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Summary. A new method of calculating the flutter boundaries of undamped aeroelastic "typical section" 
models is presented. The method is an application of the weak transversality theorem used in catastrophe 
theory. In the first instance, the flutter problem is cast in matrix form using a frequency domain method, 
leading to an eigenvalue matrix. The characteristic polynomial resulting from this matrix usually has 
a smooth dependence on the system's parameters. As these parameters change with operating conditions, 
certain critical values are reached at which flutter sets in. Our approach is to use the transversality theorem in 
locating such flutter boundaries using this criterion: at aflutter boundary, the characteristic polynomial does 
not intersect the axis of the abscissa transversally. Formulas for computing the flutter boundaries of structures 
with two degrees of freedom are presented, and extension to multi degree of freedom systems is indicated. The 
formulas have obvious applications in, for instance, problems of panel flutter at supersonic Mach numbers. 
Substantial savings in computation resources are possible when this non-iterative method is used, compared 
to existing frequency domain methods which are essentially iterative. 

1 Introduction 

Flutter prevention is a very important  consideration in the design and development of various 

engineering structures and components for aeronautics and space applications. In recent years, 

a research program for the development of advanced propulsion engines and their components 
has been on-going at NASA Lewis Research Center. A significant part of the development effort 

is devoted to flutter considerations. The work reported here is part of that development. 

In this work, a computationally efficient method is developed for calculating the flutter 

boundaries of an engineering structure with two degrees of freedom, based on the typical section 
model. The typical section of an airfoil is a simple but very effective concept for modeling the 

aeroelastic behavior of structures such as fixed airplane wings (Bairstow [1]; Frazer and Duncan 
[2]; Theodorsen [3]), and the rotary wings of helicopters (see, e.g., Johnson [4]). By a simple 

extension, the model has been used in the analysis of a cascade of turbomachine blades in various 

regimes of flow (Whitehead [5], [6]; Kaza and Kielb [7]; Dugundji  and Bundas [8]; Bahkle et al. 
[9]). Such cascades are used in a variety of mathematical models of engine components such as 
propfans, compressor fans, and turbine bladed-disk assemblies. 

1.1 Qualitative approach 

The conventional approach in theoretical flutter analysis is basically quantitative, in which 
computationally intensive codes are developed for calculating flutter boundaries. However, the 
ultimate consideration in a flutter analysis is, essentially, a qualitative one: will flutter occur in the 

designed system under its normal operating conditions or not? The qualitative nature of the 
problem to be solved is, in some cases, masked by quantitative computational strategies. 



2 D. Afolabi 

An innovative aspect of our method is that it enables the solution of the qualitative flutter 
problem by means of a qualitative method of mathematical analysis well known in catastrophe 
theory or singularity theory. It is based on the concept of "structural stability" of mathematical 
objects such as matrices, smooth functions or differential equations; see, for instance, Poincar6 
[10, Lemma IV, p. LXI], Andronov and Pontryagin [11], Thom [12], and Arnol'd [13], [14], among 
others. 

1.2 Structural stabi~ty 

The concept of "structural stability" as used in mathematical texts is quite different from the 
notion of structural stability as used in engineering. In order to avoid any confusion here, the 
stability of structures in the aeroelastic sense will explicitly be called "elastic stability", or 
"aeroelastic stability", while stability in the mathematical sense will be referred to as "structural 
stability", in those situations where the intended meaning is not obvious from the context. 

1.3 Parametric dependence 

The problem of flutter analysis may be formulated as a problem of matrices depending on 
parameters. The transversality theorem was used by Arnol'd [15] in arriving at his versal 
deformation theorem for matrices depending on parameters. In this paper, we draw motivation 
from Arnol'd's work, but do not apply the transversality theorem to matrices directly, as he did. 
Instead, we apply the transversality theorem to the characteristic polynomials of matrices 
depending on parameters. In this way, we obtain a computationally efficient method for 

calculating flutter boundaries. 
The format of this paper is as follows. In Section 2, a brief review of pertinent definitions and 

concepts fi'om matrix theory and algebraic geometry is presented. In Section 3, we show that, in 
an undamped vibrating system, the condition of a non-transversal intersection of the 
characteristic polynomial with the axis of the abscissa may be used to detect the onset of flutter. 
The material in Section 4 is more or less standard aeroelasticity, but the flavor of our 
presentation is new; it is included here for continuity. Our main results are in Section 5, where 
various formulas for calculating flutter boundaries are presented. These formulas are applied to 
the computation of flutter boundaries in the remainder of the paper (Section 6). 

