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" 1. Introduction. The concept of (general) subdirect sum has been very
fruitful in the development of various generalizations of the fundamental
structure theorem of Boolean rings. Thus, in particular (see part I of the
present paper?) for references) o

(i) each p-ring is isomorphic with a subdirect sum of F, (= prime field,
characteristic ). Similar structure theorems hold for p*-rings, Post algebras,
and for other classes of algebras.

From a quite different approach it was shown by the author that, beyond
the mere structure extensions (i), the algebras in question actually constitute
generalizations of the Boolean realm in a very wide sense. For instance the
Boolean duahty principle extends to

(ii) the theorems and concepts of p-rings (p*-rings) occur in p-al (p*-al) sets.

Again, for example,

(iii) each p-function (p*-function, Post function, etc.) possesses a certain
‘normal expansion, which specializes to the familiar normal representation of
Boolean functions when #*=2.

In part I (L c.) this theory—with emphasis on the property (iii)—was
further raised to the lével of a rather comprehensive class of universal algebras,
designated as f-algebras. In the same sense in which F, and Fj; are the kernels
of the p- and p*-level extensions, it was shown in part I that each f-algebra,
1, is the kernel of a corresponding extension. The algebras (ll-algebras)
comprising this extension-then enjoy—in generalized form—such properties
as (i)—(iii). These U-algebras, on the other hand, were furthermore shown to
be completely characterized (up to isomorphisms) by the class of all so-called
normal subdirect sums of ,—a certain subclass of all subdirect sums of U.

It was further shown in part I that particular interest attaches to the
case where the kermel U is a finite functionally complete f-algebra, as for

-instance with p- and p*-rings and also with Post algebras, etc. In this case
(of functionally complete kernel) the U-algebras were found to be additionally
characterized by the identities of the kernel.

In the present paper we shall generalize the concepts “f-algebra” and
“normal subdirect sum’’, as given in part I, and shall obtain a number of

1) FOSTER, A.L.: Generalized “Boolean” theory of universal algebras, etc. Math.
Z. 58, 306—336 (1953).
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results related. to the background sketched above. For instance we shall
establish

Theorem 9.2 (Principal theorem for strictly complete kernel).

Let Whe a functionally strictly complete universal algebra of at least two elements
(= order n > 2). Then the following five classes of algebras are all coextensive,
up to isomorphisms:

(1) The class {..., W, ...} of all universal algebras W of the same species as U
and such that (a) each strict identity of W is also an identity of W, and (b) W is
of order n = 2. ‘

(2) The class of all subalgebras of direct sums of .

(3) The class of all subdirect swins of 11.

(4) The class of all scalar subdirect sums of .

(5) The class of all normal subdirvect sums of 1.

From (5) and the facf that all the algebras involved are of class f, these
algebras of theorem 9.2 then possess (generalizations of) such properties as
(i)-(iii) above (see part I). .

As an interesting corollary it follows (§ 12) that the identities of such a
strictly complete kernel, U, are equationally closed (saturated). ‘

2. Some preliminaries. Let A= (4, o, ...) be a universal algebra, with
o=o0(&,...),... as primitive operations in the class 4={...,&,...}. An A-
function f(&, #, ...) is simply a function from 4, 4, ... to 4. An U-function
is an A-function which is a primitive composition of one or more variables
&, ... over A and a (possibly empty) set of constants (== fixed €4). If no
constants are involved the U-function is called strict. An N-identity. (£, ...)=
g(&, ...) is an identity between U-functions f, g; if both f and g are strict U-
functions the identity is called strict.

U is finite, of order n, if 4 is a class of # elements.
If U is finite and if each A-function may be expressed as some ¥U-function,

—respectively as some strict U-function—then U is (functionally) comj:lete
—respectively (functionally) stricily complete.

