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Genera l ized  "Boolean" theory  o f  universal  algebras.  
Part II. 

�9 Identities and subdirect sums of functionally complete algebras. 
By 

ALFRED L. FOSTER. 

I. I n t r o d u c t i o n .  The concept of (general) snbdirect sum has been very 
fruitful in the development of various generalizationfi of the fundamental 
structure theorem of Boolean rings. Thus, in particular (see part I of the 
present paper 1) for references) 

(i) each p-ring is isomorphic with a subdirect sum of Fp (-- prime field, 
charactei-istic p). Similar structure theorems hold for p~-rings, Post algebras, 
and for other classes of algebras. 

From a quite different approach it was shown by the author that, beyond 
the mere structure extensions (i), the algebras in question actually constitute 
generalizations of the Boolean realm in a very wide sense. For instance the 
Boolean duality principle extends to 

(ii) the theorems and concepts of p-rings (p*-rings) occur in p-al ~*-al) sets. 
Again, for example; 
(iii) each p-function (p~-flmction, Post function, etc.) possesses a certain 

normal expansion, which specializes to the familiar normal representation of 
Boolean functions when p~-:-2. 

In part I (1. cl) this theory with emphasis on the property (iii)--was 
further raised to the level of a rather comprehensive class of universal algebras, 
designated as [-algebras. In the same sense in which Fp and Fp, are the kernels 
of the p- and pk-level extensions, it was shown in part I that each/-algebra, 
U, is the kernel of a corresponding extension. The algebras (U-algebras) 
comprising this extension then enjoy in generalized form such properties 
as (i)-(iii). These H-algebras, on the other hand, were furthermore shown to 
be completely characterized (up toisomorphisms) b y t h e  class of all so-called 
normal subdirect sums of 1,I, a certain subclass of all subdirect sums of li. 

It was further shown in part I that  particular interest attaches to the 
case where the kernel 11 is a finite functionally complete /-algebra, as for 
instance witti p- and p~-rings and also with Post algebras, etc. In this case 
(of functionally complete kernel) the U-algebras were found to be additionally 
characterized by the identities of the kernel. 

In the present paper we shall generalize the concepts "[-algebra" and 
"normal subdirect sum", as given in part I, and shall obtain a number of 

1) FOSTER, A . L . :  Generalized "Boolean" theory of universal algebras, etc. Math. 
z. $8, 306--336 (1953). 
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results r e l a t ed  to the background sketched above. For  instance we shall 
establish 

T h e o r e m  9.2 (Principal theorem/or strictly complete kernel). 
Let 11 be a/unctionally strictly complete universal alg.ebra of at least two elements 

(--  order n ~ 2). Then the following/ire classes o/algebras are all coextensive, 
up to isomorphisms: 

(t) The class {... ,  11 . . . .  } o/all universal algebras lt o/the same species as 11 
and such that (a) each strict identity o/Ft is also an identity of U, and (b) It is 
o/order n ~ 2. 

(2) The class 

(3) The class 
(4) The class 

o/all  subalgebras o/direct sums o/1I. 
o/ail subdirect sums o/Ft. 
o/ all scalar subdirect sums of 11. 

(5) The class o/all  normal subdirect sums of 11. 

From (5) and the fact tha t  all the algebras involved are of c lass / ,  these 
algebras of theorem 9.2 then possess (generalizations of) such properties as 
(i)-(iii) above (see par t  I~. 

As an interesting corollary it follows (w t2) tha t  the identities of such a 
strictly complete kernel, 1I, are equationally closed (saturated). 

2. S o m e  p r e l i m i n a r i e s .  Let  9~--(A, o . . . .  ) be a universal algebra, with 
o----o(~ . . . .  ) . . . .  as primitive operations in the class A -  {..'., ~, . . .} .  An A- 
func t ion / ($ ,  n, ...) is simply a function from A, A . . . .  to A. An ~-[unction 
is an A-function which is a primitive composition of one or more variables 

. . . .  over A and a (possibly empty)  set of constants (--  fixed CA). If no 
constants are involved the 9~-function is called strict. An ~-identity /(~ . . . .  ) -- 
g'(~ . . . .  ) is an ident i ty  between 9~-functions/, g; if both  / and g are strict 9~- 
functions the ident i ty  is called striet. 

