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Abstract.  This paper deals with various substructural propositional logics, in particular with 
substructural subsystems of Nelson's constructive propositional logics N -  and N. Dogen's 
groupoid semantics is extended to these constructive systems and is provided with an infor- 
mational interpretation in terms of information pieces and operations on information pieces. 
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1. INTRODUCTION 

Many logical systems admit of an interpretation in semantical models based 
on abstract information structures, that is to say, models based on a non-empty 
set I viewed as set of information pieces or information states represented by 
pieces of information together with certain relations or operations o n / a n d  
possibly some designated pieces of information. Well-known examples of 
such informational interpretations are among others Kripke's (1965) inter- 
pretation of intuitionistic propositional logic IPL  by means of quasi-ordered 
information states (I, __Z) and Urquhart's (1972) interpretation of relevant 
implicational logic Rz  in terms of the addition of information pieces and 
the empty piece of information.1 The abstract information structures to be 
considered in the present paper are semilattice-ordered monoids (slomos), 

1 The notion of an informational interpretation by means of models based on abstract 
information structures probably cannot be captured by a precise definition. A non-trivial 
constraint would be to require that there are intended models and that every intended model is 
complete. Then, for instance, Grzegorczyk's (1964) "philosophically plausible" interpretation 
of I P L  as a logic of scientific research would fail to be informational. Although Grzegroczyk's 
'researches' for I P L  form the class of concrete, intended models, it can readily be verified 
that there exists no complete research for IPL.  Every research as defined by Grzegorczyk 
induces a Kripke model (I,  ___p, 1,v0) for I P L  based on a tree. Each a C I is a finite set 
of propositional variables, and for every propositional variable p, the basic valuation v0 is 
defined by vo(p) = {a [ P E a}. A basic valuation v0 is extended to a valuation function v as 
in Kripke models for IPL,  and validity in a research is defined as truth at every information 
piece. Now take any research 7~ = (I,  GP, 1, v0) for IPL,  Then the set F = U { a  [ a E I} 
is finite, and for all propositional variables p, q such that q r F, we have that q D p is valid in 
7~. But q D p is not a theorem of I P L  and hence 7~ is not complete. 
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see (Do~en, 1989, p. 43 ft.). Models based on slomos will becalled monoid 
models. We suggest the following understanding of slomos II,.,  A, 1 ): 

�9 I is a set of information pieces 
�9 �9 is the addition of information pieces 
�9 A is the intersection of information pieces 
�9 1 is the initial, ideally the empty piece of information. 

The aim of this paper is to develop an informational interpretation by means 
of monoid models for a broad range of substructural propositional logics, i.e., 
logics with a restricted set of structural inference rules. Section 2 introduces 
various families of substructural propositional logics. The monoid models are 
presented in Section 3, and the informational interpretation is dealt with in 
Section 4. 

2. FOUR FAMILIES OF SUBSTRUCTURAL PROPOSITIONAL LOGICS 

In this section we will introduce sequent calculus presentations for a num- 
ber of substructural subsystems of Johansson's intuitionistic minimal logic 
M P L ,  I P L  and Nelson's constructive propositional logics N -  and N, see 
(Almukdad and Nelson, 1984). Preparatory to this, we shall first briefly moti- 
vate going substructural and going constructive. 2 

Going substructural 

If we think of deductive information processing, the premises form the 
database (DB) and the consequence relation ~ is the information-processing 
mechanism. In a certain sense all standard logics constitute maximal concep- 
tions of deductive information processing. Consider for instance IPL .  In 
I P L  the sequent arrow represents a Tarskian syntactic consequence rela- 
tion between finite sets of premises and single formulas. This consequence 
relation is monotonic: if formula A is derivable from P, then A is derivable 
from every finite superset of P. It is a commonplace by now that everyday 
reasoning (often) is nonmonotonic. We are deriving conclusions which may 
turn out wrong in the light of new, additonal information and, accordingly, we 
are willing to retract, if necessary, such 'provisional' conclusions. In sequent- 
style presentations the fact that one is dealing with monotonic inferences of 

2 One might ask why we do not consider substructural subsystems of classical propositional 
logic C P L .  C P L  may be regarded as inappropriate, because it validates tertium non datur. As 
Urquhart (1972, p. 166) emphasizes, information can be incomplete: "[w]ith no information 
whatever about, say, Smith, we can neither conclude 'Smith is tall' nor 'Smith is not tall'. Thus 
we would not expect the law of excluded middle to be valid in a semantics involving pieces of 
information." 
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single formulas from finite sets of premises can explicitly be stated by means 
of structural inference rules, i.e. inference rules which govern the manip- 
ulation of premises (or contexts). 3 Besides the monotonicity rule M there 
are structural rules allowing for permuting (P) and contracting (C) premise 
occurrences. If one now considers a systematic variation of such structural 
rules of inference, the standard package {P, C, M} breaks down into a more 
differentiated ensemble of rules, and DBs need not only be conceived of as 
sets of sentences with a monotonic inference operation defined on them (for a 
general framework of structured consequence relations see (Gabbay, 1991). 

Although in the most commonly used logics the structural rules P, C 
and M are assumed, giving up all or part of them has a long tradition. For 
example, relevant implicational logic Rz developed by Church (1950) and 
Moh (1950) is nothing but intuitionistic implicational logic I P L ~  without the 
monotonicity rule, and in general not to accept the full strength of monotonic- 
ity forms the basic idea of relevance logic, cf. (Dunn, 1986). Conceptions of 
deductive information processing weaker than the intuitionistic one can also 
typically be found within logical syntax, i.e. Categorial Grammar. The ('pro- 
duct-free' version of the) syntactic calculus of Lambek (1958) turns out to be 
intuitionistic implicational logic without any structural rules of inference (but 
restricted to derivations from non-empty sequences). This syntactic calculus 
is an order-sensitive logic of occurrences, since in syntax every occurrence 
of a linguistic item to which a syntactic type (logically speaking, a premise) 
is assigned matters. If the product-free Lambek Calculus is extended by 
the structural rule of permutation, one obtains the so-called non-directional 
Lambek Calculus of syntactic categories, see (van Benthem, 1986, 1988). In 
this case one is concerned with nonmonotonic inferences of single formulas 
from finite, non-empty multisets of formulas, i.e. collections in which every 
occurrence matters but the order of occurrences is irrelevant. Allowing for 
derivations from the empty multiset, the non-directional Lambek Calculus 
turns out to be the implicational fragment of Girard's intuitionistic linear log- 
ic without 'exponentials' (Girard, 1987), in other words, intuitionisitic logic 
without the rules of monotonicity and contraction (cf. also (Avron, 1988), 
(Troelstra, 1992)). 