2 Preliminaries 

In this Section, we recall pertinent definitions from matrix theory, and illustrate certain concepts 
from other branches of mathematics not normally encountered in engineering analysis or 
aeroelastieity, but which are used in the ensuing discussion. 

2.1 Matrix bundles 

A matrix bundle (see, for instance, Arnol'd [15]) is a set of Jordan, scalar or ordinary diagonal 
matrices in which all the matrices in the set have the same structure, but the corresponding 
elements on the diagonals of the matrices are not necessarily equal. For example, all scalar and 
diagonal matrices of order n are in the same bundle. 
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By a Jordan matrix in the foregoing, we mean a square, block diagonal matrix in which each 
block is either in the Jordan normal form or is purely diagonal. In a Jordan matrix of order n, all 
the n elements on the main diagonal are equal to the same scalar. 

2.2 Objects in general position 

Various objects of a category (such as matrices, smoOth functions, or polynomials depending on 
parameters) may be partitioned into two types: those that are in "general position", and those 
that are not. Objects in general position are also called "generic", while those that are not generic 
are said to be in "exceptional position", and called "degenerate". 

A generic object has structural stability, and does not change its qualitative properties or 
behavior under small, arbitrary perturbations. A degenerate object, on the other hand, is 
structurally unstable. An arbitrarily small perturbation will cause it to bifurcate into two (or 
more) generic objects. As a result of this instability, degenerate objects are unobservable, and are 
"almost always" not encountered in engineering practice. 

2.3 Transversality 

The weak transversality theorem is one of the foundations of catastrophe theory, Thom and 
Levin [16]. It arises in the context of intersections of manifolds, a discussion of which has been 
given by, for instance, Abraham and Robbin [17]. Its significance in algebraic geometry has been 
outlined by Brieskorn and Kn6rrer [18] and Zeeman [19], among others. 

The theorem asserts that if two manifolds intersect in such a way that the intersection is not in 
general position, then an arbitrarily small perturbation will lead to its bifurcation, and place the 
resulting intersections in general position. 

In Fig. 1 a, the two intersections between the horizontal line and the curve are in general 
position, and are called transversal. At each intersection, the local tangent to the curve is different 
from that to the line, and the set of local tangents spans the ambient space. 

On the other hand, the intersection shown in Fig. 1 b is non-transversal. The tangent to the 
curve at its only intersection with the line cannot be distinguished from the tangent to the line at 
that point. At this non-transversal intersection, the local tangents do not span the two- 
dimensional ambient space. 

In Fig. 1 c there are no real intersections between the curve and the line, but there is an 
imaginary or complex intersection. The imaginary or complex intersection in Fig. i c is just as 
transversal as the real intersections in Fig. 1 a. For a further discussion of these ideas see, for 
instance, Poston and Stewart [20]. 

Transversality, being a property of objects in general position, implies structural stability. On 
the other hand, loss of transversality implies loss of structural stability. 

3 Non-transversality implies flutter boundary 

Many flutter problems may be analyzed as vibrating systems with two or more degrees of 
freedom; see, for instance, Bisplinghoff and Ashley [21], Dowell et al. [22], Dugundji and Bundas 
[8], and other references cited earlier. Often, the typical section model is used, in which there exists 
a coupling between two coordinates of vibration such as torsion and bending. In what follows, we 
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consider such a coupled two degree-of-freedom system in order to illustrate how a non- 
transversal intersection of its characteristic polynomial with the axis of the abscissa indicates the 
onset of flutter. 

3.1 Undamped system 

If a coupled vibrating system with two degrees of freedom has no damping, then its characteristic 
equation may be written as a quadratic polynomial in 2, 

p(2) = 22 + a2 + b = 0; 2, a, b E• .  (1) 

The eigenvalues 2 = co 2 must be real and positive in order for the structure to have elastic 
stability. A complex value of 2 in a coupled undamped system implies flutter instability, while 
a real but negative value of 2 implies divergence instability. 

