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Summary. Arbitrarily nonlinear stress-strain behaviour in both shear and peel for adhesive are utilised to 
formulate two coupled nonlinear governing equations for an adhesive-adherend sandwich of single-lap type. 
For a balanced adhesive-adherend sandwich, the two equations can be integrated, and simple formulas for 
bond strength are developed for characterising pure shear, peel and mixed failure in adhesive. These formulas 
define the bond strength in terms of the maximum strain energy density in the adhesive. It is shown that the 
product of the adhesive strain energy density and the adhesive thickness is equal to the energy release rate J of 
mode I, mode II and mixed fracture. 

1 Introduction 

Lap joint theories for adhesive-bonded single-lap joints have been developed to analyse the 
stresses in the adhesive and to predict the strength of the joints. Basing on the pioneer work by 
Goland and Reissner [1], many authors have made various assumptions regarding the behaviour 
of the adhesive and adherends to yield tractable differential equations, and have investigated the 
effects of various factors on the stresses in the adhesive layer and the joint strength [2]-  [13]. 
These factors include adhesive plasticity [2], large deformation and rotation [3], [4], satisfaction of 
the stress free requirement at the adhesive end [5], spew fillet [6], bondline thickness [8], etc. It has 
been shown that, in addition to the large deformation, adhesive plasticity is another important 
factor and needs to be taken into account in order to appropriately predict the joint strength. 
While implement of nonlinear adhesive behaviour in the finite element model for the joint is 
routine, it is relatively difficult, if not impossible, to obtain analytical solutions for the joint when 
the nonlinear adhesive properties are considered. Hart-Smith [2] modelled the adhesive shear 
behaviour with an elastic-plastic model and assumed linear elastic behaviour for the peel in his 
analytical study, and obtained a simple formula for predicting the potential bond shear strength 
for adhesive-bonded single-lap joints. In his formula the potential bond shear strength is 
characterised in terms of the adhesive shear strain energy density. Due to the complexity involved 
when considering the nonlinear adhesive behaviour, there are few literature available on 
analytial solutions of the adhesive-bonded joints of single-lap type. 

Strength of adhesive-bonded joint has also been predicted using fracture mechanics 
approach [9], [14], [15], [16]. Recently, Fernlund et al. [17], [18], [19] and Papini et al. [22] proposed 
an engineering approach to predict the fracture loads for adhesive joints. The approach based on 
the premise that the in-situ strength of the bondline can be characterised by a fracture envelope 
for a specific adhesive system. The fracture envelope determined the critical energy release rate as 
a function of the mode of loading using a single equal adherend beam specimen [20], [21]. They 
employed the concept of adhesive-adherend sandwich proposed by Bigwood and Crocombe [10] 
where the bonded overlap is isolated from the surrounding structures. Two methods for mode 
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partitioning proposed by Sou and Hutchinson [23] and Williams [24] were utilised to calculate 
the mode ratio. It  was shown that  for the equal adherend single-lap joints, the average difference 
between measured and predicted fracture loads was 5% only [19]. 

In this study the arbitrarily nonlinear stress-strain curves in both  shear and peel are used for 
the adhesive in formulation of the governing equations for both  shear and peel strains in an 
adhesive-adherend sandwich [10]. It  is assumed that  the adhesive-adherend sandwich is sub- 
jected to a given load combinat ion at both  ends. For  the equal adherend sandwich, the two 
nonlinear governing equations are decoupled and then integrated to develop simple formulas of 
bond strength for predicting pure shear, peel and mixed failure in adhesive. The relationship 
between the fracture load predicted using J integral and the present bond strength is also 
discussed. 

