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Summary. The present investigation deals with a two-layered mathematical model of blood flow through an 
artery provided with a cosine-shaped constriction. The model consists of a peripheral plasma layer free from 
red cells and a core region represented by a Casson fluid. The geometry of the interface between the plasma 
layer and the core region has been determined and compared with that of the constriction along the length of 
the tube. The theoretical results obtained in this analysis are the expressions for wall shear stress and pressure 
drop for variable plasma layer thickness. The effect of the variable plasma layer thickness on the flow 
characteristics has been shown graphically for different parameter values to enable a better understanding of 
the biomechanical problem. 

1 Introduction 

The presence of a constriction (medically called stenosis) in the lumen of an artery disturbs the 
normal blood flow and causes arterial diseases. About fifty percent of the total deaths of people 
are due to these diseases. The actual reason for formation of stenosis in the artery is not known; 
but its effect on the flow field in the tube has been studied by several workers. Many researchers 
have studied blood flow in the artery by considering blood as either Newtonian or 
non-Newtonian fluids. Since blood is a suspension of red cells in plasma, it behaves as 
a non-Newtonian fluid at low shear rate and the yield stress is non-zero at that stage. Bugliarello 
and Sevilla [1] and Scott Blair and Spanner [2] have pointed out that blood exhibits the nature of 
a Casson fluid in pathological conditions. So it is better to consider blood as Casson fluid in 
studying the flow field in stenosed arteries. 

Two-layered models of blood flow through stenosed arteries have been studied by Shukla et 
al. [3], [4]. The two-layered models considered in their analysis consist of a cell-free peripheral 
plasma layer and a core region which is a suspension of red cells in plasma. They have considered 
blood as being Newtonian or non-Newtonian fluids in both models. However, it has been 
experimentally verified that blood flowing through an artery consists of a peripheral layer of 
Newtonian fluid and a core of non-Newtonian fluid. So the models considered in [3], [4] are 
unrealistic. Chaturani and Samy [5] have taken a two-layered model in which the peripheral 
plasma layer is Newtonian in character and the central core of red cell suspension in plasma is 
represented by a Casson fluid. 

In the above-mentioned models the thickness of the peripheral plasma layer has been treated 
as constant. But actually it cannot be constant; it should change along the length of the stenosis. 
In the present investigation a two-layered model is considered, in which the peripheral plasma 
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layer behaves as Newtonian fluid and the core is represented by a Casson fluid with the 
supposition that the two fluids are immiscible. The effect of variable thickness of the peripheral 
layer on the flow characteristics of the problem is investigated for different combinations of the 
parameter values. 

2 Mathematical model 

Consider steady, laminar, one-dimensional, axially and fully developed flow of blood through an 
artery provided with a mild constriction. The constriction develops in the lumen of an artery in 
an axially symmetric manner and its height depends on the axial distance. The model considered 
here consists of two regions of which one region is a pheripheral plasma layer free from red cells 
and the other is a central core which is represented by a Casson fluid. It is also supposed that the 
fluids in both regions are immiscible. 

If ul and u2 are the axial velocities in the two regions, then the equations which govern the 
fluid motions in the plasma and core regions are respectively 

dul Kr 

dr 21q ' 
R(x) > r >= R~(x) (1) 

Y 1 dua _ 1 Kr  _%1/2  R l ( x )>=r>ro  (2) 
dr #2 

where 

@ 
K -  

dx 

1 
Zo = ~ Kro. 

(3) 

Here, To is the yield stress, ro is the radius of the plug and Rl(x) is the radius of the interface 
separating the two media, as shown schematically in Fig. 1. The quantities #l and /~2 are 
coefficients of viscosities in the respective regions and p is the fluid pressure. 

It should be emphasized that Eqs. (1) and (2) ensure that the shear stress varies linearly with 
r over the entire crosssection. The continuity of the shear stress across the interface r = R1 is 
thereby automatically assured. Since the shear stress is less than the yield stress % in the region 
0 -< r -< to, the fluid in this region is merely carried along by the fluid in the annular region 
Rl(x) > r > ro in which the shear stress does exceed the yield stress. Equation (2) is thus valid 
only in the latter region. 

