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Summary. A micromechanical framework is proposed to investigate effective mechanical properties of elastic
multiphase composites containing many randomly dispersed ellipsoidal inhomogeneities. Within the context
of the representative volume element (RVE), four governing micromechanical ensemble-volume averaged
field equations are presented to relate ensemble-volume averaged stresses, strains, volume fractions,
eigenstrains, particle shapes and orientations, and elastic properties of constituent phases of a linear elastic
particulate composite. A renormalization procedure is employed to render absolutely convergent integrals.
Therefore, the micromechanical equations and effective elastic properties of a statistically homogeneous
composite are independent of the shape of the RVE. Various micromechanical models can be developed
based on the proposed ensemble-volume averaged constitutive equations. As a special class of models,
inter-particle interactions are completely ignored. It is shown that the classical Hashin-Shtrikman bounds,
Walpole’s bounds, and Willi’s bounds for isotropic or anisotropic elastic multiphase composites are related
to the “noninteracting” solutions. Further, it is demonstrated that the Mori-Tanaka method coincides with
the Hashin-Shtrikman bounds and the “noninteracting” micromechanical model in some cases. Specializa-
tion to unidirectionally aligned penny-shaped microcracks is also presented. An accurate, higher order (in
particle concentration), probabilistic pairwise particle interaction formulation coupled with the proposed
ensemble-volume averaged equations will be presented in a companion paper.

1 Introduction

The prediction and estimation of effective (overall) mechanical and conductive properties of
random heterogeneous multiphase materials are of great interest to researchers and engineers in
many science and engineering disciplines. The so-called “effective” properties of a heterogeneous
composite are obtained by some volume- and ensemble-averaging processes over a “representa-
tive volume element” (RVE) featuring a “mesoscopic” length scale which is much larger than the
characteristic length scale of particles (inhomogeneities) but smaller than the characteristic
length scale of a macroscopic specimen. In this paper, all particles are assumed to be
non-intersecting (impenetrable) and embedded firmly into a homogeneous matrix material; i.e.,
perfect interfacial bonding is assumed. Further, we assume that statistical homogeneity holds.
Therefore, effective (averaged) material properties remain the same for arbitrary averaging
domains inside a composite medium. As a consequence, heterogeneous composites can be
represented by equivalent homogeneous continuum media with appropriately defined effective
properties. Mathematically, this procedure is related to the homogenization method. Examples
of heterogeneous particles or fibrous composites are abundant, such as graphite/epoxy
composites, ceramic matrix composites, porous and cracked media, concrete and cementitious
composites, polymer-blended soils, and rocks, etc.
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There are many theoretical methods in the literature to tackle this class of problems (see
Hashin [1]). The first school, stemming from the pioneering work of Hashin and Shtrikman
[2]—[4], employs variational principles to obtain mathematical lower and upper bounds for
effective properties of multiphase particulate composites. See, for example, Walpole [5]—[8],
Beran and Molyneux [9], and Willis [10]. “Improved” higher-order mathematical bounds which
depend on statistical microstructural informations of random heterogeneous composites have
been proposed by, e.g., McCoy [11], Silnutzer [12], Milton [13]—[15], Milton and Phan-Thien
[16], Torquato and Lado [17], and Sen, Lado and Torquato [18]. We refer to Torquato [19] for
a state-of-the-art review on the improved higher-order statistical bounds of two-phase linear
composites. Recently, novel nonlinear variational bounds for isotropic elastic and viscoelastic
particulate composites were proposed by Ponte Castaneda and Willis [20], Ponte Castaneda [21],
and Willis [22]. The second school for micromechanical estimation of effective properties of
heterogeneous composites is known as the effective medium approach. This school includes the
self-consistent method (Hill [23], Budiansky [24], Budiansky and O’Connell [25]), the differential
scheme (Roscoe [26], [27], McLaughlin [28], Hashin [29]), the Mori-Tanaka method (Mori and
Tanaka [30], Taya and Chou [31], Taya and Mura [32], Taya [33], Weng, {34], Benveniste [35],
Zhao et al. [36], Weng [37], Qiu and Weng [38]), and the generalized self-consistent method
(Christensen and Lo [39]), etc. However, effective medium methods do not depend on particle
locations or their relative configurations. See also Hashin [1], Laws and Dvorak [40], Nemat-
Nasser and Hori [41], and Christensen [42] for some comparisons and assessments of these
methods.

