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Considerable attention has been given to the question of integration 
with respect to a function; various authors have shown how to define 
an integral which generalises the Stieltjes integral in the same way as 
Lebesgue generalised the ordinary integral. The Lebesgue-Stieltjes inte- 
gral, however, is by its very nature restricted to the case in which the 
integrating function is of bounded variation, while the ordinary Stieltjes 
integral has no such limitation. An integral which includes both these 
(Riemann-Stieltjes and Lebesgue-Stieltjes) is therefore not without interest. 
Such an integral may be obtained by applying the methods of Perron 1). 
It  is interesting also on account of its close connection with differen- 
tiation. 

In the first section of this paper ] give definitions of differentiation 
with respect to a function. I t  is shown that the theorem, due to 
Den~oy~), which governs the possible values of the derivates of a func- 
tion, can be extended to the case when the base-function is VBG* on 
the set of points considered3). I t  seems likely that the class of 
functions VBG* on a given set of points is the most general class 
for which it is profitable to define derivates, and it is noteworthy 
that the same class o[ functions proves to be of importance for the 
theory of the Perron-Stieltjes integral. The second chapter is devoted 
to the definition and simple properties of the integral. Finally, I con- 
sider the case of a base-function which is VBG*, and give the analogue 
of the theorem which states that every function A CG* in an interval is 
the Perron integral of its derivative, and conversely ~). 

1) Other authore have defined s Perron.Stieltjes integral with reepect to 
functions of bounded variation; see R. L. Jeffery, Trans. A~rican Math. Eoc. 
(1932), S. 645; J. Ridder, Math. Zeit~r 40 (1935), S. 127. The definitions employed 
arc not applicable to general base-functions. (The present work was carried out 
independently of the work of Ridder, and in some places conventions are used 
which are different from his.) 

a) A. ]3enjoy, Journal de Math. (1915) S. 105--240, especially S. 190--192. 
s) S. Sake, Th~orie de l'Int~ffrale (Warsaw 1933), S. 158 ff. The definitions are 

reproduced here for completeness. See Nr. 1. 
t) Sake, loc. eft. S. 198, 216. 
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By the kindness of Mr. L. C. Young, I have been able to compare 
this work with some (unpublished)work of his in which the ideas ~ of 
the Denjoy integral are applied to Stie|tjes integration. I t  is not sur- 
prising that  the theorems proved for the 'Perron-Stieltjes' integral are 
often very similar to those which hold for Young's 'Denjoy-Stieltjes' 
integral, although the methods of attack are quite different6). (In some 
cases, however, we found that we had carried out similar but inde- 
pendent work.) He suggested that it might be possible to define 

(P S) .I (tl d 9Ol -{- f~ d 9ol) and to prove Theorem 14, which he had proved 

for Denjoy-Stieltjes integrals. This definition and this theorem-have 
been added in accordance with his suggestions. 

1. Unless otherwise stated, all functions mentioned are supposed to 
be real and finite, and defined for all values of x in a fixed interval 
a ~_~ x ~ b. The 'base-function' with respect to which we differentiate 
or integrate is usually denoted by 9O (x) or ~ (x), and other functions 
~by /(x), g(x) and so on. Following Saks, we denote by cg(9O;E) the 
oscillation of 90(x) on a set E. Let now (I~), /~ ~ 1, 2 , . . . ,  n, be any 
finite system of non-overlapping closed intervals whose end-points lie 

n 

in E; form the s u m  2~ oJ(go; Ik). Tl~e upper bound of all such sums 
k----~ 1 

is denoted by V* (% E): if it is finite we say that 9O (x) is VB* on E. 
Finally, 9o(x) is said to be VBG* on E if E can be expressed as a 
finite or enumerable sum of sets E~ on each of which 9O is VB*. 

Given two functions f(:r), 9o(~0), we say that [(x) is A O  with r ~ t  
to 9o(x) on a set E, if, for any e > 0 ,  there exists ~ > 0  such that, 
if (I~) is any finite set of non-overlapping closed intervals whose end- 
points lie in E, then 

2~ If(?/~) --/(x~)l ~ ~ whenever ~oJ(go, I~) < ~, 
k k 

where x~, ?/~ are the end-points of I~. In the same way, if for any 
> 0 there exists ~ ~> 0 such that 

2~o~(t, I~) < e whenever ~'co(go, Ik) < ~, 
k k 

the intervals (Ik) fulfilling the same conditions as before, we say that ] (z) 
is 2~C* with reslae, t to 9O (x) on E. If a given set E can be expressed 
as a finite or enumerable sum of sets ~ ,  on each of which t (x) is AC* 
with respect to 9o(x), we say that f(x) is 21C~* with rester to 9O(x) 
on E. 

e) In  fact, the  final theorems, 12 and 13, are not  f a r  from a demonstrat ion 
tha t  the Perron-Stiel t jes integral is equivalent  to a Donjoy-Stiel t jes integral.  
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1.1. Differentiation with respect to a function. 
Let  f(z),  ~p (z) be any two functions, of which ~(x)  is defined at  

all points of the interval a ~_~ x ~ b, but  / (x)  may be undefined at  
some points. We define the upper right-hand derivate of / (x )  with 
respect to ~p (x) as 

D+(I, :~;  q~)= li-m l (x + h) - -  l (z) 
h-,. +o 9 , ( x+h ) - -  ~(:0 

with the conventions that  if the quotient takes the form 0/0 it is not  
counted in evaluating the limit, and that,  if a ~ 0, then a/0 ~ ~ co 
and - - a / 0  ~ --  co. We define the three other derivates similarly, and 
if they all exist and are equal we write the common value as D (f, x; ~). 
By  d/ (x ) /d  ~ (x), however, we denote a rather more general conception, 
which we may call the Roussel derivative 6). We say that  f (x) is co~z- 
tinuous with respect to ~ (x) at  the point x, if for some number k 

l ~  [/(x § h) - / ( x )  - k {~(x § h) - ~ (~)}] --- 0. 
h - - ~ 0  

If  in addition 7) we have 

lim t ( z § 2 4 7  ___ 0 
h- ,o  ~o (~; z, h) 

(where co (~; x, h) is the oscillation of ~ in the closed interval (x, x -~ h) 
or (x-{-h,  x), according to the sign of h), then we write s) 

d j (x) /d  q~(x) = It. 

We take as our starting-point the following theorem, which is a 
slight generalisation of the Denjoy results. 

T h e o r e m  1~). I /  ~v(x) is strictly monotone, and f(x)  is defim~d in 
any set H, then sU the points of H /all into (me of three sets: 

(i) a set Eo where D+(/, x; ~) = D_(/, x; q~), /inite; 

(if) a set E~ where D +(/, x; ~) -~ -~ co, D_(f,  x, ~) = -- co; 

(ili) ~z set N such that m q~ (N) ~ 0 ~o). 

s) Roussel, Com~tes renders (Paris), 187, S. 926 (19. Nov. 1928). 
7) This second condition does not include the continuity condition, as it is 

possible that ~ (x)may oscillate infinitely in the neighbourhood of the point z. 
8) I t  is eszily seen that if ~ is bounded in the neighbourhood of z, then the 

existence of a finite D if, z; ~) involves the existence (and equality) of dj(x)ld ~(~), 
but not conversely. 

9) A theorem equivalent to this is proved by Ridder (Ice. eft. 134) in the 
more gener,~l ease when ~(x) is VB [but not when ~ (z) is VBG*]. His con- 
ventions in the definition of the derivates with respect to ~ (x) are different from' 

�9 ours; a~iso it should be observed that m q (E) is not to be confused with ,,the 
y-measure of E", which cannot in general be defined unless q (x) is FB. 

1~) ~ (N)denotes the set of values assumed by ~(z) for those values of 
which lie in N. 
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To prove this it is only necessary to express f (z) as a function of 
and apply the Denjoy theorems; the arguments involved are trivial. We 
shall show that  the same theorem is true for any ~(z) which is VBG* 
on H. I t  will then be shown that if f(z) itself is VBG*, the set E~ 
can be included in the set N; that is, m ~  (E~) = 0. 