Since the coefficients a and b are real, the graph of p(2) in IR 2 is a real algebraic curve, 
Brieskorn and Kn6rrer [18]. The zero level set of this graph comes from the intersections of the 
polynomial with the axis of the abscissa, and are the eigenvalues of the coupled vibrating system. 
From a corollary of the fundamental theorem of algebra, it follows that there are at most two 
roots of(l), counting multiplicities. If the magnitudes of the roots are distinct, then the roots must 
be real; if the magnitudes are equal, the roots are either real and degenerate, or are complex 
conjugates. 

Now, the coefficients a and b have parametric dependence on system variables, such as the air 
speed in an aeroelastic system. As these system variables change with operating conditions, a and 
b also vary, and the graph of (1) becomes a family of curves in the plane. There are exactly three 
qualitatively different types of intersections with the axis of the abscissa, with regard to the 
number and nature of the roots in this family. All three are illustrated in Figs. i a to 1 c. 

In Fig. 1 a, there are two distinct real roots; two real but coincident roots in Fig. 1 b; and no 
real roots at all in Fig. 1 c. The only case where transversal intersections do not occur is Fig. 1 b. 
We shall now show how the loss of transversality, as in Fig. 1 b, marks the flutter boundary in 

a coupled two degree-of-freedom system without damping. 
Coupled vibrating systems with two degrees of freedom having the graph in Fig. 1 a cannot 

flutter because the eigenvalues 2 = co 2, being the two roots of the polynomial in (1), are always 
real and distinct. 

Coupled two degree-of-freedom vibrating systems having the graph in Fig. 1 c must flutter. 
The system flutters because the eigenvalues 21,2, which should always be real and positive if 
flutter is to be avoided, have now become complex. 

Intermediate between the two cases considered above is that of Fig. 1 b, with a non 
transversal intersection. The following points of view may now be taken: 

a b c 

Fig. 1. Transversal and non-transversal intersections, a Transversal, b non-transversal, c transversal 



Flutter analysis 5 

(i) From the mathematical point of view, the intersection of Fig. l b is not non- 
transversal, is not in general position, is structurally unstable, and should "almost always" not 

O c c u r ,  

(ii) From the engineering point of view, the degenerate characteristic polynomial of Fig. 1 b 
is inadmissive in a coupled two degree of freedom system, because the only way a coupled 
two degree of freedom system can have degenerate eigenvalues is when it disintegrates into 
two identical, uncoupled sub-systems. This contradicts the assumption that the sub-systems 
constitute a single coupledstructure. Therefore, the characteristic polynomial depicted in Fig. 1 b 
should, physically, "almost always" not occur. 

If flutter occurs at any time in an initially stable system (1) as its parameters a and b are varied, 
then the graph of the characteristic polynomial must have changed from that of Fig. 1 a to that of 
Fig. 1 c. There is only one route for passing from Fig. 1 a to Fig. 1 c, and that is through Fig. 1 b. 
Therefore, the case of Fig. 1 b constitutes a f lutter boundary. 

From what has been said above, we come to the following result: 

The flutter boundaries o f  a coupled two degree-of-freedom system without damping may be 
obtained simply by inspecting its characteristic polynomial, and noting the critical parameters at 

which a non-transversal intersection with the axis o f  the abscissa, such as in Fig. I b, occurs. 

Although we reached the above result by considering the transversal intersection of a real 
curve with a real axis of the abscissa, similarly useful results could be obtained by considerations 
of the transversality of complex algebraic curves intersecting with a complex axis of the abscissa, 
using the appropriate singularity theory for complex polynomial germs; see, for instance, Milnor 
[23] or Arnol'd et al. [24]. 

3.2 Effect o f  damping 

Characteristic polynomials with complex coefficients and complex roots appear in vibrating 
systems the moment we account for damping, irrespective of the status of its elastic stability. 
Thus, if we have a damped two degree of freedom system, we have to work with a complex 
polynomial intersecting with a complex axis of the abscissa in a complex 2-dimensional space 1122 
or, by realification, a real polynomial of the fourth degree in a real 4-dimensional space, 11t 4. Thus, 

the characteristic polynomial of a two degree of freedom system with damping may be written as 
a quartic equation in s, 

p(s) = s4 + asa + bs2 + cs + d = O ; a, b, c, d ~ lR, s ~ (E (2) 

or, if s = i0) is assumed as is the usual custom in vibration analysis, then one has 
p(0)) = 0)4 _ ia0)3 _ be02 + ice) + d = 0. The presence of odd powers of co is indicative of 
damping. The characteristic polynomial of an undamped system with n degrees of freedom is an 
even function of 0) of order 2n. Hence, if damping is removed, then one gets a biquadratic in 0) for 
the two degree of freedom system, 

p ( 0 ) )  ---- 09 4 - -  b o o  2 -[- d --  O, (3) 

which is equivalent to (1), upon setting 2 = 0 )  2. 
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3.3 Computational aspects and degeneracies 