9~ is finite, of order n, if A is a class of n elements. 

If ~ is finite and if each A-function may  be expressed as some ~-function, 
- -respect ively as some strict ?,l-function then ~ is (functionally) complete, 
- - respect ively  (functionally) strictly complete. 

3. A l g e b r a s  of  c l a s s  /;  f r a m e s .  A universal algebra 1I - - (U,  o . . . .  ) is 
said to be of class ], or an [-algebra, if there exist elements 0, I Of 11 (0=[=t), 
and H-functions • (binary), ^, v (unary) such tha t  ~, v are permutat ions of U 
(Ft-permutations), with v the inverse of ^ and where 

0 x $ - - ~ x 0 - - 0 ;  t x $ - - ~ x t = $  (~CFt). 

0 "  -:-  t ,  I ^ - -  0 .  

(It follows tha t  OVal ,  Iv--O;  however in general ~@=~v. I t  is also noted 
tha t  in general ~ x ~  is nei ther  associative nor  commutat ive.)  We then call 
the algebra ~ -  (U; 0, i ;  •  ^, ~) a frame of (or in) Ft. An /-algebra wil~ in 
general possess more than one frame. Each  ~bf-function is of course a 12- 
function, though the converse is in general false. We are part icularly con- 
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cerned with the $/-function • the ^ " t r ans fo rm"  of •  

X^ ~ - -  def --(~^ x ^)v.  

We call x^ and x t he / r ame- sum and/ tame-product  of the frame Z/. 
Algebras of class / are ve ry  common and widespread. For  example every 

ring (R, x ,  + )  with ident i ty  has (R; 0, t ;  X, *) as a frame, where ~ * - - ~ ^ - -  
~ v  l - - ~ ;  again if ~ is a uni ty  element,  (R;O,~ ;  •  is a frame, with 

x 17 - 8  x ~-, ~* '--ct  ~. Of the manifold further  examples we here mention 
~X 

only the case of functionaily complete universal  algebras 11 (of order n ~ 2), 
which are all of c lass / .  Indeed for such 1I, if ~o, ~l(cto@~l) are any  distinct 
CU, there exists at  least one frame " [ / - - ( U ;  %,  ~1; X, ^, v). In part icular  
all finite fields, and also the Post  algebra kernel (of order n) are functionally 
complete and therefore of c lass / .  The same holds fo r ' the  cyclic algebra o f  
order  n, @,,--(C,,  x ,  *), where (C,~, *) is the cyclic group of order n - - l ,  
augmented by  a null, 0: 0 • ~ = ~ x 0 = 0; 

I if ~ = o  

~ * = ( 0 t ) =  0 if # = 1  

if ~@o, 4=1. 

Again (C,, x ,  ~) is complete,  where n is t a k e n  as an a rb i t ra ry  bu t  fixed 
cyclic permuta t ion  of the n etements comprising C~. (Compare with part  I.) 

4. N o r m a l -  a n d  s c a l a r - s u b d i r e c t  sums .  Let  11-~(U,o . . . .  ) ' b e  a 
universal algebra of c lass / ,  and let ~ --  (U; 0, t ; x ,  ^, ~) be a frame thereof.  
Let  ll c~) be a direct sum ( =  di rect  power) of li, where ~ is of arbi t rary  (finite 
or transfinite) cardinality.  If Qt --  (a~, ~z 2 . . . . .  ~2~) C 11 (~) and if ,u C11, then by 
Pv (0t), called the #th-projection of Gt (in, or relative to the frame %t), we mean : 

. . . .  { !  if ~ i = a  
P~ (Qt) --  (txl, 0~2,..., cqn), where ~t~ --  

0 if a~ .~ / , .  

