Mathematische Zeitschrift, Band 54, Heft 2, S. 97-101 (1951).

Rings for which every module is a direct sum of cyclic modules.

By

I. S. Cohen and I. Kaplansky in Cambridge, Mass. and Chicago, Ill.

Let R be a principal ideal ring with the descending chain condition. Then it is known that any R-module¹) is a direct sum of cyclic modules. This was apparently first proved by Köthe [3], though the fundamental ideas go back to PRUFER [5]. In the commutative case, Köthe also proved a converse: if a commutative ring with unit satisfies the descending chain condition, and has the property that all its modules are direct sums of cyclic modules, then it is necessarily a principal ideal ring. The purpose of this note is to show that the assumption of the descending chain condition is actually redundant.

Theorem. Let R be a commutative ring with unit, and suppose every R-module is a direct sum of cyclic modules. Then R is a principal ideal ring satisfying the descending chain condition.

The corresponding problem in the non-commutative case remains open, even with the descending chain condition assumed in advance. NAKAYAMA [4] has noted that the ring need not be a principal ideal ring, so that the obvious conjecture fails.

Before proceeding to the theorem itself, we prove several lemmas. We first consider a ring A which is a complete direct sum of an infinite set of fields $\{K_i\}$. (We use the term "complete" to distinguish this from the usual weak or discrete direct sum, in which only a finite number of non-zero components are allowed.) There are some obvious maximal ideals in A: for any index i, we have the maximal ideal M_i consisting of all elements with vanishing K_i -component. There also exist some "less accessible" maximal ideals in A. To see this, let I be the weak direct sum of $\{K_i\}$; I is an ideal in A. By ZORN's lemma, I can be expanded to a maximal ideal, necessarily different from any M_i . Following the terminology of HEWITT [2], we shall refer to the latter type as a *free* maximal ideal.

Lemma 1. Let A be the complete direct sum of an infinite number of fields, and let M be a free maximal ideal in A. Then M is not a direct sum of principal ideals.

¹) All rings under discussion will have a unit element, which is assumed to act as unit operator on any module.

Proof. We remark that any principal ideal in A can be generated by an idempotent: given an element x, take e to be 0 where x is 0 and 1 where x is non-zero; then xA = eA. A direct sum of a finite number of principal ideals is again principal, being generated by the sum of the generators.

Suppose then that M is a direct sum of principal ideals $\{e_j A\}$, where the e_j 's are (necessarily orthogonal) idempotents. The number of summands must be infinite, for otherwise M would be principal, and it is clear that a free maximal ideal cannot be principal. Split $\{e_j\}$ into two infinite subsets, and let f and g be the sums of the respective subsets (these "infinite sums" having an obvious meaning). Then fg = 0 is in M, and hence either f or g is in M; say f for definiteness. But this means that f is a linear combination of a finite number of e_j 's, a contradiction.

Lemma 2. Let R be a commutative ring with unit and no nilpotent elements. Suppose $\{x_i\}$ are orthogonal non-zero elements in R, and define S to be the complete direct sum of $\{x_iR\}$; S is in a natural way a ring (coordinate-wise multiplication) and an R-module. Then any decomposition of S (as an R-module) into a direct sum of cyclic modules can have only a finite number of (non-zero) summands, and moreover the generators of the cyclic summands are orthogonal.

Proof. Suppose S is the direct sum of cyclic modules generated by y_j . We may write, formally

(1)
$$y_j = \sum_m a_{jm} x_m \qquad (a_{jm} \in R).$$

Then (for $j \neq k$),

(2)
$$(a_{km} x_m) y_j = a_{km} a_{jm} x_m^2 = (a_{jm} x_m) y_k.$$

Since the sum is direct, it must be the case that (2) is zero. Hence $y_j y_k = 0$ for $j \neq k$, and we have verified the last statement of the lemma.

Now suppose the number of y's to be infinite. Let z be the element

$$z = x_1 + x_2 + \cdots$$

Then z is in S, and so is a linear combination of a finite number of y's. This means that z is orthogonal to the remaining y's. But

$$z y_j = \sum_m a_{jm} x_m^2.$$

Hence $z y_j = 0$ entails $a_{jm} x_m^2 = 0$, $(a_{jm} x_m)^2 = 0$, $a_{jm} x_m = 0$, $y_j = 0$, a contradiction.