3. Algebras of class f; frames. A universal algebra 1l = (U,o,...) is
said to be. of class f, or an [- algebm if there exist elements 0,1 of U (0#1
and U-functions x (blnary) ¥ (unary) such that *," are permutations of U
(U-permutations), with ¥ the inverse of * and Where

OXE=EX0=0; AxE=ExX1=F (EEN).
0'=1, 1'=0.
(It follows that 0" =1, 1"=0; however in general £ ==£". It is also noted
that in general £X# is neither associative nor commutative.). We then call
the algebra U=(U;0,1; x," ") a frame of (or in) . An f-algebra will in’
general possess more than one frame. Each U-function is of course a U-
function, though the converse is in general false. We are particularly con-
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cerned with the U-function X,, the * “transform” of X,
£, = dof = (E'x7)"
We call x, and X the frame-sum and frame-product of the frame U.
Algebras of class f are very common and widespread. For example every
ring (R, X, +) with identity has (R; 0, 1; X, *) as a frame, where &* =§"=
& =1-—¢&; again if « is a unity element, (R; 0, «; Xy, *) is a frame, with
EXm=EX ,,;7 ., E¥r=g — £, Of the manifold further examples we here mention

only the case of functionally complete universal algebras 1 (of order # > 2),
which are all of class f. Indeed for such U, if oy, o, (tg==o,) are any distinct
€11, there exists at least one frame U=(U;ay, o;; X," "). In particular
all finite fields, and also the Post algebra kernel (of order #) are functionally
complete and therefore of class f. The same holds for ‘the cyclic algebra of
order un, @,=(C,, x,*), where (C,,*) is the cyclic group of order #—1,
augmented by a null, 0:0X&=£X0=0;

) 1 if £=0
g=(01)=1{0 if &£=1
& if E=£0, 1.

Again (C,, X, ") is complete, where ” is taken as an arbitrary but fixed
cyclic permutation of the # elements comprising C,. (Compare with part I.)

4. Normal- and scalar-subdirect sums. Let U=(U,0,...) be a
-universal algebra of class f, and let U =(U;0,1; x,%,") be a frame thereof.
Let U™ be a direct sum (= direct power) of U, where M is of arbitrary (finite
or transfinite) cardinality. If a= (%, &y, ..., o) €U and if x €1, then by
P, (a), called the ‘u“‘—j)ro'jeftwn of & (in, or relative to the frame U), we mean:

. 7 ’ ’ ’ . ’ '1 lf o(.:‘u
P (o) = (og, 015, ..., 05), where o)== : i
,u() (g, 0t %) o {0 y g,

Let W=(U,o,...) be a subalgebra of U®. If U satisfies

(1°) all elements (= ‘scalars’) (u,p, 1, ..., p) are €U (w€N), we call N
‘a scalar-subdirect sum of 1. If-in addition W also satisfies

(2°) for each a €N and for each ,uElI B () €W, we call ¥ a normal-
subdirect sum of 112).

‘The independence of the concept of normality from the partlcular frame
- chosen is shown by :

Theorem 4.4. If Wis a normal subdirect sum of W relative to some frame U,
then it is a normal subdirect sum velative to any frame U'.

Proof. Let P’ denote projection relative to the frame U’ = (U; 0/, 1’;
x',",¥). One easily verifies the formula ‘
4.1) Pl(e) = {(1",1,1", ..) X P (&)} X, {(0", 0", 0', ...) X (P, ()"} .
Since the right of (4.1) is €U the theorem is proved.

