |ug ~{, Scd
by use of the remark after Theorem 1, and moreover

~Esin[4%(¢— )] [f () - f (@)1 de B

<c [ (=051 S W)~ S A nrde

by Theorem 0b) (notation as in the proof of Theorem 2).
We now use Sobolev’s imbedding H** < H*" which holds for

1—5—

n

22

) o=
| -
~:z1,_

and arrive as in the proof of Theorem 2 at

”f(u)_f(a)llys v
<CHZ<1[HU U||Lrp{||u“u (o~ 2)q+“u||LY‘(p 2)q)||D“ “L"F

+ ”u“Lr ‘B Hu“Lr‘ (o -2)4 HD“M—D‘I&”L;,;],

We choose p, §, 7 as follows: FF=2, p=(p—2)q.

=~/

27
This gives Fp= (p—l) . Now the imbedding H> < L*~ 1) " holds

1 /1 1
provided 1>———1 (——%) g—r——ﬁ. This condition can be fulfilled taking into

1 . . 4 4 .
account the range for & above if and only if 1+;—1§p§1+ yasa simple
_ n—

calculation shows. Thus the following estimate holds:
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~Hsin[A¥(t — )] Lf (o) — £ (@(2))] e

=c f (t—f)_?[ilu(f) (0) | o, (D17 + N EO | D) 0] Lo g 1112y

+ i) for u— Ul o mrt 2wy ] 47T
Scllu—dilly(ul?~*+ a5,

if we proceed as in the proof of Theorem 2.
Moreover

“Esin[A*(E - D10 (w() — f @)1 de

<c f(IIU(f)Hsz +l #0122 u(r) — #(1)] 20 d

Lo(RH-2(R)

<c(ullg=t + g ") lu—dlly,

4 4
where we used the imbedding H*" = I?? which holds for 1+_I< psl+——
again. Now the claim follows as in Theorem 2. n-

Consequently as in the case of the wave equation we have

2

Theorem 5. The scattering operator S: (¢, ")~ (¢pT, Y ) exists in the sense of
energy norms in a whole neighbourhood of the origin in H*-2(R") x L*(R").

§ 4. Further Results

By the same methods as above it is possible to prove the following result for
the initial-value problem under the same assumptions on f and .

Theorem 6. Let (¢, y)cHV2(R") x L*(R") (or H'2(R") x I*(R") be given with
sufficiently small norm, and let u,(t) denote the solution in H2(R") (or H'*(R")
resp.) with u, (1)e L>(RR") of the problem u,_+ Auy,=0, uy(0)= @, u, (0)=1y, where
A= —A (or —A+m? m=0, resp.). Under these assumptions the integral equation

u(t)=uq(t)— } A~ Fsin[A¥(t —1)] f (u(z))dr

has a unique solution in V with u,e L°(R, LI*(R"™). Moreover there exist solutions
uy of uy +Aug =0 such that ||lu(t)—u_,(t)]|,~0 (t— +o0).

Proof. The existence of u is shown as before, and

U, (t):=u(t)+ j A~ ¥sin[A*(t —7)] f (u(z))dt

has the claimed properties.
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Moreover, the following uniqueness result is valid under the same as-
sumptions on f and » as before (proof as above):

Theorem 7. Let (¢,y)e HV2(R") x L2(R”) (or HV2(R") x L2(R") be given arbi-
trarily, and let uy(t) denote the solution in HU2(R" (or H“2MR") resp.) with
uo, (1) L*(R") of the problem ugy, + Aug=0, uy(0)=¢, uy (0)=y, where A=—A
(or A=—A+m?% m=*0, resp.). Then there exists at most one solution of the
integral equation

u(t)=u0(t)—;A“é‘sin[A%(t—‘c)]f(u(r))dr
in the space V. °

Concluding Remark. The results of §§2-4 hold in the case of a more general
nonlinearity feC*R), which fulfills f(O0)=f'0)=0 and |f'(u,)
— ) Seuy |2 +uylP =) |u, —u,| for u,,u,eR, where p is restricted as
above.
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