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Summary. In the present paper, the steady flow of an electrically conducting, viscous, incompressible fluid 
bounded by two parallel infinite insulated horizontal plates and the heat transfer through it are studied. The 
upper plate is given a constant velocity while the lower plate is kept stationary. The viscosity of the fluid is 
assumed to vary with temperature. The effect of an external uniform magnetic field as well as the action of an 
inflow perpendicular to the plates together with the influence of the pressure gradient on the flow and 
temperature distributions are reported. A numerical solution for the governing non-linear ordinary 
differential equations is developed. 

1 Introduction 

The hydrodynamic channel-flow is a classical problem for which exact solutions can be obtained 
[1]. The introduction of electromagnetic phenomena to the fluid dynamics problem establishes 
new physical phenomena. Exact solutions for the flow and temperature fields of simplified 
problems can be found in many references [2] - [6]. The governing equations for laminar flow in 
a channel are the Navier-Stokes and the energy equations. When viscosity is assumed to be 
temperature dependent, these equations are mutually coupled and become nonlinear. So far 
there are only few studies of channel-flow problems which include the effects of viscosity 
variation or viscous dissipation. The hydrodynamic problem is solved by assuming certain 
property laws [7], [8], or by means of a linear perturbation theory to account for variable viscosity 
effects and to avoid the coupling of the governing equations [9]. 

In the present work, the steady flow of an electrically conducting, viscous, incompressible fluid 
between two parallel infinite insulated horizontal plates under the influence of an external 
uniform magnetic field directed perpendicular to the plates is studied. The viscosity of the fluid is 
assumed to vary exponentially with the temperature, and the two plates are kept at different 
constant temperatures. The fluid motion is also subject to a uniform suction and injection at the 
upper and lower plates respectively. The upper plate is given a horizontal velocity, and a pressure 
gradient is applied in the horizontal direction. The flow and temperature distributions are 
governed by the coupled set of the continuity, momentum transfer, and energy equations. The 
resulting non-linear ordinary differential equations are solved numerically using the finite 
difference approximations. The effects of the external magnetic field, pressure gradient, inflow, 
and the temperature dependent viscosity on both the flow and temperature distributions are 
studied. 
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2 Basic equations 

A Cartesian frame of axes is located with its origin on the lower plate, its x-axis along the main 
flow. The y-axis is perpendicular to the two plates. Since the two plates are infinitely extended in 
the x and z directions, the problem is essentially one dimensional and the x-component fluid 
velocity u and temperature T are functions of y only. The no-slip condition implies that at the 
upper plate the x-component velocity of the fluid is equal to the velocity of the plate, and at the 
lower plate is equal to zero. The vertical component of the fluid velocity is always constant and 
equal to the suction velocity. The value of the uniform magnetic field, which is directed along the 
y-axis, is assumed to be unaltered by making the necessary assumptions that guarantee the 
neglection of the induced electric and magnetic fields [2]. The electromagnetic effect is to restrain 
the motion of the flow by imposing a force which is proportional to the velocity. The flow is also 
subjected to a pressure gradient in the x-direction. At the upper and lower plates, the fluid 
temperatures are equal to the temperatures of the plates. 

The continuity, momentum transfer, and energy equations when applied to the fluid 
give [2], [3] 

~Vw dy - d-x + dy # - a B o Z u  (1.1) 

dT d2T (du'] 2 
OCVw ~y = K - -  + # + aBoZu a (1.2) 

dy 2 \ d y /  

where ~ is the fluid density, c the specific heat of the fluid, a the electric conductivity of the fluid, 
B0 the magnetic flux density, K the thermal conductivity of the fluid, Vw the suction velocity, and 
# the fluid viscosity, defined as # = #o#(T), #o = 0vo. 
The boundary conditions are 

u = 0  and T = T 1  at y = 0  

u = u l  and T = T 2  at y = h .  

We replace the variables by the following dimensionless variables: 

y* = y/h, u* = uh/vo, T* = ( T -  T1)/(T2 - T1), ul* = ulh/vo = Re 

Vr = #c/K,  Ec = Vo2/(h2c(T2- TO), Ha = B o h ~ ,  G = - d p / d x ,  $ = vwh/vo. 

Equations (1) become, in terms of these dimensionless variables (star dropped), 

du d2u 
-~y = G + #(T) dy-- ~ + 

dv(T) du 
Ha 2 (2.1) 

dT  1 d2T (du~ 2 
$ dy - Pr @2 + Ec #(T) \ d y ]  + Ec Ha 2 u 2 (2.2) 

where Re, Pr, Ec, and Ha are the Reynolds-, Prandtl-, Eckert-, and Hartmann numbers 
respectively. G and $ are the pressure gradient factor and the suction parameter, respectively. 
The imposed boundary conditions are 

u = 0  and T = 0  at y = 0  (3.1) 

u = R e  and T = I  at y = l .  (3.2) 
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By assuming the viscosity to vary exponentially with the temperature the function p(T) takes the 
form [10] 

#(T) = exp ( - a T )  (4) 

where "a" is defined as a viscosity parameter = In ~1//~2), and where/~a and/~2 are two values for 
the coefficient of viscosity evaluated at temperatures 7"1 and Tz, respectively. 

Equations (2) represent a system of coupled and non-linear equations which needs to be solved 
numerically. 