1.2. L e m m a  1. I f  ~(z) /s VB* on a set E, it is VB*  on the 
closed set E -~ E' n). 

L e m m a  2. I f  ~(x) is VB* on a set E, then there exists a strictly 

increasing function g (x) such that all four dedicates satisfy ]D + (~v, x; Z)[ ~_~ 1 
at each point of E, ezee,pt possibly the extreme points. 

By lemma 1, we may suppose E closed; let c, d be its extreme 
points. Write 

(I) Z (Y) = Y + V* (~; [E <a, y) + <y)]) -- V* (~; [E <y, b) + <y)]). 

Z (Y) is obviously strictly increasing, and it is easy to see that for 
any z of E and any y such that c ~ y ~_~ d we have 

(2) Ix (y) - x (~)l >_- i ~ (y) - ~ (~)1. 

Hence the result follows. 

L e m m a  3. I] Z(z) is strictly increasing, and all four derivates o] 
a /~ct~ ~ (~) eaas/y + ID~(~, :~; Z)l ~ k at each point of a set E, then 
m, ~ (E) ~ km.  x (E). 

Given e~O, we can find, for any point x of E, a number 
h----h(x, e) so small that 

(3) I q, (~) - ~ (~:)1 < (k + e)Iz (~) - z (~:)l 

whenever Ix(z)-x(~)l <h"). w e  can therefore find ho, depending 
only on e, so small that equation (3) is satisfied whenever 

Ix(z)  - x ( ~ ) l  < ho, 

if x ~ to a set  E o c E such that m, ~ (E0) > m, ~ (E) -- e. 

Let U be an open set including X(E) and such that m U ~ m , g ( E )  q- s; 
then U can be expressed as a sum of open intervals I , ,  possibly over- 
lapping, such that m I~ ~ h o for each n, and 2: m I~ ~ m~ g (E) q- 2 s. 

Let J ,  be the set of points x for which ~(x) lies in In; if z0, x 1 are 
any two points of EoJ ,  we clearly have [Z(Xo)--X(xl)l ~ h o and so 
[~(zo) -- ~(z~)[ ~ (k-+- e)lX(Xo) -- X(z~) I. I t  follows that m,~(EoJn ) 

la) ~Im, /os. c/#. 159. 
is) Since Z (z) is str/agy increMing. 
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(k § e)m I~. Since E 0 is a sub-set of E ,  every point  of E 0 lies in 
some set  J~,  and therefore 

~___ (k § e) XmI,, 

Hence 
m, ~ CB) ~ (k § e) {m, x (E) § 2 e) + e. 

Since e is arbitrarily small, the r~sult follows. 

T h e o r e m  2. l /  [ (z)  is de/i•ed m~ a set H, and q~(x) is V BG* on 
a set E c H, tl~n all the poi~s of E fall into one of three sets: 

(i) a sd E o where D + ( t ,x;  ~v) = D_ ( t ,x ;  ~), t i n ~ ;  
(ii) a set E~  where D + (/, z;  ~) = § oo, D_ (f, x; ~p) = --  co; 

(iii) a set N such that m ~ (N) = 0. 
Express E as X B~ where ~v (~v) is V B* on each E. .  It  is clearly 

sufficient to prove that the set /YEa, which we can express as 
B. , - -  E= -- B0, satisfies m ~ (N E . )  = 0 for each n. Write F~ ---- B.  § B~ 
and let e~, d~ be the extreme points o~/~. .  By lemmas 1 and 2, we 
can define Z.(z) such that the derivates o~ ~ satisfy I D ~ ( ~ , z ; Z . ) l ~ l  

at each point of ~'. except perhaps e. and d. .  Apply theorem 1 to the 
functions ~ and ~n; the set can be divided as follows ZS): 

A set O~ where D (~, z; Xn) ---- 0; 

a set O 2 where D (~, z; Z.) exists and is not  zero; 

a set N~ such tha t  mZ~ (N~) = 0. 

The set can, however, also be divided with respect to  f (z) and ~ (z), 
as follows: 

A set H~ where D (f, ~; Z,) exists; 

a set H s where 
/ ~  (t, z;  x . )  = D_ (f, z ;  ~.1, finite; 

D§ = -- = ,  D - ( t , ~ ; ~ ) =  § ~ ;  
a set H s where 

D+(t, z;X~) = D - ( / , x ; X ~ ) ,  f ini te;  

/ ~ ( / , x ; X . )  = + co, D _ ( I , x ; X . )  = - or;  

zs) With each theorem such as theorem 1 there is of course amociated a 
similar theorem relating to the other two derivates, which we assume without 
further proof. I t  follows that ff all the derivates are finite, they are equal to 
each other, except on a set ~tkfying m Z~ (~Vu~) ~ 0. 
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a set H, where 
D+(/,x;Z.) = D-(/, z;Z,~) = + oo; 

D+(/,x;z.,) = D_(/,z;Z~) = -- ~ ;  

a set H s such that m Z. (Hb) = 0. 

Now it is clear that all points of G s (H x ~-//2 ~-He A-H,) fall into 
one of the sets Eo, B~. (It may be necessary to consider the sign of 
D(~,x;X~); for example, for points of the set Gaily) Hence N E ,  c H 5 
- t - N n ~ G  1. Apply lcmma 3 to the set H~-4-N~ with k---- 1 and to 
the set G 1 with k - ~  0; we have m ~ ( H  6A-~V.~G1) = 0  and so 
m ~ ( N E n ) =  0. This proves the theorem. 

1.3. L e m m a  4. I /  f(x) is A C G *  with respect to ~(x) on a set E, 
on which ~(x) is V BG*, then f.(x) is V BG* on E. 

We can split E into at most .~o sets En on each of which ~ (x) is 
V B* and /(x) is A C* with respect to ~ (x). Define the function g, (x) 
corresponding ~o the function ~(x) and the set F ,  = E~ q-E'~, as in 
lemma 2. Since /(x) is A C* with respect to ~ (z) on E, ,  we can find 

> 0 such that, for any finite set of intervals with end-points in E, ,  

(4) 2 :~  (/, I~) < 1 if Z ~ (~, I~) < 0. 
k k 

Consider the sub-set E,~ of E~ for which p~ ~_~ Z~ (x) < (p -t- 1) ~. 
I f  x~ and xs (z~ < xs) are any two points of E~, ,  we have from (1), 

o~(~; <x~, ~p) ~ V*(~, (x~, x~>) ~ z , , ( x ~ )  - z n ( z ~ ) .  

Thus for any set of intervals I t  with end-points in E . ,  we have 

2:co (~, I,) ~ Xeo (Z,, I~) < ~, 

and so from (4), 2:oj (/,I~) < 1. That is, /(x) is VB* on E ~ ;  it fol- 
lows that [(x} is VBG* on E. 

Theo rem 3. I /  /(x) and q3(x) are both V BG* an a set E, then 
D (], x; ~) exists, and is finite and equal to d/(x)/d q~(x), everywhere in E 
except possibly in a set N such that m q~ (N) = O. 

Corol lary .  I/, on E, q~(x) is VBG* and f(x) ACG* with resTect 
to q~(x), then a finite d f(x)/dq~(x) exists everywhere in E e x ~ t  for a 
set N s~h  that m q)(N) -~ O. 

We can express E as the sum of sets E~ on each of which both 
/(z)  and q (x) are V B*. By constructing functions as in lemma 2 for 
both /(x) and q (x), and adding them together, we obtain a strictly in- 
creasing function Z~ (x) such that 

ID~(/,z;Z,,)I ~ t 
and also 

[D~_(V,x;Z,,)I ~ 1 
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at  each point of En, except possibly the extreme points. By Theorem 1, 
both D (f, ~; ~n) and D (~, z; Z~) exist and are finite excep~ in a set Nn 
such that  m Z~ (Nn) ----- 0. The argument now proceeds as in Theorem 2. 
We observe that  at a point where D (f, z; ~ )  and D(~, z; Z,) both exist 
and D(~,z;Xn)=~0,  both D(f ,z ;  f )  and d / (z ) /d~(z )  must exist (and 
be equal). 

The corollary follows at once from lemma 4. 