Going Constructive 

3 In this respect also the rules 

( id)  F- A---+ A and 
(cut) Y ---+ A X A Z  ---+ B ~- X Y Z  ---+ B 

are structural rules. Following Girard (Girard et al., 1989), we will, however, regard ( id)  and 
(cut) as logical rules available in any (ordinary) sequent calculus. 
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Any theory of information processing, in order to be viewed as adequate, will 
be expected to allow for representing both positive as well as negative infor- 
mation. According to Gurevich (1977) intuitionistic logic does not provide 
an adequate treatment of negative information. In intuitionistic logic (in the 
language with D, A, V, and Z) a negated sentence ~A abbreviates A D _L, 
that is to say, ~A is understood as "A implies absurdity". Gurevich remarks 
that "[i]n many cases the falsehood of a simple scientific sentence can be 
ascertained as directly (or undirectly) as its truth" (1977, p. 49). Gurevich 
therefore would like to have available a primitive strong negation in order 
to express explicit falsity. It is instructive to reformulate Gurevich's point of 
view in semantical terms. In an intuitionistic Kripke model (I, __U, v0), --,p is 
true at an information state a E I iff p is not verified at any information state 
into which a may develop.Thus, while verifying p at a C I does not involve 
considering other information states than a, verifying -~p involves inspection 
of all information states b C I such that a __. b. Gurevich's remark amounts 
to the complaint that there is no possibility of direct falsification of p on the 
spot. 4 Now, the idea of taking negative information seriously and putting 
it on a par with positive information leads Gurevich to intuitionistic logic 
with strong negation, as developed by Nelson (1949). Recent pleas for the 
relevance of negative information and the usefulness of strong negation for 
representing negative reasoning can be found in (Pearce and Wagner, 1990), 
(Pearce, 1991) and (Wagner, 1991). 

Nelson's strong negation ,,~ is also called constructive negation. Indeed, 
although intuitionistic logic is often referred to as 'constructive logic', intu- 
itionistic negation exhibits certain non-constructive features. Whereas on the 
one hand, in contrast to classical logic, intuitionistic logic enjoys the disjunc- 
tion property (or principle of constructible truth): 

(A V B) is provable iff A is provable or B is provable, 

it fails to satisfy the principle of constructiblefalsity, which one should expect 
to hold for a truly constructive negation: 

~(A A B) is provable iff ~A is provable or -~B is provable. 

In Nelson's systems of constructive logic constructible falsity holds wrt ~.  
Introducing Nelson's strong, constructive negation ,-, into positive intu- 

itionistic logic also can be and has been motivated by supplementing the 
proof interpretation of the intuitionistic connectives D, A, and V by a dis- 
proof interpretation, cf. (Ldpez-Escobar, 1972): 

4 Obviously, Gurevich's insistance on falsification has a famous precursor in Popper's 
philosophy of science (see e.g. (Popper, 1963)) according to which falsification is even the 
more important epistemological principle as compared to verification. 
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�9 II is a disproof of a conjunction A A B iff II is either a disproof of A or 
a disproof a B 

�9 H is a disproof of a disjunction A V B iff II is a pair (II1, II2) such that 
H1 disproves A and II2 disproves B 

| II is a disproof of an implication A D B iff II is a pair (II], II2) such 
that II 1 proves A and 1-[2 disproves B 

| 1I is a disproof of a negation ~ A iff II is a proof of A. 

A proof of ~ A then amounts to a disproof (or refutation) of A (and not to a 
proof of A D _1_). 

The proof systems. Consider the propositional language L in the following 
vocabulary: 

a denumerable set P R O P  of propositional variables; 
propositional constants: t,  T, 2_; 
binary connectives:/ ,  \ ,  o, A, V; 
auxilliary symbols: ( , )  

We use p, q, Pl, P2,- �9 �9 resp. A, B, C, A 1 ,  A 2 , .  �9 �9 resp. X, Y, Z, Xl,  X2 , . . .  
as schematic letters for propositional variables, formulas, and finite, possibly 
empty sequences of formula occurrences, respectively. An expression X -+ A 
is called a sequent. We say that a formula A is provable, if the sequent ---. A 
is provable; two formulas A, B are said to be interderivable, if the sequents 
A ~ B, B --~ A are provable. 

DEFINITION 1. (i) The rules ofintuitionistic minimal sequential proposition- 
al logic M S P L  (i.e. Johansson's M P L  without structural inference rules) 
are: 

(id) F- A -+ A; 

(cut) Y- -~  A X A Z - - +  B ~- X Y Z - - ~  B; 

( ~ t )  ~- X ~ t ;  
(-~. T)  i- --~ T;  

(T - , )  X Y  ---, A 'b X T Y  ---+ A; 

(--+/) X A  --+ B ~- X --+ (B /A) ;  

( /  ---~) Y --~ A X B Z  -+ C ~ X ( B / A ) Y Z  -+ C; 

( - + \ )  A X - - *  B F- X--+ (A \ B); 
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(\ 4 )  Y 4 A X B Z  4 C F X Y ( A  \ B ) Z  4 C; 

( 4 0 )  X 4 A  Y 4 B  t-- X Y 4 ( A o B ) ;  

(0 4 )  X A B Y  4 C t-- X ( A  o B ) Y  4 C; 

( 4 A )  X 4 A  X ~ B ~ -  X 4 ( A A B ) ;  

(A 4 )  X A Y  --~ C F X ( A  A B ) Y  4 C, 

X B Y  4 C F X ( A  A B ) Y  4 C; 

( 4 V )  X 4 A F  X 4 ( A V B ) ,  

X 4 B  F X 4 ( A V B ) ;  

( V 4 )  X A Y  4 C X B Y  4 C [-- X ( A  V B ) Y  4 C. 

(ii) The rules of intuitionistic sequential propositional logic I S P L  5 (i.e. I P L  
without structural rules of inference) are those of M S P L  plus 

( l  4 )  F X_LY 4 A. 

Let L ~ denote the result of enriching L by a new unary connective ~ which 
denotes strong, constructive negation. 

DEFINITION 2. (i) The rules of constructive minimal sequential proposi- 
tional logic C O S P L -  (i.e. Nelson's constructive minimal propositional logic 
N -  (cf. (Almukdad and Nelson, 1984), (yon Kutschera, 1969), (L6pez-Esco- 
bar, 1972), (Roufley, 1974)) without structural inference rules) are the rules 
of M S P L  together with: 

(4~/) 
(~ /4 )  
(4~\) 
(~\ 4) 
(4~o) 
(~~ 
(4~  A) 

(~A 4) 

X ~ ,~  B Y ~ A ~- X Y  ~ ( B / A ) ;  

X ~ BAY--- ,  C F X ~ ( B / A ) Y  ~ C; 

X ~ A  Y ~ B F  X Y ~ ( A \ B ) ;  

X A ~  B Y  ~ C ~- X ,~ (A \ B ) Y  ~ C; 

X ~ ~ A  Y ~ , . ~ B  F X Y ~ ( A o B ) ;  

X ~ A..~ BY--+ C I- X..~ (A o B)Y--+ U, 

X 4 , ~ A  F X 4 ~ ( A A B ) ,  

X 4,-., B [- X 4 ~  (AAB);  

X ~ A Y - - + C  X ~ B Y 4 C  F X ~ ( A A B ) Y - - ~ C ,  

Also called "non-commutative intuitionistic linear propositional logic without exponen- 
tials". 
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(---+~ V) 

( ~ V  -~) 

( - - ~ , . ' ~  ~ ) 

(~~-4 

X ---*~ A X --+~ B ~- X - + ~  ( A V B ) ; 

X ~  B Y - - - * C  [- X ~ ( A V  B ) Y - + C ,  

X ~ A Y  --+ C ~- X ,~ ( A  V B ) Y  --* C; 

X - +  A ~- X - - * ~ ~  A ; 

X A Y - +  B k X ~ ~  A Y  ~ B .  