Computationally, the loss of transversality of the characteristic polynomial with the axis of the 
abscissa is indicated by the occurrence of degenerate eigenvalues. Degenerate eigenvalues, like all 
degenerate mathematical objects, are not in general position. Therefore, they are structurally 
unstable, and should "almost always" not be encountered in realistic engineering analysis. If they 
are encountered in the mathematical model of a physical system, it is only because one has made 
a theoretical assumption which is not qualitatively valid in the actual physical problem. For 
example, one might have assumed perfect symmetry when, in fact, there is a small but 
non-vanishing amount of imperfection, leading to a coupling between, say, two modes of 
vibration. Although the imperfection may be quantitatively small, the dynamic behavior of the 
coupled systems could be dramatically different from that predicted by ignoring the small 
imperfection altogether. 

There are also other kinds of ambiguities associated with the eigenvalue degeneracy. 

For example, to which form of (4) below does the system eigenmatrix corresponding 
to Fig. l b  reduce under a similarity transformation: a diagonal matrix D2 of order 2, 
or a Jordan matrix J2 of order 2? 

Computationally, in order to resolve whether or not a coupled two degree-of-freedom 
system will flutter, one has to calculate the eigenvalues in the first instance. If degenerate 
eigenvalues are encountered, then it means that the characteristic polynomial is not trans- 
versal to the axis of the abscissa. We then must inspect the corresponding eigenvectors or, 
equivalently, the eigenvalue matrix at the point where transversality is lost. If the eigenvec- 
tors are not linearly independent or, equivalently, the eigenvalue matrix is a Jordan matrix, 
then flutter must occur. 

3.4 A note on divergence 

The graph of (1) loses transversality with the axis of its abscissa in only one way, as in 
Fig. lb.  In contrast, the graph of (3) intersects the axis of its abscissa non-transversally in 
two ways as in Fig. 2b or Fig. 2c. Now, (1) is a quadratic in 2, whereas (3) is a biquadratic 
in co, and both describe the same system. The loss of transversality depicted in Fig. 2b 
signifies a flutter boundary, whereas that in Fig. 2c indicates a divergence condition. In 
order to use the transversality criterion for divergence, therefore, one has to use p(co) rather 
than p(2). 

a b r 

Fig. 2. Symmetric unfolding of the cusp catastrophe germ showing transversal and non-transversal 
intersections of the characteristic polynomial of a vibrating system with two degrees of freedom, a Elastic 
stability, b flutter boundary, c divergence boundary 
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4 Equat ions  o f  mot ion  

Many problems of "dynamic instability" encountered in engineering are actually various 
versions of the two aeroelastic phenomena known as "flutter" and "divergence". They include 
instability problems of: (i) rotating shafts, plates, or shells having a cyclic or polygonal cross 
section in which the cyclic or dihedral symmetry of the structure is slightly destroyed by a variety 
of mechanisms; (ii) elastic systems with convective forces induced by moving loads, moving 
fluids, or thermal transport; (iii) elastic systems coupled to magnetic forces; (iv) elastic systems 
subject to thermal convection; (v) various other physical systems in which spatial or temporal 
direction sensitivity has a qualitative significance; and so on, and so forth. 

These kinds of problems are all characterized by the fact that system matrices are no longer 
symmetric, i.e. Maxwell's reciprocal theorem is not obeyed by such systems. Consequently, such 
systems are not governed by a potential, and are often called non-conservative systems; see, for 
instance, Bolotin [25]. Before the onset of flutter, it is admissible to assume that motion is 
harmonic, with small amplitudes in the neighborhood of equilibrium. This is the essence of linear 
stability analysis. Large amplitudes of vibration arise only after the flutter boundary has been 
passed. If a prediction of post-flutter behavior is not required, then a linear analysis is sufficiently 
accurate for many engineering applications. Therefore, many flutter problems are analyzed as 
linear systems. 