Le t  l t - - ( U ,  o . . . .  ) be a subalgebra of 1/(~). If It satisfies 
(t ~ all elements ( =  ' sca la r s ' ) (# , / , , #~  .. . , /4) are ~l I  (# CU), we call II 

a scalar-subdirect sum of 11. If in addit ion ll also satisfies 
(2 ~ for each Qt C ll and for each /, ~ 1I, P~,(~t)~ll, we call II a normal- 

subdirect sum of 11'). 
The independence of the concept of normal i ty  from the part icular  frame 

chosen is shown by  

T h e o r e m  4A. I] U is a normal subdirect sum o/II  rdative to some [rame U ,  
then it is a normal subdirect sum relative: to any ]rame "U'. 

P r o o f .  Let P'  denote projection relative to the frame Zf'---- (U; 0', ! ' ;  
x ', ^', ~'). One easily verifies the formula 

(4.9 - x P, x^{(o' ,  o',  o ' , . . . )  x (P,, 

Since the right of (4A) is 611 the theorem is proved. 

~) That ll is a subdirect sum (see BIRKHOFF ~1]) follows from (1% 
Mathematische Zeitschrift. Bd. 59. t 3 
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6. N o r m a l  r e p r e s e n t a t i o n ;  k e r n e l ,  core .  Asin part  I we shall agree 
to identify the kernel, 11, with its isomorph 111-- subalgebra o f  all scalars 

(~, ~, ~ . . . . .  ~),  (~ E U) : 

U=~II1,  11=111: ~- -~(~ , / ,  . . . . .  /~), ~ = ( ~ . , ~  . . . .  ~ ) ;  U__(ll. 

With this understanding the identity (4.t"), for instance, is written simply 

p;(~)  = 1' P~(~)• o'(P~ (~)) ̂ . 

The kernel 1I ( =  111) of U is obviously the same for all frames in II. 

By the  core, J, of II - relative to a given frame ~ - we mean the set 
of all elements P,(ot); (# C11,.otEll). As in part I (f ,  •  ^, v) is shown to b e  
a Boolean algebra with a •  as Boolean intersection, a^=  a v- -a*  -----Boolean 
complement (a, b C J), and o~ t as null and universe. With only very minor 
modifications of the corresponding proofs in part," I we h a v e  

T h e o r e m  5 . t  (Normal representation theorem). Let ](~, B . . . .  ) be a n y  
U-/unction, where 11 is a normal subdirect sum o[ a universal algebra 1,~ o/ class f. 
Then/or  each f ixed/rame in II we h.ave a normaldecomPositionS ) 

X' A , 

1(~,~ . . . .  ) =  Y ,  /(~,t~ . . . .  )P~(~)P~(~) . . . .  
~ , ~ , . . .  E ~ = k e r n e I  o f  1I  

T h e o r e m  5A' (Alternate/ormUlation). In  the notation o/.theorem &l,  each 
C U may be expressed in one and only one way in the normal/orm 

X A  

uE~t 

in which the a, are pairwise disjoint core ( = J )  elements which cover J 
�9 X A  

(i.e., W a = 1). Then 
• 

l (~ ,n , . . : )=  E t(~,t; . . . .  )a~b~ . . . .  

where {a,}, {b,} . . . .  are the core components o! ~, B, ..~. 

6. F u n c t i o n a l l y  c o m p l e t e  k e r n e l .  Let 1! be a uniyersal algebra and 
11 a snbalgebra. A tt-identity /(~ . . . .  ) =  g ( $ , . . )  is said to extend to 1I or t o  
b e  satisfied by It if /(~ . . . .  ) = g ( ~  . . . .  ) is: a lI-identity; here the U-variables 

$~.... but not the constants (if any) appearing in / ($ . . . .  ), g (~, . . . ) a re  replaced 
by ll-variab!es ~ . . . . .  

T h e o r e m  6A. Let II be a universal algebra possessing a Subalgebra, 11, where 
(l ~ 1:l is finite and /unctionally complete: 

(2 ~ each 11-identity extends to ll; 

(3~) 11 contains at least two elements. 
Then II is isomorphic with a normal subdirect sum o/ 11. 