2. The Perron-Stieltjes Integral. 

The Perron integral is defined by means of major and minor func- 
tions, which in turn are usually defined by inequalities relating to deri- 
vates 14). There would be obvious difficulties in extending such a defini- 
tion to the ease of integrals with respect to a general function ~ (z), 
which may attain the same value at  an infinite set of points. For this 
reason w~ define the perron-Stieltjes integral by means of inequalities 
concerning the increments M (z 4- h) -- M (z), ~ (z 4- h) -- ~ (z) directly, 
and not in terms of the derivates of M with respect to ~. The resulting 
integral is found to include the ordinary Stieltjes integral, whether ~ (z) 
is of bounded variation or not. I t  also includes the Lebesgue-Stieltjes 
integral with respect to an increasing flmctiun; but it does not include 
the 'Lebesgue-Stieltjes' integral with respect to a hmction of bounded 
variation (defined by Mile N. Bary and Menchoff), which may exist i n  
an interval (a, b) without existing in a smaller interval (a, z)15). 

2.1. Given any functions f(z), ~(z) we say that  M(z)  is a major 
function of f (z) with respect to f (z) if M (a) -~ 0, and for any point z 
of (4, b) there exists ~ (z) ~ 0 such tha t  

(5) M ( ~ ) , ~ _ ~ M ( x ) + f ( z ) { ~ ( ~ ) - - ~ ( z ) i  if O ~ 2 ~ - - z ~ _ ~ ( ~ ) ,  
(6) M ( 8 ) ~ _ ~ M ( z ) 4 - f ( z ) { ~ ( 8 ) - - ~ ( z ) }  i f  0 ~ _ _ 8 - - z  ~ - - ~ ( z ) .  

(If z is equal to a or b, we consider only the one inequality which is 
appropriate.) 

The upper Perron-Stieltjes integral of /(z)  with respect to ~ (z) is 
defined as 

(PS) ~ /(~)dq~(z) = bound M (b) (all major functions) 
a 

if finite major functions exist; otherwise we write 4- ~ for the value 
of the upper integral. 

it) Ridder (loe, tit.) ~ppliee the e~me method in defining hie Perron.Stieltjm 
integral. 

z6) N. Bary and D. Menchoff, Ann. M~t. pura appl. (4) (1928), S. 19--54. 
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- - X  

It  is easy to see that M(x)--  (PS) ~/(t).dq~(t) is an increasing 
a 

function of x. 
Minor functions and the lower integral are defined in the correspon- 

cling way, the inequalities being reversed. 

Let M(z), re(x) be any major and minor functions, write 

oJ (z) = M (x) - -  m (z). 

For any x there exists ~ (z) > 0 such that 

(O -----_ ~ (z) if 0 ~ - z _ O ( 5 ) ,  

~o($)<~o~(x) if O > _ _ $ - - z ~  --a(x), 
(from the definitions). I t  easily follows that do (z) is an increasing func- 
tion. Since this is true for any M (x), m (x), 

( P ~ )  ~ t ( 0  a ~ (t) - ( ~ s )  ~ t (t) ~ ~ (t) 

is a positive increasing function of x. (We do not give the details of 
as they are almost exactly the same as for the ordinary this argmnent, 

Perron integral. 
If 

--b b 
(Ps) j" l(~)d ~ (~) = (z,8) j'/(z)d ~(~) 

a - - a  

b 

we write the common value as (P8)  ~ f (z)d ~(z); if it is finite we say 
t3 

that t (x) is integrable with respect to ~v (z) in (a, b). In future we drop 
the prefix (PE) when there is no ambiguityLe). 

The following properties are easily proved: 

(I) If a < c < b and ~ (x) is integrable in (a, b), then it is integrable 
in (a,c), (c, b), and 

b c b 

16) The same principles may be applied to form the 'Perron' integral of any 
differential expression depending on one variable. For example, we m a y  define 

(P~)~  {fl (~)d ~x (z)~-[~ (z )d  ~s (z)} in exactly the same way as we have defined 

(P~)  T[(z)d  ~ (z), only replacing (5) and (6) by 

~ ( 0 - -  M ( z ) ~ h  (~) {~o~ (~)-- ~o~ (x)} +1~ (z) {~o, ( 0 - - ~  (z)} if o ~  ~ - - = ~ - - ~ .  
I owe this remark, and Theorem 14 "which depends on it, to Mr I~ C. Young. 
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The converse also holds. 

- - b  

(II) 
- - b  

~ l ( = ) d ~ )  = ~ ~ / ( ~ ) d ~ ( , )  if ~ ___ o; 
G a 

b 

=oSl(x)d~(z) if o~O. 
- -0 ,  

- - b  - - b  - - b  

(III) ~ {t~ (x) + t. (z)} d ~ (~) ~_~ ~ t~ (~) d ~ (x) + ~ t, (z) d ~ (z). 
a ig (2 

b b b 

I (t. 4- t , ) d ~ ( x )  = ~ l,d ~ + I t, d q;. 
r f l  @ 

- - b  - - b  - - b  

j" t(~)d 1~, (~,) + ~, (:~)1 ~ j' t(~) d 9,~(~) + J' 1(~)~ 9,, (~,), 
(l O, (~ 

b h b 

~1 @ (2 

provided that the right-hand side has a meaning, in each case. 

I t  will be noticed that we have not introduced any continuity con- 
dition in the definition of the integral. There are, howe,~er, continuity 
properties implicit in the definition, and the integral, if it exists, is always 
continuous with respect to ~ (z). For convenience we write 

f ( z )  = I t(t)dq~(t), F(~) = I I(t)dq~(t), F(~) = ~ l(t)dq(t).  
a a - - ~  

Given any e > 0, we can choose a major 5ruction with M (b) < it(b) -t- e. 
For any z, taking ~ (~) as in the. definition~ (5) and (6), we then hav.e, 
since M ( z ) -  F(z)  is an ini~reasing function, 

> 1(~){q(~) - ~(z)} -~ if 0 ~ ~:-- z_~ 0(~), 
and similarly 

~ ( ~ ) - ~ ( ~ )  ~ 1(~) 1~(~)-- ~(z)} + ~  if o _>_ ~ - z  _>_ - ~(~). 

TaNng into account the corresponding inequalities for _F (z), we see 
that if t (z) is integrable, 

(7) ~ ( ~ ) - ~ ( ~ ) - t ( ~ )  1 ~ ( ~ ) -  ~(z)} -~ o as ~ -  ~ o .  

2.2. Relations with other integrals. 
In this section we prove first that the PS-integral includes the or- 

dln~ry Perron integral, and next that it includes the 'modified Stieltjes 
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integral' of S. Pollard17), (which is itself a generalisation of the ordinary 
Stieltjes integral). Finally, we consider ira relations with the LS-inte'gral. 

b b 
T h e o r e m  4. I] (P) ~ f ( x ) d x  exists, then (PS) i l(x)dq~(x) (where 

a a 

q~ (x) = x) exists and has the same value~ 
Given any e ~ 0 we can find a functio/~ M (x) with 

rain. [D+ (M, x), D_ (M, x)] :> f (x) 
b 

everywhere, and M (b) ~ (P) ~ f (x) d x + e. Then consider the function 

M l(x) = M ( x ) + e ( x - - a ) / ( b - - a ) .  We have 

min [D+ (M1, x), D_ (M1, x)] > [ (x), 

and hence for sufficiently small ~(x) the conditions for a PS-major 
function are satisfied. 

--b b 
Thus (PS) f f ( x ) d ( x ) ~  Ml(b ) ~ (P) ~ f ( x ) d x ~  2~. From Chis 

a a 

and the corresponding Iesult for the lower integral we have the theorem, 

(Note. In the ordinary Perron-Bauer theory f (x) is allowed to take 
infinite values, which are ruled out here; it is however a standard result 
that these infinite values may be replaced by zero without altering the 
integral, so that there is no real restriction in supposing f(x) finite 
everywhere.) 

b b 

T h e o r e m  5. I f  (M) ~ f(x)d~o(x) exists18), then (PS) ~ f(x)dq~(x) 
a a 

exists and has the same value. 
Let L be the value of the Pollard integral. For any ~ ~ 0 there 

exists a set of points y~ ~ y~ ~ ... y~- with the following property: 
- -  if a = x o ~ ~1 ~ xt ~ ~ ~ -.- ~ ~:, ~ x~ = b is any subdivision 
of (a, b) such that yl, y~, ..., y,v occur somewhere among the points 
xl, . . . ,  ~ ,  then 

I L  - I <: 
Define M (~,fl) as the upper bound of 

P 

X 

17) S. Pollard, The Stieltjes Integral and its generalisations, Quart. Journ. 49, 
198 (1920), S. 87--94. 

is) S. Pollard, loc. cir., p. 90. 
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for all divisions of the type 

Then M (=, Yl) + M (yl, y~) "4- ... + M (y~- l ,  y~') + M (Ym b) ~ L + a 
Now clearly, if ~ < x < ~, 

M (cr ~ M(=, z) -F/(x) {q)(~) -- ~(x)}; 
if = < ~ < x ,  

M(cr162 ~ M(a',x) -I-/(x)Iq~(~) -- ~(x)}. 

