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w 0. Introduction and Notation 

In this paper the scattering operator which belongs to the pair of equations 

u n + Au  + f (u )  = 0 
and 

(1) 

(2) 

and f (u) 

u .  + A u = O  

2 

is studied. Here A denotes the operator - ~ - 2 + m  2, m e n  
=2lulp- lu ,  where 2~IR, p > l .  ~=1 0x~ 

Given arbitrary initial data (~b-, 0 - )  of finite small energy it is shown that 
there exists a solution u in lR"x I (  of (1) which behaves asymptotically as t +  
- ov like the solution uo(t  ) of the Cauchy problem for (2) with data (q~ , 0 - )  
at t = 0  in the sense that I[u(t)-Uo(t)lle--+O as t ~ - o o ,  and moreover there 
exists a solution ug(t) of (2) with corresponding data (4) +, 0 +) at t = 0  such that 
IlU(t)--ug(t)[le-~O ( t+  + Oe). Here [l'lle denotes the energy norm, defined by 

II v(t)II 2= = X(ll A~ v(t)l] 2 _[_ II Vt(t)[I 2). 

The mapping S: (qS-, O-)~(q5 +, 0 +) is called the scattering operator. The exis- 
tence of this operator is shown, if (4)-, ~ - )  are given in a whole neighbourhood 
of the origin in energy space, provided the following conditions are fulfilled: 

a) in the case m = 0  (nonlinear wave equations): 

4 
3<n_<5 and p = l + - -  

n - 2  

b) in the case m q= 0 (nonlinear Klein-Gordon equations): 

4 4 
2 < n < 5  and l + T Z ~ _ l < P < l + n _ - ~ ,  2 < p < m .  
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In the case of the nonlinear Klein-Gordon equation the range l + - < p < l  
4 n 

+ n - 1  was considered for arbitrary n by Strauss in [5, 6], and the same results 

were proven. For smooth and small data most of the results were known 
before. Brenner proved in [1] the existence of everywhere defined scattering 
operators (i.e. for possibly large data) in the Klein-Gordon case for n = 3 or 4 

4 
and p 0 ( n ) < p < l + "  1' provided 2>0 ,  where p o ( n ) > l +  -4 has to be chosen 

n -  n 4 
appropriately. He remarks that the result remains true for some p > 1 + - - ,  

n - 1  
Moreover it is shown that the ordinary Cauchy problem for the wave and 

Klein-Gordon equation has a unique global solution for small data of finite 
energy under the same assumption on the nonlinearity f and the dimension n 
and there exist so-called asymptotic scattering states in the sense of energy 
norms. Finally a uniqueness result for the Cauchy problem is proven for 
arbitrary data of finite energy within a regularity class V which has the 
property that a solution of the corresponding linear problem with data of finite 
energy belongs to it. 

The key estimates for the results presented here are the decay properties (in 
time) and a space-time estimate for solutions of the linear problems, which 
were essentially known before (see w 1 below). 

We use the following notation: ^ and ~--1 denote the Fourier transform 
and its inverse resp. with respect to space variables. For  selR, l__<p<oe let 
H~'P(IR")=H ~'p be the completion of C~(IR") with respect to I1~--1((1 

$ 

+l~12)~f(~))llL~(~.), and /~'P(IR")=/J ~'p is the completion of C~(IR") with re- 
spect to 11 ~,~- 1 (l(l~f(r L,~a-~. Conjugate exponents are denoted by p, p'; q, q'; 
etc. Constants are denoted by c and change from line to line. 

w 1. E s t i m a t e s  for the L inear  W a v e  and K l e i n - G o r d o n  Equat ion  

For convenience of the reader we repeat first of all well-known results on 
decay of solutions of the linear wave and Klein-Gordon equation. 

2 

T h e o r e m  0. a) Let A denote - A : = - j = l  Ox~" Then for any tpeC~ n) and 

t>0 ,  1 <p_-<2_-<p'< o% the following estimate holds: 

IIA -5 sin(A-~ t)~/II L,'(nt~)<= c t - (" -  1)(�89 II 0 I] . . . . . .  
H 2 ~, ,~(~n)' 

b) Let A denote - A + m 2, m ~: O. Then for any ~ ~ C~(N"), 1 <p <= 2 <p' < oo 
the following estimate holds: 

�9 . ~_ < 
[[A-~sm(A t)~/[ILp'(IR-)=K(t)I[~1[ . . . .  o . . . . .  . , p  

H 2 ~, (~) 
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where 
. -(,-~-o)(L- 1) 
j t  ,2 p' 0<t__<l 

K(t) = c 1.-( , -  t +o)(L_L) 
kt ,2 p' t > l  

0NON1. 