The third school aims at direct determination of effective properties of composites with
randomly located particles by introducing some approximations or by assuming certain special
configurations for particles (inhomogeneities) dispersing in matrix materials. For example,
effective elastic properties of two-phase composites can be evaluated by a power series in particle
volume fraction ¢, with each ¢"-term corresponding to averaged n-particle interaction effects. At
dilute particle concentrations, some results were obtained by Dewey [43], Kerner [44], Eshelby
[45] and Hashin [46] to accommodate the O(¢)-term by considering only effects due to single
particles (i.c., no inter-particle interactions). On the other hand, Walpole [8], Batchelor and Green
[47], Willis and Acton [48], and Chen and Acrivos [49], [50] determined the O(¢?) contributions by
bringing in the effects of pairwise inter-particle interactions. These methods are suitable for low
particle densities; e.g., for ¢ around 15 ~ 25%. It is noted that the n-th order corrections to
effective properties require micromechanical solutions of the complicated n-particle interaction
problem. This difficult problem still remains mostly intractable for n greater than two. Therefore,
there has been no further analytical work in deriving the higher-order interactions and
corrections. Recently, nonetheless, a numerical approach to compute many-particle interactions
was proposed by Rodin and Hwang [51] for deterministic (not statistical) particle arrays. Their
results, contrary to all existing results, concluded that particle interactions and thus higher-order
corrections at very high particle concentrations could be completely ignored.

Further, assuming that composites contain particles of periodic arrays, several analytical
results were obtained in recent years. See, for instance, Nemat-Nasser and Taya [52], [53],
Iwakuma and Nemat-Nasser [54], Nunan and Keller [55] and Sangani and Lu [56]. Although the
assumption of periodic arrays of particles makes it possible to solve the many-particle
interaction problem exactly, it is, however, unrealistic for most composites containing randomly
dispersed particles. In addition, it is noteworthy that an exact expression for the effective
isotropic bulk modulus (not shear modulus) was obtained by the “composite sphere assemblage”
(Hashin [57]) if there is a continuous distribution of particle sizes (starting from infinitesimally
small). Namely, the model requires that composite spheres fill all spaces in a composite body.
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In this paper, we attempt to establish governing micromechanical field equations for an RVE
and to improve theoretical predictions (not mathematical bounds) of effective elastic moduli of
composites containing many randomly dispersed particles embedded in homogeneous matrix
materials. An outline of this paper is as follows. In Section 2, we consider a linear elastic
multiphase composite containing randomly located ellipsoidal inhomogeneities. Following the
“eigenstrain concept” introduced by Eshelby [45], four governing micromechanical ensemble-
volume averaged field equations for an RVE are explicitly constructed to relate macroscopic
(ensemble-volume averaged) stresses, strains, volume fractions, particle shapes and orientations,
average strain-perturbations due to inhomogeneities, and elastic properties of constituent
phases. Effective properties of heterogeneous composites can then be derived based on the
proposed general framework. A probabilistic “renormalization procedure” similar to that of
Willis [10] and Sen and Torquato [58] is employed to ensure the absolute convergence of relevant
integrals; ie., the governing micromechanical equations and overall effective properties are
independent of the shape of the RVE used. In Section 3, as a special class of models, inter-particle
interactions are completely ignored. It is shown that the classical Hashin-Shtrikman [2]—[4]
variational bounds, Walpole’s bounds [5]—[7], and Willi’s bounds [10] can be recovered as
special cases. Further, in Section 4, it is demonstrated that the Mori-Tanaka method coincides
with the Hashin-Shtrikman bounds and the “noninteracting” micromechanical model in some
cases. The effects of unidirectionally aligned penny-shaped microcracks on stiffness reduction of
microcracked brittle solids will be examined in Section 5. A novel, accurate, probabilistic
pairwise particle inferaction formulation for two-phase composites with randomly located
isotropic spherical particles will be presented in a companion paper (Ju and Chen [59]) within the
preposed general framework. In particular, overall elastic properties are analytically derived
in terms of fractional expressions of ¢ (not a power series of ¢).

2 Ensemble-volume averaged micromechanical field equations

To obtain “effective” constitutive equations and properties of random heterogeneous composi-
tes, one typically performs the ensemble-volume averaging process (homogenization) within
a mesoscopic representative volume element (RVE). To avoid the truncation errors of Green’s
Jfunctions outside the domain of an RVE, an ellipsoidal RVE itself is embedded in an infinite (and
identical) matrix material within our framework; see Fig. 1. The entire assembly is subjected to
specified far-field stresses or strains. Furthermore, all particles are assumed to be non-
intersecting (impenetrable).
The volume-averaged stress tensor is defined as

5= _ 1
GZVJU(X)dX_V f

v Vm

o(x) dx + i Jc(x) dx |, 1)
r=1

where V is the volume of an RVE, V,, is the volume of the matrix, V, is the volume of the
rth-phase particles (inhomogeneities), and n denotes the number of particulate phases of different
material properties (excluding the matrix). Similarly, the volume-averaged strain tensor is
defined as

£ = %Js(x)dx=% f
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A composite RVE embedded in an infinite matrix
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Fig. 1. The RVE representation for a composite medium and linear superposition treatment involving £°
and distributed ecigenstains £%(x)

Moreover, the effective elastic stiffness tensor Cy of the composite is defined through

6=CyE 3
where “:” signifies the tensor contraction.