For any x, let n (x) be the greatest integer such that y.(~) ~< x. 

Write 
a ( x )  - - 1  

M ( z ) = M ( a , y ~ ) +  ~, M(y~,yz+~)+M(y~(~),x). 
l--~ l 

From the inequalities just obtained it is easy to see that M (x) is a 
major function, and M (b) ~ L -f- e. With the corresponding result for 
a minor function, this proves the theorem. 

In the case when q (x) is monotone increasing, the development of 
the properties of the PS-integra] proceeds almost exactly as for the 

ordinary P-integral. We show that if F (x) ---- (P S) ~ ] (t) d ~v (t) then 
a 

D(F x; q~) -~- f(x) except in a set N, where mq~(N) ~ O. We then show 
b 

that if ( L S ) ~  ]. d q exists, the PS-integral exists and has the same 
a 

value; that the converse holds if f(x) is always positive. Finally we 
prove that if ], (x) ~ l (x) and we have always g(x) <_~ ], (x) <_~ h(x), 
where g, h are PS-integrable, then if all the ]~(z) are PS-integrable, so 
is t(x), and 

b b 

= 

The proofs of these statements follow standard lines, and are omitted. 

2. 3. The Stielt~es Transformation. 

T h e o r e m  6. I] q~(x) = S g(t)dv;(t) f~r a ~ x < b, and f(x) is 
ft 

bounded in (a, b), then 
- - b  - - b  

tz tt 

and 
b b j' j' 

- - a  ~ a  
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- -b  

Suppose that j" f (z) d q~ (x) = L < 0% and i/(z) l ~ K. Given 
fl 

~ 0, choose a major function M (x) of f(x) with respect to ~ (x), and 
major and minor functions N (z), n (x) of g with respect to ~, such that  

M ( b ) < L + e ,  q ~ ( b ) - - e < n ( b ) ~ N ( b ) <  q~(b)+e. 

Write co(x) = N ( x ) - - n ( x ) ,  M x(x) = M ( z ) + K c o ( x ) ;  then if x~_~$ 
and ~ -  x is sufficiently small we have: 

n (~) - n (~) _< ~ (~) - ~ (~)  ~ N (~) - N (~), 
n ( ~ )  - , ~ ( ~ )  ~ g ( x ) { v ' ( ~ )  - v'(:~)} ~ N ( ~ )  - N (:~), 

and so 

I g ( ~ )  {~o (r - ~o(x)}  - { ~ ( ~ )  - ~ ( ~ ) }  I 
~ { N ( ~ )  - N (:~)} - { n ( ~ )  - n ( ~ ) }  = ~ , ( ~ )  - ~o (~) .  

Hence, for sufficiently small positive ~ -  x, 

M1 (~) -- M~ (x) = M (~) -- M (x) + K {~ ($) -- ~o (x)} 

/(~) {,~(~) - ~(~)} + K {o~(~) - o~ (~)} 

-->_ t (~) { ~ (~) - q, (~)} + l (~} {~ (~) [v' (~) - v' (~)] 
- [~ (~) - ~ (~)]} 

1(~) g(:~) {v',(~) - v' (:~)}. 
There is a similar inequality for ~ ~ x and hence M~ (x) is a ma jo r  

~amction of ](x) g(x) with respect to ~. Since Mx(b) ~ L q- ( 2 K q -  1) e 
we see that 

- - b  - -b  

S t (~) g ~ )  ~ ~ (~) <_- ~ t (~) d ~ (~). 
a a 

The reverse inequality is similarly proved; finally, the case of the lower 
integrals follows by writing - - ]  (x) for l (x}. 

2. 4. Differential Properties. 

We need first a covering theorem (analogous to W. H. Young's 
lemma). 

L e m m a  5. I f  with each point x of a set E is associated an interval 
(x, x + h), h varyin 9 with x; then given any number .4 less than me q~(E), 
we can find a finite non-overlalyping set of such intervals (x,., x, + h,.), 
~, = 1, 2, . . . ,  n, such that Xm,  q~ [g (z,, z,. + h,)] > A. 

We can find p so large that the sub-set E~, composed of those 
Points of E for which h ~ 1/p, satisfies m~ ~(E~) ~ A. Let (c, d) be 
the smallest closed interval containing E~. We can find a point x 1 of E~, 
either coinciding with c or so near to c that m~ q~[E~(x, d)] ~ A. Let 
(x 1, x 1 ~-h~) be the interval associated with xl, and let (c~, d) be the 
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smallest closed interval containing the set E~ (x~-F hi, d). Then 

m~ ~ [E, (x~, ~, + hi)] + m. ~ [E, (cl. d)] ~ m, ~ [E, (x,. d)] > A, 

so that  we can choose a point x S of E~, such that x~ ~ c~, lying so 
near c~ that  

m. ~ [E, (m,, ~, + h,)] + m. ~ [E, (~9, d)] > A. 

We then take out the interval (z2, x 2 -I-h2), and proceed in the same 
way;  since each value of h is greater than l i p  the process must termi- 
nate. Finally we obtain a finite set of intervals (x~, x~ -t- h~), . . . ,  ( ~ ,  xn -F h,) 
such that  

m~ ~ [~ (x,, x, + h,)] _ ~ m. ~ [E, (~. z, + h~)] > A. 
~ ' ~ 1  I'---~I 

T h e o r e m  7. I1 

F ( x ) =  I /(t) d~~ (a~__ x ~ b ) ,  
Q 

then d F (x) / d ~ (x) -~ / (x) except possibly at points o~ a set N such that 

m ~o (N) : o. 

We remark first tha t  if in any interval ~ (x) is constant, then F (x) 
also is constant, so that  the equation ( ~ F ( x ) ] d ~ ( x ) - ~ / ( x )  is true in a 
conventional sense. Consider the set N~ of points x 0 such that  q0 (x) is 
not constant in any interval (xo, x~), (x~ ~ xo), and that  

lira F ( x ) - - F ( z o ) - - / ( x o ) / ~ ( z ) - -  ~(zo)} :> 0. 
z ~  zo + o r ( q:, (:Co, x)) 

We shall show that  m ~(N~)~--0,  and a similar argument applied to 
three other sets defined by analogous inequalities would complete the 
proof of the theorem, for we have already shown that  F (x) is continuous 
with respect to ~o (x) at every point. 

Suppose on the contrary that  m~ ~ (N~) ~ 0. We can find iv such 
that  the set N~ where 

~ o +  o ~ (r (Zo, z)) p 
satisfies m, q o ( N ~ ) ~ 0 .  Take ~] such that 0 ~  ~ / ~  m~qo(N~) and a 
minor function m (x) with F (b) - -  m (b) ~ ~7/P. Since m (x) --  m (Xo) 
_<2/(Xo) { ~ ( ~ ) -  ~0(Xo) } for all sufficiently small x - - x  o ~ 0, we have 
for x o in N~,,. 

1"~ l ~ ( x ) - - ~ ( x ~  :> ~ "  
(~, (Zo, z)) r z .---). ~0 -~ 0 

Applying lemma 5, we can now find a finite non-overlapping set of inter- 
va]s (x,, :r, ~-h~), ~ ~- 1, 2 . . . . .  n, such that  

(8) F (x,  -F h,) - -  F (x,) - -  [m (x,, ~- h,.) - -  m (x,)] > (1/p) ~o (~, (x , ,  x ,  n u h,.)) 
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and 

(9) ~ ~o(~,(x.. ~, + h,>) ~ ~ ,,. ~ [N,(x,, ~. + h.)] > ,7. 
�9 --~1 ~--~1 

Then since F ( x ) -  m (x) is a positive increasing function, we must have 
from (8) and (9) 

F(b) - -  m(b) > f l i p ,  

which is a contradiction. Thus m ~ (N1) ----- 0. 
I t  is also possible to give a differentiation theorem in terms of the 

ordinary derivates. 