The powerful techniques of catastrophe theory may, at first glance, seem to be inapplicable to 
the solution of the physical problems outlined above since, in the first instance, such problems are 
linear and, secondly, they are not gradient dynamic systems, or systems governed by potentials. 
However, if we use matrix techniques such as the receptance method, we may apply catastrophe 
theoretic ideas to gain insight into the stability of such systems, simply by studying the 
transversality of the characteristic polynomial of the system's matrix to the axis of the abscissa. 

The technical term "receptance" as proposed by Duncan, Biot, Johnson and Bishop [26] 
relates to a concept initially called mechanical admittance; see, for instance, Duncan [27], or 
Bisplinghoff and Ashley [21, p. 204]. It is a powerful technique that enables one to make 
a frequency domain analysis of a complex engineering structure. A detailed account of this 
technique has been provided by Bishop and Johnson [28]. Similar ideas are also used in the static 
analysis of engineering structures, where receptances are called "displacement influence 
coefficients". 

The basic concept of reeeptance is to relate generalized forces to generalized displacements in 
a multi degree of freedom system vibrating at a frequency co using matrix methods. If f and 
x represent the generalized force vector and generalized displacement vector, respectively, then 
the relationship between the two may be expressed as 

f = K(co) x, x = A(co) f, AK = KA = I e II;" • x, f e 112", (5) 

where A(co) is the receptance matrix and its inverse, K(co), is the "dynamic stiffness matrix" in the 
frequency domain. If f is due to aerodynamic forces, then K(co) may be termed the "aerodynamic 
stiffness matrix". 

The flutter problem, being essentially a problem of mechanical vibration analysis, may be 
treated by the method of receptance. This means that the equation of motion of an aeroelastic 
system undergoing small displacements in the neighborhood of equilibrium may be written in the 
standard notation of mechanical vibration as 

M~ + Cx + Kx = f. (6) 
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For  harmonic vibrations at the circular frequency co one may write 

D(co) x = f, D(co) = (K - CO2M) + icoC, (7) 

where D is the dynamic stiffness matrix of the multi degree of freedom vibrating system. 

For  sinusoidal motion of an airfoil in 
be written in matrix form 

an air stream, the forcing vector f in (6) may 

f = co2L(co) x,  (8) 

where L(co) is an "aerodynamic stiffness matrix". It may be noted that L generally has a smooth, 
nonlinear dependence on the vibration frequency co. 

From (6) and (8), one gets the equation of motion, when C = 0, 

M i  + Kx = ~2L(~) X. 

Under harmonic vibrations at small amplitudes, i = -co2x, and the above becomes 

Kx = ~2[M + L(CO)] x,  

which may be written in the eigenvalue problem form as 

A(2) u = 2u, A(2) = K - I [ M  + LifO]. 

(9) 

(10) 

(11) 

The stability of A in the above may be investigated by using the techniques published by Arnol 'd 

[15] on matrices depending on parameters. However, our approach here is to map A from the 

space of matrices to the space of polynomials, and treat it there as a problem of smooth functions 
depending on parameters. In this way we apply the transversality theorem in a more efficient way 

to suit the problem under consideration. 

5 Determination of flutter boundaries 

Equation (11) is a nonlinear eigenvalue problem, which is traditionally solved iteratively, in 
a computationally intensive procedure, in order to determine the flutter boundaries. In this 
Section, we shall outline a new and computationally more efficient procedure for finding the 

flutter boundaries, based on applications of the weak transversality theorem of catastrophe 

theory. 
First, we fix 2 in (11) at some nominal value 20 to get 

A(2o) u = 2Iu, (12) 

which may be written as 

[A(2o) - 21] u = 0, (13) 

from which one obtains the well known flutter determinant, 

IA(Xo)  - ,~II = 0 .  ( 1 4 )  
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Expanding the flutter determinant yields the characteristic polynomial, p(2). To do this, one may 

write A(2o) in (13) as 

A(2o) = ~ a l l  a21] ,  aq ~ IE, (15) 
[_a12 a22J 

and, since A(2o) is not  a symmetric matrix, it may be decomposed into its symmetric and 

skew-symmetric parts, 

ai l  ~ (al2 + azi) 0 - -  (ai2 - a2i) 
A()~o) = 1 + 2 , (16) 