(ii) The rules of constructive sequential propositional logic C O S P L  (i.e. 
Nelson's propositional logic N (see e.g. (Nelson, 1949), (Markov, 1950), 
(yon Kutschera, 1969), (Thomason, 1969), (Routley, 1974), (Gurevich, 1977), 
(Almukdad and Nelson, 1984)) without structural rules of inference) are those 
of C O S P L -  together with (_L --~) and: 

(~ t + )  x ~ tY A; ( ~  v k- x ~ T Y  A; 

The idea behind these sequent rules involving ~ is that they directly reflect 
refutability conditions for main connectives or constants in the scope of ~.  
If (4_ 4 ) ,  (~  t 4 ) ,  and (~  T 4 )  are assumed, we say that _L, ~ t, and 
~ T act or are treated as falsum constants; otherwise _L, ,~ t,  and ~ T are 
regarded as propositional variables. 

Now that we have defined four base logics, families of propositional logics 
can be built up on top of these basic systems by successively adding certain 
structural inference rules. One may, for example, select any combination 
taken from the following collection of rules (cf. also (Do~en, 1988)): 6 

permutation (P)  : X A B Y  --+ C I- X B A Y  ~ C; 

contraction (C) : X A A Y  ~ B k- X A Y  ~ B;  

cancellation (C I) : X A Y A Z  --* B ~- X A Y Z  --+ B ,  

X A Y A Z  --* B ~- X Y A Z  -+ B;  

expansion (E) : X A Y  --* B b X A A Y  -+ B;  

duplication (E 1) : X A Y Z  -+ B ~- X A Y A Z  --* B ,  

X Y A Z  -~ B ~- X A Y A Z  ~ B;  

monotonicity (M) : X Y  --+ B ~- X A Y  --~ t3. 

In the absence of structural rules the premises are conceived of as sequences  

o f  occurrences,  whereas in the presence of P resp. P, C, and E one is dealing 

6 This collection sticks closely to the "standard package" and is by no means meant 
to be the only reasonable choice. A structural inference rule which is prominent in Arti- 
ficial Intelligence is cautious monotonicity; a sequential version of this rule would be: 
XY--'~ B XY- ->  Ak- X A Y - - *  B. 
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with multisets resp. sets of premises. Different grades of monotonicity of 
inference are provided by selecting among E, E ~, and M. 

Let A C {P, C, C ~, E, E ~, M}, let E range over {MSPL,  ISPL,  
COSPL- ,  COSPL}, and let E/x denote the extension of E by the rules in 
A. Note that P is derivable in E{C,M} and that in ISPLA we can define t as 
(_I_/L) (or as (_1_ \ L)). The negations _~r, __,l are defined by -~rA = (L/A), 
--,ZA = (A \ l ) .  Whereas in the systems based on ISPL or COSPL one 
can deduce everything from a database containing contradictions --,rA o A 
orAo-~lA, this is not the case for systems based on M S P L  resp. COSPL-.  In 
the presence of M resp. M and C the constants t and T resp. A o B and A A B 
are interderivable. In extensions of M S P L  and ISPL  with M,  T can be 
defined as p \ p (or as p/p), for some propositional variable p. In the presence 
of P ,  A /B  and B \ A resp. -~A and --,lA are interderivable. Using suit- 
able translations (see (Wansing, 1993)), it can be seen that MSPL{p,C,M}, 
ISPL{p,C,M }, COSPL~p,C,M }, COSPL{p,C,M}, respectively, in fact 

can be identified as MPL, IPL, N- ,  N, respectively. By means of (cut) it 
can readily be shown that in every system E/X instead of the rules (-* -V), 
( /  -*), ( \  -*), (-* o), (A -*), and (-* V) one may equivalently use, 
respectively: 

(3- T) X V V  -* A t- X Y  -* A; 

(T /) X - * ( B / A )  t- X A - * B ;  

(T \)  X - * ( A \ B ) } -  A X - * B ;  

(o T) X (A  o B)Y  -* C k- X A B Y  -* C; 

(]" A) X - * ( A A B )  t- X - * A ,  

X - * ( A A B  [- X - , B ;  

(V T) X(A  v B)Y  -* C t- X A Y  -* C, 

X (A  v B)Y  -* C t- X B Y  -* C. 

If A and B are interderivable in EL, this will be abbreviated by [-za A +-~ B. 
We have 

t-z,, A o ( B o C ) ~ ( A o B ) o C ;  

(t) t-z,, (A V B) o C *-+ (A o C) V (B o C), 

Fz,, A o ( B V C ) , - ~ ( A o B ) V ( A o C ) .  

A well-known peculiarity of Nelson's systems N -  and N is the failure of 
intersubstitutivity of provable equivalents. Let (A ~--+ B) be defined as 
( A \ B) A ( B \ A) A (A/B) A (B/A). Using the terminology of Pearce and 
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Rautenberg (1991), ~ +  may be called acceptance-equivalence. In each sys- 
tem C O S P L ~  and C O S P L A ,  provable acceptance-equivalence is an equiv- 
alence relation but not a congruence relation, that is to say, one cannot prove 
the Replacement Theorem wrt it. For instance: F-cosPr2 --~ ~ (p \ q) ~-+ 

p o ,,, q, but ~COSPL~, ---r ,.o,,~ (p \ q) ,~+ ~ (po ~ q). (This can easily be 

verified using the monoid semantics presented in Section 3). 
Rejection-equivalence ~ -  can then be defined by (A ~ -  B)  = (~  

B \  ~ A) A(,,~ A \  ~ B)  A (,,~ A~ ~ B) A (~ B~ ~ A). Clearly, F- 
--+ A ~ +  B i f f F -  A ~ B a n d b ~  A ~,-~-- Bi f f [ - -  ~ A  ~ ,,oB, and 
clearly also provable rejection-equivalence fails to be a congruence relation 
in C O S P L ~  or C O S P L A .  If one defines strong equivalence (A ~ B) as 
(A ~,~-+ B)  A (A ~,-~- B),  then provable strong equivalence is a congruence 
relation in C O S P L ~  and COSPLa.TLet  CA denote an L~-formula that 
contains a certain occurrence of A as a subformula, and let CB denote the 
result of replacing this occurrence of A in C by B. The degree of A (d(A)) is 
the number of occurrences of propositional constants and connectives in A. 

THEOREM 1. (replacement) If ~ A ~ B is provable in C O S P L ~  or 
C O S P L A ,  then so is ~ CA ~ CB. 

Proof. By induction on 1 = d(CA) - d(A). If I = 0, the proof is trivial. 
Assume that the claim holds for every I < m, and 1 = m § 1. 

CA = ~  D: Assume that d(DA) < 1 and F--+ A ~-- B. By the induc- 
tion hypothesis, F - ~  DA ~ DB, and therefore the following formulas 
are provable: DA \ DB, DB \ DA, DA/DB,  DB/DA,  ~ DA\  ~ DB, 

DB\  ~" DA, ~ DA/  ~ DB, and ~ DB/  ~ DA. By (cut), (\ --*), 
(T \) ,  ( /  --+), (T /) ,  ( - - * ~ ) ,  and ( ~ - - ~ ) ,  also ~ DA\  " ~  DB, 
' ~  D B \  ~'~ DA, "~'~ DA/  "~'~ DB, and , , ~  DB/  ~"~ DA are prov- 
able and thus F- --+ CA ~ CB. 