According to Eshelby’s equivalence principle (Eshelby [45], [60]), the perturbed strain field
g'(x) induced by inhomogeneities (particles with properties different from those of the
homogeneous matrix) can be related to specified eigenstrains s*(x) by replacing the inhomoge-
neities with the matrix material (or vice versa). That is, for the domain of the rth-phase particles
with elastic stiffness tensor C,, we have

C: e +e(x)] =Cy: [ + g'(x) — e*(x)], 4)

where C, is the stiffness tensor of the matrix and £° is the uniform strain field induced by far-field
loads for a homogeneous matrix material only; see Fig. 1. Cy and C, could be isotropic or
anisotropic if the eigenstrain field £*(x) is uniform in V. If £*(x) is nonuniform in V, it is assumed
that, for simplicity, C, and C, are isotropic tensors. In Fig. 1, the strain at any point within an
RVE is decomposed into two parts: (a) the uniform strain £° (without inhomogeneities), and (b)
the perturbed strain £'(x) due to distributed eigenstrains £*(x). It is emphasized that the
eigenstrain £*(x) is nonzero in the particle domain and zero in the matrix domain, respectively.

In particular, in accordance with Eshelby [45], [60], the perturbed strain field induced by
distributed eigenstrains £* can be expressed as

(%) = [ G(x — x'): g¥*(x’) dx’, (5)
14
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where x, x" € V. In addition, G is the (second derivative of the) Green’s function in a linear elastic
homogeneous matrix. For example, for a linear clastic isotropic matrix, we have

[(1 — 2vg) (0ixbji + 0ubji — 61j0m)

Giv _—
81 — vo) 13

+ 3v0(5iknjnl + 5ilnjnk + 5jkl’lin1 + 5ﬂnink)
+ 35ijnknl + 3(1 - ZVO) 5k1ninj — 15ninjnknl], (6)

wherer = X — x',r = ||x — x| and » = r/r. Further, summation convention applies, §;; denotes
the Kronecker delta, and v, is Poisson’s ratio of the homogeneous matrix. From Egs. (4) and (5),
we arrive at

—A,:e%x) =% + | G(x — x'): g¥(x’) dx’ (D
14

for x e V, where
A =(C, —Cy)™' - Co. (]

Furthermore, the total local strain field g(x) can be expressed as
gx) = +e(x) =% + [ G(x — x): e*(x') dx". 9
14
Therefore, the volume-averaged strain tensor is given by

=g+ Il/ JJ G(x — x):e*x) dx’ dx =£° + Ii/ J J G(x — x') dx |: e¥(x') dx’. (10)
Vv

14 v

It is well known that integrals such as [j G(xx') dx} are conditionally convergent since G
14

is of the order »7°; i.e., they depend on the shape of the RVE. Nonetheless, effective material
properties certainly cannot depend on such shape dependence. Therefore, “renormalization
procedures” were proposed in the literature to avoid this conditional convergence problem. We
refer to, for instance, Batchelor and Green [47], Willis [10], Chen and Acrivos [50], and Sen and
Torquato [58], etc. In particular, the “renormalization schemes” proposed by Willis [10] and Sen
and Torquato [58] are particularly attractive since the former involves a two-point probability
function y,, (¥, s = phase numbering indices) and the latter involves n-point probability functions
S:?(n=1,2,3,4,ctc.and i = phase numbering index). More specifically, Willis’ [10] renormali-
zation scheme involves the two-point correlation functions y,, and integrals such as

3

§ G(X - XI) [er(x - X/) - ¢r¢s] dxl’ (11)

where ¢, is the volume fraction of the rth phase inclusions. The integral in (11) absolutely
converges because y,(x — X') = ¢, P, as [[x — x’|| - co; see Willis [10, p. 188]. However, in Willis
[10, Egs. (3.18)—(3.20)] only unidirectionally aligned and similarly shaped ellipsoidal inclusions
are explicity treated, which depend on the microstructure of a composite via the shape of the
inclusions and volume fractions only. On the other hand, emanating from a perturbation
expansion scheme, Sen and Torquato [58] explicitly derive the nth-order tensorial coefficients
A, (termed n-point microstructural parameters) for two-phase linear composite media based on
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n-point probability functions §,?(r) and volume fractions ¢; Sen and Torquato [58, p. 4513]
show that Willis’ P tensor (defined by Willis [10, Eq. (3.19)]) is trivially related to the well-known
“depolarization factor” tensor A,* for an ellipsoid at the two-point level. If inclusions are not
aligned or not similarly shaped, knowledge of the two-point probability functions S,®(r) enables
one to evaluate A, in (2.11a) and A,* in (3.14) of Sen and Torquato [58] for two-phase linear
composites. Moreover, third-order bounds and fourth-order bounds of effective conductivities
for two-phase linear composite media are explicitly derived in Sen and Torquato [58]. However,
Torquato and his coworkers have never presented any explicit examples demonstrating
two-phase elastic composites with non-aligned and/or dissimilar ellipsoidal inclusions. Further,
generalizations of Sen and Torquato’s [58] work to accommodate multiphase (more than
two-phase) elastic composites containing non-aligned and/or dissimilar inclusions are apparent-
ly needed in the future.