The proof of a) and b) is done e.g. by the stationary phase method and can 
be found in [3], Theorem 2.2, and in [-1], respectively. 

The following theorem is a generalization of a result due to Strichartz [7] 
and is closely related to the arguments of Marshall [2] in the case of the 
Klein-Gordon equation. 

Theorem 1. Let A denote - A : = - j = I  Ox~' and assume feLa(I("). Then the 

solution u o of the Cauchy problem 

uo,,+Auo=O, Uo(0)=0, Uo~(0)=f 
fulfills the estimate 

1--b  

1 2 1 n - 1  n + l  
~ -  b l = - -  pr~176 (n -1 ) r  q' 2 q 

Corollary. I f  u o is the solution of the Cauchy problem 

Uo. +Auo =0, Uo(0)=g, Uo~(0)= f, 

and 2-< q < 2 ( n -  1), q < o% the following estimate holds: 
- -  n--3 

Proof of Theorem 1. In the sequel we denote by ^ and �9 the Fourier transform 
and convolution resp. with respect to space variables whereas ,-~ and 4t= denote 
the Fourier transform and convolution resp. with respect to space and time 
variables, 

e -itl~[ 
With/((~,  t ) : = l ~ T  ~ we have 

[IK ~FllL~L~(~")) <-- ] (  J~- 
e - i ( t - s ) ~  ^ 

+oo~ n-l+n-1 n - 1  "+~-F(~,s) L~,(m,)ds ~c ~ ( t - s ) - T  ~ -  I~l-b[~l ~ -  
Lr(~.) 

+oo n--l+n--1 
=C _~oo(t--S)-~-- ~q-  F( ' ,S)  Lq,(R.)ds L'(~ , 

where we used Theorem 0 a). The generalized Young's inequality is now ap- 
1 1 1 

plied and gives an estimate by cllFI[L,'(~,L,'ea,)), provided where p 
r I p,'  r 
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_(n  1 / -- nal)-~.- \ This condi t ion is fulfilled under the assumption of  the 

theorem. 
Consequent ly  Plancherel 's  theorem in n + 1 variables gives: 

+oo ~)d~dz = t)dxdt 
-k oo 

5 ~ IP(~,*)I2R(r 5 5 ff(x,t)(K~F)(x, 
- -  c o  I R  n - -  o o  ~ r z  

< 2 
= c IIFIIL~'~L~'(m.))" 

Because of  
1 +oo 1 

we arrive at 

d~ <cllFll2 g~ ~ IF(~,l~l)l 2 i ~ - ~ =  ~'(~ '< -)). 

Thus the following duality a rgument  holds by Plancherel 's theorem:  

+oo 

t)dxdt +~ z)d~d~ ~ (K*f)(x,t)F(x, = ~f(~)K(~,z)F(~, 
- e c  ~ln ~ 

< IP(~,Ir zlr  ~lf(~)l 

[ f lf(~)l 2 d~ ~ <clIFIIL.'~L.'(m.)) 
Ir ' 

consequently 

,[K .fllL~(~..Lq(re~))<=C (~ ,f(~)[2 d[~+,)�89 b+~ = c I I A - ~ - f  II L2(~), 

e i t l ~ l  

The same estimate holds for /~1(r  [~lb+l, thus 

fulfills 

b 1 (K+K~(~,t)f(~)) 
A- - iu~  \ 2i 

b b + l  

II A -~u  o[I Lr<~ L+<~")) < C }1A - ~ - f  ]l L:<~")" 

The proof  is complete. 

Remark. In exactly the same manner  for solutions u o of the Kle in -Gordon  
equat ion Uo::+Auo=O, uo(0)=g,  u~(0)=f  with A : = - A + m  2, m4=O, the fol- 
lowing estimate can be proven:  

Hu~ 1" 2 =~.+1)_(. 3,q ~c(llfllL=~.)+IIg[l~l.z(~.)), ~ ( ~ . ,  n 4, "(~t")) -- 

2(n - 1) 
if 2 < q < - - ,  q < oo. For  details we refer to Marshall 's  paper I-2]. 

n - 3  
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w 2. The Wave Equation with Power Nonlinearity 

We consider the Cauchy problem for nonlinear wave equations of the type 

ut,-Au+,~lulP-~u=O where ,tsN. 