2 Problem formulation 

Consider an adhesive-adherend sandwich subjected to a combinat ion of loading at the ends of 
the sandwich, as shown in Fig. 1. The sandwich consists of two adherends and a thin adhesive 
layer. The adherends are modelled as cylindrically bent plates and the adhesive as an interlayer 
capable of transmitting both peel (tensile) and shear forces. It  is assumed that  the adhesive 
exhibits a nonlinear stress-strain behaviour in both  peel and shear while the adherends behaves 
elastically. For  an infinitesimal element as shown in Fig. 2, we have the following fundamental  
governing equations: 

For  the adherend 1 and 2, the equilibrium equations are: 

dN1 dQ1 dM1 el 
+ z = 0 ,  + 0 = 0 ,  o - -  0 

dx dx dx "~1 + 2"c  

dN2 dQ2 dM2 t2 
- - - - ' C = 0 ,  - - - - 0 " = 0 ,  - - - Q 2 +  z = 0  
dx dx dx -2 

(la) 

( lb)  

where Ni, Q, and M~ (i -- 1, 2) are the longitudinal membrane  forces, the transverse shear forces 
and the bending moments  per unit width for the adherends. 

The longitudinal membrane  forces N~ (i = 1, 2) and bending moments  Mi (i = 1, 2) for the 
adherend 1 and 2 can be expressed with the relevant longitudinal displacements ul (i = 1, 2) in the 
x direction and the deflection w~ (i = 1, 2) as follows: 

A. dul dZwi 
N~ = ~ dx '  Mi = - D ,  ~ x  2 (i = 1, 2) (2) 

where A~ = Eih and D~ = E~ti3/12 (i = 1, 2) are the membrane  and bending stiffness of the 
adherends. 

For  adhesive, the peel stress ~ and the shear stress z in the adhesive layer are assumed to take 
the following form: 

= a(e), z = z(7) (3) 

where cr(e) and z(y) are arbitrary functions of e and 7, respectively, as shown in Fig. 3, and could be 
the shear stress-strain curve of the adhesive measured using the thick adherend lap shear test [25] 
or the napkin ring shear test [26], and the tensile stress-strain curve of the adhesive measured 
using the neat adhesive tensile test or butt  joint test [9]. 
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The peel and shear strains in the adhesive are assumed to be constant through the adhesive 
thickness and defined as [11, [21, [11] 

wz - wl  u2 - ul 1 ( dwl dw~.\ 
g --  , 7 ----- - -  q- L t l  q- /72 - - = |  " (4) 

The equations in Eqs. (1)-(4) are the fundamental governing equations for the adhesive- 
adherend sandwich. Differentiating 7 three times and e four times with respect to x and noting 
Eqs. (1)-(3), we can rewrite Eqs. (1)-(4) in terms of the shear and peel strains as follows: 

d37 dz 
dx  3 e l  dxx e2 O" = 0 ,  (5) 

d48 dz 
dx- ~ + c~a dxx + a~o- = 0, (6) 

where: 

1 ( i 1 tl 2 
e1=-) -_~-~1+~+4--~-1  + 4 ~ 2 ] ,  (7.1) 

e* = t + " (7.3) 

Equations (5) and (6) are two coupled second order differential equations of the shear strain 7 and 
the peel strain e, and do not permit a general closed-form solution when the adhesive is assumed 
to behave nonlinearly as defined in Eqs. (3). However, a general solution can be obtained when 
the adhesive exhibits linearly elastic behaviour. 

When both adherends have the same thickness and material properties, the joint becomes 
a balanced one. In this case, e2 = ea = 0, and Eqs. (5) and (6) are decoupled and can be simplified 
as  

d37 dz 
dx  a Cqdxx=O (8) 

d48 

dx 4 + ega = 0 (9) 

where 

2 ( 1 t12~ 2 

 4=tD  (10) 

By assuming an ideal elastic-plastic stress-strain behaviour in shear (see Fig. 3 a) and a 
linearly elastic stress-strain behaviour in peel for the adhesive, Hart-Smith [2] obtained an 
analytical solution for Eqs. (8) and (9). Once again because of the presence of the adhesive 
nonlinearity, Eqs. (8) and (9) do not permit a closed-form solution in general. However, similar to 
the case of double lap joints [28], simple explicit formulas can be obtained for defining the 
ultimate load or the load combination factor without completely solving Eqs. (8) and (9). 
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3 Bond shear strength for balanced joints 

Bond shear strength is defined as the ultimate load or load combination factor when shear failure 
occurs in the adhesive layer. Using the maximum shear stress or strain criterion, shear failure is 
assumed to occur when the maximum shear stress or strain in the adhesive reaches its allow- 
able. 