Following the concepts of Willis [10] and Sen and Torquato [58], a similar ensemble-average
“renormalization” procedure is applied to Eq. (10) at the two-point level. It follows that the
following “renormalized” integrals are involved:

’ [er(x - X/) - ¢r¢s]
J‘ G(x —x) [er(o) ) 1i| dx. (12)
14 ¢r¢s

These integrals are absolutely convergent because the integrand [y,{(x — x') — ¢,¢J — 0 as
[x — x| = o0. For simplicity, let us assume that all particles are unidirectionally aligned and
similarly shaped. In addition, we assume that the two-point probability functions are isotropic
(ie. y.(x — x) depends on ||x — x’|| only). Therefore, according to Willis [10], Eq. (12) becomes

[er(x - X,) B ¢r¢s] [er(o) B ¢r¢s]
—x’ dx =S = , 1
J e B TP ) - godigel TN )
14 ¢r¢s
where
S= [ G(x) dx = a constant tensor. (14)

a<b

Here, § = (xTATAx)'/? is determined by the ellipsoidal inclusion aspect ratios (A) (see Willis [10,
Eq. (3.18)]) and b > 0 is any real positive value. As a consequence, Eq. (10) can be rephrased as

Ey=e"+ ) Y 1-[9§S: <& ="+ 8: [ Y ¢r<5r*>], (15)
r=0s=0 r=1
where the angled brackets signifiy the ensemble-average quantities and
_ 1
&*) = v j<£*(X’)> dx’. (16)
Ve

Therefore, we can relate our S to Willis’ P as follows: S =P - Cy. For two-phase linear
composites, we can further write S = A,* (cf. Sen and Torquato [58]). For example, if
the lincar elastic matrix material is isotropic and all inclusions are spherical, then the
S tensor takes the form

Siju = [(5ve — 1) 6;0. + (4 — 5vo) (0udji + dud )l (17

1
15(1 - Vo)
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On the other hand, for linear composites containing arbitrarily non-aligned and/or dissimilar
ellipsoidal inclusions, we can define the integral in Eq.(12) as S,™ and characterize S™ by
S™ = 8,"/(¢,¢). In such cases Eq. (15) can be recast as

n n

& ="+ ) Y 608" :E*). (18)

r=0s=0

Similarly, we can define
P," = [ I'*(x — x') [inlX — X') — ¢, ] dx’ (19)
14

in Willis [10, Eq. (3.20)] and characterize P™ by P = P,"*/[1,(0) — ¢,¢,] for linear composites
with arbitrary microgeometries. Therefore, we still have S™ = P - C,. Since all field quantities
in this paper only occur when ensemble averaged, the ensemble averaged brackets will be
dropped for simplicity in what follows.

Similarly, the ensemble-volume averaged stress field can be recast as [cf. Egs. (1), (2), (4)]:

6= % [J Co : &(x) dx + i J Co : [e(x) — £¥(x)] dx}
r=1
- l:VmCo:Em £ VoG- s)} =Gy [é ) m*}. 20)

The effective elastic moduli (Eq. (3)) can be obtained, in principle, from Egs. (7), (15) (or (18)) and
(20) since the variables are 6, &, €° and &,*. In essence, one needs to solve the relation between
£ and &* (or between £° and &*), which involves the solution of the integral equation (7).
However, €,* depends on inter-particle interactions, particle-matrix interactions and microstruc-
ture (i.e. particle sizes, orientations, shapes, volume fractions, locations, configurations, and
probability functions) of a composite system. Therefore, for randomly dispersed particles, one
needs to obtain the ensemble-volume averaged relation between £ and &* by averaging all possible
solutions of the integral equation (7) for any particle configurations generated according to
specified probability functions.

By taking the ensemble-volume average of Eq. (7) (Eshelby’s equivalence principle) over all
rth-phase particles, we obtain

—A 5% =¢"+§/, (21

where

1
g = 7 j J G(x — x'):e¥(x’) dx’ dx
! Ve V

[ J G(x — x'): g*(x") dx':l ax + % NZ [f G(x — x') dx} te¥(x) dx’,
) ri=1 ;

= (22)
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= the domain of the ith particle in the rth phase domain V,, and N, = the number of the phase
r particles dispersed in ¥. For convenience, we shall define

£ = i_Nr J{Jc(x_x) e*(x) dx }dx (23)

which represents the inter-particle interaction effects. In a companion paper, it will be shown that
the leading order of €,7 is of O(a/L)® where L denotes the average spacing between the centers of
two neighboring particles and a is the average radius of particles. Therefore, when particle
spacings are very large relative to sizes of particles, £, becomes negligible. Further, let us define

P= j (x —x)dx, xandx e/} (24)
fo Ry

as the Eshelby tensor associated with the ith particle in the rth-phase inhomogeneity. The
components of the Eshelby tensor s,’ depend on elastic moduli of the matrix material and the
shape and orientation of the ellipsoidal particle Q,. See Mura [61] and Zhu and Weng [62] for
details.

If all particles in the rth-phase have the same ellipsoidal shape and orientation (although
shapes and orientations could be different from phases to phases), then s, becomes s, which is
a constant tensor within the rth phase only. Accordingly, Eq. (22) can be recast as

1
Er, = ér’p + S, ! l’v J\ 8*(X’) dx,:| = ér’P + Sl’ : ér*‘ (25)

v,
From Egs. (21) and (25), we arrive at
(_Ar - Sr) : Er* = 80 + Er/p (26)

for the rth-phase particles with aligned and identically shaped ellipsoidal inhomogeneities. Since
different phases could have different shapes and orientations, the Eshelby tensors s, are distinct
for phases r = 1 to n.