We use the abbreviations f(u)=2lul~ A:= - A ,  and assume throughout p 
4 

= 1 +  and 3_<n_5. 
n - 2  

Theorem 2. Let (~-, O-)Et:I1,2(IR ") x L20R ") be given with II~b-lla~.~ 
+ I}O-II L~ < 6, where ~ > 0 is sufficiently small, and let uff(t) denote the solution in 
I2tl"~(IR ") with Vuo(O)=VO-, Uo,(t)=O- of the linear wave equation uo - A u  ff 
=0. Under these assumptions there exists a unique solution u of the integral 
equation 

u(t)=uo(t)+ i A-~sin[A~(t-~)]f(u('c)) d~ 
- o o  

with (u, ut)eV.xL~176 where V:=L~176176 

w h e r e s : - ( n - 1 ) p - ( n + l )  r :=  2(n-1)p  
(n -1 )p  ' ( n - 1 ) p - 4 "  

Proof We want to apply the contraction mapping principle and first remark 
2 ( n -  1)p 

that uo~V if we choose q--  in the Corollary to Theorem 1, and 
( n - 1 ) p - 4  

moreover Iluollv<__c~. This choice of q is possible because 2 < p < o e  for 
3 _< n _< 5. Now consider u, fie V and estimate as follows: 

i A -~ sin[A~(t -'c)] [f(u(z)) - f(fi(v))] dz ~,,, 
- -OO 

< c i (t - ~)-~ 11 f(u('c)) - f (fi(z))11 ~,~, d~, 
- - (30  

n + l  
where S = ( n -  1)p" 

1 
Here we used Theorem 0a). The imbedding /~1,~,c/~,,, holds provided - 

_ ( n + 2 ) p + 2  (cf. Stein [4], p. 119, Theorem 1), and thus 
2rip 

Hf (u)- f(fi)[l~ .... <=c ~ ]pf'(u)D=u-- f'(~)D=fillL~, 
I~1=1 

<c ~ (ll(u-fi)(lul~ 
I~1~1 

The first term is estimated using HiSlder's inequality by 

l lu-~ll~,p-(rru ~ - 2  ~ ~ - 2  

2 
The choice r=~7 and /~=(p-2)~  leads to f ' /3=? ' (p-2)~ np(p-1)  

p + l  
n p ( p - - 1 )  n + 2  

imbedding/4~,~ c LoT;W- holds if and only if p =n~2-2 so that we have 

- - .  Now the 
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Hf(u)- f(fi)  ilt~ .... 

<=c(llu-~lb.,r(lluilf~7.~+ II<t~7,2),ull~,,~+ II~llf~7r biu-~ll~,,~). 

Therefore  the following inequality holds: 

i A -  ~ sin[A~(t - z)] [ / (u(z))  - / ( ~ ( z ) ) ]  dr Lt.,r 
- o o  

- o o  

Now we use the generalized Young's inequality 

1 
IlK �9 g[IL.C~) <C UgHLp<~ ) for K ( t ) =  ~ ,  0<c~< 1, 

1 1 1 1 ~ P P thus where ~ = ~  a n d - = - + ~ 7 .  We have p = ~ ,  q=p, P = p - l '  
P q P 

A - z)] [ f  (u(v)) - f (fi(z))] LO(~,n*,.(m-)) 
i 

s in  [A~(t d~ 
- o o  

~ - -  - - ( p - 2 )  ~ ~ P  ( p - 2 )  o 
<=C u(v)-u(v)ll~-*(llu(z)ll~-* + ,U(~)llo.-* )dr 

HS,~ HS,~ Hs,~ 

r + c o  i p - 1  

�9 HullL=<~.e,,=~o,,+ [_500 ila(~)Hf~.,rdzl ~ ,lu-all~=(~..,,-.<.o,,} 
<_c l lu- ~llv(llullf,- * + Ilal/g-*). (1) 