To develop the expression of bond shear strength for a balanced sandwich, differentiating the 
shear strain ~ defined in Eq. (4) with respect to x twice and noting Eqs. (1) to (3), we find 

d27 ~1"@)- tl 
dx-- ~ = ~ (Q1 + Q2). (11) 

Equation (11) is identical to Eq. (8) when differentiating it with respect to x once more and using 
the second equilibrium equations in the equilibrium equations given in Eqs. (1). 

Multiplying 2 (dT/dx) on both sides of the Eq. (11) and rearranging the equation yields 

(dT y ta 
d \dxxJ = 2a~z(~:) dy - tD1 (Qa + Q2) aT. 

Integrating the above equation with respect to (d~:/dx) 2 for the first term and with respect to 7 for 
others and noting that Q1 + Q2 is constant (It is assumed that there is no distributed lateral load 
acting on the top and bottom surfaces of the sandwich), we find the following approximate 
expression for the joint with sufficiently long overlap: 

? 

~x,] ---= 2al "c(~:) dy - ~ (Q1 + Q2) 7. (12) 

0 

Equation (12) can be physically interpreted as: the slope of the shear strain distribution at any 
point in the adhesive is related to the shear strain energy density in the adhesive computed using 
the shear strain at that point and the work done by the transverse shear forces on the shear strain 
in the adhesive. 

Using Eqs. (2) and (4), we can express the slope of the shear strain in terms of the longitudinal 
membrane forces and the bending moments in the adherends, and furthermore rewrite Eq. (12) 
as follows: 

? 

N2 -- N1 tl(M~ d- M2) + (Q~ q- Q2) ? = 4t + z(?) dy. (13) 

0 

The integration on the right hand side of the above equation is the area under the shear stress- 
strain curve or the shear strain energy density. Equation (13) reveals the relationship among the 
shear strain and the shear strain energy density in the adhesive, the longitudinal membrane 
forces, bending moments and the transverse shear forces in the two adherends at any point. 

For an adhesive-adherend sandwich subjected to the combined loads as shown in Fig. 1, 
shear stress or strain always attains its maximum at one of the two ends of the model. Let us 
assume that, for all later discussion, shear stress or strain reaches maximum at the end of x = - l .  
When the loads acting on the adherends are determined from a global analysis without 
considering adhesive behaviour, the shear strain in the adhesive layer can be determined using 
Eq. (13). On the other hand, when shear failure occurs in the adhesive layer at the left end of the 
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sandwich, the maximum shear strain reaches its allowable 7 . . . .  Therefore by substituting the 
combined loads at the end of x = - l ,  we can determine the bond shear strength by 

~max 

16 ~ 2D1 71- ~ 1  ( 0 1 -  -~ Q 2 - )  '~max = t "['(7) dy (14) 

o 

where the bond shear strength can be determined by solving Eq. (14) for the ultimate load or load 
combination factor. Evidently, the bond shear strength is expressed in terms of the maximum 
shear strain and the product of the adhesive thickness and the maximum shear strain energy 
density. 