In addition, the ensemble-volume average of the perturbed strain takes the form

g = Il/ Js’(x) dx = 71/ [% \[g’(x) dx +r‘; ;: Ja’(x) dx}. (27)

v Vi v,

For compactness, let us define
gm= — | g'(x)dx. (28)

Clearly, §'™ corresponds to the ensemble-volume averaged perturbed strain in the matrix due to
the existence of all particles. As a result of Egs. (25) and (28), Eq. (27) can be rephrased as

n Vr _ 1 _ n B ~
gF=-"§m+ ) —§& = <1 - 4),) Em A+ Y Pls 18X+ ED). (29)
r=1

r=1

~
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For linear composites with unidirectionally aligned and similarly shaped particles, Egs. (15) and
(29) then lead to the relationship between ™ and &,7:

<1 — i qb,) g™+ i 9,87 = i ¢S —s8):g*=0. (30)

In contrast, Egs. (18) and (29) should be used to derive the counterpart of (30) for different s,.
In summary, the four governing micromechanical ensemble-volume averaged field equations
are recapitulated as follows (dropping the ensemble angled brackets):

6=0Co: (s - Z q,’)s*> (31)

r=1
e=e"+ ) ¢S:§%, (32)
r=1
(—A, —s8):&* = + &7, (33)
<1 - d),) Em+ ) 957 = oS —s8):g*=0. (34)
r=1 r=1 r=1

Itisnoted that Egs. (32),(33) and (34) are valid when all particles are unidirectionally aligned and
identically shaped (with S = s). If the rth-phase particles are not even unidirectionally aligned
and identically shaped within the rth-phase, then s, is undefined and one must employ s, defined
in Eq. (24) for each particle. For example, if all particles are randomly oriented, then s, is not
a common constant tensor for all rth-phase particles in (22). Equations (33) and (34) must be
modified by using the “orientational average” procedure proposed by Tandon and Weng [63], and
Zhao, Tandon and Weng [36]. Basically, one first evaluates the product s,’ : g*(x") in (22) in the
local inclusion axes for each particle, then one performs coordinate transformation to the global
material axes and computes the global “orientational average” of the product. We refer to Weng
[37, p. 1117] for a similar treatment.

To actually solve Egs. (31)—(34) and obtain effective moduli of composites, as previously
commented, it is essential to express the rth-phase average eigenstrain g,* in terms of the average
strain & (or £°). Namely, one has to solve the integral equation (7) exactly for each phase, which
involves details of random microstructure. Unfortunately, in most situations, the exact solution
for this (many-particle interaction) integral equation does not exist. In a companion paper (Ju
and Chen [59]), however, some reasonably accurate approximations will be introduced to
estimate effects of inter-particle intractions. Further, in Section 3, we will present a “noninterac-
ting” solution for (7) and compare the resulting effective elastic moduli with some existing
variational bounds and micromechanical models.

3 Noninteracting approximation and its relation to classical variational bounds

As mentioned in the previous Section, the exact solution of the many-particle-interaction
integral equation (7) or (33) appears to be an insurmountable task for arbitrary and random
configurations of particles. However, as the first attempt, “noninteracting solutions” can be
easily obtained in this Section by neglecting the inter-particle interaction effects (i.e. the averaged
perturbations in a particle due to other surrounding particles). Furthermore, for the first time, it



112 J. W. Juand T M. Chen

will be explicitly shown that effective elastic moduli due to classical variational bounds
correspond precisely to the “noninteracting” micromechanical solutions with § =s.

From a mathematical viewpoint, classical variational principles (Hashin and Shtrikman [2],
[3], [4]) for obtaining bounds on effective properties amount to finding stationary conditions and
values of a given scalar function (such as the total elastic energy function of a composite medium)
under specified macroscopic information of the system (e.g. material properties of constituent
phases, volume fractions and boundary strain field). By using the classical variational principle
{without introducing the Green’s function), Hashin and Shtrikman [2]—[4] derived upper and
lower bounds for linear elastic isotropic particulate composites. Walpole [5]—[7] generalized the
variational principle to anisotropic elastic composites. By introducing the Green’s function,
Willis [10] derived generalized Hashin-Shtrikman bounds for multiphase anisotropic composi-
tes, which contain bounds of Hashin and Shtrikman [2], [3], Hashin [64], and Walpole [5]—[7] as
special cases. The use of Green’s function is a significant advancement from a micromechanics
standpoint. As indicated by Weng [37, p. 1116], the approximate fields of Hashin and Shtrikman
[4] derived after carrying out the integration of Green’s function (similar to Willis® [10]
procedures) are known to correspond to those associated with a single sphere.

