The Perron-Stieltjes Integral.
By
A. J. Ward in Cambridge.

Considerable attention has been given to the question of integration
with respect to a function; various authors have shown how to define
an integral which generalises the Stieltjes integral in the same way as
Lebesgue generalised the ordinary integral. The Lebesgue-Stieltjes inte-
gral, however, is by its very nature restricted to the case in which the
integrating function is of bounded variation, while the ordinary Stieltjes
integral has no such limitation. An integral which includes both these
(Riemann-Stieltjes and Lebesgue-Stieltjes) is therefore not without interest.
Such an integral may be obtained by applying the methods of Perron®).
It is interesting also on account of its close connection with differen-
tiation.

In the first section of this paper T give definitions of differentiation
with respect to a function. It is shown that the theorem, due to
Denjoy %), which governs the possible values of the derivates of a func-
tion, can be extended to the case when the base-function is VBG* on
the set of points considered®). It seems likely that the class of
functions VBG* on a given set of points is the most general class
for which it is profitable to define derivates, and it is noteworthy
that the same class of functions proves to be of importance for the
theory of the Perron-Stieltjes integral. The second chapter is devoted
to the definition and simple properties of the integral. Finally, I con-
sider the case of a base-function which is VBG*, and give the analogue
of the theorem which states that every function 4 CG* in an interval is
the Perron integral of its derivative, and conversely *).

1) Other authors have defined a Perron-Stieltjes integral with respect to
functions of bounded variation; see R. L. Jeffery, Trans. American Math. Soc. 84
(1932), S. 645; J. Ridder, Math. Zeitschr. 40 (1935), 8. 127. The definitions employed
are not applicable to general base-functions. (The present work was carried out
independently of the work of Ridder, and in some places conventions are used
which are different from hia.)

%) A. Denjoy, Journal de Math. (1915) 8. 105—240, especially 8.190—192.

3) 8. Saks, Théorie de U'Intégrale (Warsaw 1933), S. 158 ff. The' definitions are
reproduced here for completeness. See Nr. 1.

1) Saks, loc. cit. S.198, 216.
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By the kindness of Mr. L. C. Young, I have been able to compare
this work with some (unpublished) work of his in which the ideas- of
the Denjoy integral are applied to Stieltjes integration. It is not sur-
prising that the theorems proved for the ’Perron-Stieltjes’ integral are
often very similar to those which hold for Young’s ’Denjoy-Stieltjes‘
integral, although the methods of attack are quite different®). (In some
cases, however, we found that we bad carried out similar but inde-
pendent work.) He suggested that it might be possible to define

(P8S) ..(]‘ldzp1 + fsd ¢;) and to prove Theorem 14, which he had proved

for Denjoy-Stieltjes integrals. This definition and this theorem- have
been added in accordance with his suggestions.

1. Unless otherwise stated, all functions mentioned are supposed to
be real and finite, and defined for all values of z in a fixed interval
a £« < b The ’base-function’ with respect to which we differentiate
or integrate is usually denoted by ¢(z) or y(z), and other functions
by /(x), g(x) and so on. Following Saks, we denote by w(gp; E) the
oscillation of @ (z) on a set E. Let now (I,), k= 1,2, ..., n, be any
finite system of non-overlapping closed intervals whose end-points lie
in B; form the sum. 25" o(p; 1) The upper bound of all such sums

k=1
is denoted by V* (g, E): if it is finite we say that ¢ (z) is VB* on E.
Finally, ¢ (z) is said to be VBG* on E if E can be expressed as a
finite or enumerable sum of sets E, on each of which ¢ is VB*.

Given two functions f(z), @ (x), we say that f(z) is A C with respect
to p(z) on a set E, if, for any ¢ > 0, there exists 4 > 0 such that,
if (I) is any finite set of non-overlapping closed intervals whose end-
points lie in F, then '

{J [f(yx) — f(xx)] << & whenever %’w(tp, I,) <6,

where z,, y, are the end-points of I,. In the same way, if for any
£ > 0 there exists 6 > 0 such that

2o(f, I,) <& whenever J (g, I,) < 6,
k )

the intervals (I,) fulfilling the same conditions as before, we say that f (z)
is AC* with respect to ¢(z) on E. If a given set E.can be expressed
as a finite or enumerable sum of sets E,, on each of which f(z) is 4C*
with respect to @ (z), we say that f(z) is ACG* with respect to ¢ ()
on E.

5) In fact, the final theorems, 12 and 13, are not far from a demonstration
that the Perron-Stieltjes integral is equivalent to a Denjoy-Stieltjes integral.
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1. 1. Ditlerentiation with respect to a tunection.

Let f(x), o (2) be any two functions, of which ¢(z) is defined at
all points of the interval ¢ << z << b, but f(z) may be undefined at
some points. We define the upper right-hand derivate of f(z) with
respect to ¢ (x) as / /

r e i et h)—f(x)
Do = I oo
with the conventions that if the quotient takes the forma 0/0 it is not
counted in evalnating the limit, and that, if a > 0, then @/0 = 4 o
and —a/0 = — . We define the three other derivates similarly, and
if they all exist and are equal we write the common value as D (f, z; ¢).
By df(z)/d ¢ (x), however, we denote a rather more general conception,
which we may call the Roussel derivative®). We say that f(z) is con-
tinuous with respect to @ (x) at the point z, if for some number %
lm [f(a+h)— () — klp(+B) — 9 @)] = 0.
If in addition”) we have
lim [T B—f@—k{p=Lth)— ¢la)
A 0 o(p; =, h)
(where w(g; =, k) is the oscillation of @ in the closed interval (z, = + k)
or (& + k, ), according to the sign of %), then we write®)
df(2)/d ¢ () = k.

We take as our starting-point the following theorem, which is a
slight generalisation of the Denjoy results.

Theorem 1°). If () is strictly monotone, and f(x) is defined in
any set H, then all the points of H fall into one of three sets:

(i) e set E, where D*(f, z; ¢) = D_(f, =; ¢), finite;
(i) @ set E. where D*(f, z; ¢) = + o, D_{f, z, ¢) = — o»;
(i) e set N such that m ¢ (N) = 09).

=0

6) Roussel, Comptes rendus (Paris), 187, S. 926 (19. Nov. 1928).

7) This second condition doss not imclude the continuity condition, as it is
possible that ¢ (£) may oscillate infinitely in the neighbourhood of the point z.

8) It is easily seen that if ¢ is bounded in the neighbourhood of z, then the
existence of a finite D (f, x; @) involves the existence (and equality) of df(z)/d ¢ (#),
but not conversely.

9) A theorem equivalent to this is proved by Ridder (loc. cit. 134) in the
more general case when ¢ (x) is VB [but not when ¢ (z) is VBG*]. His con-
ventions in the definition of the derivates with respect to ¢ (z) are different from

* ours; also it should be observed that m ¢ (E) is not to be confused with ,,the
p-measure of E, which cannot in general be defined unless ¢ (z) is VB.