For convenience in the remainder of the discussion, let us call R a *D*-ring if it is a commutative ring with unit with the property that every *R*-module is a direct sum of cyclic modules. It is clear that a homomorphic image of a *D*-ring is again a *D*-ring. Also, if R is a

D-ring without divisors of zero, then R must be a field; for otherwise the quotient field of R, as an R-module, could not be a direct sum of cyclic modules. We have proved:

Lemma 3. In a D-ring all prime ideals are maximal.

We shall now dispose of the semi-simple case of our theorem.

Lemma 4. Let R be a D-ring which is semi-simple in the sense that the intersection of the maximal ideals is 0. Then R is the direct sum of a finite number of fields.

Proof. Our task is to prove that R satisfies the descending chain condition. It follows from Lemma 3 and [1, Th. 1] that it will suffice to prove the ascending chain condition. If the latter fails, then there exists in R an ideal I which is not finitely generated. The expression of I as a direct sum of principal ideals $\{x_iR\}$ must therefore have an infinite number of summands. The x's are of course necessarily orthogonal. We now follow the notation of Lemma 2 and form S, the complete direct sum of $\{x_iR\}$; S is the direct sum of cyclic modules generated by y_1, \ldots, y_k . For at least one y_j it must be the case that the expression (1) has an infinite number of non-zero terms. Suppose this happens for j = 1, and let us write T for the set of indices mfor which $a_{1m}x_m \neq 0$. For each $t \in T$, choose a maximal ideal M_t in R with the property that $a_{1t}x_t$ is not in M_t ; since the x's are orthogonal, the M_t 's are surely distinct.

For each $t \in T$, let an arbitrary element $c_t \in R$ be prescribed. We claim that there exists in R an element which agrees with c_t modulo M_t for each t. To see this, we form the element u in S given formally by

$$u=\sum_t c_t a_{1t} x_t.$$

We note

(3)
$$(a_{1t} x_t) u = c_t a_{1t}^2 x_t^2.$$

Suppose $u = d_1 y_1 + \cdots + d_k y_k$. Since the y's are orthogonal (Lemma 2), we have

(4)
$$(a_{1t} x_t) u = (a_{1t} x_t) d_1 y_1 = d_1 a_{1t}^2 x_t^2.$$

From (3) and (4) we obtain

$$d_1 \equiv c_t \pmod{M_t},$$

and so d_1 is the desired element.

Write J for the intersection of the M_t 's. Then the preceding paragraph can be summarized as follows: R/J is the complete direct sum of the fields R/M_t . But R/J, along with R, is a D-ring. This contradicts Lemma 1.

For completeness, we include the well known proof of the following lemma.

Lemma 5. Let R be a commutative ring with unit, and suppose that every prime ideal in R is maximal. Then there exists a set of primary ideals, one for each maximal ideal, with intersection 0.

Proof. Given a maximal ideal M, define Q to be the set of all elements x of R for which the annihilator (the set of all a with ax = 0) is not contained in M. One easily verifies that Q is an ideal contained in M, and that $yz \in Q$ and $y \in Q$ imply $z \in M$. To complete the proof that Q is primary for M, we take t in M and have to prove that some power of t is in Q. If not, consider the set S of all $t^k c$, for $k = 0, 1, 2, \ldots$ and $c \in M$; S is closed under multiplication and does not contain 0. So we may form an ideal N which is maximal with respect to disjointness from S; N is a prime and hence a maximal ideal. It is clear that N is contained in M. On the other hand, M contains t which is not in N. Thus N is properly contained in M, a contradiction.

Now let $\{M_i\}$ be the maximal ideals of R, form the corresponding primary ideals $\{Q_i\}$ as above, and suppose $r \in \bigcap Q_i$. Consider the ideal I annihilating r. If $I \neq R$, then I is contained in some M_i . But $r \in Q_i$ means that there exists an element $c \in M_i$ with cr = 0, i. e. with $c \in I$. This contradicts $I \leq M_i$. Hence I = R and r = 0.