L ~  (a12 + a2i) a22 (a12 -- a21) 0 

in which all the matrix elements alj are functions of 20. In what follows, we consider the special 
case in which alj are independent of frequency. With the substitutions 

1 1 
ao = ~ (all + a22), bo = ~ (a12 + a21), 

(17) 
1 1 

Co = ~ (ai2 - a2i), do = ~ ( au  -- a22), 

one obtains from (16) 

[ao do bo l I 0 0 ]  
A(2o)= bo a o + d o  + Co " (18) 

The characteristic polynomial of (18) is 

p()c) = 22 - 2ao2 + (aoZ - boZ + coZ - do2) = O; ao, bo, do e lR, (19) 

from which one obtains the following discriminant of p: 

A = bo 2 + do 2 - Co 2. (20) 

When p is not  a quadratic, its discriminant may be computed by means of Sylvester's eliminant; 
see, for instance, Afotabi [29]. 

The condition for a non-transversal intersection of (19) with the axis of the abscissa is 
equivalent to the vanishing of the discriminant of the polynomial. The vanishing of the 

discriminants of polynomials is very significant in catastrophe theory, Zeeman [19], where the 
projection of singular surfaces to the parameter space is called the bifurcation set. Perhaps the 
most well known discriminant surface is that  associated with the polynomial germ y = x 4 in the 

real 2-dimensional parameter space, and called the cusp catastrophe. The geometry of 

discriminant surfaces of algebraic varieties in a more general context is discussed in the work of 
Brieskorn and Kn6rrer [18]. In the specific case of our two degree-of-freedom typical section 

model the non-transversality condition, of the vanishing of the discriminant of the characteristic 
polynomial, is also the same as eigenvalue degeneracy. 

If we calculate the eigenvalues and corresponding eigenvectors of (18), we get 

= = = , u2 = . (21) 21 ao -- ~ ,  22 ao + ] /A,  ui - d o  + - d o  - 



10 D. Afolabi 

When the discriminant vanishes, A = 0 in (21), and one obtains the following degenerate 
eigenvalues, the corresponding eigenvectors of which are also degenerate." 

(22) 

Thus, at the non-transversal condition signified by the vanishing of the discriminant, the 
eigenvalues are degenerate. It is precisely this kind of eigenvalue degeneracy, usually noted in 
undamped models of coupled bending-torsion vibrations, that gives rise to the well known terms, 
coupled mode flutter and coalescence flutter. 

It is now pertinent to make the following remarks: 

(1) A flutter boundary corresponds to the parameter values where a simultaneous 
degeneracy of the eigenvalues and eigenvectors occurs. 

(ii) The degeneracy of  eigenvectors necessarily implies flutter, because the existence of 
degenerate eigenvectors at the flutter boundary implies that the system's eigenmatrix cannot be 
diagonalized; it is only reducible to a Jordan matrix. 

(iii) Just before and just after a flutter boundary, the system's eigenmatrix is catastrophically 
switched from one matrix bundle to another. 

A summary of the foregoing is this. The flutter boundaries obtained from the transversality 
criterion, as determined by the vanishing of the discriminant, also correspond to the conditions of 
simultaneous degeneracy of the eigenvalues and their corresponding eigenvectors. 

Two types of flutter information may be deduced from the characteristic polynomial of an 
aeroelastic system. In the first place, one tests if flutter will occur at all. If flutter is to occur, the 
discriminant of the polynomial of the undamped system must vanish. If the occurrence of flutter 
has been determined, the second thing is to compute the flutter boundaries. The flutter 
boundaries are obtained simply by setting the discriminant to zero when solving for the roots of 
the characteristic polynomial. The formula for computing the discriminant of a quadratic 
equation is very well known in engineering, but not so for a polynomial of arbitrary order. 
A general algorithm for computing the discriminant of a polynomial of arbitrary order by means 
of Sylvester's resultant, or eliminant, is well known in the theory of equations, Turnbull [30]; its 
applications for vibrating systems have been described by Afolabi [29]. 