2} That U is a subdirect sum (see BIRkHOFF {1]) follows from (1°).
Mathematische Zeitschrift, Bd. 59. ' I 13
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5. Normal represen'tationi kernel, core. Asin part I we shall agree
to identify the kermel, U, with its isomorph U, = subalgebra of all scalars

. (o s s o), (€W
U=l, U= p—lpp.op) p=(op . p); VLU

With this understanding the identity (4.1), for instance, is written simp'ly
P(a) =1'P, (o) X, 0'(P, (e0))".
The kernel U(=1,) of U is obviously the same for all frames in . -

By -the core, J, of # — relative to a given frame 1/ — we mean the set
of all elements P, (a); (« €W, a €N). As in part I (], x," ") is shown to be
a Boolean algebra with axb as Boolean intersection, a"=a" = a* = Boolean
complement {a, 5<€ J), and 0, 1 as null and universe. With only very minor
modifications of the corresponding proofs in part 1 we have

Theorem 5.1. (Normal representation theorem). Let €, ..) be any
W-function, where W is a normal subdirect sum of a universal algebra 1 of class f.
Then for each fixed frame in W we have a normal decomposition®)

XA
fEm,..) % HaB..) P®) By(m) ...
Theorem 5.1" (Alternate formulation). In the notation of theorem 5.1, each

a_a,...eu kerne!ofu

E CU may be expressed in one and only one way in the normal form

XA - :

E = Z ua,

pcl

in which the a, are pairwise disjoint core (=]) elements which cover [
e .
(i.e., 2. a,= 1). Then
[ZISRINE

XA

fEM,..)= 3 f@B ..)ab,...
%h...CU
where {a,},{b,}, ... are the core components of §, W, ....

6. Functionally complete kernel.  Let Wl be a universal algebra and
U a subalgebra. A U-identity f(&,...)=g(&, ...) is said to extend to W or to
be. satisfied by W if f(§,...)=g(E, ...) is:a W-identity; here the U-variables
"§,.... but not the constants (if any) appearing in f(&, .. ), g(&, ...) are replaced
by W-variables E, ....

Theorem 6.1. Let W be a universal algebra jﬁossessing a subalgebra, 1, where

(1°) W s finite and functionally complete,

(2°) each N-identity extends to W, .

B9 u contains at least two elements. ,
Then W is isomorphic with a normal subdirect sum of 1.

8) For the limited associative and commutative properties which make parentheses
XA
in' 2, unnecessary see FOSTER, part I, I. c.
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Proaf.-Let 0,1 be any distinct elements of I. Then U is of class f and
possesses a frame U=(U;0,1; X, "). That # is a normal subdirect sum
of U—relative to the frame lU-—follows with only minor modifications
(required because of our more general formulation of the concepts ‘of class f’
and ‘normal subdirect sum’) from the proof of -a similar theorem of part I.
Theotem 4.1 then shows that # is mdependent of the particular frame chosen.

The following more general converse of. theorem 6.1 Is an immediate
consequence of the definitions involved:

Theorem 6.2. If W is a scalar-subdirect sum of a universal algebm 1,
then the scalars of W form a subalgebra isomorphic (and to be zdemtzfzed ) with U,
and every U-identity extends to W.

By forward reference to lemma 8 and from a joint consideration of theorems
6.1 and 6.2 we have .

Theorem 6.3 (Principal theorem for complete kernel). Let W be a func- -
ttonally complete universal. algebra of order w 2. Then the following three
classes of algebras are all coextensive, up to isomorphisms: :

(1) The class {..., W, ...} of -all overalgebras W of W such that each N-identity
extends to W. ‘ '

(2) The class of all scalar-subdirect sums of 1.

(3) The class of all normal-subdirect’ sums of W.

That theorem 6.1 cannot be proved if the condition (1°) thereof is deleted
is seen by the following example. Let %=(4,x)= {a, 0%, 0% ..}, with
o™X o =™, Also let A'=(4’, X') be any group, and let ¥ = ‘IIXQI’ (direct

um). Since is the free algebra (of one generator) of the identities £ x5 =7 X§,
EX (nx &) =(Exn) &, it is obvious that U’, and hence also N satisfies all
identities satisfied by %. Moreover ¥ is (isomorphic with) a subalgebra of 9.
Thus, with the exception of (1°) the conditions of theorem 6.1 are satisfied.”
However the conclusion is now false, in fact a simple argument, which we
omit, shows that % is not isomorphic with any subalgebra of a direct sum of .