3.1 Noninteracting approximation of effective moduli for multiphase composites

If we neglect the inter-particle interaction effects, then the ensemble-volume averaged perturbed
strain &7 in (26) can be dropped. The resulting “noninteracting approximation” for the
rth-phase particles becomes

g% = —(A, +s,)7 0 (39)

Itis emphasized that the above equation is only valid for unidirectionally aligned and identically
shaped ellipsoids within the rth-phase. Equation (35) implies that any material point within
a particle is only influenced by other material points within the same particle. In other words,
Eq. (35)is simply the solution of averaged eigenstrain for the single ellipsoidal inclusion problem
(Eshelby [45]).

If all particles are unidirectionally aligned and similarly shaped, substitution of (35) into (32)
then leads to (with s = S)

g*=—(A +9)7" [1 - Z ?rS(A, + S)"l}_l ‘e (36)

Equation (36) together with (31) then renders the following effective stiffness tensor for
a multiphase composite medium:

Cy=Co-[I+BI—-SB)™, 37)

where

B= Zn: ds + A7, (38)
r=1

The matrix and the inclusions can be isotropic or anisotropic.
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3.2 Some analytical examples
A number of analytical examples is presented for two-phase and three-phase composites by using

the aforementioned “noninteracting” approximate solutions.

Category I: two-phase composites. Since S = s;, Eq. (37) reduces to
Cy = Co{l 4+ ¢4[(C; — Co) ™ Co + (1 — @) s1] 1} (39

Equation (39) is valid for any linearly elastic isotropic or anisotropic Cy and C;. Clearly, the
tensorial expression for effective moduli given in Eq. (39) is identical to that given by Willis [10],
which is Walpole’s [5], [6] generalization of Hashin and Shtrikman’s [4] result.

Case 1.1: All particles are spherical and both matrix and particles are isotropic elastic. The
effective bulk and shear moduli are [cf. Eq. (17)]

_ 3(1 — vo) (1 — x0) $1
S {1 3= vo) o+ (L= p0) (1 + vo) (s — %d} ’ 4
15(1 — vo) (1 — o) 1
* = 1 : 4
fr = Ho { 50 = vo) o + (1 — 1) (8 — 10vo) (i1 — No)} )

Itis noted that Egs. (40) and (41) are entirely identical to the lower (or upper) bounds, if the matrix
is the softer (or harder) phase, derived by Hashin and Shtrikman [4]. In addition, (40) and (41) also
coincide with the corresponding results obtained by using the Mori-Tanaka method (see Weng
[34] and [37]).

Case 1.2: Similar to Case L1, but all particles are rigid spheres. The effective bulk and shear
moduli are

_ 31— vo)

Hx = Ko {1 + m}, (42)
_ 15(1 — vo) ¢4

fo = o {1 Fa 6@ 10vo)}' @

These are the lower-bound solutions of the classical variational principle.
Case I.3: Similar to Case L.1, but all particles are now spherical voids. The effective bulk and
shear moduli are

— o 3(1 — vo) ¢,

S {1 3(1—vo) — (1 — o) (T + vo)}’ (44)
_ _ 15(1 — vo) ¢4

fe = o {1 151 —vo) = (1 — 1) 8 — lOvo)}' (45)

These are the upper-bound solutions of the classical variational principle; see also Zhao et al. {36,
p. 111]. Further, if the matrix material becomes incompressible, we have

A1 —
s = o {J—IT"”} (46)

_ 256,
B = o {1 ~ m} (47)
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Category 1I: three-phase composites. If all inclusions are aligned and similarly shaped
(S =s; =s,), our “noninteracting” solutions are again identical to the classical variational
bounds.

Case I1.1: If the first and the second phases contain spherical rigid particles and spherical
voids, respectively, then A; =0 and A; = -1 After some lengthy but straightforward
derivations, the effective bulk and shear moduli are

_ 31 =vo) 21 —=2v0) 1 — (1 +vo) §
=¥ {1 U v 2 -2 (=) + 1 +v0) qsz}’ “9)
15(1 — vg) (7 —5vg) ¢1 — (8 — 10vg) ¢
Fo = Ho {1 T 8 —10v) (7 —5ve) (1 — ¢ + (8 — 10vg) ¢2}' (49)

On the other hand, it is interesting to examine Walpole’s [8] solutions for a two-phase
composite with randomly distributed spherical particles. Walpole [8] employed an “image” strain
field to arrive at the second-order expressions in stiffness moduli, which are identical to the
Taylor’s series expansion of the aforementioned “noninteracting” solutions (or Hashin and
Shtrikman’s bounds [4]) to the second order. Therefore, the second-order moduli derived by
Walpole [8] do not include the inter-particle interaction effects. This observation was also noted
by Chen and Acrivos [50, p. 350 - 351). In particular, the effective bulk modulus takes the form

Ko 3(1 — vo) (25 — %0) 3(1 = vo?) (g — %0) 2

= — 1 +
%o 21— 2vo) %o + (1 +vo) %y [2(1 — 2v) %o + (1 + vo) %)

(50)

Tt is observed that the second order term in Eq. (50) is always positive. In the event that spherical
particles become spherical voids (¢, = 0), Eq. (50) yields
Ko 3(1 = vo) 3(1 — vo?)