The following conditions may be used to test if a given aeroelastic system, whose 
characteristic polynomial is written in the form of (19), will flutter or not: 

if bo = 0, flutter occurs when Co = +do, (23) 

if do = 0, flutter occurs when Co = _+ bo, (24) 

if do = 0, and bo = 0, flutter occurs for all coelR,  (25) 

if do 4= 0, and bo 4: 0, flutter occurs when Co = ~ Vbo 2 -k- do 2. (26) 

The variables ao... do in the foregoing are functions of 2o, and are defined in (17). Although all 
of the above Eqs. (23)-(26) are theoretically equivalent in that they all give the same flutter 
boundaries, there are instances when it may be advantageous to use a particular form, rather 
than another. For example, if bo = 0 in a model, then it is computationally more efficient to use 
(23). Similarly, if do = 0 in some mathematical model, then flutter boundaries are easier to predict 
for such a model using (24). Ifbo = 0 and do = 0, then flutter always occurs, as seen from (25). In 
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the most general case, (26) applies and the flutter boundaries may be obtained from 

Co 2 = bo 2 + do 2. (27) 

If it has been definitely determined that flutter will occur, e.g. by using any of (23)-(26), then 
the flutter boundaries, or flutter frequencies, may be computed by means of the formula 

2v = coF = ao, (28) 

which follows upon substituting (26) in (19). The formula (28) for calculating flutter boundaries is 
especially efficient because ao is simply the semi-trace of the eigenvalue matrix; the off-diagonal 
terms in the matrix contribute nothing. Thus, we arrive at the remarkable result: 

The off-diagonal terms or coupling terms in the eigenmatrix (18) have no influence whatsoever on 

the flutter boundaries; the flutter speed is determined simply by averaging up the diagonal terms in 

(18) and equating the sum thus obtained to the eigenvalue parameter, 2, as in (28). 

The formula (28) is also easy to obtain from the monic form of the characteristic polynomial: 
it is, quite simply, the coefficient of the linear term divided by 2. 

6 Flutter boundaries in steady aerodynamics 

Steady aerodynamics applies, approximately, to an aeroplane at cruise speed, or to various 
aeroelastic structures such as fiat plates or panels at supersonic Mach numbers. This flutter 
problem has been treated in several texts; see, for instance, Dowell et al. [22, Section 3, Eqs. 
(3.3.48) et seq.] from where one gets the lift and moment coefficients 

~CL 
Lh = qS ~ ~ (29) 

aCL 
m ,  = eqS ~ c~. (30) 

Writing the equations of motion in terms of the aerodynamic stiffness matrix, by using the 
above lift and moment expressions, one gets 

M~ 2M eqS 

The remainder of the equations of motion are 

{:}: t 2/ 

From (31) and (32), one gets M:~ + Kx = Lx. The inverse mass matrix is 

= -d - S o  , d = mI~ - S, 2. (33) 

One may use the above to compute an eigenvalue matrix, Ax = 2x, where A = M- I (K  + L), 
~ ( . 0  2. 
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6.1 Flutter boundaries f r o m  the f lu t ter  determinant 

The flutter determinant obtainable from the eigenvalue matrix formed from (31) and (32) above is 

1 
I A  - AII  = 

~o~U 2 
KhI~ -- 2d 

2 M  

o ~ U  2 
--S~ 

2 M  

- -  qS ~ (I~ + eS~) - K~S~ 

C~CL S - - -  qS ~ -  ( ~, + em) + mK~ - 2d 

(34) 

where d is defined in (33). Summing up the diagonal elements of (34) and equating the sum thus 

obtained to zero yields the equation for the flutter boundaries, 

o ~ U  z 8CL 
kaV2 mK~ + I~Kh -- 2--M- qS(S~ + era) 8 ~  

2v = o)e 2 - - (35) 
b 2 2(mI~ - S~ 2) ' 

where k is the reduced frequency. It has been assumed that, in the above, Cr is not a function ofk. 

Before using (35), therefore, one must specify the appropriate CL for the given aeroelastic 

problem. Certain problems lend themselves to simplified expressions of CL. For  instance, for 
a flat plate in two-dimensional flow, one gets 

8CL 
= 2n, (36) 

8c~ 

in which case the flutter boundary expression becomes, in terms of the reduced frequency, 

b ~mK,  + I ,Kh  -- no~U2qS(me + S~)/M 
< 2(mI~, -- S~, 2) 

(37) 

For  a numerical example of how the formulas obtained by using catastrophe theoretic 

methods in the preceding Sections may be implemented, we consider a case previously treated by 
Dowelle t  al. [22] by the classical methods. The governing equations of motion may be cast in 

matrix form 

F_ 1] 
ql + ql ~o~ U2 - ql = O, (38) 

--O)2ml {~2 q2 + 2 M -  q2 

or, --o)2Mx + Kx + Lx = 0. Premultiplying (38) by M -1 leads to the following flutter 

determinant, where 2 = co2: 

1 
[A -- 2I[ = 

o~U 2 
8k + - -  - 2,. 