1. Strictly complete kernel. The finite fields F,=(F,, X, +) and

:Fpk-—(Fpk X, -+) are complete but not strictly complete, e.g., the constant
function, 1, cannot be expressed as a stnct F,- or an T,,k—functlon However

(see part I) expressed in the form( X,'). and (Fpe, X, ") these fields are
strictly complete. " Heére A6 for Ed40 41 gy
F=E+1(modp); £'=11 for £=0 ;

; 0 for &=p2
(E€Ey; A = multip. generator of Eu).

Again, the algebra @,=(C,, X, ) previously noted (§3) is strictly com-
plete. [For n= p"_pnme power, this algebra is identical with the Galois
field (Fe, X, °).] Further, the Post kernel (P,, X,’) of order = is strictly
complete. Other examples, and criterea for completeness (ordinary and strict)
may be found in part I.

A -
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The ‘simplicity’ of the concept of strict completeness is shown by

Theorem 7.4. If W is stricily comﬁlete

(1°) W contains no proper subalgebra; : _

(2°) W contains no proper ideals, i.e., if W—>NU' is a homomorphism, then
U= W (isomorphism), or W' is the one-element algebm

Proof Suppose ¥ were a proper subalgebra, and suppose aEl, oc&%
There exists a strict U-function f(&) such that f(§) =«. Then in particular
forn €%, f( ) =a. But this contradicts the assumption that B is a subalgebra,
and (1°) is proved.

" Consider (2°). Suppose 1l possesses a proper ideal (= partition), q. Then
there exist at least two residue classes Q, Q' of q neither of which is empty
and one of which contains at least two elements. Say «;, %,€ Q, «’ €Q’. There
exists (at least one) strict U-function (&) such that A{x)) =ay, A(as)=a'.
This is in econtradiction with the assumptlon that g is an ideal, and (2°) is
proved. From (1°) we have the immediate

Corollary. If B is any element of U then B generates U, U=(f).

8. Complete kernel (continued). If Uis a universal algebra of classf,
simple counterexamples show that (a) a subalgebra. of a direct sum of U is
not in genaral a subdirect sum of 1, and further that (b) a subdirect sum of 1l
is in general not normal, nor even scalar. [In fact (a) and (b) are still true
even when 11 is (merely) complete.] We have however the

Lemmas8. (1) If W is a functionally stricily complete universal algebra of
order n > 2, then every subalgebra of a direct sum of W is a normal-subdtrect
sum of U.

(2) If U is a functionally complete umversal algebra of order n 2 2, then
every scalar-subdirect sum of W is normal.

Proof of (1). Let U be a. frame in U, let # €U and let the constant -
function f(&) = u and the characteristic function §,(£), (relative to. ), be
expressed as_stnct U-functions. If B is a subalgebra of a direct sum of 11
and if e = (e, ...} €W, then _

ful) = (.o, .. ) =€U

(@) = B,(a) = €.
Hence all scalars are €W, and with « also all projections of & are €, whlch
proves (1). The proof of (2) is similar and will be omitted.

9. Proof of theorem 9.2 (stated in §1), etc. ,

Theorem94. Let N, W be any wuniversal algebras of the same specws and
each containing at least two elements, and where

(1°) U s finite and functionally strictly complete.

(2°) Each strict zdentzty of W is also an identity of W.

Then
(i) N s isomorphic with a normal subdirvect sum of .
© (ii) Each strict identity -of W is an identity of U.
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Proof. Let W, U satisfy (1°) and (2°) above, and let a £ 1, £, (§) =«, where
1.(8) is expressed as a strict U-function. . Then f, () is .a strict U-function.
Applying (2°) to the U-identity f,(€) =/,(r), We have the strict U-identity.
f.(€)=f,(n). That is, for given a €U, f, (§) is a constant W-function, call it
o' f(B)=a"=EN. : .