CA = D1VD2, V C {/, \ ,  A, o, V}. We consider the case for V = A. 
Here we have the following derivations: 

---+ D1A \ D1B 

D1A --~ D1B D2 --+ D2 

D1A A D2 ~ D1B D1A A D2 ---+ D2 

D1A A D2 -'+ DIB A D2 

----+ CA \ CB; 

7 The distinction between positive and negative (semantic) consequence is well-known 
from partial logic, see e.g. (Fenstad et al., 1990), (Thijsse, 1990). Note, however, that for the 
variety of notions of semantic consequence considered by Thijsse "logical equivalence [... ] 
turns out as mutual consequence" as Thijsse (1990, p. 29) quotes from (Blamey, 1986). In 
other words, intersubstitufivity of provable equivalents holds. 
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---~,,o D1A \ "-' D1B 

D1A "--~'" D1B 

"" D1A ---~,,o (D1B A D2) 

"" D2 ---,,.o D2 

"~ D2 --+'~ (D1B A D2) 

(D1A A D2) 4 , - ,  (DIB A D2) 

Analogously we obtain CB \ CA, ~ CB\  ~ CA, CA/CB, CB/CA, ~ CA/ 
CB, and ,~ C B / ~  CA. The remaining cases are similar. [] 

The following collection of equivalences in terms of ~,-~-+ which are provable 
in COSPLT,  without using (cut) will turn out useful: 

(r 1) (A A B)  ~ +  (,-~ AV ,,- B),  ~ (A V B) ~ +  (,-, AA ~ B),  

,,, (B /A)  ~ +  (~ B o A), ~ (A \ B) ~ +  (Ao ~ B), 

,.o (A o B) ~ + ~  Ao ,~ B, ,-,~ A ,~+ A. 

In COSPLzx  also the following acceptance-equivalences are provable with- 
out resort to (cut): 

(r 2) ~ _L ~ +  t ,  ~ t ~,~+ _L, ,,~ T ~ +  _1_. 

These provable acceptance equivalences describe a procedure for associating 
to each L~-formula A one L~-formula B such that ~-cosez,a ~ A ,~+ B, 
resp. ~-COSPLT, --~ A ,~-+ B, and B has occurrences of ,,, only in front 

of propositional variables resp. propositional variables or constants, if for 
COSPLT~, ,-, _L, -,~ t, and -,, T are associated to themselves. In C O S P L ~ ,  
(A A B)  ~ + ~  ( ~  AV -,, B)  and (A V B)  ~+ , - ,  (,,, AA ~ B) are provable 
(again without using (cut)). Together with k ~ (A A B)  ,~-+ ~ A V ~ B, 
~- ~ (A V B) ~,-~-+ ~ A A ,-, B this shows that in COSPLT,  and COSPLLx, 
A resp. V can be defined by means of V and ~ resp. A and ~.  Moreover, from 
(r 2) we know that in C O S P L A ,  • can be defined as ~ t. 

The provable acceptance equivalences (r 1) and (r 2) specify the refutabil- 
ity (or rejectability) conditions referred to above. The refutability conditions 
for (A A B), (A V B), and ~ A are identified as the provability conditions 
for ,,o A V ,-, B,  ,-~ A A ~ B and A, respectively, which is very natural. Also 
the refutability conditions for the directional implications are convincing, 
because in the absence of structural inference rules they are provability con- 
ditions of direction-sensitive, non-commutative o-conjunctions. Less clear are 
the rejectability conditions for A o B,  since there is no 'intensional' disjunction 
corresponding to the 'intensional' conjunction o. What does it mean to refute a 
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concatenation, i.e. a text, AoB? To assume that ~ (A o B) is provably accep- 
tance equivalent to ~ A V ~ B is problematic, since we could then e.g. prove 
A(A\~ A)-+ ~ (A o (A \,,~ A))aswellasA(A\~ A)--+ (Ao(A\~ A)). 
Moreover, b- --+ ,,~ (A o B)  ~,~+ ~ A A --~ B would, if no structural rules are 
assumed, make the provability conditions of a non-directional connective the 
refutability conditions of a direction-sensitive connective, which, as a kind of 
mismatch, would be rather surprising. In contrast to this, we may regard it as 
plausible that the refutation of a concatenation A o B is provably acceptance 
equivalent to a refutation of each component of the concatenation: refuting 
a text means refuting every sentence in the text. The equivalences (r 1) may 
thus be viewed as a justification of COSPL~'s sequent rules involving ~ ;  
and indeed the very formulation of these rules is induced in an obvious way 
by (r 1). The rejection equivalence of t,  T, and ,-~ _1_ in COSPLa can be 
elaborated as follows: Since every sequence of premise occurrences proves 
t ,  t cannot be disproved; there is no sequence of premise occurrences that 
refutes t. Similarly, intuitionistic falsum cannot be proved; therefore in the 
constructive case, ,,~ t should be added as a falsum. The truth constant T 
is a theorem. Although there are sequences X of premise occurrences such 
that X ~ T is not provable in the absence of M, this does not mean that X 
refutes T. On the contrary, it is hardly imaginable that a theorem is refutable. 
In this way we arrive at the same rentability conditions for t,  T and ~ _L. 

Let us state a number of known facts about the substructural logics we 
have introduced. 

THEOREM 2. Let 0 C_ {P, C, C ~, M}. 
(i) (cut-elimination) Applications of (cut) can be eliminated from proofs 

in Eo. 
(ii) (disjunction property) If A V B is provable in Eo,  then A is provable 

or B is provable. 
(iii) (constructible falsity) If ,,~ (A A B) is provable in COSPL~ or 

COSPLo, then ~ A is provable or ~ B is provable. 
(iv) COSPL~ is a conservative extension of MSPLo and COSPLo is 

a conservative extension of ISPLo. 
(v) Interpolation holds for Eo. 
(vi) Provability of sequents in Eo is decidable. 
(vii) Cut-elimination fails for EA, if E or E t are in A, but M is not. 

Proof See (Wansing, 1993). (i) is proved by a standard argument; (ii), (iii) 
and (iv) are corollaries of (i). Also the proofs of (v) and (vi) make use of cut- 
elimination. In the proof of (vi) Kripke's method for proving the decidability 
of sequents in R z  is applied. Some counterexamples to cut-eliminability rely 
on this decision procedure. [] 
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Note that in the presence of (cut) the expansion rule E is interreplaceable 
with the rule 

m i n g l e ( M I ) : X ~ A  Y ~ A  I- X Y - - * A .  

If M is not available, also MI  blocks cut-elimination.8Attempts to eliminate 
applications of (cut) give rise to problematic cases like the following: 

111 1I 2 
X--+A Y--+A 

IIa is converted into XY---*A X1AZ--+B 

X I X Y Z - - + B  
111 IIa 112 II3 

X--+A X1AZ---~B Y---,A X1AZ--+B 

X1XZ--+B X1YZ--+B 

: 

X~(...(A~\...(AI\(...(B/B=)/.../B1))...) Y+(...(A~\...(AA(...(B/B,O/.../B~))...) 
Xr-~(...(A~\...(A,\(...(B/B=)/.../BI))...) 