When the total transverse shear force is zero, namely, Q1- + (22- = 0, Eq. (14) can be 
simplified as 

7max 

16 ~ 2D1 _] = t z(7) dy. (15) 
0 

In this case, bond shear strength can be determined in terms of the maximum shear strain energy 
density in the adhesive. Equation (15) can be used as an approximation of Eq. (14) for some lap 
joints where the transverse forces are less significant than the membrane forces and bending 
moments, for example, for these joints with relatively long unsupported adherends. Another 
point worth noting is that, when there are no transverse shear forces and bending moments 
acting at the ends of the model as shown in Fig. 1, Eq. (15) becomes identical to the formula given 
by Tong [30] for adhesive-bonded double-lap joints of balanced stiffness. 

As an example, let us consider an End Notched Flexure (ENF) adhesive bonded specimen 
simply supported at both ends and subjected to an lateral vertical load P at the midpoint. The 
non-zero loads at the end of the adhesive layer are the bending moments and the transverse shear 

forces per unit width i.e., M1-  + M 2 -  = Pa/2, Q1- + Q 2 -  = P/2, where a is the length of the 
debonded section. In this case, Eq. (14) becomes 

ymax 

3P2a 2 3tP f 
64D~-T + 1 T i  Ymax = t "g(])) dy. 

0 

If the shear strain 7r.ax on the left hand side of the above equation is approximated by 
Ym,x = P/2Gtk, where G is the shear modulus and k = 5/6 is the shear correction factor, the above 
equation can be rewritten as 

ymax 

3PZa2 1 + = t z(y) dy. 
64D1 5Ga2] 

0 

It is noted that the terms on the left hand side of the above equation are identical to these in the 
formula of the strain energy release rate of mode II Jnc given by Carlsson et al. [28]. For materials 
and geometries that result in neglecting Et12/Ga 2, for example, when a > h, the above equation 

can be simplified as 

ymax 

t f z(?) d7 = 3p2a2 
64Di 

0 

(16) 
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which is identical to the formula of the strain energy release rate of mode II J~tc given by Russell 
and Street [29], namely, 

~ m a x  

t f z(y) dy = 3p2a2 
64D1 

0 

= J i i c .  (17) 

Hence it is revealed that for a given load P per unit width the energy release rate of mode II is the 
same as the product of the shear strain energy density and the adhesive thickness. Because both 

)*max 

JIlc and t ~ z(~) d7 are intrinsic material properties, the terms on the left hand side of Eq. (14) 
o 

can be used to calculate the Mode II component of the fracture energy for the adhesive-adherend 
sandwich subjected to a combined loading. This conclusion was found to be true for linear [27] 
and nonlinear [26] adhesive shear behaviour. It should be borne in mind that the above 
conclusion is applicable only when the adhesive layer is thin and the shear strain in the adhesive 
layer can be approximated as constant across the adhesive thickness. 

4 Bond peel strength for balanced joints 

Bond peel strength is defined as the ultimate load or load combination factor when the peel (or 
tensile) failure occurs in the adhesive layer. Using the maximum tensile stress or strain criterion, 
peel failure is assumed to occur when the maximum tensile stress or strain in the adhesive attains 

its allowable. 
To characterise the bond peel failure for a balanced sandwich, let us multiply & / d x  on both 

sides in Eq. (9) and rewrite the equation as follows 

(d% ae 
d \dx3 j + & = 0. 

Integration with respect to the state variables, namely, dag/dx 3 for the first term and e for the 

second term, yields 

1 (d%'~ z de d3e f 
\ ~ x  2) dx dx a = ~ a(e) de. 

0 

By expressing d2e/dx 2 and dae/dx 3 in terms of the bending moments and the transverse shear 

forces, we find 
g 

(M1 -- M2) 2 -- 2Dlt(Qt - Q2) dx = 4D~t r de. (18) 

0 

Equation (18) established the relationship amongst the slope of the peel strain distribution and 
the peel strain energy density in the adhesive, and the bending moments and the transverse shear 
forces in the adherends. This relationship is valid for any point along the adhesive layer in the 
adhesive-adherend sandwich. 