1) o (N) denotes the set of values assumed by @ (z) for those values of z
which lie in N.
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To prove this it is only necessary to express f(x) as a function of ¢
and apply the Denjoy theorems; the arguments involved are trivial. We
shall show that the same theorem is true for any ¢ (z) which is V BG*
on H. It will then be shown that if f(z) itself is VBG*, the set E..
can be included in the set N; that is, m ¢ (E.) = 0.

1.2. Lemma 1. If @(z) 4s VB* on a set E, it is V B* on the
closed set E + E' ).

Lemma 2. If ¢(x) is VB* on a set E, then there exists a strictly
increasing funciion y () such that all four derivates satisfy | DI (g, z; 3)| =1
at each point of E, except possibly the extreme points.

By lemma 1, we may suppose "E closed; let ¢, d be its extreme
points. Write
Q) 2@ =y+V*(p;[E@ y + @) — V*(9; [E<y, b + ).

z(y) is obviously strictly increasing, and it is easy to see that for
any z of £ and any y such that ¢ < y < d we have

@ - 2 () — 2@ = |9 #) — p(a)].
Hence the result follows.

Lemma 3. If x(z) is stricily increasing, and all four derivates of
a function @ (2) satisfy |Di(p, z; )| <k at each point of a set E, then
m o (E) < km, x (E).

Given &> 0, we can find, for any point z of E, a number
h = h(z, &) so small that

3 lp(z) — @(8)| < (k + &)z (z) — 1 (8)]

whenever |y (z) — x(§)] <kh®™). We can therefore find %,, depending
only on &, so small that equation (3) is satisfied whenever

|2 (x) — 2 (&) < ks,

if  belongs to a set E, c E such that m, ¢ (E,) > m, ¢ (E) — e.

Let U be an open set including y(E) and suck that m U <<m,y(E) + ¢;
then U can be expressed as a sum of open intervals I,, possibly over-
lapping, such that mI, <h, for each' n, and Y mI, <<m,y(EB)+ 2.

Let J,, be the set of points = for which y(z) lies in I,; if =z, =, are
any two points of E,J, we clearly have |y (z,) — x(z,)| <k, and so
I'p(zo) - ¢(ml)' < (k + E)Ix (zo) - x(w1),- It follows that m, ¢ (Eo Jn)

11) Saks, loc. cit. 159.
13) Sinoe X () is strictly increasing.
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S (k+eml,. Since E, is a sub-set of E, every point of E, lies in
some set J,, and therefore

m, 9 (B) = %'m,(p(Ean)
< (k+eXml,
< (k+¢) (mx(B) + 2 ¢}

Hence
m @ (E) < (k+e) {m, 2 (B)+ 2¢) + .
Since ¢ is arbitrarily small, the result follows.

Theorem 2. If f(z) is defined on a.set H, and ¢ (z) s V BG* on

a set E c H, then all the points of E fall into one of three sets:
(i) a set E, where D* (f,z; ¢) = D_(f,=; 9), finite;

(ii) a set B where D* {f,z; ¢) = + o, D_(f,%; ¢) = — oo;

(iii) & set N such that m ¢ (N) = 0.

Express E as §1E" where @ (z) is ¥V B* on each E,. It is clearly
sufficient to pro\:e that the set NE,, which we can express as
E,—E. — E,, satisfiesmeo (NE,) = 0 foreachn. Write F, = E, 4 E,
and let ¢,,d, be the extreme points of F,. By lemmsas 1 and 2, we
can define y,(z) such that the derivates of g satisfy |Di(p, ;%) <1
at each point of F, except perhaps ¢, and d,. Apply theorem 1 to the
functions ¢ and yx,; the set can be divided as follows®):

A set G, where D (g, x; Xn) = 0;

a set G, where D (¢,z; y,) exists and is not zero;

a set N, such that m g, (N,) = 0.
The set can, however, also be divided with respect to f(z) and x, (),
a8 follows:

A set H, where D (f, x; y,) exists;

a set H, where
D*(f,%; xa) = D_(f, %; x), finite;

D (f,z;4n) = — o0, D (f, 05 05) = + o0;
a set H, where
D, (f, %; x,) = D™ (f,%; ), finite;

D+(f’w;xn) = 4 o0, D_(f,%; xa) = — o0;

13) With each theorem such as theorem 1 there is of course associated a
similar theorem relating to the other two derivates, which we assume without
further proof. It follows that if all the derivates are finite, they are equal to
each other, except on & set satiefying m x, (¥,) = 0.
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a set H, where
D+(f:$;1n) = -D-_(fs x;zn) = -+ oo;
D, (f,%; 2a) = D_(f,2; 2n) = — o0;
a set H, such that my,(H,) = 0.

Now it is clear that all points of G,(H, + H, + H; + H,) fall into
one of the sets E,, E,. (It may be necessary to consider the sign of
D (@, %; xs); for example, for points of the set G, H,.) Hence NE,c H,
+ N,+@G,. Apply lemma 3 to the set H,+ N, with k=1 and to
the set @, with k. =0; we have mg(H,+N,+G) =0 and so
m@(NE,) = 0. This proves the theorem.

1.3. Lemma 4. If f(z) vs A4CG* with respect to ¢ (z) on a set E,
on which ¢(z) is V BG*, then f(x) is V BG* on E.

We can split £ into at most X, sets E, on each of which ¢ (z) is
V B* and f(x) is A4 C* with respect to @ (z). Define the function x, (z)
corresponding to the function ¢(x) and the set F, = E, -+ E,, as in
lemma 2. Since f(z) is 4 C* with respect to ¢ (z) on E,, we can find
6 > 0 such that, for any finite set of intervals with end-points in E,,

(4) ka(f,Ik)< 1 if %’w(¢,1k)<6.

Consider the sub-set E,, of E, for which 96 < 4, (2) < (p+1) 4.
If ¢, and «, (z, << ;) are any two points of E,,, we have from (1),
o (@; @y, 29) < V*(9, @1, T)) = 2n (Tg) — s (21)-

Thus for any set of intervals I, with end-points in E,, we have
Zolp, L) = Zo(g.. Ir) <4,

and so from (4), Xw (f,I;) << 1. That is, f(z) is V B* on E,,; it fol-

lows that f(z) is VBG* on E.

Theorem 3. If f(z) and @(x) are both V BG* on a set E, then
D (f, x; p) emists, and 1s finite and equal to d f(z)/d ¢ (x), everywhere in E
except possibly in a set N such that m ¢ (N) = 0.

Corollary. If, on E, @ (z) is VBG* and f(z) ACG* with respect
to @(x), then a finite df(z)/d @ (z) exists everywhere in E except for a
set N such that m ¢ (N) = 0.

We can express £ as the sum of sets E, on each of which both
f(z) and @ (x) are V B*. By constructing functipns as in lemma 2 for
both f(z) and ¢ (2), and adding them together, we obtain a strictly in-
creasing function y, (z) such that

|DL(, 25 )| < 1
and also
D% (975 24)| < 1
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at each point of E,, except possibly the extreme points. By Theorem 1,
both D(f,z; x,) and D(g@,z; x.) exist aud are finite except in a set N,
such that myx, (N,) = 0. The argument now proceeds as in Theorem 2.
We observe that at a point where D (f, z; x,) and D(g, z; x,) both exist
and D(g,; ya) =0, both D(f,z; ¢) and df(x)/d ¢ (x) must exist (and
be equal).