T h e o r e m  8. I] F(z) = J / ( t ) d  ~(t), then D+(F,x) = / (x )D+(q ; , x )  

or D + (F, x) = / (~)D+ (~, ~), according as / (x)  ___> 0 o't / (~)  ~ O, almost 
everywhere in (a, b), except possibly where the product takes the form 0 x r 

At points x 0 where the statement is untrue, we must have 

li'-m F(z)--F(s0)-- l (so){~(~)--~(zo)} ~ 0 
�9 - -~Zo  q- 0 : U ~ X O  

or  

hm ~v(:r)--F(%)--l(zo) {~(z)-- ~(%)} ~ O. 
z - §  ~'--o '+ 0 X - -  Z 0 

The proof proceeds exactly as in the last theorem, with the substitutiou 
of m~E for meqa(E), and (s -- %) for ~o(~, (%, x)). 

3. In the preceding sections we have given some properties of the 
PS-integral, assuming that it exists for the pair of functions considered. 
We now turn to the questions of the existence and "structural properties 
of t.he integral. I t  appears to be necessary to assume that. at least one 
of the functions concerned is VBG* (on some set considered) in order 
to obtain any non-trivial results. In fact, we may say that the class of 
functions VBG* in (a, b) is related to the PS-integral in much the 
same way as the class of functions of bounded variation is related to 
the ordinary Stieltjes integral. 

After some lemmas dealing with r structure of V B G* functions19), 
we give a necessary and sufficient condition for the integral to vanish 
identically. There follows a theorem on integration by parts (which may 
of course be interpreted as asserting that a certain P~-integral exists 
whenever the related integral exists). Finally we prove that a PS-inte- 
gral with respect to a function V BG* in (a, b) is A O G* with respect 
to that function, and conversely; subject to the necessary continuity 
condition. 

19) Similar lemmas are used in  the work of L. C. Young on Denjoy-Stieltjes 
integration,  bu t  the work here published was carried out  independently.  

1~athematische Zeitschrift, 41. 39 
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3. 1. L e m m a 6 .  9(x) /s V BG* on a set E i f  and only i f  there 
exists a strictly increasing/unction g (x) such that all, the derivat~ ~ (9, x; ~) 
are finite at all points of E,  except perhaps an enumerable set. 

Suppose the condition satisfied; then the points of E where the 
derivates are finite can be divided into sets Bn such that,  if x lles 
in E , ,  

whenever 
J Z ( ~ ) - - g ( x ) l _  1/n. 

Subdivide each E .  into sub-sets E.~ defined by the inequality p/n ~ X(x) 
( p ~  1)/n. I t  i~ clear that  9(x) is V B* on each E . r  and hence 

(taking the exceptional points as constituting each a set in itself) 9(x) 
is V BG* on E. 

Conversely, suppose 9 ( x ) V B G *  on E, and V B *  on each of a 
sequence of sets E ,  which together make up E. Construct for each ~'~ 
the function X~ (x) of lemma 2, and write 

S ~,(z)--  x,(a) Z(x) "~ ,~ 2" {k,~(b)--Zn(a)} 

X(x) is a strictly increasing function defined in (a, b>, and it is dear  

that  D~. X) l--~ 2" I +(9, x; at each point of E , ,  except perhaps the extreme 

points of E~. Thus the derivates are finite at all points of E except 
possibly an enumerable set. 

T h e o r e m  9. I /  F(x)  = ~ f ( t ) d g ( t  ) /or a <__ x ~ b, then F(x)  is 
a 

V BG* on E if  and only i /  E can be expressed as G ~, H, where 9(z)  is 
VBG*  on G and f(x) = 0 at each point o~ H. 

Let M(x), re(x) be any major and minor functions of ](x) with 
respect to 9(x), and write co(x)-~ M ( z ) -  re(x). For brevity we write 
also ~ 9 = ~ 9 (x, h) for 9 (z -~ h) -- 9 (x), and so on. We observe that, 
for sufficiently small h, both / (x ) '~9 (x ,  h) and ~F(x, h) lie between 
~m(x, h) and ~ M ( z ,  h), so that  

(10) [$F -- l(x)" ~91 ___~ [~oJI. 

Suppose now 9(x) VBG* on G, and let Z(x) be the function of lemma 6 
corresponding to the set G. Write Zx (z) ~- g (x) q-o~ (x). At all points 
of G except an eaumerable set, there exists K =: K (x) such that  
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for sufficiently small h. Hence, using (10), we have 

la~'l < tt(:~,)-a~l + l a ~ l ,  
(11) < K. I / (=) l . laxl  + la~l, 

~_ {KI/(2,)I +I} lax, I, 
since X(z) and co(x) are both. increasing functions. At points of H, 
where J ( x ) =  0, we have immediately 

(12) I&e[ < lao,[ ~ lax~l 
for sufficiently eana]l h. By ]emma 6, i t  fo]lows from (11) and (12) that; 
g(z) is VBO* on O + H. 

Conversely, suppose F(z)  VBG* on E = G -I- H, and f(z) = 0 on H, 
but /(z) ~= 0 on O. 

Let X (x) be the function of lemma 6, defined with reference to F (~) 
and E. At all points of G except an enumerable set, we have, for 
sufficiently small h, 

I&el ~__ .K(z)lazl 
and so 

If(~).a q,l < K(~,) lazl  + iao, I. 
vanish on O, it follows that 

{K(z) q- 1} {laxl + ta~l}/ l /(-.) l .  
on the set O. 

X(z) /s strictly increasing, and D(~, z; X) ezists and 
[ >  k > 0 at each I~int o/a set B such that mq~(E) = 0 ,  

Since f(z) does not 

la~l 
Thus ~(x) i s  VBG* 

L e m m a  7. If  
satisfies [D(~, z; X) 
then mx  (E) = O. 

For each point z of E we can find n = n(z) so large that 

I ~(r - �9 (x) I > ~ Ix(C) - x (x) I 
whenever 

t z ( ~ ) -  x(z)l ~_ 1/n. 

If m , X ( E ) >  O, we can find a fixed n o such that  this condition is 
satisfied for n-----n o whenever z lies in a subset E 1 of E such that 
meX(E,) ~ O. We may also suppose that -- no < ;~(a) < x(b) < n 0. 
Let now ZI~  be any open set containing ~(E), composed of the non- 
overlapping intervals I~. Let E ~  be the subset of E 1 composed of 
points satisfying: 

(z) belongs to I~, and 

q/no <ffi x(~) < (q + 1)lno. 
If x, 9 are any two points of E ~  we have 

,~Z, ~ lq,(z)- ~o(y)l >____ klx(z ) --X(Y)l. 
39* 
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Hence k . m , g ( E ~ ) ~  m I , ,  and so, summing over the possible values 
of q~ we have 

m,g (2~E~)  <: 2n~(mI~)/k 
q 

and so 

(13) 

Finally write 

m.Z(E~) ~_~ 2n2(mEI~)/k .  

Since m XI~ may be arbitrarily small, we must have m z(E1) = 0, con- 
trary to supposition. 

L e m m a  8. I /  ~0(z) is VBG* on E and continuous at each point 
o~ E, ancl also mq~(E ) ----- 0, then there exists an increasin 9 junction V)(x) 
such that D(q~, x; ~) = 0 at each point of E. 

Let g(x) be the function of lemma 6. By Theorem 1, D(~, x; :~) 
exists, and is finite, at  the points of E, except possibly for a set N such 
tbat mZ(N) = 0. Let E~ be the sub-set of E consisting of points at 
which [D(cf, z ;~) [ :~  1In. By lemrna 7, mz(g,~) = 0, andso mZ(2?,E,~) -= O. 
Thus we see that E can be divided into three sets: a set G of points 
where D ( ~ , x ; z )  = 0 ;  a set H, such that m z ( H ) = O ,  o[ points at 
which Z(x) is continuous and all the derivates of ~ with respect to Z 
are finite; and a set of points (x~), at most enumerable, where g (x) may 
be discontinuous or one of the derivates of ~ not finite. 