M 

- 2k + 4Q~U2M 

- 2 k  - 49ooU2M , 

8k o~U2 ,~," 

M 

(39) 
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and 2m = (5m/) 2. Summing up the diagonal terms in the above flutter determinant and equating 
the sum thus obtained to zero yields the flutter boundary  

2m = 8k, = 2 = (.2 8k /8k8/~___ = ~ ~ = + ( 4 0 )  
5ml '  - ~ /  3mt '  

which agrees with results previously published by Dowell et al. 

6.2 Flutter boundaries f rom the characteristic polynomial 

The following characteristic equation is obtained from the flutter determinant (34): 

p(2)  = aJL 2 + b2 + c = O, (41) 

where 

a = m I ~ -  S~ 2 

b = qS(me + S~) ~ L  mK~ - -  I ~ K  h 

c~CL 
C = KhK~ - qKheS - -  

8~ 

In the first instance, one tests if the system will flutter at all. If  flutter is to occur, then the 
discriminant of the characteristic polynomial  must vanish at a flutter boundary.  Secondly, one 
uses the transversality theorem to obtain a geometric criterion for the location of the flutter 
boundaries. Computat ionally,  this may be achieved by means of Sylvester's eliminant, as 
described by Afolabi [29]. 

The discriminant of(33) is A = b 2 - 4ac. If flutter is to occur, this discriminant must vanish. 
Thus, setting A = b 2 -  4ac = 0 in (33) gives the parameter  values which guarantee the 
occurrence of flutter. When this occurs at a non-transversal intersection of p(2) with the axis of 
the abscissa, we get the equation of the flutter boundary  as 

b 
2 = 0) 2 = - - - .  (42) 

2a 

The above may be written in terms of the reduced frequency, k, and the system's elastic and 
aerodynamic parameters  as 

1 2 8CL 
b mK~ + I~Kh -- ~ oU S(me + S~) 0~- 

( ' (43) 
k = -~ Kh K~ - ~ oU2eS r 

which is identical to results obtained from the flutter determinant (37). 
Using the numerical example in Dowell et al. [22], one obtains the following characteristic 

polynomial:  

( 5 m 2 1 2 2 - 1 6 m l k 2 + 1 2  k 2 +  2M ] = 0 "  (44) 
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When the determinant  of (44) vanishes, one obtains the flutter boundaries  as 

8k = + / 8k, 
2r - 5 m l '  ~ O)F -- ~/ 5ml  (45) 

which agrees with the result of the previous Section. 

7 Conclusions 

With the aid of the weak transversali ty theorem from catas t rophe theory, simple formulas have 

been outlined for comput ing the flutter boundar ies  of vibrat ing systems representable as 

aeroelastic "typical  sections", and which are characterized by a s y m m e t r i c  system matrices. The 

procedures developed here provide the flutter boundar ies  much more quickly and with much less 

effort when compared  with existing iterative methods.  Two different techniques have been 

outlined, both  of which are equivalent. In  the first case, one simply sums up the diagonal  elements 

of the "flutter determinant"  (14), and equates the sum thus obtained to zero, yielding Eq. (28). In 

the second case, one writes the characteristic polynomial  in the form p = a)~2 + b2 + c = 0, so 

that  the equat ion of the flutter boundar ies  becomes 2F = - b / 2 a .  In either case, whether flutter 

takes place or not  depends on the nature  of the intersection of the characterist ic polynomial  with 

the axis of the abscissa. We test for transversali ty of the intersections by comput ing the 

discriminant  of the polynomial ,  A = b z - 4ac if the polynomial  is a quadrat ic  function. Fo r  

a polynomial  of arbi t rary  order, one may  compute  the discriminant,  A, by means of Sylvester's 

eliminant. If A = 0, then a non-transversal  intersection exists, and coupled mode flutter will 

occur. If A =~ 0, then the intersections are always transversal,  and coupled mode flutter cannot  

o c c u r .  
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