~), For the limited associative and commutative properties which make p,'trentheses 
• 

in'~. unnecessary see FOSTER, part I, 1. c. 
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P r o o f . - L e t  o, t b e  any distinct elements of!I .  Then 11 is of class ] and 
possesses a" frame Lt-- (U; 0, 1 ; •  ^, v). That 11 is a normal subdirect sum 
of" H--relative to the frame 1 / f o l l o w s  with on ly  minor modifications 
(required because of our more general, formulation Of the concepts 'of class [' 
and 'normal subdirect sum') from the proof of a similar theorem of pa ~  !. 
Theorem 4A then shows that 11 is independent of the particular frame chosen. 

The fol!owing more general converse of. theorem 6.1 is an immediate 
consequence of the definitions involved: 

T h e o r e m  6.2. I f  II is a scalar-subdirect sum o / a  universal algebra, 1:t, 
then the Scalars of It form a subalgebra isomorphic (and to be identified) with 11, 
and every U=identity extends to II. 

By forward reference to lemma 8 and from a joint consideration of theorems 
6A and 6.2 we have 

T h e o r e m  6.3 (Principal theorem /or complete kernel). Let 11 be a /unc- 
tionally complete universal algebra of order n ~ 2. Then the [ollowing three 
classes o/algebras are all coextensive, up to isomorphisms: 

(t) The class {.. . ,  11 . . . .  } o/all overalgebras 11 of 1I such that each tI-identity 
extends to II. 

(2) The class o/all  scalar-subdirect sums ol U. 
(3) The  class o/al l  normal-subdirect'sums of 1I. 
That theorem 6.t cannot-be proved if the condition (t ~ ) thereof is deleted 

is seen by the following example. Let 2[--(A, •  . . . .  }, with 
~ ' •  ~"+". Also let W - -  (A', • ') be any group, and let ~[ - -~•  (direct 
Sum)" Since 9~ is the free algebra (of one generator) of the identities ~ x ~/=*/• ~, 
~•215 (~•215 i.t is obvious that W, and hence also ~[ satisfies all 
identities satisfied b y  9~. Moreover 9~ is (isomorphic with) a subalgebra of ~I. 
Thus; with the exception of (t ~ the conditions of theorem 6A are satisfied. 
However the conclusion is now false, in fact a simple argument, which we 
omit, shows that ~l is not isomorphic with any subalgebra of a direct sum of ~l. 

?. S t r i c t l y  c o m p l e t e  ke rne l .  The  finite fields Yp--(Fp, •  + )  and 
9zp~. - (Fp~, • +) are complete but  not strictly complete, e.g., the constant 
function, 1, cannot be expressed as a strict Yp- or a n 9z~-function. However 
(see part I) expressed in the form (Fp, •  (Fp~, • ~) these fields are 
strictly complete. H e r e  

; . for ~ -  , 
for ~ =  ~p~-2 J 

(~ E Fp, ; 2 -- multip, generator Of Fpk). 

Again, the algebra @n--(C,~, • ")previously noted (w 3) is strictly corn= 
plete. [For n -- pk -- prime power, this algebra is identical with the G~lois 

f ield (Fpk, •  ").] Further, the  Post kernel (P,, •  ') of order n is strictly 
complete. Other examples, and criterea for completeness (ordinary and stric,) 
may be  found in part I. 

t3" 
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The 'simplicity' of the concept of  strict completeness is shown by 

T h e o r e m  7.1. I! 1I is strictly compleie, 
(t o) 12 contains no proper subalgebra; 

( 2 ~  1I contains no proper ideals, i.e., i! 11-+!I' is a h'omomorphism, then 
11~ 11' �9 or 1I' is the one-dement algebra. 