R(x) ~ r Ra(xl- 

I ~ 1 1  " ~  2[ 

Fig. 1. Geometry of the model 
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The profile of constriction is described by 

Ro - 2 R o  l + c o s  , - l < x - < l  (4) 

where R(x) is the radius of the tube in the constricted region, Ro is the radius of normal tube, e is 
the maximum height of the constriction and 21 is the length. The boundary conditions for Eqs. (1) 
and (2) are the no-slip conditions 

u i = 0  at r---R(x) (5) 

ui = u2 at r = Rl(x) (6) 

at the tube wall and the interface separating the two media, respectively. 

3 Solutions of the problem 

The solutions of the problem described by Eqs. (1) and (2) subject to the boundary conditions (5) 
and (6) are obtained simultaneously. They are given by 

K (R 2 - r 2) (7) 
ui = 4#1 

and 

K I 4  1 1 K u2 = ~ 2  3 ~ ~ 1 7 6  (r3/2 -- R13/2) -- 2- (r2 -- R12) -- r~ -- Ri) + ~ (R 2 -- R12). (s) 

Let U be the velocity of the plug. Then the expression for U is obtained from (8) with r = ro as 

K I 1  4 1 1 K U =  ~ 2  R12 + r ~  ~ o o R i  3 /2 -  g r o  2 + ~ ( R  2 - R i 2 ) .  (9) 

The volumetric flow rates Qi and Q2 in the cell-free plasma layer and core region are given by 

R(x) 

Qi =27r ~ uirdr (10) 
Rl(x) 

and 

Rl(x) 
Q2 = rcro2U + 27r ~ uzr dr. (11) 

ro  

Substitutions oful and u2 from (7) and (8) into (10) and (11), respectively, give, after integration of 
the expressions for Q1 and Q2: 

I rKro  4 
Q1 - ( y 4  _ f 2 ) 2  (12) 

8#1 
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and 

rcKro 4 
Q 2 -  

168#1 

where 

y2 = R1/ro 

c~ = #1/#2 

f =  R/ro 

K. H a l d a r  a n d  H. I. A n d e r s s o n  

- - -  [21(~ - 2) y8 + 42f2y4 _ ~(48y7 _ 28y6 + 1)] (13) 

(14) 

are dimensionless quantities. El iminat ing the pressure gradient  K = - ( d p / d x )  between (12) and  
(13), one gets 

Q~ = 21(y 4 -f2)2/[21(c~ - 2) y8 + 42f2y4 _ c~(48y7 _ 28y6 + 1)]. (15) 
Q2 

In  the case of no stenosis R = Ro, R1 = R0 - h, h being the thickness of the p lasma layer, and 
the above relation becomes 

Q-Zt = 21(374 - f2)2/21(c~ - 2) 378 + 42f2374 - ~(48377 - 28376 + 1)1 (16) 
Q: 

where 

372 = (1 - 6)/fi, 6 = h/Ro (17) 

fl = ro/Ro, f i r=  1. 

Since the flow is steady and  there is no t ranspor t  of fluid from one med ium to the other  

th rough  the interface, therefore, the flow rates Q1 and  Qz are constants  and  hence Q1/Q2 is also 
constant .  This ratio maintains the same value in bo th  stenotic and non-s tenot ic  regions of 
a closed system. Hence we have on equat ing (15) and  (16) that  

yS _ c~1y7 + d2y6 + •3y4 _ 34  = 0 (18) 

where 

48c~m 62 = 7 
61 = 2 1 m ( ~ -  2 ) -  1 '  ~ al  

(21m + 1 ) f  2 am + f 4  
63 - 61, 64 = - -  61 (19) 

24~m 48c~m 

m = (374 --f2)2/[21(o: -- 2) 37s + 42fa374 _ ~(4837 7 _ 28.176 + 1)]. 