The corollary follows at once from lemma 4.

2. The Perron-Stieltjes Integral.

The Perron integral is defined by means of major and minor funec-
tions, which in turn are usually defined by inequalities relating to deri-
vates). There would be obvious difficulties in extending such a defini-
tion to the case of integrals with respect to a general fuunction ¢(z),
which may attain the same value at an infinite set of points. For this
reason we define the Perron-Stieltjes integral by means of inequalities
concerning the increments M (z + k) — M (z), ¢ (z -+ k) — ¢ (z) directly,
and not in terms of the derivates of M with respect to ¢. The resulting
integral is found to include the ordinary Stieltjes integral, whether ¢ (z)
is of bounded variation or not. It also includes the Lebesgue-Stieltjes
integral with respect to an increasing function; but it does not include
the ’Lebesgue-Stieltjes‘ integral with respect to a function of bounded
variation (defined by Mlle N. Bary and Menchoff), which may exist in -
an interval (a,d) without existing in a smaller interval (a, z)'%).

2.1, Given any functions f(z), ¢ (z) we say that M (z) is a major
function of f(x) with respect to ¢ (z) if M {(a) = 0, and for any point z
of (4,b) there exists d(z) > © such that

'

6) MEOZM@)+{@@) {9 —9@) if 05&—3<L8(a),
® ME<ME@)+i@{p@—9o@) if 0=¢—22=—d@).
(If z is equal to a or b, we consider only the one inequality which is
appropriate.)

The upper Perron-Stieltjes integral of f(z) with respect to ¢(z) is
defined as

(P8S) Tf (#)d @ (z) = bound M (b) (all major functions)

if finite major functions exist; otherwise we write | oo for the value
of the upper integral.

14) Ridder (loc. cit.) applies the same method in defining his Perron-Stieltjes
integral. ‘
16) N. Bary and D. Menchoff, Ann. Mat. pura appl. (4) (1928), 8. 19--54.



The Perron-Stieltjes Integral. 5856

-z
It is easy to see that M (z) — (PS) "‘f(i)-dtp(t) is an increasing
function of z. )
Minor functions and the lower integral are defined in the correspon-
ding way, the inequalities being reversed.
Let M (z), m(z) be any major and minor functions, write
w(z) = M (2) — m(x).
For any z there exists 6 (2) > O such that
wl)=ow@ if 0 E—2< 6(2),
w) Sw@ i 0z=6—22=2 —4d(),
(from the definitions). It easily follows that ¢ () is an increasing func-
tion. Since this is true for any M (z), m (z),

P8 [tydet)— (P [fBde0)

is a positive increasing function of z. (We do not give the details of
this argument, as they are almost exactly the same as for the ordinary

Perron integral.
If

—b b
(PS) [{(z)d g (=) = (P8) [ (2)d p(a)

b
we write the common value as (PS) j f(z)d ¢ (z); if it is finite we say

that f(z) is integrable with respect to ¢ (z) in (a,b). In future we drop
the prefix (PS) when there is no ambiguity').
The following properties are easily proved:
(I) If a <c¢ < b and f(x) is integrable in (a,b), then it is integrable
in (a,c), (c,b), and
b

[Hodgp@ = [f)deE+ [f@)dp@).

16) The same principles may be applied to form the *Perron‘ integral of any
differential expression depending on one variable. For example, we may define

(P8) _f_{f1 (z) 2 ¢1(2) 4[5 (2} d @g ()} in exactly the same way as we have defined

(P8)(}(2)d ¢ (x), only replacing (5) and (6) by

H(H—H=)=1(2) {91(E)—91(2)} + [1(2) (@2 () —@a (2)) f O=E —z =34,
M (&) — M (2) =, () {91 (E)— 1 (2)) + o (2) {92 (E)— 5 (2)} if O b—z=—06.
I awe this remark, and Theorem 14 ‘which depends on it, to Mr L. C. Young.
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The converse also holds.

—b —b
an fel@do@ =c[f@ip@ i cz0;

=cff(x)d¢p(z) if e<oO.
—b —b —b
) (i@ +h@)de@ < [H@de@E) + [ f(2)d ),
b b b
[ththdo@=[hde+[hdg,

—-b —b -b
[1@)d{e,@ + (@) < [ @) doy(2)+ [ F(@)d gy (),

b h b
[f@)d g+ 9 = [F(@)do, + [ fd g,

provided that the right-hand side has a meaning, in each case.

It will be noticed that we have not introduced any continuity con-
dition in the definition of the integral. There are, however, continuity
properties implicit in the definition, and the integral, if it exists, is always
continuous with respect to ¢ (). For convenience we write

F@ =[j0de®), F@=[/0da®), F@=[I0dew.

Given any ¢ > 0, we can choose a major function with M (b) << F (b) + e.
For any z, taking d(2) as in the definitions (5) and (6), we then have,
since M (z) — F (z) is an increasing function,

FE—F@a)=ME) M@ - ¢

=@ (p¢)— o) —cE 0 E—2<d(a),
and similarly

FO-F@) < f@(e@)—9@) +eif 0= é—a= — ().

Taking into account the corresponding inequalities for F (z), we see
that if f(z) is integrable,

(7) F&)—F(z) —f@){g(f) — @)} >0 as §—z 0.

2.2. Relations with other integrals.

In this section we prove first that the P S-integral includes the or-
dinary Perron integral, and next that it includes the ’modified Stieltjes
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integral* of S. Pollard"”), (which is itself a generalisation of the ordinary
Stieltjes integral). Finally, we consider ite relations with the L S-integral.

b b
Theorem 4. If (P)".f(w) d x exists, then (PS)jf(w)dtp (z) (where

@ (2) = z) exists and has the same value.
Given any ¢ > 0 we can find a fqnctioﬁ M (z) with

min. [D, (M, z), D_(M, )] = {(=z)
b |
everywhere, and M (b) < (P) j. f(z)dx -+ & Then consider the function

M, (x) = M(z)+ e(x — a)/(b— a). We have

min [D, (M,, ), D_(M,,z)] > f(2),
and hence for sufficiently small 8(z) the conditions for a P S-major
function are satisfied.

—b b
Thus (PS) [ f(2)d(2) < M, (b) <(P) | t@)dz + 2z From this

and the corresponding result for the lower integral we have the theorem.

(Note. In the ordinary Perron-Bauer theory f(z) is-allowed to take
infinite values, which are ruled out here; it is however a standard result
that these infinite values may be replaced by zero without altering the
integral, so that there is no real restriction in supposing f(z) finite
everywhere.)

b
Theorem 5. If (M) Je f(z)d ¢ (z) exists'®), then (PS) j f(z)d @(z)

exists and has the same value.