3 Numerical solution 

The system of non-linear ordinary differential equations (2) is solved under the boundary 
conditions (3) by a two-point finite difference technique [11]. We first write this system as a set of 
first order equations by introducing the new dependent variables Wand H defined by W = du/dy 

and H -- dT/dy. In terms of the new variables and using Eq. (4), Eqs. (2) take the form 

d W  
$ W = G + exp ( - a T )  - ; -  - a exp ( - a T )  H W  - Ha z u, 

ay 

1 dH 

~ H - Pr dy 
+ Ec exp ( - a T )  W 2 + Ec Ha z u z, 

with the boundary conditions (3). 
The non-linear differential equations are solved iteratively. The computational domain is 

divided in the y direction into N intervals. Finite difference equations relating the variables are 
obtained by writing the equations at the mid point of the computational cell and then replacing 
the different terms by their second order central difference approximations. The resulting 
difference equations are solved numerically using Thomas' algorithm [11]. 

4 Results and discussion 

Calculations have been carried out to study the flow between two infinite parallel plates. Velocity 
and temperature distributions have been represented under variable conditions, namely the 
magnetic field, pressure gradient, inflow normal to the plates, and temperature dependent 
viscosity. In all the foregoing calculations, the nondimensional velocity of the upper plate ul is 
taken to be unity which corresponds to a unit Reynolds number. 

Figure 1 shows the velocity distribution u against the vertical distance y for different values of 
the pressure factor G ranging from - 5 to + 5 in the case when both the magnetic field and the 
suction are turned off and the viscosity is temperature independent. For G = 0, the velocity 
distribution is linear as expected. For G = - 5 ,  reversed flow is marked for circulation depth 
equal to 0.22. 

Figure 2 represents the velocity distribution for different values of the Hartmann number 
ranging from 0 to 10 at constant pressure gradient (G = -5) .  The condition of zero magnetic 
field is released, while both the suction parameter $ and the viscosity parameter "a" are still set 
equal to zero. The figure indicates that the magnetic field has a marked effect on restraining the 
reversed flow and limiting the flow recirculation depth. 
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gradient on a velocity distribu- 
tion with constant viscosity 
(Ha = O, ~ = 0) 

U 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0E 

-0.2 

-0.4 o12 0'.4 o'.6 i 
y 

..-o- Ha:0  ~ H a : 2  + Ha=/, - - •  Ha:10 

I 

1.2 Fig. 2. The influence of the ma- 
gnetic field on the velocity distri- 
bution (G = - 5 ,  ~ = 0) 

u 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 I 

-0.2 

-0.4 - -   o'.2 0.6 0'.8 
y 

--o- $=0 ~ $=1 ~ $=5  - •  $=10 

112 Fig. 3. The influence of the blo- 
wing (Vw > 0) on the velocity 
distribution (G --- - 5 ,  Ha = 0) 

Figure 3 shows the influence of suction inflow on the velocity dis tr ibut ion with G = - 5 ,  

Ha = 0, and a = 0. Increasing the inflow parameter  $ up till 5 increases the reversed flow 

depth, but  for the case $ = 10 a reduction in the recirculation flow depth is indicated in the 

figure. 

Figure 4 shows the effect of viscosity on the velocity distr ibution for zero values of the pressure 

gradient  factor G, Har tmann  number  Ha, and suction parameter  $. Changing the viscosity 

parameter  from 0 to 2 has a marked  effect on the velocity profile. Increasing the viscosity 

parameter  reduces the mass flow rate represented by the area between the velocity curves and the 

y-axis. In some fluids, the viscosity increases with temperature  [10], that  is, the viscosity 
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parameter  has a negative value. This case is examined and the results shown in the figure indicate 

that  the mass flow rate increases as the viscosity parameter  changes from 0 to - 0 . 5 .  

Figure 5 represents the influence of H a r t m a n n  number  with variable viscosity for the pressure 

gradient  factor G = - 5 and the viscosity paramete r  a = 0.5 while the suction parameter  $ = 0. I t  

can be seen that  increasing the H a r t m a n n  number  reduces the reversed flow depth. Compar i son  

has been made  for the case of  Ha = 0 between the cases with a --- 0 and a = 0.5. The figure shows 

that  increasing the viscosity paramete r  "a"  increases the recirculation flow depth. 

Figure 6 shows the effect of the viscosity paramete r  on the temperature  dis tr ibut ion for G = 0, 

Ha = 0, and $ = 0. I t  is indicated from the figure that  increasing the viscosity parameter  "a"  



220 H.A. Attia and N. A. Kotb: MHD flow between two parallel plates 

decreases the temperature. This reduction in the temperature results from the reduction in the 

viscosity and consequently the viscous dissipation term. For  large values of the viscosity 
parameter "a", a -- 2, the viscous dissipation term vanishes and the temperature changes linearly 

with the distance y. On the other hand, when the viscosity parameter is negative, a = -0 .5 ,  the 

temperature increases as a result of increasing the viscous dissipation effect. 

5 Conclusions 

A numerical solution of the momentum transfer and energy equations has been developed using 

the finite difference method for the flow between two parallel infinite plates. The flow of the 

electrically conducting, incompressible fluid has been considered to be laminar and fully 

developed. The velocity and temperature distributions have been presented under the effect of an 
external uniform magnetic field, pressure gradient, inflow normal to the plates, and temperature 

dependent viscosity. A comparison of the velocity and temperature distributions has been made 
for the cases of constant and variable viscosity. 
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