Proof of the theorem. Let R be a *D*-ring. If N is the intersection of the maximal ideals, R/N is also a *D*-ring. Lemma 4 then shows that R has only a finite number of maximal ideals, say M_1, \ldots, M_n . By Lemma 5,

$$0 = Q_1 \cap \ldots \cap Q_n,$$

where Q_i is a primary ideal with M_i as radical. Since the Q_i are pairwise comaximal, R is the direct sum of rings isomorphic to R/Q_i . So it is sufficient to show that R/Q_i is a principal ideal ring, and for this it suffices to show that its maximal ideal is principal.

Hence assume now that the *D*-ring *R* has only one maximal ideal $M, M \neq 0$. By hypothesis,

$$(5) M = a_1 R \oplus a_2 R \oplus \cdots$$

where the a_i are orthogonal non-zero elements. Likewise

$$M^2 = a_1^2 R \oplus a_2^2 R \oplus \cdots$$

Then M/M^2 is the direct sum of the non-zero modules $a_i R/a_i^2 R$. Since $a_i M = a_i^2 R$, $a_i R/a_i^2 R$ is a vector space over R/M. So if we can show that M/M^2 is one-dimensional over R/M, then there is only one a_i , and M is principal, as desired. Now M/M^2 is the maximal ideal of R/M^2 , and $(R/M^2)/(M/M^2)$ is isomorphic to R/M, so we can make the further assumption that $M^2 = 0$.

We wish to show that M has length 1, as an R-module. Every principal ideal contained in M has length 1, since it is cyclic over R/M. If M has length greater than 1, we can, in (5) above, pass to the residue class ring modulo $a_s R \oplus \cdots$; so we may assume that M has the form $M = aR \oplus bR$. Thus M has length 2 and R has length 3.

At this point we could quote KÖTHE'S result, but for completeness we give the remainder of the proof. Let G be the R-module generated by u and v, subject to the relation au + bv = 0; G is a module of length 5. We claim that any cyclic submodule Rw of G has length 1 or 3. This is clear if Mw = 0, so we suppose the contrary. Write w = cu + dv. Since $Mw \neq 0$, either c or d is a unit in R, so we may assume c = 1. Let r be an element of R annihilating w. Then ru + rdv = 0, so there exists an element s with r = sa, rd = sb. From the equation sb = sad, and the fact that b is not a multiple of a, we see that s is not a unit, $s \in M$, r = sa = 0. Hence the mapping $r \to rw$ is an isomorphism of R onto Rw, and the latter must have length 3.

Now G is a direct sum of cyclic modules, not all of length 1, since $MG \neq 0$. Hence

$$G = R w \oplus R x \oplus R y,$$

with Rw of length 3, Rx and Ry of length 1. Thus MG = Mw,

 $G/MG \cong (R w/M w) \oplus R x \oplus R y,$

giving G/MG length 3. But G/MG is isomorphic to $R/M \oplus R/M$, and consequently has length 2. This contradiction completes the proof of the theorem.

Literature.

I. S. COHEN.

 Commutative rings with restricted minimum condition, Duke Math. J. vol. 17 (1950), pp. 27-42.

E. HEWITT.

[2] Rings of real-valued continuous functions I, Trans. Amer. Math. Soc. vol. 64 (1948), pp. 45-99.

G. KÖTHE.

[3] Verallgemeinerte ABELSche Gruppen mit hyperkomplexem Operatorenring, Math. Zeitschr. vol. 39 (1935), pp. 31-44.

Т. НАКАЧАМА.

[4] Note on uni-serial and generalized uni-serial rings, Proc. Imp. Acad. Tokyo, vol. 16 (1940), pp. 285-289.

H. Prüfer.

[5] Untersuchungen über die Zerlegbarkeit der abzählbaren primären ABELschen Gruppen, Math. Zeitschr. vol. 17 (1923), pp. 35-61.

(Eingegangen am 15. Juli 1950.)

101