Let L be the value of the Pollard integral. For any & > 0 there
exists a set of points y, << y, < ... yy with the following property:
—fe=g L S0, <6, <...Z5 &, < 2, =0b is any subdivision
of (a,d) such that y,, y,, ..., yx occur somewhere among the points
Ty, + ..y Tn, then

IL—',=21: F(&) (o (@) — @(mi-y))| < &
Define M («,8) as the upper bound of
Z.EPI F€) (@ (@) — @ (wii)}

17) 8. Pollard, The Stieltjes Integral and its generalisations, Quart. Journ. 49,
198 (1920), S. 87—94. '
18) 8. Pollard, loc. cit., p. 90.
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for all divisions of the type
e=p 6. . ShSw=4
Then M (e, y,) + M (45,9 + ... + M (yy—1,yn) + My~ b) < L+
Now clearly, if a < 2 < &,
M(x,é) = M(x,2) +f(2) {9 (§) — p(2)};
if « <& <a,
M0, &) = M, z) + f(2) {9(§) — o (2)}.
For any z, let n(x) be the greatest integer such that y, << 2.
Write - '
n(x) —1

M(ﬁ) =M (a’5 yl) + Z M(y:‘: yi+1) + M (?/u(z); Z).

t=1

From the inequalities just obtained it is easy to see that M (x) is a
major function, and M () << L 4 &. With the corresponding result for
a minor function, this proves the theorem.

In the case when ¢ (z) is monotone increasing, the development of
the properties of the P S-integral proceeds almost exactly as for the

ordinary P-integral. We show that if F(z) = (PS) I (&) d ¢(t) then

D(F z; ¢) = f(z) except in a set N, where m ¢ (N) = 0. We then show
b

that if (LS) J' f-d @ exists, the PS-integral exists and has the same

value; that the converse holds if f(z) is always positive. TFinally we
prove that if f,(z) - f(z) and we have always g(2) < f.(2) < h (%),
where g, b are P S-integrable, then if all the f,(z) are PS-integrable, so
is f(z), and

[ H@)dpw) =n1_i>n:jf,.(w)d¢(w)-
The proofs of thes: statements follow :.tandard lines, and are omitted.
2. 3. The Stieltjes Transformation.
Theorem 6. If ¢(») = fg(t)dip(t) fora <z b and f(z) is
bounded in (a,b), then ’
jbf(z)d p(2) = :fb.f(w)g(z)d«p(w)

and

b b
fi@de@ = | f@g@)dy ).
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—b
Suppose that j f(x)dp(z) = L < o, and |f(z)| < K. Given

e > 0, choose a major function M (z) of f(z) with respect to ¢ (z), and
major and minor functions N (z), n(z) of g with respect to v, such that
MO <Lts, pl)—e<n®) =<N®<g®-+e
Write w(2) = N(2) —n(z), My(2) = M (z) + Kw(z); then if z < &

and & — 2z is sufficiently small we have:
n(f)—n@) = @) —9e@ ZNE-—-DN(@),
n(é)—n(x) < 9@ (@ —v@)} S N(E) - N(),
and so
l9 @) {p(€) — p@)} — {9(&) — p(2)}]
= (N —N@)} — {n(f) —n(2)} = o) —o(2)
Hence, for sufficiently small positive & — z,
M, (&) —-M,(z) =M (¢) — M (2) + K {0 (§) — o (2)}
= @) {9@) — e(@)} + K {0(¢) — o (2)
= =) {9 () — @ (2)} 3 f(z) {9 (@) [v (§) — v (2)]

- [p(&) — o (x)]}
= [ (@) 9 (=) {9.(8) — v (2)}.

There is a similar inequality for £ < z and hence M, (z) is a major .
function of f(z) g(x) with respect to v. Since M,()) <L+ (2K+1)¢
we see that

.y —-b
[t@e@dv@ < | tHo)d (@),

The reverse inequality is similarly proved; finally, the case of the lower
integrals follows by writing — f(z) for f(x).

2. 4. Ditferential Properties.

We need first a covering theorem (analogous to W. H. Young’s
lemma).

Lemma 5. If with each point z of a set E is associated an interval
(%, ¢ + h), b varying with z; then given any number A less than m, ¢ (E),
we can find a finmite non-overlapping set of such intervals (z,,x, + h,),
v=12,...,n, such that Zm, ¢ [E (z,, 3, + h,)] > A.

We can find p so large that the sub-set E,, composed of those
points of E for which k> 1/p, satisfies m, p(E,) > A. Let (c, d) be
the smallest closed interval containing E,. We can find a point z, of E,,
either coinciding with ¢ or so near to ¢ that m, [E,(x,,d)] > 4. Let
(%, @, -+ h,) be the interval associated with z,, and let (c,,d) be the
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smallest closed interval containing the set E,(z, + k,, d). Then

m, @ [By (2, T, + 1,)] + m, 9 [E; (c,, d)] = m. @[E,(2,,d)] > 4,
so that we ocan choose a point z, of E,, such that z, = ¢,, lying so
near ¢, that

m, ¢ [B, (2, 3, + k)] + m, 9 [E, (24, d)] > 4.

‘We then take out the interval (=, z, -+ %,), and proceed in the same
way; since each value of % is greater than 1/p the process must termi-
nate. Finally we obtain a finite set of intervals (z,, z, +%,), ..., (Tn, Tp+ hy)
such that

2 m B, o+ W] = 3 mplEy (o, 5 Hh)] > 4.

Theorem 7. If
Fo)=[f0det) @<z<))

a
then dF(x)/dg(x) = f(x) except possibly at points of a set N such that
me(N)=0.

We remark first that if in any interval ¢ (2) is constant, then F (x)
also is constant, so that the equation d F(z)/d ¢ (z) = f(z) is true in a
conventional sense. Consider the set N, of points z, such that ¢(x) is
not constant in any interval (z,, z), (¢, > %,), and that

T F(2)—F (%) — [ (20) | 9 (7} — ¢ (%)}
x—llg,l+ 0 o (s (%o, 2)) >0
We shall show that m ¢ (N,) = 0, and a similar argument applied to
three other sets defined by analogous inequalities would complete the
proof of the theorem, for we have already shown that F () is continuous
with respect to ¢ (z) at every point.
Suppose on the contrary that m, p (N,) > 0. We can find p such
that the set N, where
= F(2) —F(z) —f(z) { @ (%) — @ (%)} i
z—)llgl+0 o (@, (%o, %)) > 7
satisfies m, ¢ (N,) > 0. Take 7 such that 0 < 7 << m, ¢ (N,) and a
minor function m (z) with F () — m(b) < n/p. Since m(x) — m(z,)
< f(z,){p(x) — @ (z,)} for all sufficiently small £ —z, = 0, we have
for z, in N,,

fm F (x) — F () — [m (2) — m (20)]
z—>29+0 @ (@ (g, %))
Applying lemma B, we can now find a finite non-overlapping set of inter-
vals (z,, 2, + k), v=1,2,...,n, such that

(8) F (zv + hv) —F (wr) - [m (xv+ h,) —m (zv)] > (1/1’) @ (¢: (xn mr+ hn))

1
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and

®  Lop@at+i) = 2 mel,e, 5+ h] >0

v=1
Then since F (x) — m(x) I8 a positive increasing function, we must have
from (8) and (9)
F(b) —m () >n/p,
which is a contradiction. Thus m ¢ (N,) = 0.
It is also possible to give a differentiation theorem in terms of the

ordinary derivates.