" Consider the mapping
(9-1) a>o' =f,(§), (x€N).

Leta—o',f—f',... let0(&,n,...)be a primitive operatlon andleto(x,B,...)=y.
From (2°%) and the strict U-identities.

: (fa(é):fﬁ 5)1"') :fy(n)
we obtain the strict W-identities
0 (fu(8), f5(E),...) =1, (),
o, f,...) ="
We have thus shown that 1, the class of all images «’, ... under (9.1),.is a
subalgebra of W, and that (9.1) is a homomorphism of 1l onto U’. By theorem 7.1
either 21’ or else ' =17’ (= one element algebra). The latter is impossible,

for if so, from (2°) of theorem 9.1 and obvious corresponding Ul-identies we
have: for any §€H,

that is

E=318) 8,8 =310, =
pcl ey

This contradicts our assumption that fl contains at least two elements. Hence
U2 1W'. The assertion (i) of theorem 9.1 then follows from theorem 6.1. Finally
(ii) is a consequence of the fact that 1l(=1') is a subalgebra of W.

The proof of theorem 9 2 (see § 1) now follows at one from lemma 8 and
theorem 9.1.

Employing corollary 22 of part I we have the special

Theorem 9.3. Let U, W satisfy either the hypotheses of theorem 9.4 or those
of theorem 6.1. Then if W is a finite algebra, W is isomorphic with a direct sum
of W, and the order of W is a power of the order of 1.

10. Core, normal expansion, for complete kernel. The consider-
ations of §§4, 5, holding for arbitrary f-algebra kernels, are perforce syn-
thetic in nature. For complete kernels, however, they may be given an internal
. formulation. We shall merely sketch this section since the arguments are
essentially those of §§ 19, 14 of part I, where however the less general defi-
nition of /- algebra and normal subdirect sum were used.

Let 1 be functlonally complete, W a normal subdirect sum of U and

=(U;0,1; X, ") aframe in U. Then the u'® characteristic functlon (u € 11) '

1if E=
L) =1 . 5Tk
‘ ) 0if £ p
may—and we assume it to—be expressed as a U-function, or, in case U is
strictly complete, as a strict }-function.

(genm
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The u'® projection P, (E), (E€W) is then given by
P,(€) = 6,(8),

‘where 6 () is the extension to # of the characteristic function ¢ (E) that i is,
d,(8) is obtamed from 6, (£) by replacing the 1l-variable & by the lt—vanable E
[If U is merely snnply, but not strictly complete, any constants occurring’
in the U-function 0, (£) remain unaltered in passing to 9,(§).] Thus P,(E)
is ‘internally’ expressed -as a W-function, or even—-m gase 11 is strictly com-?
plete—as a strict W-function.

From earlier sectlons we then readily have

Theorem 10.1. Let W be a universal algebra possessing a functionally
complete subalgebra (0f at least two elements) such that every U-identity exiends
toW. Let U= (U;0,1; X,%,") be any frame in U.and let 8,,(E) be the exténsz’on
to W of the characteristic function 0,(§) of U. Then each ll-functzon &, ...
possesses the normal decomposztwn :

fEm,..)= Z f )8, (E)ép('l)

. Theorem10.2. Let U be a fmwtwnally stm:tly complete algebra (of .at
least two elements) and let W be any algebra that satisfies all the strict identities
of W If {,(&) =a, (xCW) is the constant - function, «, exj)fessed as‘a strict
U-function, the class of corresponding ( strict) U-functions, W = {1 &)} (xcn, .
E €N form an isomorphic subalgebra of W, UW and, in the notation of theo-
rem 10.1, each (not necessarily strict-) W-function possesses the normal exﬁanszon '

of theorem 10.1, with Z replaced by D).
a,ﬁ,. B, EW : .
Core. For I, Was in theorem 10.1 or theorem 10 2, the core J of U— rela- :

tive to the frame Y in U—is internally expressed by (see part I)

.] = {8,(E)}, where y runs through 11 and € runs through i
= {6 (E), where a = fixed €11 and E runs through M.