When the peel strain reaches its allowable e . . . .  peel failure occurs in the adhesive at one end 
of the adhesive-adherend sandwich. Assuming that failure occurs at the left end, the bond peel 
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strength can be determined from the following equation 

g m a x  

- -  - = t cr(e) de .  1 ( M ~ -  - M 2 - )  2 ~ ( Q ~ -  - Q 2 - )  ~ . . . . . .  
4D1 

0 

(19) 

When Q I -  - Q2- = 0, Eq. (19) can be simplified as 

~ m a x  

1 ( M l -  - -  M 2 - )  2 t f a(e) de. 
4D1 

0 

(20) 

In this case, bond peel strength can be characterised in terms of the maximum peel strain 
energy density in the adhesive. Equation (20) can be regarded as an approximation of Eq. (19) 
for some lap joints where the transverse shear forces is less significant than the bending 
moment components. For example, this approximation is applicable to those joints in which 
the unsupported parts are relatively large. Hart-Smith [2] and Oplinger [3] assumed 
dwl/dx = dwz/dx (this assumption implies an approximation of de/dx = 0) at the ends when 
determining the bending moments acting on one adherend at the ends of the overlap for 
single-lap joints. 

As an illustrative example, let us consider a Double Cantilever Beam (DCB) specimen. In this 
specimen, a predominantly mode I loading can be realised by applying the vertical loads at the 
ends of the two debonded adherends. As the loads are the same in magnitude and opposite in 
direction, the non-zero loads at the end of the adhesive layer are the bending moments and the 

transverse shear forces per unit width, e.g., M1-  = - M 2 -  = Pa, Q1- = -Q2-  = P. Hence we 
have 

g m a x  

- -  - t P  = t a ( e )  de. 
D1 

0 

After imposing the built-in conditions [19] at the end of the adhesive layer, i.e., dwl/dx = 
dw2/dx = O, because of symmetry about the adhesive centerline, we find 

g m a x  

f p2a2 
t ,~(e) de  = D--T- 

o 

which is identical to the formula for computing the critical energy release rate of mode I Jm, 

namely, 

s  

f p2a2 
t a(e) de - D1 

0 

- J ~ c .  (21) 

Equation (21) reveals that the energy release rate of mode I is the same as the product of the peel 
~ m a x  

or tensile strain energy density and the adhesive thickness. Because both J1c and t ~ a(e) de are 
o 

inherent material properties, the terms on the left hand side of Eq. (20) can be used to calculate the 
mode I component of the energy release rate for the sandwich shown in Fig. 1. Edde and 
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Verreman [27] considered the linear adhesive behaviours and obtained 

2 tO'ma x 
G I  c - -  2E~ 

where Ea is the Young's modulus of the adhesive, a~,,  is the maximum tensile stress. Their result is 
a special case of the present one. 

5 Bond strength for balanced joints 

For an adhesive-adherend sandwich, both shear and peel strains usually exist simultaneously in 
the adhesive layer. Bond strength of the adhesive failure can be determined using one of the 
following two criteria: 

Limit criterion: bond failure is assumed to occur when the less of the bond shear and peel 
strength is attained. 

Interactive criterion: bond failure is assumed to occur when the maximum strain energy 
density in the adhesive attains its allowable W~ for a combination of shear strain 7c and peel strain 
ee, namely, 

ye ~e 

~(7) dy + ~ a(~) de = W/,c + Ww = W~0p). (22) 
0 0 

Where W~(W) is bond strength envelope defined by the critical strain energy density in the 
adhesive layer corresponding to the combination of the shear and peel strains. Similar to the 
mixed-mode fracture, the phase angle, which is a measure for the combination of shear strain 
Yc and peel strain er or the strain energy density ratio, is defined as 

~p = arctan ~ _ _  = arctan - - ,  (23) 
Wic ~ ica(~) de 

where Yc and ec are the critical shear and peel strains when the adhesive failure occurs because the 
maximum strain energy density in the adhesive reaches its allowable W~. 