Theorem 8 If F(x) =jf(t)d @ (t), then D*(F,x) = f (x) D* (g, x)
or D*(F, z) = {(z) D, (g, z), agcording as f(z) = 0 or f(z) < O, almost
everywhere in (a, b), except possibly where the product takes the form 0 X oo.

At points z, where the statement is untrue, we must have

fim @) —F(20) —1(20) {¢ (%) — @ (o)} >0

Z—>zo+0 T— %

or

lm F (z) — F (25) — f (%) { @ (2) — @ (%)} < 0.
z-> X+ 0 Z— %
The proof proceeds exactly as in the last theorem, with the substitution
of m E for m, ¢ (E), and (z — z,) for w (@, (z,, T)).

3. In the preceding sections we have given some properties of the
P S-integral, assuming that it exists for the pair of functions considered.
We now turn to the questions of the existence and ‘structural properties
of the integral. It appears to be necessary to assume that at least one
of the functions concerned is ¥ BG* (on some set comsidered) in order
to obtain any non-trivial results. In fact, we may say that the class of
functions VBG* in (a,b) is related to the P S-integral in much the
same way as the class of functions of bounded variation is related to
the ordinary Stieltjes integral.

After some lemmas dealing with the structure of ¥ BG* functions?®),
we give a necessary and sufficient condition for the integral to vanish
identically. There follows a theorem on integration by parts (which may
of course be interpreted as asserting that a certain P S-integral exists
whenever the related integral exists). Finally we prove that a P S-inte-
gral with respect to a function V BG* in {(a, b) is 4 CG* with respect
to that function, and conversely; subject to the necessary continuity
condition.

19) Similar lemmas are used in the work of L. C. Young on Denjoy-Stieltjes
integration, but the work here published was carried out independently.
Mathematische Zeitschrift. 41. 39
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3.1. Lemma 6. ¢(z) is VBG* on a set E if and only if there
ewists a strictly increasing function y (z) such that all the derivates Dt (g, @; z)
are finite af all poinis of B, except perhaps an enumerable se.

Suppose the condition satisfied; then the points of F where the
derivates are finite can be divided into sets E, such that, if z lies
in E,,

le(€) — (@) = » |2(5) — 2()]

whenever

() — 2(@)] = 1/n.
Subdivide each E, into sub-sets E,, defined by the inequality p/n < y(=)
< (p+1)/n. It is clear that @(z) is VB* on each E,, and hence

(taking the exceptional points as constituting each a set in itself) ¢(z)
is VBG* on E.

Conversely, suppose ¢(z) VBG* on E, and V B* on each of a
sequence of sets E, which together make up E. Construct for each E,
the function y,(z) of lemma 2, and write

\ Xn(2)—x, (@)
1(e) = 2 2" (1, (6) — X (0)}

z(x) is a strictly increasing function defined in (s, b), and it is clear

that lDi(tp, z; x}| < 2" at each point of E,, except perhaps the extreme

points of E,. Thus the derivates are finite at all points of E except
possibly an enumerable set.

Theorem 9. If F(z) = _ff(t)dcp(t) for a < x < b, then F(z) is

VBG* on E tf and only if E can be expressed as G + H, where ¢(z) s
VBG* on G and f(2) = O at each point of H.

Let M(z), m(z) be any major and minor functions of f(z) with
respect to ¢(z), and write w(z) = M (z) — m(z). For brevity we write
also ¢ = dop(z, h) for @(z - k) — @(z), and so on. We observe that,
for sufficiently small %, both f(z)-0¢(z, k) and OF(z, k) lie between
dm(z, h) and 0 M (x, k), so that

(10) [6F — [(2)- 09| < |dw].

Suppose now @(z) VBG* on G, and let y(x) be the function of lemma 6
corresponding to the set G. Write y,(z) = x(z) + w(z). At all points
of G except an enumerable set, there exists K = K (z) such that

[0p| < K(z)-|dy]
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for sufficiently small . Hence, using (10), we have

|6F| < |f(z)-8¢| +|de],
(11) = K-|{(x)|-|02] + |dw],
= (K@) +1} {01,

since y(z) and w(z) are both increasing functions. At points of H,
where f(z) = 0, we have immediately
(12) |0F| < 00| < |0z,
for sufficiently small 2. By lemma 6, it follows from (11) and (12) that
F(z)is VBG* on G+ H.

Conversely, suppose F(z) VBG* on E=¢ + H, and f(z) = 0 on H,
but f(z) &= 0 on G.

Let x(z) be the function of lemma 6, defined with reference to F (z)
and E. At all points of G except an enumerable set, we have, for
sufficiently small 2,

[0F| < K(2)|0y]
|H(2)-d9| < K(2)|dz|+|dw].
Since f(z) does not vanish on @, it follows that

|89 < {K(2) + 1} {|82] + [8o[}/|f(z)].
Thus ¢(z) is VBG* on the set G.

Lemma 7. If y(z) ts strictly increasing, and D(g, z; x) exists and
satisfies | D (@, x; x)| > k>0 at each point of a set E such that m ¢ (E) = 0,
then my(E) = 0.

For each point z of E we can find n = n(2) so large that

lp(5) — ()| > k|1 (5) — x(2)]|

[2(€) — 2 (@)| < 1/n.
If m,y(E) >0, we can find a fixed n, such that this condition is
satisfied for m = n, whenever z lies in a subset E, of E such that
m,x(E,) > 0. We may also suppose that — n, << y(a) < x(b) < n,.
Let now X1, be any open set containing ¢(E), composed of the non-
overlapping intervals I,. Let E,, be the subset of E, composed of
points satisfying:

and so

whenever

¢ () belongs to I,, and
g'm < 2(2) < (g + 1)/n,.
If z, y are any two points of E,, we have

ml, = |p(z) — o(9)| = k|x @) — x ()]
39‘
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Hence k-m,x(E,,) << ml,, and so, summing over the possible values
of ¢, we have
m (L Eyq) < 2n°(mI,) [k
q

and so

moy(B) < 2n*(m Z1,)/k.
Since m X'I, may be arbitrarily small, we must have m y (E,) = 0, con-
trary to supposition.

Lemma 8. If ¢(z) is VBG* on E and continuous at each poini
of E, and also m @ (E) = O, then there exists an wncreasing function v (x)
such that D(p, z; ¥) = 0 at each point of E.

Let y(x) be the function of lemma 6. By Theorem 1, D(g, z; %)
exists, and is finite, at the points of E, except possibly for a set N such
that mx(N) = 0. Let E, be the sub-set of E consisting of points at
which |D (g, 2;x)|> 1/n. By lemma 7, my(E,) =0, andso my (2 E,) = 0.
Thus we see that E can be divided into three sets: a set G of points
where D{g, 2; %) = 0; a set H, such that my(H) = 0, of points at
which y(z) is continuous and all the derivates of ¢ with respect to x
are finite; and a set of points (z,), at most enumerable, where y(z) may
be discontinuous or one of the derivates of ¢ not finite.