Proof .  Suppose ~ were a proper subalgebra, and suppose ctE11, 0 t (~ .  
There ex i s t s a  strict U-function f(~) such that ](~)=--,t. Then in particular 
for r/E ~, ! (~) = 0~. But this contradicts the assumption that ~8 is a Subalgebra, 
and (1 ~ ) is proved. 

�9 Consider (2~ Suppose 12 possesses a proper ideal ( =  partition), q. Then 
there exist at least t~vo residue classes Q, Q' of q neither of which is empty 
and one of which contains at least two elements. Say ~1, ~ E Q, ~' E Q'. There 
exists (at least one) strict U-function h(~) such that h(~l)-----~, h(0h)=~' .  
This is in contradiction with the  assumption that q is an ideal, and (2 ~ is 
proved. From (1 ~ we have the immediate 

C o r o l l a r y .  I!  ~ is any element o/1I then ~ generates 11, 11= (~). 

8. C o m p l e t e  kerne l .  ( con t inued) .  If 11 is a universal algebra of class/, 
simple counterexamples show that�9 (a) a subalgebra of a direct sum of 11 is 
not in genaral a subdirect sum of 12,' and further that (b) a subdirect sum of 11 
is in general not normal, nor even scalar. [In fact (a) and (b) are still true 
even when 11 is (merely) complete.] We have however the 

L e m m a  8. ( l ) / !  1I is a/unctionally strictly complete .universal algebra O/ 
order n ~ 2, *hen every subalgebra o/ a direct sum o/1I is a normal-subdirect 
sum o/11. 

(2) I!  11 is a [unctlonally complete universal algebra o/ order n 2 2, then 
every scalar-subdirect sum o! 11 is normal. 

P r o o f  of (t). Let 2 / b e  a frame in 11, le t / ,E12 and let the constant 11- 
function ! (~)~  # and the characteristic function ~ (~), (relative t o  2/), be 
expressed as �9 12-functions. If It is a subalgebra of a direct sum of 1I 
and if Qt = (~1 . . . .  ). E If, then 

= . . . ) =  Eft 

= - E.n. 

Hence all scalars are EII, and with ~t also all projections of ~t are EII, which 
proves (t). The proof of (2) is similar aud will be omitted. 

9. P r o o f  of t h e o r e m 9 . 2  ( s t a t e d  in w t), etc. 
T h e o r e m  9A. L~t 12, II be any universal algebras o[ the same species and 

each containing atl least two elements, and where 
(t o) 11 is ]inite and functionally strictly complete. 
(20) Each strict identity o/11 is also an identity o] U. 

Then 
(i) It is isomorphic with a normal subdirect s,:m o! 11. 
(ii) Each strict identity-o! II is an identity o! 12. 
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P r o o f . . L e t  U, 11 satisfy (! ~ and (2 ~ above, and let o~.E 1I, f~(~)=cr where 
]~(~) is expressed as a strict U-function. Then f~(~) is .a strict II-function. 
Applying (2 ~ to the H-identity /~ (~)=/~ 07), We have the strict U-identity. 
f~ (~)=[~ (v]). That is, for given a E 11, f~ (~) is a constant U-function, call it 

El/. 
Consider the mapping 

(9.t) ~--> ~'---- fA~), (~ EH). 

Let~-+a ' ,  fl--~fl',.., let o (~, ~ . . . .  )be aprimitive operation andlet o (0r ..... ) - -7 .  
From (2 ~ ) and the strict U-identities 

fa (n) 
we obtain the strict B-identities 

o . . . .  ) 
that  is 

o ...) - r ' .  
We have thus shown that 11', the class of all images ,r .,. under (9.1),is a 
subalgebra of II, and that (9.t) is a homomorphism of li onto 11'. By theorem 7.1 
either 11 ~ 11' or else 11' ---- , '  (-- one element algebra). The latter is impossible, 
for if so, from (2 ~ of theorem 9.t and obvious corresponding 11-identies w e  
have': for any ~ E tl, 

x^ ~"^ 

,~EII #Ell 

This contradicts our assumption that 11 contains at.least two elements. Hence 
1I ~ 11'. The assertion (i) of theorem 9.t then follows from theorem 6A. Finally 
(if) is a consequence of the fact that 11 (-- 11') is a subalgebra of  II. 