= 1 —_
%o 2 P Ty

¢:%. (51)

Equation (51) implies that the effective bulk modulus of a composite could increase due to the
existence of randomly located spherical voids if the matrix material is nearly incompressible. For
instance, when vy = 0.45, the effective bulk modulus increases when the void volume fraction
¢, is greater than 0.138. Similarly, it can be shown that the second-order models of Willis and
Acton [48] and Chen and Acrivos [50], which include inter-particle interactions, predict an
increase in x, when the void volume ratio ¢, is greater than 0.142 and 0.143, respectively.
Therefore, although a second-order stiffness theory is well suited for elastic particles, it is
inappropriate for composites containing voids.

4 The connection with the Mori-Tanaka method

The connection between the “noninteracting” solutions and the Mori-Tanaka method will be
examined in this Section. Section 3 together with this Section then reveals the relationships
among the classical variational bounds, the “noninteracting” approximation, and the Mori-
Tanaka method.

In the original paper by Mori and Tanaka [30], the difference (§,”) between the average strain
of the rth-phase inclusions and the matrix is assumed to be (see Eq. (1) on page 572 in Mori and
Tanaka [30])

g5 =8, :E* : (52)
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(see also Zhao et al. [36, Eq. (2.5)], and Weng [37, Eq. (2.3)]). Furthermore, the RVE shape is
assumed to be similar to that of the inclusions in Egs. (3) and (5) of Mori and Tanaka [30].
Accordingly, we shall assume that all particles are unidirectionally aligned and similarly
shaped in what follows. If an RVE domain is removed from the surrounding infinite matrix, the
ensemble-volume averaged strain perturbation &’ can be expressed as [cf. Eq. (32)]

=81 (Z qs,s:é,*) = Z 6,8* (53)
r=1 r=1

(see also Mori and Tanaka [30, Eq. (2)] and Zhao et al. [36, Eq. (2.6)]). As a consequence, the
ensemble-volume averaged ficld equations (31)—(34) can be modified as follows:

6=Cy:2°, (54)

E=2"+ ) ¢,8%, (55)
r=1

(—A, —98):&* =24 &7, (56)

¢r(1 - S) : ér* . (57)

1

(1 - ¢>r> et ) 87 =
r=1 r=1 r=
The average strain perturbation in the rth-phase is given by (25), and the average strain

perturbation in the matrix is denoted by ™. Since the difference &, is assumed to follow (52),

we conclude that (from (25) and (52))

érm — ér/p (58)

is assumed for all phases in the Mori-Tanaka method. In addition, Egs. (57) and (58) lead to
e =57= ) ¢(I—9:&* (59)
r=1

Therefore, explicit solutions for effective moduli of multiphase composites are possible by using
the micromechanical Mori-Tanaka method. Indeed, Mori-Tanaka method emerges as a popular
micromechanical method to derive effective moduli of composites; see, for instance, Taya and
Chou [31], Taya and Mura [32], Weng [34], [37], Benveniste [35], [65], Norris [66], Zhao et al. [36],
and Qiu and Weng [38]. In what follows, let us consider some analytical examples.

Case 1: A two-phase composite. From (55), (56) and (59), we arrive at (dropping the sub-
script 1 for inclusions)

g = —~(A—s+ ¢s) t:E. (60)

Substitution of (60) into (54) and (55) then renders the effective stiffness tensor (see also Zhao,
Tandon and Weng [36, p. 107])

Ci = Co{l+ 9[A + (1 —¢)s]7}. (61)

Comparison between Eq. (61) and (39) immediately reveals that the Mori-Tanaka method, the
classical variational bounds, and the “noninteracting” approximation yield identical results in
this case. See also Zhao et al. [36, pp. 108 —111] and Weng [37, pp. 1116 —1117].

Case 2: A multi-phase composite with same s. Since all particles are identically shaped and
unidirectionally aligned in all phases, we have S = s. This analysis has been done in a paper by
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Weng [37, pp. 1112—1114, p. 1116}. Here, we intend to recast the problem and compare the
results with the “noninteracting” solutions. From (52) (or (58)) and (54)—(57), we obtain the
averaged eigenstrains

n n -1 n

Y ¢&F = — |:I — < Y oA+ s)_l) s} [Z o (A, + s)_l] 1E. (62)
r=1 r=1 r=1
Furthermore, the anisotropic effective moduli can be easily derived as follows:
Ci=Co[I+(I~Bs)™* B, (63)

where B has been previously defined in (38). It is clear that Eq. (63) coincides with (37) with S = s.
Namely, the anisotropic effective moduli derived from the Mori-Tanaka method are identical to

those derived from the “noninteracting” approximation and classical variational bounds
(Walpole [5], [6], Willis [10]).