Let U, be an open set containing y (H) and such that mU, < 1/4".
Define y,(z) = m {U,.[y < ()]}, y being a variable describing the set
U.; w%o(x) is clearly an increasing function, and it is easy to see that,
gince y(x) is continuocus at points of H, D(y,; %; x) = 1 at each point
of H. We note that 0 < 9,(a) < v.(b) < 14" If now z, is one of
the enumerable set of points not in G or H, write

pn(x)=0 if z<uz,,
(13) Bol@) = 1/22+1 i 2=,
Bn(z) = 1/27 if z>w,.
Finally write
#(@) = Z 2 ya(a) + Z6.(0) + 1(a)

If  belongs to H, let K be the greatest modulus of the four derivates,
| D (g, %3 %)|; then
o S = et = X o, K=o
< K Tm r(z+h)—x@ |
= a0 2y, (e + B — v, @]
< K/[2,
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It follows, » being arbitrary, that D(gp, z; ) = 0. The same holds at
each point z,, @(z) being continuous, owing to the presence of the
terms f, (z); and at points of G owing to the presence of the term y(x)

in p(=).
Theorem 10. j_f(t)dcp(t) exists and vanishes for all x such that

a<<z<b, if and only if f(x) = 0 except in a set E, such that ¢ (x)
is VBG* on E and continuous at each point of E, and m ¢ (E) = 0.

Suppose jf(t)dtp(t) =0 for a < z < b. By Theorem 7 the set E
a

on which f(z) 4= 0 satisfies m @ () = 0; by the remark at the end of
§ 2.1, ¢(x) must be continuous at each point of E; and by Theorem 9,
p(x) 18 VBG* on E.

Conversely, suppose the conditions satisfied; let 4 (z) be the function
of lemma 8 constructed for the set E. Given any &> 0 and any «
of E, we can find A, so small that

[{@)|-|e@@+h) —o@)] < elp@+h)—p@)| if |2 < h,.
Thus ¢{y(z) — y(e)} is a major function; similarly — &{y(z) — y(a)}

is & minor function. It follows that j' f(t)d(t) = 0 for every =.
a

3. 2. Integration by Parts.

The theorem which we are about to give is in some ways less general
" than the corresponding result for the ordinary Stieltjes integral, for we
restrict one function to .be VBG*. However, it includes the most im-
portant case of that result — namely, when ¢ (z) is of bounded variation;
for then we know that the Stieltjes integral exists only if f(z) is conti-
nuous except at the points of a set N such that m¢(N) = 0.

Theorem 11. If @(x) is bounded and VBG* in (a,b), and f(z) is
bounded in (a, b) and comtinuous except at the poinis of a set N, such
that m @ (N) = 0 and @(x) is continuous at each point of N, then

—b b
[ H2)do@) + [ p(2)df(z) = ¢(6) [ () — ¢(a){(a)

if either integral is finite.

Let x(x) be a strictly increasing function such that the derivates
of @(z) with respect to z(z) are finite except perhaps at an enumerable
set of points (lemma 6). Since @(z) is bounded, if we add to x(z) a
series of functions of the form fB,(), (13), we obtain a function %, ()
such that the derivates of ¢(z) with respect to y, are finite everywhere.
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—b
Suppose now j' f(z)do(x) < oo and let M(z) be any major function
a

for this integral. Let wy(z) be the function of lemma 8 such that
D(gp, z; ) = 0 at each point of N. Take any £ > 0 and write
my(2) = ¢(2)[{z) — M(z) — ¢ {9(2) + 1, (2)}.
For sufficiently small 2 > 0 we write
om, (z, k) = 0(¢f) (2, h) — O M (z, k) — & {d p (2, h) + Oy, (=, b))
(14) = @(z)-0f + 0f-89 + f(z)- 8¢ — O M — e(dy + Oy,)
= ¢(@)6f+6f-0¢ —e(dy + 0z,).
If f(z) is continuous at z, we have for some K and sufficiently small
h>0, |6¢| < K-0yx, and |6f] <<&/K; hence from (14)
om (2, h) < @(z)-0f — -8y
= ¢(=)-9f.
If however z belongs to N, we have for sufficiently small A > 0,
|8p| < &-8y/2 R, where R is the upper bound of |f| Hence |6f-d¢]|
< &-8y and so again we have
sm, (2, h) < 9 (2) -8/ (a, ).
From this and the corresponding inequality for A << 0 we see that m, ()
b
—m, (a) is & minor function for 'f ¢(z)d}(z). Thus we have, for any

—a

M (z) and any & > 0,

b
[#(z)dt()
= ¢ B () — ¢ (@) (@) — M) —&{p(®) — ¥ (@) +1,(}) — 2: (@)}
and 8o
b ) ‘ -b
[p@)df(2) = o®)(b)— @) — [(2)d p(a).

The converse inequality is similarly proved.

It may be remarked that the conditions of the theorem, while far
from being necessary, are not so artificial as they might at first appear.
In fact, it is possible to prove the following theorem: If ¢ (z) is ¥V BG*
in ¢a, b), and, for o < z < b,

[10de® + [90dt0 = 0 @@ — (@)} (a),

then f (z) is continuous except at the points of a set N such that
meo(N) =0.
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3.3. Theorem 12. If F(2) = j‘ fO)d (), and ¢(z) is VBG* on

a set E, then F () 1s ACG* with respect to @ (z) on E.

By Theorem 9, F (z) is V BG* on E. It follows that we can divide
E into an enumerable sequence of sets E,, on each of which both ¢ ()
and F(x) are V B*. We shall show that F(z) is 4 C* with respect to
¢ (x) on each E,.

Take any E, and consider the closed set E, + E,. If any of its
black intervals («, §) are such that ¢ (x), and therefore F (z), is constant
in the closed interval («, 8), we add them to E, + E,, and thus obtain
a closed set H ‘(say), on which, as is easily seen, F(z) and ¢ (z) are
VB*. Given any ¢ >0, choose a major function M (x) such that
M) < F(b)+ €. Since M (x) — F(x) is monotone, M (z) also is V B*
on H. Define M, (z) as equal to M (z) on H and linear in the black
intervals of H; similarly ¢,(x) equal to ¢(2) on H and linear in the
intervals. - Then M, (z) and ¢, (z) are of bounded variation; let @ (x)
be the total variation of ¢, () in the interval ¢ < ¢ <z, and ¥ (z) the
total variation of M, (¢). Enumerate the black intervals of H as (c,, d,),
and the discontinuities of M, (z) as (z,).

Choose N so large that

(15) m PH(f| <N]>m¥H) —
(16) 2 (W) — Ve <o
a>N
a7 2V (@ +0) — P(z, —0)} <&
n>N

Define R as max [|f(w,)|, |f(2y)}, ..., |f(zx)|, 1].

Take d, as the least of

(18) o (@, €, dy), for n < N, and ¢/ RN 2).