The �9149 of theorem 9.2 (see w t) now follows at one from lemma 8 and 
theorem 9.t. 

Employing corollary 22 of part  I we have the special 

T h e o r e m  9.3. Let 11, II satisfy either the hypotheses of theorem 9.t or those 
of. theorem 6.t. Then if 11 is a finite algebra, U is isomorphic with a direct sum 
of 11, and the order of II is a power of the order of lt. 

10. Core ,  n o r m a l  e x p a n s i o n ,  for  c o m p l e t e  ke rne l .  The consider- 
ations of w167 4, 5, holding for arbitrary f-algebra kernels, are perforce syn- 
thetic in nature. For complete kernels, however, they may be given an internal 

�9 formulation. We shall merely sketch this section since the arguments are 
essentially those of w167 19, 14 of part I, where however the less general defi- 
nition of f-algebra and  normal subdirect sum were used. 

L e t  It be functionally Complete, 11 a normal subdirect sum of 1I and 
~ U  - -  (U; 0, t ; •  ^, v) a frame in 11. The n the/z th characteristic function (/~ E 11), 

v( {1 if ~- - :#  (~E11) 
o i f  

may and we assume it to be expressed as a 11-function, or, in case 11 is 
strictly complete, as a strict lI:function. 
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The/z th projection P~(~), (~ E B ) i s  then given by 
= 

where ~(~) is the extension to II of the characteristic function 3~(~), tixat is, 
(5~ (~) is obtained from Ov(~) by replacing the H-variable ~ by the it-variable ~, 
EIf tt is merely simply, but not strictly complete, any constants occumng 
in the U-function (51,(~) remain unaltered in passing to -tS~(~).] Thus Pv(~) 
is 'internally' expressed, as a it-function, or even--in 9ase II i s strictly com- 
p le t e -a s  a strict B-function. 

From earlier sections we then readily have 

T h e o r e m  t0.t .  Let B be a universal algebra possessing a /unctionally 
complete subalgebra (o~ at least two dements) such that every U-identity extends 
to II. Let ~,f= (U; O, t ; x ,  ^, v) be any/ tame in ll and let ~,(~) be the extension 
to B o/the characteristic/unction 6a(~ ) o[ Ft. Then each B:]unction /(~, ~1, . ..) 
possesses the normal decomposition 

XA 
. . . .  ) -  . . . .  ) . . . . . .  

,x,,e, .., E~t 

T h e o r e m  10.2. Let U be a,/unctionally strictly complete algebra (o] at 
least two elements,) and let B be any algebra that satisfies all the strict identities 
o/ Ft. l /  ]~(~) =~,  (~EU) is the constant:/~nction, ~r expressed as'a strict 
Ft-/unction, the class o[ corresponding (strict) U-]unctions, 1I '=  {/~(g)}, (x E 1I, 
g E B) t o m  an isomorphic subatgebra :o] B, U ~" U and, in ih$ 6otat'ion o/theo- 
rem t O.l, each (not necessarily strict-) g-/unction possesses th.e normal expansion 
o/ theorem aO.l, with ~. replaced by ~ . .  

~,#, ... E zt ~,#, ...'Ell' 
Core. For 1I, II as in theorem t0A or theorem t0.2, the core I of lI--rela- 

tive to the frame ~J in lI--is internally 6:~pressed' by (see part I) 

J - {(~(~)}, where ,u runs through U and ~ runs through B. 
flo.i) 

J -  {~(~), where ~ = fixed E B, and ~ runs through B. 