Let U~ be an open set containing z(H) and such that mU,  ~ 1/4 n. 
Define W, (x) = m { U~ [y ~ g (x)]}, y being a variable describing the set 
U~; W~(x) is clearly an increasing function, and it is easy to see that, 
since Z(x) is continuous at points of H, D(W~; x; Z) = 1 at each point 
Of H. We note that 0 ~  ~ , ( a ) ~  v/~(b)< 14 ~. If now x~ is one of 
the enumerable set of points not in G or H, write 

f l~ ( : r )=0  if x ~ x ~ ,  

f l ~ ( x ) = l / 2  ~+x if x = x ~ ,  

/~, (z) = 1/2" if x > x,. 

v(x) = + + 

If x belongs to H, let K be the greatest modulus of the four derivates, 
+ 

[D~(~, x; Z)[; then 

/ ,p( .+h)-- , j , (z)  ~ h--~o ~ , (x+h)- -  v(~) 

z(z -~- h) - -  xCx) 
_ K  - oUm - V,,( ii 

g/2 . 
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I t  follows, n being arbitrary, that D(% x; ~) = 0. The same holds at 
each point xn, ~(x) being continuous, owing to the presence of the 
terms fl~ (x); and at points of G owing to the presence of the term g (x) 
in ~(~). 

x 

T h e o r e m  10. ~](Od~( t )  exists and vanishes ]or all x such that 
a 

a ~ x ~ b, i/ and only i/ / (x)  -~ O except in a set E, such that q~(x) 
is VBG* on E and continuous at each point el E, and m q~(E) ---- O. 

x 

Suppose ~](t) d~0(t)-~0 for a ~  ~ b .  By Theorem7 the s e t E  
a 

on which / (x)  ~= 0 satisfies mq~(E) = 0; by the remark at the end of 
w 2. 1, ~0(x) must be continuous at each point of E; and by Theorem 9, 
~(x) is VBG* on E. 

Conversely, suppose the conditions satisfied; let ~0(x)be the function 
of lemma 8 constructed for the set E. Given any s ~ 0 and any -x 
of E, we can find h 0 so small that 

I / (x ) t - I~ (x-Fh) - -~0(x)  I~_~ s l ~ ( x - F h  ) - ~ ( ~ ) {  if Ihl ~ h  o. 

Thus s { , p ( x ) -  ~o(a)} is a major function; similarly - - s { ~ o ( x ) -  ,p(a)} 

is a minor function. I t  follows that ~/(t) d ~ (t) == 0 for every x. 
a 

3. 2. Integration by Parts. 
The theorem which we are about to give is in some ways less general 

�9 than the corresponding result for the ordinary Stieltjes integral, for we 
restrict one function to b e  VBG ~. However, it includes the most im- 
portant case of that result -- namely, when q0 (x) is of bounded variation; 
for then we know that the Stieltjes integral exists only i f / ( x )  is conti- 
nuous except at the points of a set N such that m ~0(N) ----0. 

T h e o r e m  11. I] qo(x) is bounded and FBG* in (a, b), and /(x) is 
bounded in (a, b) and continuous excel~t at the points o/ a set iV, such 
that ra q~ (N) = 0 and q~ (x) is ~ontinuous aS each point o/ N, then 

- - b  b 

S /(x)dq~(x) .-[- ~ q~(x)d/(x) = q~(b)f(b) -- rp(a)/(a) 
a --fl 

i/ either integral is finite. 

Let X(x) be a strictly increasing function such that the derivates 
of ~ (x) with respect to 2: (x) are finite except perhaps at an enumerable 
set of points (lemma 6). Since ~ (x) is bounded, if we add to g (x) a 
series of functions of the form fin(z), (13), we obtain a function gl(x) 
such that the derivates of ~(x) with respect to gl are finite everywhere. 
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Suppose now f / ( z ) d ~ ( x )  ~ ~ and let M(z)  be any major function 
fl 

for this integral. Let ~ ( z ) b e  the function of ]emma 8 such that 
D(~, ~; ,p) = 0 at each point of N. Take any �9 ~ 0 and write 

m ~ ( z )  = ~ ( x ) / ( z )  - M ( x )  - -  8 { ~ ( z )  + Z , ( z ) l .  

l~or sufficiently small h ~ 0 we write 

am,(z,  ~,) = ~(q't) (z, h) - ,~M(z, h) - ~ {a V,(z, ~,) + ,~x,(z,/0} 

~(x)~t  + at.ag, - ~(a~; + az,). 
If f(z) is continuous at x, we have for some K and sufficiently small 
h ~ 0 ,  I ~ l  ~ K-~Z~ and 16]]~e/K; hence from (14) 

~,(x,).at. 
If however z belongs to N, we have for sufficiently small h ~ 0, 
I ~ ~ I ~ e. ~ y~/2 R, where R is the upper bound of I f I- Hence I ~ ]" ~ ~0 I 

e-~ and so again we have 

, ~ , ( |  ~) ~ ~,(:~)"~ t(:~, ~). 
From this and the corresponding inequality for h ~ 0 we see that m~ (x) 

b 

--m~(a) is a minor function for S ~ (z )d f (z ) .  Thus we have, for any 

M(z) and any e ~ O, 
b 

~o (~r) d l (z) 

~ q~ (b) l (b) -- q~ (a) J (a) -- M (b) - n {~/, (b) -- ~ (a) + Z~ (b) -- Zt (a)} 

and so 
b - - b  

S q~(~)d](~) ~_ ~o(b)f(b) - -  q~(a)f(d) - -  S f(z)d q~(~). 

The converse inequality is similarly proved. 

I t  may be remarked that  the conditions of the theorem, while far 
from being necessary, are not so artificial as they might at first appear. 
In fact, it is possible to prove the following theorem: If ~ (z) is V BG* 
in (a, b), and, for a ~ z ~___ b, 

l (t)~d ~ (t) + j q~ (t) d t (t) ----- q~ (~) t (z) - -  q~ (a) t (a), 
#t t l  

then ] (z) is continuous except at the points of a set N such that 
m ~ (N)  = O. 
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z 

3.3. T h e o r e m  12. I f  F(z )  = ~ f(t)dqJ(t), and q~(z) is VBG*  on 
a 

a set E, then F(z )  is ACG* with respect to q~(z) ~n E. 

By Theorem 9, F (z )  is V BO* on E. I t  follows that  we can divide 
E into an enumerable sequence of sets g , ,  on each of which both ~ (z) 
and F (z) are V B*. We shall show tha t  F (x) is A C* with respect to 

(x) on each E,.  

Take any E ,  and consider the closed set E ,  + B~. If  any of its 
black intervals (~, 8) are such that  q (x), and therefore F (x), is constant 
in the closed interval (~, fl), we add them to E ,  + E~, and thus obtain 
a closed set H "(say), on which, as is easily seen, F(x) and q (x) are 
V B*. Given any e > 0, choose a major function M ( x )  such tha t  
M (b) < F (b) + e. Since M (x) -- F (x) is monotone, M (z) also is V B* 
on H. Define M 1 (x) as equal to M(x)  on H and linear in the black 
intervals of H; similarly ql (x) equal to ~ (x) on H and linear in the 
intervals. Then M 1 (x) and ql (z) are of bounded variation; let ~ (x )  
be the total variation of ~t (t) in the interval a ~ t ~___ x, and ~ ( x )  the 
total variation of M1 (t). Enumerate the black intervals of H as (c,, d,), 
and the discontinuities of M 1 (x) as (x,): 

Choose N so large tha t  

(15) m, ~ [ H ( I / I  < N)] > m ~ (H) -- e, 

(16) 2: { ~r~ (d,) -- ~ (c,)} ~ e, 

(]7) 2:  { ~  (= , ,+  o ) - ~ ( z . - 0 ) }  < e. 
n ~ N  

Define R as max [lt(~,)l, t / (x,) l  . . . .  , I/(xN)l, 1]. 