Consider an arbitrary load combinations as shown in Fig. 1, failure occurs at the left end of 
the overlap when 

At [N2--N1- tt(Ml-+M2-)] 2 3t 
16 ~ 2D~ + ~ (Q~- + Q2-) W 

1 t d e -  
+ ~ (M1- - M2-)  2 - ~ (Qi-  - Q2-) dxx . . . .  = tWo(v) (24.1) 

V = arctan 1 2D1 ] 
(Q1 + Q2-) 

t de - (24.2) 
( M ~ -  - M ~ - )  ~ --  ~ (Q~-  - Q ~ - )  ~ . . . .  
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where de/dx] . . . .  is the slope of the peel strain distribution at the location where peel strain equals 

to its critical value. 
When dropping off the contributing terms related to the transverse shear forces, the above 

equation can be simplified as 

A, [NE-~ N,- t l ( M , - +  ME-!] 2 1 
16 L A1 2D, A + 4TT~ ( M , -  - M2-)  2 = tW~(~o), (25.1) 

/A~D, [ N 2 -  N~ t~(MI + M2!] 2 

= arctan , /  A1 2D1 (252) 1r 
~ 4(M~ -- M2) 2 

In the previous section, we have demonstrated the equivalence between the energy release rate of 
mode I or II  and the product of the adhesive thickness and the strain energy density in peel or 
shear, respectively. In order to demonstrate the equivalence in the case of mixed loading, as an 
illustrative example, let us consider the double cantilever beam (DCB) specimen for which 
a mixed mode loading was realised using a novel load jig [20]. The load jig consists of a link-arm 
system. By altering the geometry of the link-arm system, the load jig provides a variety of ratios 
between the transverse shear forces, Ft and F2, acting on the upper and lower adherends of the 
specimen. The load jig is statically determinate, and the loads acting on the adherends at the end 

of the adhesive layer are given as: 

QI- = Ft, Q2- = F2, M1- = Fla, M2- = F2a 

where a is the length of the debonded section in the DCB specimen. In this case, the strain energy 
density and the strain energy density ratio are given by 

a2(7F12 + 7F22 - 2F1F2) 3t t de 
tW 16D, + ~ (F, + F2) 7c - ~ (Ft - F2) dxx . . . .  (26.1) 

[ 3a 2 3t 
/ / (r ,  + + + 

~P = arctan ~ a ~ - - - - - -  t - - - - -  d x~ . . . .  " (26.2) 
(FI - F2) z - ~ (F, - F2) 

After neglecting the contributing terms related to the transverse shear forces for the case of 

a > tl, the above equation can be rewritten as 

(Fla)2 [ (Fzy_ ( F2y1 (27.1) t W -  ~ 1 + \~--~1 / 1 + ~ / j ,  

= arctan (27.2) 

The formulas in Eq. (27) for computing the strain energy density and determining the strain 
energy density ratio are the same as Eqs. (3) and (4) for calculating the mixed-mode energy release 
rate and the related phase angle given by Fernlund and Spelt [20]. It has been shown that (a) the 
product of the strain energy density and the adhesive thickness is equal to the mixed-mode 
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energy release rate for an adhesive bonded specimen; (b) the strain energy density ratio is 
identical to the mode ratio of the mixed mode I and mode II fracture. It is thus demonstrated that 
there exists a equivalence between the fracture envelope Jc0P) developed in [20] and the bond 
strength envelope W~0p ) t. 

6 The relationship between bond strength and fracture load 

In the previous section, it has been shown that the bond strength envelope t l/V~0p) is the same as 
the fracture envelope Jc(~) that was generated using the DCB specimen subjected to a combined 
loadings [20]. In the following, let us consider these lap joints for which the contributing terms 
related to the transverse shear forces can be neglected, and discuss the relationship between the 
failure loads predicted by the present bond strength approach and the fracture mechanics 
method [17]- [22]. 