X 1 X Y Z - + B ,  

where X1 = A1 . . .  An and Z = B 1 . . .  Bm. The steps from X Y  --+ (.. .  (An\ 
. . .  (A1 \ ( . . .  ( B / B m ) / . . . / B 1 ) ) . . . )  to X,  X Y Z  --+ B involve applications 
of (cut). In the converted proof we still have an application of M I  that 
is immediately followed by an application of (cut), and unfortunately this 
constellation may loop, as can be tested with the following example: 

II1 Pl  \ P3 --+ Pl \ P3 
(Pl \ P2)(P2 \ P3) ---+ Pl \ P3 1-[2 

(Pl \ P2)(P2 \ P3)(Pl \P3)  ---+ Pl \P3  Pl(Pl \P3)  --+ P3 
Pl (P l  \ P2)(P2 \ P3)(Pl  \ P 3 )  ~ P3" 

3. MONOID MODELS 

We shall reproduce a version of Do~en's (1989) groupoid semantics. This 
monoid semantics, which will turn out to be adequate for M S P L A  and 
I S P L A ,  is then generalized to COSPLT, and COSPLA.  

DEFINITION 3. A semilattice-ordered monoid (slomo) is a structure (I, -, A, 
1} such that 1 E I, I is closed under the binary operations �9 and A, �9 is 
associative, n is associative, commutative, and idempotent, for every a E I, 

8 Nuel Belnap pointed out to me that in the presence of (cut), MI is interreplaceable with 
the rule X --+ A Y --+ A Z I A Z 2  --4 B I- Z I X Y Z 2  --* B.  This rule allows to eliminate 
(cut) also in the absence of M. 



INFORMATIONAL INTERPRETATION 297 

a. 1 = a = 1 .a, and. distributes over n (i.e. for every a, b, c E I: a. (bNc) = 
(a .  b) n (a .  c) and (b n c ) .a  = (b. a) n (c. a)), cf. (Dosen, 1989, p. 43). In 
a slomo the partial order _< is defined by a _< b iff a = a nb.  

DEFINITION 4. (i) A structure (I, -, 0, 1, v0) is called a monoid model for 
M S P L  iff ( I , . ,  N, 1) is a slomo and v0 is a mapping from P R O P  U {• 
into 21 such that for every q E P R O P  U {_k} the following holds: 

(n Heredity v0) al N a2 C vo(q) iff (al E vo(q) and a2 C vo(q)). 

(ii) A monoid model (I , . ,  N, 1, v0) for M S P L  is a monoid model for I S P L  
if for every p E P R O P  and every a, b C I: 

(,) a C vo(-L) implies a E vo(p), a <_ a. b, a < b.a,  a. a < a, and 1 < a. 

DEFINITION 5. The valuation v induced by a monoid model for M S P L  (I, 
, N, 1, v0) is the function from the set of all L-formulas into 21 inductively 

defined as follows (where q E P R O P  U {_L}): 

= v o ( q ) ,  

v(t) = I,  

v ( T )  = 11 < a}, 
v (B /A)  = {al  ( V b E v ( A ) ) a . b E  v(B)}, 

v ( A k B )  = {a I ( v b e v ( A ) ) b . a e v ( B ) } ,  

v (Ao  B) = {a l(3bl e v(A))(3b2 e v(B))D1 'b2 ___ a}, 

v ( A A B )  = { a l a e v ( d )  and a e v ( B ) } ,  

v(A V B) = {a ] (3bl E v(A))(3b2 e v(B)) bl n b2 <_ a or 

a �9 v(d)  or a �9 v(B)}. 

DEFINITION 6. (semantic consequence) Let .A4 = (I, . ,  N, 1,v0) be a 
monoid model for M S P L .  If X is a non-empty sequence A1 . . .  An, let 
v ( X ) = v ( A 1  o...oAn). 

v(X) _ v(A) if X is nonempty, 
X ~ A holds (or is valid) in 3/l iff 1 �9 v(A) otherwise. 

LEMMA 1. (i) For every monoid model for M S P L  (I,., N, 1, vo), every a, 
b �9 I,  and every L-formula A: 

(nHered i tyv )  a n b  E v(A) iff (a �9 v(A) andb �9 v(A)). 

(ii) For every monoid model for I S P L  (I,., N, 1, vo} and every L-formula 
A: 

v(_L) C v(A). 



298 HEINRICH WANSING 

Proof. By induction on the complexity of A, using ( , )  for (ii). [] 

By the definition of _<, it immediately follows from (n Heredity v) that for 
every monoid model  for M S P L  (I,., N, 1,v0), every a, b E I,  and every 
L-formula A: 

(Heredity) if a _< b, then (a E v(A) implies b C v(A)). 

DEFINITION 7. (i) A structure ( I , . ,  N, 1, v + , Vo) is called a monoid model  
for C O S P L -  iff ( I , . ,  N, 1) is a slomo and v +, v o are mappings from P R O P  
tO {_1_, ,-~ t, ~ T} into 21 such that for every q E P R O P  U {_1_, ~ t, ~-, T} 

the following holds: 

(n  Hered i tyv  +) al na2  C v+(q) iff (al C v+(q) anda2 E v+(q)). 

(n  Heredity Vo) al N a2 E vo(q ) iff (al E Vo(q) and a2 E Vo(q)). 

(ii) A monoid model for C O S P L  is a monoid model for 

C O S P L -  (I , . ,N,  1 v+,Vo), 

where v + (-L) = v + (~  t) = v + (,~ T) ,  v o (_1_) = I,  and for every p E P R O P  
and every a, b E I, (*) holds. 

DEFINITION 8. The valuation functions v +, v -  induced by a monoid mod- 
el for C O S P L -  (I, .,N, 1,v+,Vo} are the functions from the set of  L ~- 
formulas into 21 which are inductively defined as follows (where q C 

P R O P  tO {_1_, ,-- t, ~ T}): 

v+(q) = 
= 

v+(t)  = I ,  

= {a 

v+(B/A)  = {a 

v - ( B / A )  = {a 

v + ( A \ B )  = {a 

v - ( A  \ B) = {a 

v+(A o B) = {a 

V+o (q), 
vo (q), 

1 _<a}, 
(Vb E v+(A))a ' b E v+(B)} ,  

(3b  e b2 < a}, 

(gb e v+(A))b 'a  e v+(B)} ,  

(Bbl E v-(B))(3b2 e v+(A))b2 �9 bl <_ a}, 

(3hi E v+(A))(3b2 E v+(B))bl �9 b2 <_ a}, 
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v - ( A o B )  = 

v+(A A B) = 

v - ( A A B )  = 

v + ( A V B )  = 

v - ( A V B )  

v+(~ A) 
v-(,'~ A) 

{a I (3hi G v-(A))(3b2 e v - (B) )b l ,  b2 <_ a}, 

{a l a e v+(A) and a E v+(B)},  

{a [ (~b 1 ~ v-(A))(3b2 E v-(B))bl  n b2 <_ a or 

a E v - (A)  or a e v - (B)} ,  

I (3b  e e n h _ or 

a E v+(d) or a E v+(B)},  

= { a l a e v - ( A )  and a e v - ( B ) } ,  

= v- (A) ,  

= v+(A). 