Take ~ as the least of 

(18) eo (~, (e~, d,)), for n ~ N, and s/RN~~ 

Divide (a, b) by points a --  t o ~ t~ ~ . . .  ~ t~ = b, such that  

P 

(19) X I ~  (t,,) -- ~, (t ,-~)[ > ~b(b) -- ~,. 

I t  is clear tha t  we may suppose the points t, taken as points of H, so 
that  ~ ( t , )----~ (tn); also we may suppose eo(~, ( t ,_~,  t ~ ) ) ~  0 (other- 
wise we could simply omit t ,  from the set of dividing-points). Take 
as the least of 

(20) �89 ~1, eo (~, ( t , _  ~, t J )  for n = 1, 2, . . . ,  p. 

~o) By the construction of H, r (~, (%, d~)) ~ 0 for e~h  n. 
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L e t  (Xt, Y~) be any finite system of non-overlapping intervals whose 
end-points lie in H. We shall show that  if 

(21) 2~o~ (~0, (X~, Y~>) < ~, 

then 
{~v ( y j -  ~'(X,)} :>  - 12 e. 

We see fTom (20) and (21) that  any interval (X~, Yi) can contain 
at most one of the points tn. If it does contain one, replace it  by the 
two intervalS (X~, t~) and (t., Y~). Number the whole set of intervals 
thus obtained as (~i, ~7~), i = 1, 2, . . . ,  m (say). Since each of the origi- 
nal intervals was divided into at  most tw0 parts, we have 

(22) 2~o (9, (~,  ~J) ~ 2 27~ (~, (X~, Y.~) 
< 2 6  

We see therefore, from (18), that  the intervalS (~t, rh) cannot contain 
any interval (e,, dn) for n ~--~ N. 

Let now H~v denote the sub-set of H composed of points where 
If(x)[ ~ N. We show that  

Zm, ~-'(H~ (~, ~,>) > Z {  ~ ( m )  - ~(~,)1 -- 8~. 
t r 

Since ~(x)  is an increasing function, we have from (15) 

(23) ~ m  ~ ( H  (~i, ~'J) -- Z m ,  ~ ( H ~  (~, ~t)) ~_~ m ~  (H) -- m~ ~(H~)  ~ ~. 
i 

Again, for each interval (~,  ~)  

(24) m ~ Y ( / / ( ~ ,  ~i)) = ~ ( ~ )  - -  T(~ t )  - -  ~ {~u x .  ~ 0) - -  hu(x.)}  

- Z { ~ e ( ~ ) -  ~ ( ~ . - o ) } -  Z ~ ( ~ , d . )  

= ~ ( ~ )  - -  ~ ( ~ )  - A~ - -  B~ - -  C~, 

say. To estimate the last term, we have at once from (16), 

(25) 2 ~ 0 ~ <  Z" { ~ ( d , ) - - ~ ( ~ ) }  
i n ~ N  

d e .  

To estimate the discontinuity terms, write ~o+ (~, x) for 

lira ca (~0, (x, x q- h)) 
h - - ~  + o  

(the discontinuity of ~ (x) on the right). For any set whatever ( ~ )  

of discontinuities of M ~ ( x ) ,  we have from (7), w 2. 1, 

o~+ (~', % ) = I f (:%) I' ~o+ (~, :%. ) 
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Hence, remembering the definitions of ~ (s) and M 1 (s), we have 

-"%j=~ iv 

. j ~ N  

For each point s .  lying in any (~, ~),  we have 

< ~/(RN). 

I t  follows that XA~ ~ NRe/(RN) + 2 e ~ 3e;  similarly ZB~ ~ 3 e. 
Hence, combining this result with (24) and (25) we get 

and so from (23) 

(26) X m ,  Y*(H~v (~,, U-J) > X { ~/(U,) -- ~(~,)} --8 e. 

~ow with each point ~v of H~ (~,, '7,) which is not an end-point of 
a black interval (~ ,  a~.)'~), we can associate an interval (~, ~ + ~) such 
that z + ~ lies in / /<~e  ~ )  and also 

(27) M 1 (x -+- h) -- M~ (x) = M (x + h) -- M(x) 
t (~) { ~ ( ~ +  I,) - ~(z)} 
- ~ 1 ~ ( ~ +  ~ ) -  ~v (z)l. 

By lemma 5, we can find a finite set of such intervals, not over- 
lapping, say (~t~,/z~), i ---- 1, 2, . . . .  k, such that 

k 
(28) Z { ~  (~,,) - ~(~,)}  ~ ~' m, ~ [ H ~  (~,, ~,)] 

m 

t - . ~ 1  

fit 

> Z'  { ~(,~,) - ~(~,)}  - 9~. 

Let the complementary intervals, which together with (;t o #~) make up 
the intervals (~,  W~), be enumerated as (l~, m~); then clearly from (28) 

z { ~ ( ~ )  - ~(z,)} < 9 e, 

sl) The points which we omi t  form ~t most  an  enumerable  set, and so do 
not  affect the measure of ~v'(H~v). 
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and so, since all the end-points belong to H, 

X } M  (m~) -- M (/,)] < 9 ~. 

Hence, using (27). we have 
m /r 

(29) Z' {M(~,)- M(~,)} > /~ {M (/~,)--M(2,)} -- 9e 
t = l  t = 1  

k 

> - N Z I~ (~,) - ~ (~,)1 - 9 ~. 
i = 1  

Since no interval (s ~7~) includes, as an interior point, any of the divi- 
sion-points t., we see from (19) that 

k 

Z'  I ~o, (m) - ~o, (2,)1 ~ ,S  I q,, (n,) - ~,  (~)1 + ,~, 

< 2 0, by (22) 
< 2 e/N by (18). 

(All the points concerned belong to H, so that ~ and ~, are interchan- 
geable.) Thus we have from (29) 

X {M (~,) -- M (~,)} > -- iV (2 e/N) -- 9, 
i=l 

> --lle, 
and so finally 

that is, 

w~ 

z {~ (~,) - F (&)} > - 12 ~, 

Z{F(Y,)- r(X,)} > - 12e. 

A similax proof, using a minor function, establishes a similar inequality 
in the opposite sense (the value of ~ may of course be different). Thus 
there exists ~ > 0  such that, if /~o (~ , (Xt ,  Y~>) < ~ ,  then 

X {_~(r,)- F(x,)} < t2e,  
F (rl) > F (Xi) 

and 
/~ {F (Y,) -- F (X,)} > -- 12E; 

that is, 
X IF (r ,)  - F (X,) I < 24 ~. 

Thus F (z) is A C with respect to ~ (z) on the closed set H. On the 
other hand, F (x) is V B* on H, and ~(z) is not constant in any of the 
black intervals, taken closed, (ca, d,). I t  easily follows that F(z)  is 
A C* with respect to q (z) on H, and so also on the smaller set E ,  s~). 
This completes the proof of the theorem. 

~s) The proof is exactly analogous to that for functions A U with respect to x. 
8~ks, loc. cir. 162--I64. Theorem 13. 
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(32) 

We have 

from (31) 

3. 4. L e m m a 9. I~ q~ (x) is V B* on a set E such that m q~ ( E ) =  0, 
and F(z)  is AC* with ~'esl~ct to ~(~) on E, then mFCE) = O. 

C o r o l l a r y .  I f  q(z)  is VBG* on E, mq~(E)= O, and F(x) is 
A C G* with respect to q Cx) on E, then m F (E) = O. 

Consider the function Z (x) of ]emma 2, formed with respect to the 
closed set E-4-E' .  We remark that if I is any closed interval whose 
end-points lie in E, then 

(3o) to (~, I) <~ to (x, I). 
As in ]emma 8, E may be divided into a set G of points where 
D ( q ~ , x ; z ) = O  and a set H such that mzCH)----0 We deal witl~ 
these sets separately, remarking first that, by the omission of an enumerable 
set of points~8), we may suppose that no point of a or H is the left~ 
hand end-point of a 'black interval' of E, and that X(x) is continuous 
at each point of H. 