In partlcular ] {6(E)}, where 8(8) = 8y ()- . .
If 0,1 are any €1, smce U is complete we may. always choose a special
frame U’ =(U;0,1; x, ", ) in which 0 and 1 are the only idempotent ele-
ments (relative to X). A companson of the synthetic and internal aspects'
of normal subdirect sums then yields . '
Theorem 10.3. If W is a normal subdirect sum of a ]‘unctwnally com[)lete
algebra, U, and if U’ is.a speczal frame in W, then, relative to U’, the core of B
consists of the totality of idempotent elements of B, (Ex E=E).
Such special frames, with corresponding easily computed cores, are useful in
connection with the normal decomposition of i-functions given by theorem 5.4'. .
Thus, in the case of the kernel F of a p-ring, and Fj of a p*ring, the
‘natural’ frames (F,, X, *), (Fu, X, ) are special in the above sense; -cor-
respondingly the (natural) core of a p- or of a pF-ring consists of its totahty
of idempotent elernents. A similar remark applies to the €,-algebras [satis-
fying all identities of (C,, X, *), or all strict identities of (C,, X, "),—see

(10.1)
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§3]. However any ‘natural’ frame in the Post kemel (P,, x,’), that is any
frame utilizing X as frame product, is not special (-- every element of P,
is here idempotent). With respect to such frames the core of Post algebras
is determined by the general formulas (10.1).

1. Universal fundamental set of identities. Aset J={...,I;, ...}
of identities of an algebra is called a fundamental set if every identity of the
algebra is a logical consequence thereof.

Let U be functionally complete, let U be a frame thereof, and let §(£) = 8§, (€)
be its 0™ characteristic function and &” any transitive 0—>1 Ul-permutation.
From the considerations of §19 of part1 one may, in terms of these, write
down a certain finite universal fundamental set, G*

! 5(8)x8(8) = 88

which is ‘universal” in the followmg sense: if Uis’ any functlonally complete
algebra. with a frame chosen therein, and if §(£), &7 are expressed as U-func-
tions, the expressmns J* form a ‘fundamental set of identiti’es for U. Thus,
for instance, for (F,, X, 4), using the natural frame (F;, ), the first
expression of J* becomes the identity (1 —&~1) (1 —g~ 1) = (1 —1), etc.
Of course for a given complete algebra 1 the universal fundamental set
will generally not be as short or simple as one which is geared to the particular
peculiarities of structure of U. The universal set may however serve as a
standard for testing a candidate set of identities for ‘fundamentalness’.

12. Equational closure and functional completeness. Let-o,...
be a class of operations and let E={..., E,, ...} bé a set of (strict) equations
in these operations. Every such set £ has the one-element model, called the .
trivial model.. If £ possesses only the trivial model, & is called inconsistent;
otherwise & is consistent.

- Let E’ be a strict equation in the operations o, ... and let. & =& (E’)
denote the class € augmented by E’. If E’ is a logical consequence of the
idéntities € we write € equiv. £.

A set € of equations is called equationally closed (or saturated) if, for
every E’, either € equiv. £ or else £ is inconsistent.

Theorem 12. 1 Let W1 be a strictly complete (finite) algebra of order n = 2,
_and let J={... .Y be a fundamental set of (or else the set of all) strict
tdentities of . Then J is equationally closed. ,

Proof. Let I’ be any strict equation in the primitive operations o,
of . Now by theorem 9.2 all models of J, and hence also all models of _
7' =J(I')if J'is consistent, are normal subdirect sums of Il. But, by theorem 9.1,
each such model satisfies those and only those strict identities satisfied by U.
Hence if 7’ is consistent it follows that I’ is a legical consequence of J, and
the theorem is proved.
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