Fur the rmore  one has 

i A-~sin[A-~(t-~)] [f(u(~))-f(fi('c))]d~ L~(~.m,~(mo)) 
- c o  

+ c o  

=< c ~" [1 f (u('c)) -- f (fi('c))U L2(~.) dz 
- c o  

+ c o  

<-_c [. (llu(v)llg;) + lla(z)llg~))tlu(v)-a(z)ll~=odz 
- o o  

_-< c(llullf,- ~ + II~llf,- 1 ) I l u - ~ l l v ,  

�9 ~ n + 2  
because the imbedding/:P '~ c L 2~ holds if and only 1i p = ~ ,  

If we denote  the t ransformat ion which maps u into the right hand side of 
the considered integral equat ion by T we have shown 

It T(u)- T(~) l l v  <=c(llullf, - ~ + Ilfilt~ -1) I lu-~l lv 
as well as 

II r ( u ) l l v  < c a  + c Ilullg. 
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Assume now that c6<�89 and 2c6f -1 <�89 If then Ilul[g, II~llv~a~ we conclude 
that 

liT(u)- r(~)llv<�89 and IIr(u)llv<61. 

The contraction mapping principle shows the existence of a unique solution 
within the ball Ilullv<_g)a. For uniqueness within the whole of V we remark that 
any two solutions u and ~ satisfy the estimate (in analogy to (1)): 

as well as 

where I = ( -  0% T). 
The condition u, fi~LP(IR,/I"~(IR")) allows us to choose I TI so large that 

IIu-~llv~<-_�89 Ilu- ~llv:., 

where Vf=L~176176 Igti'2(R")), so that u=f i  in V r. Step by step it is 
possible to replace :F by T +e  where e depends possibly on u and fi, but is the 
same for all steps. Thus u = fi in V, and the proof is complete. 

Corollary. Itu(t)-Uo(t)ll e~O (t--' -- ~). 
t 

Proof. I[u(t)-Uo(t)tl~<c i Itf(u(z))llL ~d~<c ~ Ilu(z)[If.~dz. This tends to zero, 
- o o  - o o  

because L p IR,(/1 ~'~(IR")) ~ LPqR, L2P(R")). 
Define now 

(3O 

u~-(t).'=u(t)+ ~ A-~sin[A{(t-T)]f(u(z))dz, and u~-(0)=q5 +, u~-t(0)=~ +. 
t 

Then we show in exactly the same manner as above I[u(t)-u~(t)[le--.O (t+oo), 
so that we have proven 

Theorem 3. The scattering operator S: ( r  ~ - ) ~ ( r  0 +) exists in the sense of 
energy norms in a whole neighbourhood of the origin in/~l,2(N,) x L2(IR'). 

w 3. The Nonlinear Klein-Gordon Equation 

In this section we consider the Cauchy problem for equations of the type 

u. + Au + f (u)=O, 

where A: = - A  +m 2, m+O, f(u): =2lu[p-lu,  2eN.  
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4 4 
We assume 2_<n_<5 and 1+ _<p_<l+ 2, 2 < p <  +oo. 

n - 1  n -  

Theorem4. Let (~)-,~l-)eHl'Z(lpxn)xL2(~ n) be given with ]lq~-]ln,,2~a.) 
+ ]lO-IIL~.)<cS, 6 > 0  sufficiently small, and let Uo(t ) denote the unique solution 
in HI'Z(IR ") of Uo, +Auo=O, uo(O)=qS-, Uo~(0)= ~ -  Under these assumptions 
there exists a unique solution u of the integral equation 

t 

u(t)=Uo(t)+ ~ A-4sin[A�89 
- o o  

with (u, ut)~V x L~(N, L2(N")), where V:=LP(N,H~'~(~"))~L~(N, HI'2(IR")) and 
s, r as in Theorem 2. 

Proof. In analogy to the proof of Theorem 2 we have u o e V  and Ilu o -IIvGC~5 
by use of the remark after Theorem 1, and moreover 

i A - ~ sin [A~(t - z)] [ f  (u(z)) - f (fi(z))] dz H~,~ 
- ( x l  

t 2 

<c ~ (t-z)--fltf(u(z))-f(fi(z))lln~,~,dz 
- o o  

by Theorem 0b) (notation as in the proof of Theorem 2). 
We now use Sobolev's imbedding H I'~' c H  ~''" which holds for 

1 1 1 1 - g  
F' =r '  = 7  n 

and arrive as in the proof of Theorem 2 at 

Il f (u) -  f (fi)ll~.r, 

~ C  Z ~ p - - 2  ~ p - - 2  a [ILU --  UlI L~,,-(IlUlIL~,<~- 2 , r  _ HUllL~'O,-a)r lID UHL~'~ 
I~1_-<1 