5 Elastic solids with unidirectionally aligned penny-shaped microcracks

In this Section, we consider the effective properties of an isotropic elastic matrix material
containing unidirectionally aligned penny-shaped microcracks. In particular, the aforementioned
noninteracting approximation will be employed to estimate increases in effective compliances (or
reductions in effective stiffnesses) of brittle solids with microcracks. This class of microcrack
problems has been studied extensively in the micromechanics literature by using Taylor’s model
(e.g., Krajcinovic and Fanella [67], Ju [68]), the self-consistent model (e.g., Budiansky and
O’Connell [25], Horii and Nemat-Nasser [69], Laws et al. [70], Laws and Dvorak [40], Laws and
Brockenbrough [71], Sumarac and Krajcinovic [72], {73], Krajcinovic and Sumarac [74], Ju [75],
Ju and Lee [76], Lee and Ju [77]), the differential scheme (e.g., Roscoe [26], [27], McLaughlin [28],
Laws and Dvorak [40], Hashin [29]), the variational bounds (e.g., Willis {10]), the Mori-Tanaka
method (e.g., Taya [33], Zhao et al. [36]), the deterministic microcrack interaction model (e.g.,
Kachanov [78)), and the statistical microcrack interaction model (e.g., Ju and Chen [79], [80], Ju
and Tseng [81]).

Unidirectionally aligned penny-shaped microcracks can be regarded as the limiting case of
unidirectionally aligned spheroidal voids with the aspect ratio ¢ — 0; see Fig. 2 for a schematic
diagram. That is, one can collapse one axis of a spheroidal microvoid to recover a penny-shaped
microcrack. In this event, the noninteracting approximation (39) becomes

4 1 an ]
C*=C0+—an0-[—(s—I)—ja)sj| : (64)
3 0 3

=0

Fig. 2. The aspect ratio of a spheroidal domain
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where A = —1, the volume ratio ¢ = 4_n ow with @ = na® denoting the microcrack density,
and n, a = the number density (per unit volume) and radius of the penny-shaped microcrack,
respectively; see also Zhao, Tandon and Weng [36, p. 121]. For simplicity, all microcracks are
assumed to be open and of the same radius a. The components of Eshelby’s tensors s for
a spheroid can be found in, for instance, Mura [61]. By substituting the components of s into (64)
and taking the limit ¢ — O for the inclusion, one can obtain the (transversely isotropic) effective
compliance tensor M* (= C4 %) of a microcracked solid. The nontrivial effective compliance
components are

1— Vo — 20(\102
Eo(1 —vo) (1 ~ 0‘)’

* _
M3333 -

(65)

S
4iol1 — B’

* * * * _
MT333 = M3323 = M3131 = M35, =

(66)

and the remaining components of M* are identical to those of the isotropic matrix compliance
M, (= C,Y). Here, the parameters « and § take the form:

_ 3(1 - 2\)0)
"= S g 1 160 v @ 7
e 32 — vo) )

32— o)+ 16(1 —vo) @

Substitution of (67) and (68) into (65) and (66) then renders nontrivial components of the effective
compliance tensor,

16
EoM3335 =1+ 3 (1 —vo?) o, (69)

16(1 — vo)

QoM s =1+ —— %
HoM 1313 32 — vy)

W = 4110M§323 =4ﬂ0M§131 = 4#0M>3k232- (70)

As expected, the nontrivial compliance components M35 and MF5, 5 are found to coincide
exactly with those given by the Mori-Tanaka method (see Zhao, Tandon and Weng [36, Egs. (7.3),
(7.5)]). Further, they coincide exactly with Willis’ [10] variational bounds if thermal conductivities
are replaced by elasticities, see Willis [10, p. 197] and Laws and Dvorak [40, p. 1274].

6 Conclusion

Emanating from the “eigenstrain concept” introduced by Eshelby [45] and the RVE representa-
tion, ensemble-volume averaged governing micromechanical constitutive equations are derived
for multiphase elastic composites to relate macroscopic stresses, macroscopic strains and
average eigenstrains. It is demonstrated that the shapes and orientations of inclusions have
a direct impact on the averaged constitutive equations. A “renormalization” procedure inspired
by Willis [10] and Sen and Torquato [58]) is employed to obtain absolutely convergent integrals.
Although micromechanical ensemble-volume averaged field equations can be constructed, exact
solutions of pertinent integral equations are not available for arbitrary and random configura-
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tions. Therefore, exact expressions for effective elastic moduli of multiphase composites are
generally not available.

Nevertheless, “noninteracting” solutions are constructed for multiphase composites in
Section 3 by neglecting inter-particle interaction effects. Moreover, in Sections 3, 4 and 5, it is
explicitly shown that Hashin-Shtrikman-Walpole bounds, Willis’ bounds, and the Mori-Tanaka
estimates coincide with the “noninteracting” solutions if all inclusions are aligned and similarly
shaped.

In a companion paper (Ju and Chen [59]), effects due to inter-particle interactions will be
included for two-phase elastic composites with randomly located spherical particles. Specifically,
both matrix and particles will be taken as isotropic. It will be shown that a higher-order, accurate,
probabilistic particle interaction model and resulting effective moduli can actually be construc-
ted micromechanically. By mathematical analogy, effective shear viscosities of hard-sphere
dispersions under high shear rates can also be obtained in a companion paper from the results of
incompressible matrix with rigid spheres.
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