Thus, the definition of a valuation v in a monoid model for M S P L  resp. 
I S P L  agrees with the definition of v + in monoid models for C O S P L -  
resp. C O S P L .  Moreover, the clauses v - (A)  directly reflect the provable 
equivalences (r 1) and (r 2) in terms of ~ +  listed in Section 2 (for instance, 
v - ( B / A )  reflects ,-~ (B/A),-~-+ (,-~ BoA)) .  Therefore, to each L~-formula 
A, one can find a (provably acceptance-equivalent) L~-formula B such that 
v -  ( A ) = v + (~ A) = v + ( B ), and ~ occurs in B only in front of propositional 
variables or constants. This fact can be used to simplify inductive proofs. 

DEFINITION 9. (semantic consequence) Let A4 = (I , . ,  N, 1, v +, Vo ) be a 
monoid model for C O S P L - .  If X is a non-empty sequence A 1  . . .  An, let 
v + ( X ) = v + ( A l o . . . o A ~ ) .  

X ~ A holds (or is valid) in Ad iff ~ v+ (X) C_ v + (A) if X is nonempty, 
1 E v+(A) otherwise. 1 

LEMMA 2. (i) For every monoid model for C O S P L -  (I,., N, 1, v +, Vo), 
every a, b C I,  and every L~-formula A: 

(NHeredi tyv +) a n b E  v+(A) iff (a E v+(A) andbE v+(A)); 

(NHered i tyv - )  a n b E v - ( A )  iff ( a E v - ( A )  a n d b C v - ( A ) ) .  

(ii) For every monoid model for C O S P L  (I,.,  N, 1, v +, Vo) and every L ~- 
formula A: 

v+(• C_ v+(A). 

Proof By (simultaneous) induction on the complexity of A. For (N Hered- 
ity v - )  it is enough to consider the cases where A is a propositional variable, 
A_, t, or T. []. 
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It can readily be verified that (M Heredity v +) resp. (A Heredity v - )  implies 
that for every monoid model for C O S P L -  (I, . ,  N, 1, v +, Vo), every a, b 
C I,  and every L~-formula A: 

(Heredity +) if a < b, then (a E v+(A) implies b C v+(A)), 

(Heredity - )  if a < b, then (a E v - (A)  implies b C v- (A)) .  

THEOREM 3. (soundness) If ~-z X ~ A, then X ~ A holds in every 
monoid model for E. 

Proof By induction on the complexity of proofs in E. All cases are straight- 
forward, except for (T --+), (V 7 )  and (~,, A 7 ) .  In the latter two cases one 
has to make use of both (N Heredity v +) and (Heredity +) (cf. (Do[en, 1989, 
p. 48)). Let us here consider (T 7 ) a n d  (,-~ A 7 ) .  Let .A4 = (I , . ,  A, 1,v0) 
resp. A4 = (I , . ,  N, 1, v0 +, vo) be any monoid model for E. (T 4 ) :  It is 
enough to show that v+(T o A) C_ v+(A) and v+(A o T) C_ v+(A). Con- 
sider the latter. Note that if a _< b, then c �9 a _< c �9 b, for every a, b, c C I. 
Suppose c E v+(A o T). Then (Bbl E v+(A)) (3b2 E v+(T))  bl �9 b2 _< c. 
Now, 1 <_ b2. Therefore bl = bl �9 I _< bl �9 b2. By transitivity of _<, bl _< c. 
Hence, by (Heredity +), c C v+(A). (~  A 7 ) :  Let C = Ca o . . .  o Cn, D = 
D1 o . . .  o D~, and suppose that v+(C ~ AD)  C_ v+(E),v+(C ~ B D )  C_ 
v+(E).  Then v+(C ~,, A) C_ v+( (E /D) )  and v+(C ~ B) C__ v+((E/D)) .  
Hence(Va E v+(C)) (Vb E v+( ,.~ A)) a . b E v+((E/D)) ,  (Va C v+(C)) 
(Vb E v+( ,',, B)) a .  b E v+((E/D)) .  Therefore, 

a C v+(C), bl E v+( "0 A), b2 C v+( ,'o B), bl N b2 <_ b 
only if a. bl e v+((E/D)) anda.  b2 e v+((E/D)) 
only if (a.  51) M (a. 52) E v+((E/D)) (M Heredity v +) 
only if a. (b, M b2) e v+((E/D)) 
only if (a. b) E v+((E/D)) (Heredity +). 

Since also (a C v+(C) and (b E v+( ,,~ A) or b E v + ( ~  B)))  only if 
a.  b E v+( (E /D) ) ,  we obtain 

only if 

iff 

only if 

a v+(C) 

(Vb E v+( ,', AV ~ B)) a.  b E v+( (E /D) )  

(Vb E v+( ~', (A A B)) a . b C v+( (E /D) )  

v+(C ,-,., (A A B)D) d_ v+(C). [] 

Using (N Heredity v), Do~en (1989, p. 52 f.) proves a number of correspon- 
dences between structural rules of inference and conditions on slomos in the 
sense that a given structural rule R is validity preserving in a monoid model 
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AA iff the condition on slomos corresponding to Iq is satisfied by the slomo 
on which AA is based. In the present context we have the following corre- 
spondences: 

for every a, b E I 

P a . b < b . a  

C a . a < a  

,t C I a . b . a  < a.b,  a . b . a  < b .a  

E a<_a .a  

E I a . b < a . b . a ,  b . a < a . b . a  

M l < a  

Note that the behaviour of ~ is not reflected in these structural conditions on 
slomos; it is completely captured by the valuations v -  and v +. By the above 
correspondences, Ezx is sound wrt the class of monoid models for 7~ whose 
underlying slomos satisfy the conditions that correspond to the rules in A. 
Let us call this class of models ME/,. 

4. INFORMATIONAL INTERPRETATION 

By itself, the monoid semantics of the previous section might convey the 
impression of being just a technical tool without very much explanatory 
value and intuitive appeal. In this section we shall, however, develop an 
informational interpretation for the systems Ezx that is based on the above 
mentioned understanding of slomos (I , . ,  ~, 1), viz. I is a set of information 
pieces or information states, �9 is the addition of information pieces, n is the 
intersection of information pieces and 1 is the initial, ideally the empty piece 
of information. The partial order _< can, as in Kripke's interpretation of IPL ,  
be understood as the 'possible development' or 'possible prolongation' (in 
the sense of 'possible expansion') of information states or pieces. Of course, 
this reading is illuminating only if we are willing to attach some explanatory 
power to the notions of addition, intersection and development of information 
pieces. We claim that under the suggested reading the properties which in 
slomos are postulated for . ,  N, and 1 are intuitively plausible. Or, to state it 
the other way around, if we have a set I of information pieces including one 
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initial piece of information together with one addition and one intersection 
operation on I,  then it is plausible to assume that these components should 
form a slomo. 