We choose/~, q, r as follows: F ' f = 2 , / ~ = ( p - 2 ) ~ .  
27 

This gives F ' / ~ = ( p - 1 ) 2 ~  ~ .  Now the imbedding H S ' r c L W - 1 ) ~  holds 

1 1 - 
provided r>p~L-]-\f,  2 / = r  n" This condition can be fulfilled taking into 

1 above if and only i f 1 +  4 < p < l  4 account the range for fw n - 1  + ~  as a simple 

calculation shows. Thus the following estimate holds: 
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J A-~s in [A~( t - r ) ]  [f(u(z))-f(fi(z))]  dr ~,,~ 
- o o  

<c i (t-r)-2[llu(r)-~(r)ll~',~(l[u(r)llf~:, 2 + ll~(r)[lf47,~)lluHL~n~,~*~)) 
- o o  

< c I l u -  ~lfg(llull ~  ~ + II~llf~- ~), 

if we proceed as in the proof of Theorem 2. 
Moreover 

_~A -~ sin [A~(t-  z)] I f  (u(z)) - f (fi(z))] L~(~,U*,2(~)) dr 

+ c o  

< c  I (llu(~)ll[;-) + II0(~)ll[; *) Ilu(r)-C*(~)l[L=O& 
- o o  

< c([lullg -* + IlO[I p- l )  Ilu-~lIg, 
4 4 

where we used the imbedding H~'~c L 20 which holds for 1 +TZ-~_ 1__< p < 1 - ~ n - 2  
again. Now the claim follows as in Theorem 2. 

Consequently as in the case of the wave equation we have 

Theorem 5. The scattering operator S: (4)-, 0 - ) ~ ( 4  +, ~ b+) exists in the sense of 
energy norms in a whole neighbourhood of the origin in HI'2(IR ") x L2(N."). 

w 4. Further Results 

By the same methods as above it is possible to prove the following result for 
the initial-value problem under the same assumptions on f and n. 

Theorem 6. Let (qS,~)~/41'2(lR")xL2(~ ") (or HI'2(IR")xL2(1R")) be given with 
sufficiently small norm, and let Uo(t ) denote the solution in/t~'2(F,.n) (or HI'a(/R n) 
resp.) with Uot(t)~L2(lR n) of the problem Uo~ ~ + Au o =0, Uo(0 ) = qS, Uo~(0)= 0, where 
A = -  A (or - A  + m 2, m =t=0, resp.). Under these assumptions the integral equation 

t 

u(t) = u o (t) - S A - ~ sin [A~(t - z)] f (u(z)) dz 
0 

has a unique solution in V with ut~L~ L2(IRn)). Moreover there exist solutions 
u+_ of u+_t + Au+_ =0 such that Nu(t)-u+_(t)He--+O (t--+ +_oo). 

Proof The existence of u is shown as before, and 

u + (t): = u(t) + i A -  ~ sin [A~(t - z)] f (u(r)) dr 

has the claimed properties. 
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Moreover, the following uniqueness result is valid under the same as- 
sumptions o n  f a n d  n as before  (proof  as above) :  

Theorem 7. Let (qS,~)~/~I '2(IR")xL2(IR ~) (or HI'2(N") x L2(Nn)) be given arbi- 
trarily, and let Uo(t ) denote the solution in /:/l '2(lRn) (or HI '2(IR ~) resp.) with 
Uo~(t)eL2(IR ~) of the problem uo~ + Auo=O , uo(O)=4) , Uot(O)=O, where A = - A  
(or A = - A  + m  2, re+O, resp.). Then there exists at most one solution of the 
integral equation 

t 

u ( t )  = u o ( t )  - S A - ~ sin [ A � 8 9  - z)] f (u(z)) dz 
0 

in the space V. 

Concluding Remark. Th e  resul ts  of w167 ho ld  in  the  case of a m o r e  genera l  

n o n l i n e a r i t y  f eC l ( • ) ,  wh i ch  fulfills f(O)=f'(O)=O a n d  If'(ul) 
-f '(u2)l<c(lullp-2+lu2[O-2)lul-u2l for Ul,U2fflR, where  p is res t r ic ted  as 
above.  
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