4 Wall friction and pressure drop 

The shear stress on the surface of the stenosis is given by 

~I ---- --#i 
k dr/,=R(~) 

(20) 
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Substi tut ing ul from (7) into (20) we have the expression for ra as 

1 dp (21) 
�9 1 = - 2  R ,Ix" 

By eliminating the pressure gradient  dp/dx between (17) and (21) we obta in  the following form of 

wall shear stress: 

4/qQ1 R 
Vx . . . .  (22) rc (R 2 - R12) 2" 

l f the  thickness h of the p lasma layer is assumed to be constant,  the relat ion (22) takes the form 

4#1Q~ R 
rc h2(2 R _ h) 2 (23) 

which in the absence of stenosis becomes 

~ ' 1 0  ~ - -  

4/qQ1 Ro 
rc �9 h2(2Ro _ h) 2 . (24) 

Therefore, the non-dimensional  form of shear stress on the surface of the stenosis for variable 

p lasma thickness is 

" l"  - -  

~1 f rl~(2 -- ~)~ 2 
�9 , o  - ( 2 5 )  

where 6 = h/Ro. 
Again, solving for (dp/dx) we have from (12) 

dp 8txlQ1 1 
- - - -  ( 2 6 )  dx ~ (R e - R12) 2 

which, on integration, gives the expression for the pressure drop  across the length of 

the stenosis as 

l 

Ap = Pl - P2 - 8]11Q'1 f dx  (27) 
rc (R 2 -- R12) 2 

- l  

where p = p~ at x = - l  and p = P2 at x = l. 

In the case of constant  thickness of the p lasma layer relation (27) becomes 

l 

81xlQa f dx 
(Ap)c-- 7zR~ [2R- -  1 2 " - z  Roo - ~  

(28) 

When there is no stenosis, (R/Ro) = 1 and the pressure drop  across the stenosis length is 

161alQll 
(Ap)o = 7rRo462( 2 _ 6) z . (29) 
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Then the dimensionless pressure drop D1 for variable peripheral layer is 

1 

(Ap) 6z(2 - ,5) z f dx 
D~ = (Apo--~) = 2I /P  [ fz  _ y,12. 

- I  

(30) 

5 N u m e r i c a l  resu l t s  and  d i s c u s s i o n  

The solution provided in Section 3 depends on the dimensionless axial position x/l and the four 

independent dimensionless parameters a =/~1//z2, fl = ro/Ro, 6 = h/Ro, and z/Ro. The auxiliary 
variable y2 = R1/ro, which is governed by the algebraic equation (18), should be confined to the 

interval from 1.0 to R/fiRo in order to assure that the radial extent R 1 of the Casson fluid does not 

exceed the local radius R(x) of the constriction and yet is greater than the radius ro of the plug. 
The relevant root  of Eq. (18) was calculated by means of the "secant method" for 20 equidistant 

values ofx/l  in the interval [ -  1, 0], thereby providing the variation of R1 and h = R - R1 along 

the constriction. The integral in Eq. (30) was subsequently obtained by the "trapezoid rule". The 
viscosity r a t i o ,  was 0.6 and the relative thickness 6 of the plasma layer upstream of the stenosis 

was 0.01 in all calculations. 

Tables 1, 2 and 3 give numerical results for the position of the interface Rl(x) and the local 

thickness h(x) = R(x) - R~(x) of the plasma layer in the range - 1  < x/l < O. Due to the 

symmetry of the problem about x = 0 the range 0 < x/l < + 1 was not considered. The tables 
show that the plasma layer thickness varies along the length of the tube for a particular value of 

fl and attains its minimum value at the throat of the stenosis. It is also seen that h decreases with 

increasing core radius fi for a fixed value of x/1. Moreover, for a given plug width fl the plasma 
layer is substantially thicker for the mild stenosis 8/Ro = 0.1 than in the case of a severe stenosis 

~/Ro = 0.5. 
The variations of the wall shear stress z and the pressure drop D~ with stenosis height are 

shown graphically for different values of fl (Figs. 2 and 3) and they are plotted in the same scale. 
The figures show that there are initially no appreciable changes in the solutions over a small 

range of 8/Ro. As e/Ro increases beyond this range the solutions begin to turn upwards and at 

higher values of e/Ro these solutions increase rapidly. Is is noteworthy that the thinning of the 
Newtonian plasma layer with increasing height e of the stenosis enhances the wall friction and the 

associated pressure drop. 