What can we say about the evaluation of formulas in monoid models? The 
valuation function v resp. v + in monoid models for M S P L  resp. C O S P L -  
specifies truth conditions; the valuation v -  in monoid models for C O S P L -  
in addition specifies falsity conditions, where falsity is falsity in the sense of 
refutation. Thus, in contrast to the minimal intuitionistic and the intuitionistic 
case, in the minimal constructive and the constructive systems truth and falsity 
are regarded as prima facie independent notions. Now, do the valuation clauses 
emerge as plausible under the given interpretation of slomos? Let us first 
consider the valuations v and v +. The evaluation of elements from P R O P  
resp., in the minimal cases,PROP U {_1_} or P R O P  U { l ,  ~ t ,  ~ T}, is 
unproblematic. (n Heredity v0), (n Heredity v0+), and (N Heredity Vo) are 
natural requirements. If a formula A is true on the strength of the intersection 
a n b of information pieces a, b, then A should be true on the strength of both 
pieces, and conversely.If_L, ,-~ t and ~ -7 are treated as falsum constants, then 
any formula should be derivable from premises containing at least one of these 
falsum constants. This is guaranteed by ( , )  and the fact that (T / )  and (T \)  
preserve validity. The evaluation of t and -7 is without doubt reasonable: we 
may distinguish between a truth constant which is true at every information 
state and another truth constant which is true at every information state into 
which the initial piece of information may develop. The clauses for / and \ 
are just directional versions of Urquhart's (1972) truth definition. Moreover, 
it is rather natural to say that if A is true at information state bl and B is 
true at information state b2, then (A o B),  which is a conjunction in the sense 
of juxtaposition, is true at every information piece into which bl �9 b2 may 
develop. The case of A is again unproblematic. In the case of V it makes 
perfectly good sense to require that (A V B)  is true not only at pieces of 
information a at which A is true or at which B is true but also at pieces of 
information which prolong the intersection of pieces of information bl and 
b2 such that A is true at bl and B is true at bz. Thus, (A V B) should also 
be true at information pieces which prolong so to speak the common content 
of information pieces bl, b2 with A true at bl and B true at b2.9Finally, 
the evaluation of ~ A by means of v + is intuitively convincing. We have 
that ,-~ A is true at a piece of information a iff A is false at a. Turning to 
v -  we can thus say that the definition of v-(,-~ A) is intuitively sound. In 
general the definition of  v -  can be justified by the naturalness of the above- 

9 Do~en (1989, p. 45) motivates the evaluation clause for disjunction by pointing out an 
analogous clause in Birkhoff's and Frink's representation of lattices by sets. 
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listed provable equivalences in terms of ~,~+.10 Moreover the definition of 
semantic consequence is in accordance with what we have said so far. The 
information states into which the initial (or empty) piece of information 1 
may develop should take precedence over the set of all information pieces. 

We want to show that the present interpretation of monoid models is infor- 
mational in the strong sense that there is a model which can arguably be 
talked about as the intended model under the given interpretation and which 
is a complete model for the logic in question. Now, the following assumptions 
seem to be natural: (i) Think of information pieces as finite sequences of for- 
mula occurrences, since in our basic calculi the databases are juxtapositions, 
of such finite sequences. (it) Identify those pieces of information which are 
interderivable (identifying A1 . . .  An with A1 o . . .  o A n ,  if n > 1). This is 
enough from the point of view of deductive information processing, although 
the representatives need not be synonymous in the sense of being intersubsti- 
tutable in all deductive contexts: if A and B are interderivable, by (cut) we 
havein EA, k- X A Y  ---+ Ciff~- X B Y  -+ C a n d k -  X ---+ A i f f X - - +  B. The 
formulas interderivable with T can then be viewed as representing the empty 
piece of information, since we have that k-=_ A --+ A iff k-F.zx T --+ A. Next, 
let a and b be two pieces of information, and let A resp. B be a representative 
of a resp. b. The addition a �9 b of a and b should be the equivalence class of 
(A o B)  wrt interderivability, and the intersection a N b of a and b should be 
the equivalence class of (A V B)  wrt interderivability. These considerations 
naturally lead us to the following definition of intended models. 

DEFINITION 10. Let A l o .  o A , ~ , i f X  A t . . A n ( n  > 1) ,andlet  

~ =  = A, if X A. For every formula A, the equivalence class of A modulo 
+-+ will be denoted by I A ]. The intended modelJt4za = (I , . ,  N, 1, v0) resp. 
.Adz,, = (I , . ,  n, 1, v +,  Vo) for ~,~ is defined as follows, where q E P R O P  

U {J_,~,, t ,~  T}: 

- z -- {I.vl I x is a non-empty sequence of formula occurrences}; 
O O O O 

- [ X l l  �9 I x 2 l  = I x 1  o x 2 1 ;  
0 0 0 0 

- [Xll  n IX21 = IX,  v X21; 
- l = l m l ;  

o 

- v 0 ( q )  - -  { I x l  1~--== x --+ q } ;  
- v + ( q )  = vo(q) ,  with v+(L)  = v + (  ' '  t ) = v + (  ,-~ T ) ,  i f~:  = COSPL; 

- V o ( q )  = {]X] ]~-z,, X --+,-., q},  with Vo(_L ) = I,  i f ~  = C O S P L .  

10 We have already commented upon the falsity conditions of (A o B), t, and T in Section 1. 
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This construction clearly has an algebraic twist; note, however, that it does 
not yield the so-called Lindenbaum-algebra for EA. In the constructive case, 
for instance, there are no algebraic operations corresponding to ~,-~--,/, \ ,  t ,  
and ,,~ (cf. Rasiowa's (1974, p. 68) quasi-pseudo-Boolean algebras for N). 
The present semantics is close to syntax, but it is not 'syntax in disguise'�9 

LEMMA 3. Adz,, is in fact a monoid model for E. 

Proof. Obviously, 1 E I and I is closed under �9 and n. Associativity of 
�9 and associativity, commutativity, and idempotence of N are immediate. To 
see that 1 is a neutral element wrt . ,  observe that ~-EA (T o A) ~ A and 
~-EA (A o T) *-+ A. Distributivity o f .  over n follows by (1-). Eventually, 
we have to check (n Heredity v +) and (n Heredity Vo). We check the latter 
property, to check the former is completely analogous: 

O O 

IXll~ vo(q) and IS21~ vo(q) 
iff ~- X1 --*" q and k X2 --+" q Def. v o 

o o (o -+), (o t),  (v ~ ) ,  (v T) iff k X1 V X2--+ ,'~ q / 
0 O 

iff IX1 V X21E vo(q) Def. v o 

~ .~ Def. . iff IXll n l 21~ vo(q) O 

It is straightforward to verify that in AdZSPL~ and AdcosPz~ for every 

I,~1, IYI ~ ~r and every p E P R O P ,  Ix le  ~0(_L) implies I.Yle v0(p), 
o o o o o I J :  I J : l  o o o 

Ixl<_lTfl �9 IYI, IxI-<IYI �9 I, . Ixl_<lxl, and 1 <IX[ rq. 

We shall now show that ME,,  is a complete, i.e., canonical model for EA. 

LEMMA 4. (Truthlemma) For every I J:le I and every L-formula resp. L ~- 
formula A, the intended model Adz,, satisfies: 

IXIE v(A) resp. v+(A) iffl-Ea X --+ A. 

Proof. By induction on the complexity of A. 

A = q E PROP U {_L, ,-, t, ~ T}: by the definition ofvo resp. v +. 