When neglecting the contributing terms related to the transverse shear forces, the product of 
the adhesive strain energy density and the adhesive thickness, for an adhesive-adherend sand- 
wich subjected to a combined load as shown in Fig. 1, can be written as 

7(M1-)2 + 7(M2-)z _ 2 M r - M 2 -  ta(M~- + M2-) (Nz- - N~-) t W -  (N2- - N a - ) 2  + 

16AI 16D1 16Da 
(28) 

we can rewrite Eq. (30) as follows 

(Nz -- N1) 2 7M12 + 7M2 2 -- 2M1M2 h(M1 4" M2) (N2 - N1) 
a - + - ( 3 1 )  

16A1 16D1 16D1 

Noting that the membrane forces and the bending moments Ni and Mi (i = 1, 2) equal to N~- and 
Mi-  (i = 1, 2), respectively, Eqs. (28) and (31) reveal that the energy release rate J is equal to the 
product of the strain energy density W and the adhesive thickness t, namely, 

J = t W  (32) 

where the components contributed from the shear and peel behaviour are given by 

1 
tW~ = ~ (M1- - M2-)  2 (29.1) 

Aa ~N2- - N I -  tl(MaS +__ M 2 - ! ]  2 
tW,, = ~ 1_ A, 2Ot J . (29.2) 

Using J integral approach, Fernlund and Spelt [19] derived the following total energy release rate 
for a cracked adhesive-adherend sandwich undergoing large deformations. The path-indepen- 
dent g is given by 

~- - ,  ~-~'-- ~-7-, N12 M12 N22 M22 N32 M32 (30) 

J =  2AI + 2D1 +2A2  + 2D2 2A3 2D3 

where Ni and Mi (i = 1, 2, 3) are the loads at the crack tip (see Fig. 4 in Fernlund and Spelt [19]). 
Using the following equilibrium conditions 

t l  
N3 = N1 + N2, Q3 = Q1 qt_ Q2, M3 = m l  + M2 q- ~- (N1 - N2) 
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and 

Jx = tWI, JH = tWH. (33) 

These equations indicate that: for a balanced adhesive-adherend sandwich subjected to 
combined loads at the adhesive end, only the difference between the bending moments gives rise 

to a Mode I loading, and only the difference between the tensile forces and the summation of the 
bending moments result in a pure Mode II  contribution. This is in agreement with the result 
given in [17]. 

Because the bond strength envelope is the same as the fracture envelope, it can be concluded 
that the bond strength predicted using the present analysis is identical to the fracture load 
predicted by Fernlund et al. [17]- [22] who showed there was less than 5% average difference 
between the test and the predicted fracture loads for equal adherend single-lap joints. 

7 Conclusions 

The adhesive-adherend sandwich model is used to predict bond strength for adhesive-bonded 
balanced joints in which adhesive exhibits arbitrarily nonlinear stress-strain behaviour in both 
shear and peel. The following conclusions are obtained: (1) when the adhesive in the joint is 
loaded in pure shear, the bond shear strength can be determined from the maximum shear strain 
energy density. The product of the adhesive thickness and the shear strain energy density is equal 
to the energy release rate of mode II. (2) When the adhesive in the joint is loaded in pure peel or 
tension, the bond peel strength can be determined from the maximum peel or tensile strain energy 
density. The product of the adhesive thickness and the peel or tensile strain energy density is 
equal to the energy release rate of mode I. (3) When the adhesive in the joint is loaded in both 
shear and peel (or tension), the bond strength can be determined from the maximum strain energy 
density and the phase angle of the shear to peel strain energy density ratio. The product of the 
adhesive thickness and the strain energy density is equal to the mixed-mode energy release rate of 
mode I and II, while the phase angle of the shear to peel strain energy density ratio is equal to that 
of mixed-mode fracture. (4) Bond shear strength, bond peel strength and bond strength are equal 
to the fracture loads of the equal adherend single-lap type joints subjected to pure mode II, pure 
mode I and mixed-mode loadings. 
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