Given e > 0, we can find ~ > 0 such that for any set of closed 
non-overlapping intervals Ik, whose end-points lie in B, Z t o ( F , I ~ ) <  e 
whenever ,~to(q~,I~)< & With each point x of G, we can associate 
an interval (x, x + hi such that z + h belongs to B, and 

C31) to (~0, <x, z -4- h)) __<_ 7/{X (x -4- h) - • (z)} 

where ~ / <  8 / { x ( b ) -  g(a)}. By lemma 5, we can find a finite non- 
overlapping set of such intervals (z,, x, -4- h,) such that 

m,z~ C6t ) - -  e < ,~ m,F[G(x, ,  x, -q- h,)] 

< 27 to IF; (x,, z, + h,)]. 

certainly 2~ {Z (x~+h,) -- X(x,)} ___~ X(b) -- X Ca), and so 

E to (~0, (x,, x, -4- It,)) ~ ~/{x(b) -- Z Ca)} 

< &  

Hence from C32) and the A C* condition, 

(33) m~ F (G) -- e < e. 

Consider now the set H;  we can enclose ;~ (H) in an open set U of 
measure less than & With each point of !t, since we suppose x Cx) 
continuous, we can associate an interval (x, x +  h) such that z + h 
belongs to E, and so small that the whole interval (g {x), g (z q-h)) lies 
in U. We can now again pick out a finite set of such intervals such that 

m, lv (H) - ~ < Z" ~o [F; <x,, z~ + h,>]. 
v 

2s) This clearly cannot alter the measure of F (G) or F (H). 
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By (30), since Z {X (x, + h,) - g (z~)} ~_~ m U ~ ~, we have m~ F (H) - e ~ ~. 

From this and (33), since 8 is arbitrary, we obtain the desired result. 

T h e o r e m  13. I f  q~(z) /s V B G *  in the interval a ~ x ~ b, a~d 
F ( z )  is, with respect to q~(z), both continuous and A CG* in the inter- 
tud, then 

F (x) -- F (a) ~-. ~ / (t) d q~ (t), a ~ x ~_~ b, 
f l  

where/(z) is de4ined as fallows: 
(i) t (w) - - - -dF(x) /d~(~ , )  at point~ where this exists; 

(ii) At  any point x o where q~ (x) is dis~ntinuous 2,), f (xo) is defined 
so as to make F ( x ) -  [(xo) r  continuous at %; 

Off) At  the remaining points, f (z) = O. 

Let N be the set of points at  which ~ (x) is continuous and d F / d  q~ 
does not exist. B y  Theorem 3, Corollary, mq~(N) ---- 0, and so, by 
lemma 9, Corollary, m F (N) = 0. B y  1emma 4, F (x) is V BG* in (a, b); 
we can therefore construct, as in |emma 8, an increasing function ~(x) 
such that  D (F, x; ~) ~--- 0 at  each point of N. 

Let  X (z) be the function of lemma 6, suc]a that  the derivates of 
with respect to g are finite except a t  an enumerable set of points. 
Enumerate these exceptional points and the points of discontinuity of 

(x), together, as (zn), n ~ 1, 2, . . . .  Take any e ~ 0 and write 

M (~) ---- Y (~,) + ~ I~ (x) + ~ (x) + Z 8,  (~)1 

where fl~ (x) is defined as in (13). We say that  M (x) - M (a) is a major 
function of t(x) with respect to ~(x).  

Consider first a point x. where d F/d q~ exists and the derivates of 
with respect to  g are finite. There exists K such that,  for sufficiently 

small h, 
t~(x  § h) -- ~(x)t _~ K[Z(~  § h) -- Z (x)[. 

Since d F / d  qJ = / ( x ) ,  for sufficiently small h ~ 0 we have 

I ~ ( ~ , h )  - t(x)" ~ ~(~,h)l  ~ e .  ~(~ ,  (~, �9 + h))/(2 K) 

a n d e o  

There is a similar inequality for h ~ 0. In the same way, the conditions 
for a major function are satisfied at  the points of N, wliere f ( x ) ~  0. 

~) It  is easy to see from lemma 6 that these points of. diacontinuity a~a 
enumerable. The required value of/(x0) must exist, since F(x) i s  continuous with 
respect to ~ (~). 
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For since D(F, x; ~) --- 0, we have ~M ~ s �9 ~ +  ~F ~___ 0 for suffici- 
ently small h > .  0. Finally, at any of those exceptipnal points xn which 
does not lie in N, since F ( x ) -  f ( x , ) ~ ( z )  is continuous, the conditions 
are satisfied owing to the presence of the terms 8, (~). 

Since e is arbitrarily smalI, we deduce that, for a ~ z ~___ b, 

/ (t) d ~ (t) < F (z) --  P (a), 
a 

and in a similar way we can show that 

f (t) d ~ It) _>_ ~ (z) - F (a). 
- - a  

T h e o r e m 1 4 .  I f  qiz~ is VBG* on a serE, and F(x ) ,h (x )  are 
any functio~ whati, er, then 

- - b  - b  

a a 

i/ either side is finite; where f(x), g(z) are defined thus: -- at any 
point which belongs to B and where dF(oc)/dg(z) is defined, we write 
](x) =dF(x ) /dcp(~) ,  g(z,) = O; at all other points, we write / ( z ) - =  O, 
g (x,) = 1 .  

Let Z (~) be an increasing function, as in lemma 6, such that  the 
derivates of 9 with respect to Z are finite at all points of E except an 

--b 
enumerable set. Suppose that ~ h(x )dF(x )  < o0, and let M(z)  be a 

a 

major function for this integral. Let the points of E where the derivates 
of 9 with respect to Z are not finite be enumerated as (x,~); define fin (~) 
as before and write, for any e > 0, 

M~(x) = M(x)  + e {Z(x) + 2: &(z)} .  

Then M 1 ( z ) -  Ml(a ) is a major function for 
--b 
j'{h (=r) / (~} ,~,r (x) + h (x) g (x) ,ZF (=r)}. 

At points = where f ( x ) =  d F ( x ) / d g ( z )  and the 'derivates of ~ with 
respect to X are finite, we have for sufficiently small ~] > 0, 

[ ~0 (z + ~/) --  q (=)1 ~ K {X (:r + ~/) -- Z (z)} 
for some K, 

e.o~(% Cr,= + ~ ) ) / 2 K  
�9 {z (~ + ,~) - x (=)}, 

M (~ + ~) - M (=) __> h (~) {~' (z + ,~) - -  ~' (=)}, 
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and so, since g (x) = 0, 

h ( x ) / ( x )  {~ (~  + v) - q, (x)} + h(x)g  (x ) {~ ' (x  + ,j) - .~ (x)}. 
= h (~ ) t (= )  {q~(x + ,7) - ~, (=)} 
_ h ( x ) { P ( ~  + v) - F (x ) }  + ~ I x ( z +  v) - -  x(x)}  
___~ M (x 4- 7) - -  M (x) 4- s {X (x 4-  7) - -  2; (x)} 

M ,  (x + ,7) - M ,  (x). 
There is a similar inequality for ~ < 0. At points where ] (x) ----- 0 and 
g (x) ---- 1 the conditions for a major function are obviously satisfied, and 
the remaining points (namely those points (x.) where dF(x)/dq~(x) 
exists and therefore F (x) is continuous with respect to ~v (x)) are easily 
seen to be covered by the terms p~ (x). Thus M 1 (x) -- M1 (a) is a major 

- - b  

function. Since M (x) was any major function for ~ h (x )dF(x)  and e 
a 

was arbitrary, we have 
- - b  - - b  

j' {h (x) / (x) d v (=) + h (~) g (x) d~' (x)} < j" h (x) ,~ '  (x). 
(g a 

The reverse inequality is similarly proved. 
C o r o l l a r y .  I f  both F(x)  a~ut r are VBG* in (a,b), then there 

exists a set E such that m~(E)  ~ O, dF(x)/dq~(x) exists at every point 
o/comp (g) and at no point of E, and/or  any h (x) 

- - b  - -b  

I h(oc) dF(x)  ---- I {h(x)](x) dF(x) 4- h(x)g(x) dF(x)}, 
a (g 

where /(x) = d F ( x ) / d r  where it exists a~td /(x) = 0 on E, g(x) =- 0 
o,a r (E)' a~d g (x) = 1 on E. 

(Eingegangen am 19. M&rz 1936.) 