Divide (a, b) by points a = t, <<t <...<t,=ub, such that
p

(19) 21‘¢l (tn) - ¥ (tn—l)l >¢(b) "'61'

n=

It is clear that we may suppose the points ¢, taken as points of H, so
that ¢, (t,) = @ (ta); also we may suppose w (@, ¢n_1, &) >0 (other-
wise we could simply omit ¢, from the set of dividing-points). Take &
as the least of

(20) 30, w(@, bn—1,1) for n =1, 2,...,p.

) By the construction of H, w (g, (c,, d,) > 0 for each n.
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Let (X, Y;) be any finite system of non-overlapping intervals whose
end-points lie in H. We shall show that if
21) Zw(p, X, Yy <§,
then
Z(F(Y)—F(X)} > —12e
We see from (20) and (21) that any interval (X;, ¥;) can contain
at most one of the points ¢,. If it does contain one, replace it by the
two intervals (X, ¢,) and (¢,, ¥;). Number the whole set of intervals
thus obtained as (&, %), t =1, 2,...,m (say). Since each of the origi-
nal intervals was divided into at most two parts, we have
(22) Zo(p &) S220(p, X, Y)
<26
< 0,
We see therefore, from (18), that the intervals (£;, 7;) cannot contain
any interval (c,, d,) for n < N.
Let now Hy denote the sub-set of H composed of points where
|f(z}| < N. We show that

2m, ¥ (Hy (i, n2) > A::{ Y(n) — P(6)) — 8e.

Since ¥ () is an increasing function, we have from (15)
(23) Zm P H &, nd) — Em, ¥ (Hy o nd) S m ¥ (H) —m, ¥ (Hy) <.

Again, for each interval (&;, %)
@)mPHE 1) =P0)— PE)— _Z (Pa+0)— ¥(z)

G=e <ug

- 2 {¥(x,) — Pz, — 0)} — P m ¥ (C,, dn)

<z = fSep<dg =y
=¥Y@n)— Y(¢é)— 4,— B, —C,,
say. To estimate the last term, we have at once from (16),
(25) 217 C; §”§N{Y’(dn) — ¥ (en)}
< &,
To estimate the discontinuity terms, write w, (g, z) for
Iim w(p, (z, 2+ B)

E—>+o0
(the discontinuity of ¢ (s) on the right). For any set whatever (z,)
of discontinuities of M, (z), we have from (7), § 2.1,
W,y (F, wnj) = lf(a;nj)I r @y ((P, zn_,-)
< Row, (9, z,.’) if n; < N.
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Hence, remembering the definitions of ¥ (z) and M, (z), we have

2{?(x”j+0)_w($nj)}§. P w+(M1:zn,)+ 2 CQ;_{YJ,GP,,}
J =N n>N
é 2 w+(M: z,,’)+e
ﬂjéN
é Z‘ w+(F:znj)+2e
"j-EN
= 2 Roy(p a)+2e
/1;,_§N

For each point z, lying in any ¢, ,), we have
Wy ((P, xn) é w(¢: (56’ ﬂi))
<9
< &/(RN).
It follows that X4, << NRe/(RN)+ 2¢ < 3¢; similarly YB, < 3e.
Hence, combining this result with (24) and (25) we get

EZmPHE, )= 2 (V) - V(&) —8e—3e—e
and so from (23)
(26) %'m,T(HN«Sn n) > %‘{Y’(n.-) — W)} —8e.

Now with each point z of Hy (£, 7,) which is not an end-point of
a black interval (c,, d,)%!), we can associate an interval (z, z + %) such
that - lies in H ¢£;, ;) and also
(27) M, (z+h) — M (2) = M(z+ k)~ M(z)
=1(@){ele+h) — ¢(2)
= —Nig(z+h) — o (3)]
By lemma 5, we can find a finite set of such intervals, not over-
lapping, say (A;, us), ¢ = 1,2, ..., k, such that

@) 0P ) — ) = Z m, P (b ]

m
> Z m, T[HN <£is 77;)] — &
t=1
m
> 5190 - ¥ @) —ve
Let the complementary intervals, which together with (4,, x;) make up
the intervals (£;, 7;), be enumerated as (l;, m); then clearly from (28)
Z{¥(m)— P) <9e

1) The pointe which we omit form at most an enumerable set, and so do
not affect the measure of ¥ (H,).
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and so, since all the end-points belong to H,
ZIM (m;) — M (1) < 9e.

Hence, using (27), we have

@) (M) - ME) > I M) — M) — 9

&
> =N Zlp)— @A) -9e

Since no interval (&, #,) includes, as an interior point, any of the divi-
sion-points ¢,, we see from (19) that

k n
i£1|¢l (1) — @, (A)| §i£l¢‘l (n:) — 9. (8] + 6,
<29, by (22)
<2¢/N by (18).

(All the points concerned belong to H, so that ¢ and ¢, are interchan-
geable.) Thus we have from (29)

Z (M) M (E) > —N@e/N) — 9
> —1leg,

and so finally

Z(Fm)-FE)) > - 126,
that is,

Z{F(Y,) — F (X))} > — 12, _
A similar proof, using a minor function, establishes a similar inequality
in the opposite sense (the value of 6 may of course be different). Thus
there exists , > 0 such that, if X (g, (X;, Y))) < 6,, then

(F(Y) -~ F(X)) < 12e,

F(Y") >F(X‘)

(F(Y) - F(X)} > —12¢

Fp<F XD

and

that is,

JIF(Y)-F(X)| < 24e.
Thus F(z) is AC with respect to @ () on the closed set H. On the
other hand, F (z) is ¥V B* on H, and ¢ (z) is not constant in any of the
black intervals, taken closed, (c,, d,). It easily follows that F(z) is
A C* with respect to ¢ (z) on H, and so also on the smaller set E,?®).
This completes the proof of the theorem.

23) The proof is exactly analogous to that for functions 4 C with respect to z.
Saks, loc. cit. 162-—164. Theorem 13.
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3.4. Lemma 9. If ¢ (x) is V B* on a set E such that m ¢ (E) = 0,
and F(x) ¢s AC* with respect to ¢ (x) on E, then mF (E) = 0.

Corollary. If ¢(z) is VBG* on E, me(E) =0, and F(x) s
A CG* with respect to ¢ (z) on E, then mF (E) = 0.

Consider the function x(z) of lemma 2, formed with respect to the

closed set E -+ E'. We remark that if  is any closed interval whose
end-points lie in E, then
(30) (9, I) é o (1, I).
As in lemma 8, E may be divided into a set G of points where
D(g,z;x) =0 and a set H such that my(H) =0 We deal with
these sets separately, remarking first that, by the omission of an enumerable
set of points?®), we may suppose that no point of G or H is the left-
hand end-point of a ’black interval‘ of E, and that y(z) is continuous
at each point of H.