In particular, ) - -  {~ (~)}, where ~ (~) = ~o (~). 
If O, t are any  C U, since 11 is complete we may  always choose a special 

frame ~d' -- (U; 0, t ; •  ^, ~) in which 0 and t are the only idempotent ele- 
ments (relative to • A comparison of t he  synthetic and internal aspects 
of nornlal subdirect sums then yields 

T h e o r e m  t0.5. I1 B is a normal subdirect sum o[ a 1Mnctionally complete 
algebra, 1I, and i] 'LI' is a special/tame in 11, then, relative to "LI', the core o /B  
consists o] the totality o/idempotent elements o/.B, (~ • ~ -  ~). 

Such special frames, with corresponding easily computed cores, are useful in 
connection with the normal decomposition of B-functions given by theorem 5 A'. 

Thus, in the case of the kernel F~ of a p-ring, and F~, of a p*-rirfg~ "the 
'natural'  frames (F~, •  *), (F~,, •  *) are special in the above sense; cor- 
respondingly the (natural) core of a p- or of a p~-ring consists of its totality 
of idempotent elements. A similar remark applies to the ~,-algebras [saris- 
lying all identities of (C,,, •  *), or all strict identities of (C,, x ,  ~ 
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w 3]. However any 'natural '  frame in the Post kernel (P,, •  '), that  is any 
frame utilizing • as frame product, is not special (-:  every element of P,, 
is here idempotent). With respect to such frames the core of Post algebras 
is determined by the general formulas (10.t). 

I I .  U n i v e r s a l  f u n d a m e n t a l  s e t  of i d e n t i t i e s .  A set ~- -  { . . . .  I i . . . .  } 
of identities of an algebra is called a/undamental  set if every identity of the 
algebra is a logical consequence thereof. 

Let tl be functionally complete, let "[~ be a frame thereof, and let ~ (~) -- tSo(~ ) 
be its 0 th characteristic function and ~" any transitive 0 -+ t  ]a-permutation. 
From the considerations of. w t9 of part  I one may, in terms of these, write 
down a certain finite universal fundamental set, ~* 

- { x g:) -- 

which is 'universaF in the following sense: if 11 is any fUnctionally complete 
algebra with a frame chosen therein, and if t~ (~), ~. are expressed as 11-func- 
tions, the expressions ~* form a 'fundamental set of identities for 11. Thus, 
for instance, for (Fp, x ,  +) ,  using, the natural frame (Fp, •  *), the first 
expression of J* becomes the identity (t ~p-1) (t _ ~ p - 1 ) =  ( t ' , - ~ -x ) ,  etc. 

Of course for a given complete algebra U the universal fundamental set 
will generally not be as short or simple as one which is geared to the particular 
peculiarities of structure of 1I. The universal set may however serve as a 
standard f0r~ testing a candidate set of identities for 'fundamentalness;. 

12. E q u a t i o n a l  c l o s u r e  a n d  f u n c t i o n a l  c o m p l e t e n e s s .  Let .o  . . . .  
be a class of operations and let E = { . . . .  E i . . . .  } be a set of (strict) equations 
in these operations. Every such set E has the one-element model, called the.  
trivial model. If E possesses only the trivial model, E is called inconsistent; 
otherwise E is consistent. 

Let E'  be a strict equation in the operations o . . . .  and let E ' - -E(E ' )  
denote the class E augmented by E' .  If E' is a logical consequence of the 
identities E-we write E equiv. 6'. 

A set E of equations is called equationally closed (or saturated) if, for 
every E' ,  either E equiv. E' or else E' is inconsistent. 

T h e o r e m  t2.t .  Let 11 be a strictly complete ([inite) algebra ol order n ~ 2, 
and let J - - {  . . . .  Ii,....}" be a tundamental set of (or else the set o] all) strict 
identities ol 1I. Then ~ is equationally closed. 

P r o o f .  Let 1' be any strict equation in the primitive operations o . . . .  
of 11. N o w b y  theorem 9.2 all models of ~, and hence also all models of 
~' - -  ~ (I') if ~'is consistent,, are normal subdirect sums of 1I. But~ by  theorem 9.t, 
each such model satisfies those and only those strict identities satisfied by 1I. 
Hence i f  3' is consistent it follows that I '  is a logical consequence of 3, and 
the theorem is proved. 
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