A = t: [))IE v(t) i f f  [))IE I i f f k  X -* t. 
A = T :  

Ix le v(T) 
O 

iff 1 _< Ixl 

iff I T I n l x I  = I T I  def. <_ 

iff I Tv  x l  = I T I  def. n 
iff k X -~ T (V T), (id), (V -~). 
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iff 
iff 
iff 
iff 

A = (C/B): analogous to the previous case. 
A = (/3 o C): 

x -~ (/3 o c)  

A = ~  B: It is enough to consider the case where B is a propositional variable 
or constant. Then the claim holds by the definition of %.  
A = (B \ C): 

Ixl~ ~(B \ c )  
iff (V IYle v(B)) IYI o I~le v(c) 

(v l~le ~(/3)) IY o ~ le  ~,(c) 
VY(if F Y --+ B, then b Y X  --+ C) ind. hyp. 
F / 3 X  -+ C (cut), (id) 

x --, (/3 \ c )  (T \), (--, \). 

iff VA(if F B o C - - + A ,  then b X ~ A )  (cut),(id) 
iff VA (if F BC ~ A, then F X ---, A) (o T), (o --+) 
iff 3Y13Y2 (~- ]I1 ~ B and F Y2---+ C and 

VA (if F Y1Y2 ~ A, then ~- X -+ A)) (id) 
0 0 0 0 o 

iff (3 IY~I~ v(B))(3 IY21~ v(C)) ~ - X - ~  o Y2 ind. hyp., (cut) 
o o O O 

iff (3 I~Ic v(B))(3 IY21~ v(C)) IY1 o Y21_ I~;I def. _<, (V T), (--~ v) 
iff Ixle  v(B o C). 

- A = (/3 A C): use the induction hypothesis. 
- A = ( / 3 v C ) :  

I~;le ~(/3 v c )  
O o O O 

iff (3 I~ le v(B))(3 lyric ~(O)) (1~ v Y~I n I ; ) i= 
O O 

I~ v Y21 or I;)1~ ~(/3) or I;)le v(C)) 
O O O O 

iff 3 Y1 3 Y2 (}-gl ~ / 3  and Y2---~ C and 
0 0 0 0 0 

~- (Y1 V Y2)V X~-~Y1 V Y2) or 
O O 

b X--~/3 or X--+ C ind. hyp., def. fl 
O 

iff P X-+ (/3 V C) (V T), (v ~ ) ,  (cut), (id) (-+ v) 
iff b X --+ (B V C) (o T)(o -+). [] 

With the Truthlemma in our hands, we are in a position to prove complete- 
ness. 

THEOREM 4. (completeness) If X ~ A holds in every monoid model from 
M~A, then Fz~ X ~ A. 

Proof Suppose that ~/~n X ~ A. By the Truthlemma, this is the case 

iff in AdzA we have that [2~[~ v+(A). But this implies that v+(f2) ~ v(A), 
O O 

since IXIE v (X) .  It remains to be shown that in each case the underlying 
slomo of the intended model satisfies the conditions which correspond to the 
rules in A, i.e. 34_=,, C M=A .But this is a completely straightforward matter. 
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Consider by way of example the case of the structural rule E. It has to be 
shown that I A [ < [ A }. ] A I,i.e. [ A [ f3 I A-  A ] = l  A [. Now, using E i t  
can easily be seen that ~ -~  A v (A o A) +-+ A. [] 

Next, consider the following conception of an intended monoid model. Think 
of a piece of information as the deductive closure of a finite sequence of 
formula occurrences. The intersection of information pieces should then be 
nothing but set intersection, and the addition al �9 a2 of two pieces of informa- 
tion al, a2 with finite representations XI,  X2 should be the deductive closure 
of X1X2 ,  i.e. the deductive closure of the juxtaposition of their representa- 
tions. The empty piece of information would be represented by the set of 
all theorems, i.e. the deductive closure of the empty sequence. Where these 
considerations lead us is Do~en's (1989) construction of a canonical monoid 
model: 

DEFINITION 11. The canonical monoid model Ad~z ~ = ( I ' ,  . t  ~,, Y, vo) 

resp. M ~ a  = { I  t, .', A t, Y, v +, Vo} for EL is defined as follows, where q E 
P R O P  U {A_, ,,~ t, ~ T}: 

- I ' =  (a  [ S X ,  a = { A  1~-~.,, X ~ A}}; 
- if al = {A I ~-zz~ X1 -+ A} and a2 = {A ] ~-z~x X2 --+ A}, then 

a~ .' aa = { A  II-za X I X 2  ~ A}; 
- fY is set-intersection; 
- 1 ' =  { A  [bZA --~ A } ;  

- vo(q) = {a  e Z l q e .}; 
- v+(q)  = vo(q), with v+(_k) -= v+( ~ t) -=- v+( ,'~ V) ,  i fE  = C O S P L ;  

- v f f (q)  = {a e I IN  q e a}, with vo(_l_ ) = L i f e  = C O S P L .  

It can easily be shown that M ~  is in fact a monoid model for E and that M g , ,  
E M~,,. Assume for example C E A. Suppose that a = {A I~- X ---+ A}, 
X = A 1 . . . A n .  Since 

A I . . . A n A 1  . . . A n  -'+ A 
A t  o . . .  o A n A l  o . . .  o An. 7-* A 

X - - ~ A l . o . . . o A n  A l o . . . o A n - - ~ _ / i  
X --* A 

{ A  I1- X X  --+ A }  C_ { A  Ik X -+ A} ,  that is to say, a .  a < a. 

As it turns out, both constructions of canonical models are isomorphic and 
can therefore be identified: 
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OBSERVATION 1. There exists an isomorphism between the underlying slo- 
mos of .AA~ and Adz,,. 

Proof. The function h :  I '  , I defined by h({A  It-=~ X --. A}) = IJ~l 
is such an isomorphism. 1 - 1: Suppose that a = {A Iks~, X ~ A} r 

b = {B Iks~x Y ~ B}, but h(a) = h(b). Then ~-sa ) ~ t ~  and by (cut) 
and (T o), a = b. Onto: obvious. The homomorphism property is easy to 
establish. Let a = {A IFsA X --, A}, b = {B Iks,, Y ~ B}.  h(a .' b) = 

IX o y l = h ( a ) . h ( b ) . h ( a n ' b ) = { A  IkZA X ~ A } N { B  IF-z,, Y ~ B} 

= { C I k s A  X---~ Cand~-szx Y --* C} = {C It-szx ~( V Y--~ C},  by (T o), 

(v ~ ) . T h u s h ( a n ' b ) = l X V : ~ l = l . ~ l n l Y l = h ( A ) N h ( B  ). [] 

In conclusion we may say that the monoid semantics provides an informa- 
tional interpretation for a broad range of substructural propositional logics, 
including the limiting cases N - ,  N,  M P L ,  and I P L .  Different conceptions 
of deductive information processing within one family of formal systems nat- 
urally correspond to different conceptions of slomos as abstract information 
structures. Moreover, in (Wansing, 1993) it is shown that slomos constitute an 
exhaustive format of abstract information structures in so far as every propo- 
sitional connective which is definable in a certain higher-level proof-theoretic 
semantics is also explicitly definable in every model from an appropriate class 
of monoid models. 
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