Given ¢ > 0, we can find 6 > 0 such that for any set of closed
non-overlapping intervals I;, whose end-points lie in B, 2w (F,I;) <e
whenever Xw (p,I;) << 6. With each point 2 of G, we can associate
an interval (z, z + A} such that z - & belongs to E, and

(1) @ (g, z+ ) = n{xz+ k) — x (@)}
where 7 < 8/{x(8) — x(#)}. By lemma 5, we can find a finite non-
overlapping set of such intervals (z,, z, + A,) such that

m, F (@) — e < J m,F[G(z,, 2, + h,)]

< Z o [F; @,,z, + k).
We have certainly X {x (2, + &) — x(z)} < x(b) — x (a), and so
from (31) |

(32)

%Z'w (@, <2, @, + b)) < 7 {x(b) — 2 (a)}

< é.
Hence from (32) and the A4 C* condition,
(33) m,F(@)—e < &

Consider now the set H; we can enclose y (H) in an open set U of
measure less than 6. With each point of H, since we suppose y(x)
continuous, we can associate an interval (z,z -+ k) such that z 42
belongs to E, and so small that the whole interval (x(z), x (z + %)) lies
in U. We can now again pick out a finite set of such intervals such that

m,F(H) — ¢ < J o[F; (&), & + kD]

18) This clearlv cannot alter the measure of F (G) or F (H).
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By (30), since I {y(z, + h,) -y (z,)} < mU<<4d, we have m F(H)—¢ < &.

From this and (33), since ¢ is arbitrary, we obtain the desired result.

Theorem 13. If ¢(z) 18 VBG* in the interval a < z < b, and
F(x) s, with respeci to @(z), both continuous and ACG* in the inter-
val, then

F&)—Fla) = | f)do®, sz b,

where f(z) is defined as. follows:
() f(x) = dF (z)/d ¢ (x) at points where this exists;

(ii) At any point x, where @ (x) ts discontinuous ), f(xz,) is defined
so as to make F (z) — [(z,) @ (2) continuous at «,;

(iii) At the remaining points, f(x) = 0.

Let N be the set of points at which ¢ (z) is continuous and dF/d ¢
does not exist. By Theorem 3, Corollary, m ¢ {N) = 0, and so, by
lemma 9, Corollary, m F (N) = 0. By lemma 4, F(z) is V BG* in (g, b);
we can therefore construct, as in lemma 8, an increasing function ¢ (2)
such that D(F,z; y) = 0 at each point of N.

Let y(z) be the function of lemma 6, such that the derivates of ¢
with respect to x are finite except at an enumerable set of points.
Enumerate these exceptional points and the points of discontinuity of
@ (z), together, as (z,), » = 1,2, .... Take any ¢ > 0 and write

M(z) =F(z) + ey (@) + 2(2) + X Ba ()}

where B, (x) is defined as in (13). We say that M (z) — M (e¢) is a major
function of f(x) with respect to ¢ ().

Consider first a point # where d F/d ¢ exists and the derivates of ¢
with respect to j are finite. There exists K such that, for sufficiently
small A,

lp@+h)—g@ < K|x@+h)—z()]
Since dF |d ¢ = f (=), for sufficiently small 2 > 0 we have
|OF (2, k) — f(2) - dp(m, )] < & (g, ¢z, 2+ ) (2K)
< efyle+h)— 2 @)
f(w) ) 6¢(x=h) é 6F(m’h) + 8"525(7’:")
< 0 M (z,h)
There is a similar inequality for 2 < 0. In the same way, the conditions
for a major function are satisfied at the points of N, where f(z) = 0.

and so

24) It is easy to see from lemmsa 6 that these points of discontinuity are
enumerable. The required value of f(z,) must exist, since F (z) is continuous with

respect to ¢ (%)
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For since D(F,z; y) = 0, we have M = ¢-dyp+ 6F = 0 for suffici-
ently small 2 > 0. Finally, at any of those exceptional points z, which
does not lie in N, since F(z) — f(x,) ¢ () is continuous, the conditions
are satisfied owing to the presence of the terms g, (z).

Since ¢ is arbitrarily small, we deduce that, for a < z < b,

[fwde0) < Flo)—F@),

and in a similar way we can show that

[ttydg®) = F(2)— F(a).

Theorem 14. If @(z) is VBG* on a set E, and F(z), k(x) are
any functions whatever, then
-b

—b
[h@dF (@) = [ (k@) (2)d p(a) + h(2)g(2) A F (2))

a
if either side is finite; where [(z), g(x) are defined thus: — at any
point which belongs to E and where dF (z)/d ¢ (x) is defined, we write
fx) =dF (x)[d @ (), g(z) = 0; at all other pownts, we write {(z) = 0,
g(z) = 1.
Let y(x) be an increasing function, as in lemma 6, such that the
derivates of ¢ with respect to y are finite at all points of E except an

—b
enumerable set. Suppose that 'fh(:v)dF(w) < oo, and let M(z) be a
a

major function for this integral. Let the points of £ where the derivates
of ¢ with respect to y are not finite be enumerated as (2,); define 8, ()
as before and write, for any ¢ > 0,

Ml (@) =M(z)+ ¢ {Z(.’E) + ‘"Zﬂn(w)}
Then M, (x) — M, (a) is a major function for

—b
[{h(2)f @) d@ (@) + h(2) g(2) dF (x)}.

a
At points z where f(z) = dF(z)/d ¢ (x) and the derivates of ¢ with
respect to X are finite, we have for sufficiently small # > 0,

lp@+n) —o@@)| < K{x(z+n) — 1)}

for some K,
|h(2)]- |F@+7) — F @) — (@) {9 (o + 1) — ¢ (a)}]
< co(p@z4n)/2K
< efg@+n) — 2 (@),
M(z+n)— M) = h(2){F(z+n)—F()},
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and so, since ¢(z) = 0,

h(2)f (@) {p(@+ n) — ¢ ()} + k(2)g (@) {F (z + 5) — F (2))-

= h(@)}(2) {@ (2 +n) — ¢ ()}

Sh@){F(z+n) —F(a)} +el{x(z+n)—z(2)

S M@+ —M@)+efy(z+n) — x @)

= M, (z+n) — M, ()
There is a similar inequality for # <C 0. At points where f(z) = 0 and
g(z) = 1 the conditions for a major function are obviously satisfied, and
the remaining points (namely those points (2,) where dF (z)/d ¢ (%)
exists and therefore F (z) is continuous with respect to ¢ (z)) are easily

seen to be covered by the terms B, (z). Thus M, (z) — M, (a) is a major
—b
function. Since M (x) was any major function for 'fh(w) dF (z) and ¢

was arbitrary, we have

—b —b
[th@ @) dp(@)+h@E) 9@ dF (@) < [ k) dF ().

The reverse inequality is similarly proved.

Corollary. If both F(z) and ¢ (z) are VBG* in {(a, b), then there
exists a set E such that m ¢ (E) = 0, dF (z)/d ¢ (x) exisis at every point
of comp (E) and at no point of E, and for any h(z)

—b

—b
[R@)dF (@) = [ (h(2){(2) d9(2) + k() g (@) A F (a)},

where f(z) = d F (z}/d ¢ (x) where it exists and f(x) =0 on E, g(z) =0
on comp (Ey and g(z) =1 on E.

(Eingegangen am 19. Marz 1936.)