Table 1. (fl = 0.1, a/Ro = 0.1) 

x/1 R/Ro R1/Ro R/Ro -- R1/Ro 

- 1.0 1.00000 0.99000 0.01000 
- 0.9 0.997 55 0.987 58 0.009 97 
- 0.8 0.990 45 0.980 57 0,009 88 
- 0.7 0.979 39 0.969 65 0.009 74 
- 0.6 0.965 45 0.955 88 0.009 57 
- 0.5 0.950 00 0.940 63 0.009 37 
-0.4 0.934 55 0.925 37 0.00918 
- 0.3 0.920 61 0.91160 0.009 01 
- 0.2 0.909 55 0.900 68 0.008 87 
- 0.1 0.902 45 0.893 66 0.008 78 

0.0 0.900 00 0.89125 0.008 75 
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Table 2. (fl = 0.5, e/R o = 0.1) 
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x/1 R / R  o R1 /R  o R / R  o -- R i / R  o 

-- 1.0 1.00000 0.99000 0.01000 
-- 0.9 0.997 55 0.987 60 0.009 95 
- -  0.8 0.990 45 0.980 64 0.009 81 
--0.7 0.979 39 0.969 78 0.009 60 
-- 0.6 0.965 45 0.95611 0.009 34 
- -  0.5 0.950 00 0.940 95 0.009 05 
-- 0.4 0.934 55 0.925 79 0.008 76 
--0.3 0.920 61 0.91211 0.008 50 
--0.2 0.909 55 0.90125 0.008 30 
- -  0.1 0.902 45 0.894 27 0.008 17 

0.0 0.90000 0.89187 0.008 13 

T a b l e  3 .  ( f l  = 0 . 1 ,  e/R o = 0 . 5 )  

x / l  R / R  o R i / R  o R / R  o -- R i / R  o 

- 1.0 1.000 00 0.990 00 0.010 00 
- 0 . 9  0.987 75 0.977 92 0.009 85 
- 0 . 8  0.95225 0.942 85 0.00940 
- 0.7 0.896 95 0.888 23 0.008 71 
- 0 . 6  0.82725 0.81940 0.007 85 
- 0,5 0.750 00 0.743 09 0.006 91 
- 0.4 0.672 75 0.666 77 0.005 98 
- 0.3 0.603 05 0.597 90 0.00515 
- 0.2 0.547 75 0.543 24 0.004 50 
-0 .1  0.51224 0.50814 0.00409 

0.0 0.500 00 0.496 05 0.003 95 

29 

25 

21 

17 

~ '13 

~=0.6 
6=0.01 

2 

5 

0 0.1 0.2 0.3 0.4 0.5 
E/Ro Fig. 2. Variations ofz with e/Ro for different values offl 
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c~= 0.5 

6 =0.01 

0.1 0.2 0.3 0.4 0.5 

E/Ro - -  :,' Fig. 3. Variations of D1 with e/Ro for different values of fl 

It is also observed that for a particular value of e/Ro the wall shear stress or pressure drop 
increases with increasing fl and the deviation between results for any two consecutive fl-values is 
significant. It is also interesting to note that the wall shear increases more rapidly than the 
pressure drop. 

From the above discussions the following conclusions can be drawn: 
(i) The plasma layer thickness varies along the length of the tube of stenosis and attains its 

minimum value at the throat of stenosis. 
(ii) The wall shear stress and pressure drop increase with increasing plug radius and the 

former increases more rapidly than the latter. 
These conclusions are very important from the physiological point of view. 
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