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Rings for which every module is a direct sum
of cyclic modules.

By

I. S. Cohen and I. Kaplansky in Cambridge, Mass. and Chicago, 1ll.

Let R be a principal ideal ring with the descending chain condition.
Then it is known that any R-module?l) is a direct sum of cyclic
modules. This was apparently first proved by Kotre [3], though the
fundamental ideas go back to Prtrer [5]. In the commutative case,
Korue also proved a converse: if a commutative ring with unit satisfies
the descending chain condition, and has the property that all its
modules are direct sums of eyeclic modules, then it is necessarily a
principal ideal ring. The purpose of this note is to show that the
assumption of the descending chain condition is actually redundant.

Theorem. Let B be a commutative ring with unit, and suppose
every R-module is a direct sum of cyclic modules. Then R is a principal
ideal ring satisfying the descending chain condition.

The corresponding problem in the non-commutative case remains
open, even with the descending chain condition assumed in advance.
Nakavams (4] has noted that the ring need not be a principal ideal
ring, so that the obvious conjecture fails.

Before proceeding to the theorem itself, we prove several lemmas.
We first consider a ring 4 which is a complete direct sum of an
infinite set of fields {K:}. (We use the term “complete“ to distinguish
this from the usual weak or diserete direct sum, in which only a
finite number of non-zero components are allowed.) There are some
obvious maximal ideals in 4: for any index i, we have the maximal
ideal M; consisting of all elements with vanishing K;-component. There
also exist some “less accessible“ maximal ideals in 4. To see this,
let I be the weak direct sum of {K;}; I is an ideal in 4. By Zorn’s
lemma, I can be expanded to a maximal ideal, necessarily different
from any M;. Following the terminology of Hewirr [2], we shall refer
to the latter type as a free maximal ideal.

Lemma 1. Let A be the complete direct sum of an infinite number
of fields, and let M be a free mazimal ideal in A. Then M is not a
direct susm of principal ideals.

) All rings under discussion will have a unit element, which is assumed to
act as unit operator on any module.
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Proof. We remark that any principal ideal in 4 can be generated
by an idempotent: given an element z, take e to be 0 where z is 0
and 1 where z is non-zero; then 24 = e 4. A direct sum of a finite
number of principal ideals is again principal, being generated by the
sum of the generators.

Suppose then that M is a direct sum of principal ideals {e;4},
where the e;/’s are (necessarily orthogonal) idempotents. The number
of summands must be infinite, for otherwise M would be principal,
and it is clear that a free maximal ideal cannot be principal. Split
{e;} into two infinite subsets, and let / and g be the sums of the
respective subsets (these “infinite sums“ having an obvious meaning).
Then fg =10 is in M, and hence either f or g is in M; say f for
definiteness. But this means that f is a linear combination of a finite
number of e/s, a contradiction.

Lemma 2. Let R be a commutative ring with unit and no nil-
potent elements. Suppose {z;} are orthogonal non-zero elements in R,
and define S to be the complete direct sum of {xiR}; S is in a natural
way a ring (coordinate-wise multiplication) and an R-module. Then
any decomposition of S (as an R-module) into a direct sum of cyclic
modules can have only a finite number of (non-zero) summands, and
moreover the gemerators of the cyclic summands are orthogonal.

Proof. Suppose S is the direct sum of cyclic modules generated
by y;. We may write, formally

1 Yi = 2 UjmTm (@m € R).
Then (for j == &),
(2) (Ot Tm) Y5 = Qrom Ajm e = (Cjm Ton) Y«

Since the sum is direct, it must be the case that (2) is zero. Hence
yiyr = 0 for j == %, and we have verified the last statement of the
lemma.

Now suppose the number of %’s to be infinite. Let 2z be the element

r=a, 2+

Then z is in S, and so is a linear combination of a finite number
of y’s. This means that z is orthogonal to the remaining #’s. But
2Y; = D Qjm L. .
m

Hence zy; = 0 entails aman = 0, (@man) = 0, @nn = 0, y; =0,
a contradiction.

For convenience in the remainder of the discussion, let us call R
a D-ring if it is a commutative ring with unit with the property that
every R-module is a direct sum of cyclic modules. It is clear that a
homomorphic image of a D-ring is again a D-ring. Also, if R is a
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D-ring without divisors of zero, then B must be a field; for otherwise
the quotient field of R, as an R-module, could not be a direct sum
of cyclic modules. We-have proved:

Lemma 8. In a D-ring all prime ideals are mazximal.

We shall now dispose of the semi-simple case of our theorem.

Lemma 4. Let R be a D-ring which is semi-simple in the sense
that the intersection of the mazximal ideals is 0. Then R is the direct
sum of a finite number of fields.

Proof. Our task is to prove that R satisfies the descending chain
condition. It follows from Lemma 3 and [1, Th. 1] that it will suffice
to prove the ascending chain condition. If the latter fails, then there
exists in B an ideal I which is not finitely generated. The expression
of I'as a direct sum of principal ideals {z;R} must therefore have
an infinite number of summands. The z’s are of course necessarily
orthogonal. We now follow the notation of Lemma 2 and form S, the
complete direct sum of {z;R}; S is the direct sum of cyclic modules
generated by y,, ..., yx. For at least one y; it must be the case that
the expression (1) has an infinite number of non-zero terms. Suppose
this happens for j = 1, and let us write T for the set of indices m
for which @im#w == 0. For each #€ T, choose a maximal ideal M; in
R with the property that a2 is not in M.; since the 2’s are ortho-
gonal, the M¢s are surely distinct.

For each £€T, let an arbitrary element c;€R be prescribed. We
claim that there exists in B an element which agrees with ¢; modulo
M; for each . To see this, we form the element » in S given formally by

U = Z Ce Q1 Xt
1
We note
3) (euz)u = c;al z3.

Suppose u = d,y, + -+ - + dryz. Since the y’s are orthogonal (Lemma 2),
we have

4) (avx)u = (au ) dryr = diady zi.
From (8) and (4) we obtain
dl = C (mod Mt),

and so d) is the desired element.

Write J for the intersection of the M,’s. Then the preceding paragraph
can be summarized as follows: R/J is the complete direct sum of the
fields R/M.. But R/J, along with R, is a D-ring. This contradicts
Lemma 1.

For completeness, we include the well known proof of the following
lemma.

T+
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Lemma 5. Let R be a commutative ring with unit, and suppose
that every prime ideal in R is maximal. Then there exists a set of
primary ideals, one for each maximal ideal, with intersection 0.

Proof. Given a maximal ideal M, define Q to be the set of all
elements z of B for which the annihilator (the set of all e with
az = 0) is not contained in M. One easily verifies that @ is an ideal
contained in M, and that y2 € @ and ¥y € Q@ imply 2 € M. To complete
the proof that @ is primary for M, we take ¢ in M and have to prove
that some power of ¢ is in Q. If not, consider the set S of all #c,
for k=20,1,2,... and c€M; S is closed under multiplication and
does not contain 0. So we may form an ideal N which is maximal
with respect to disjointness from S; N is a prime and hence a maxi-
mal ideal. It is clear that N is contained in M. On the other hand,
M contains £ which is not in N. Thus N is properly contained in M,
a contradiction.

Now let {M;} be the maximal ideals of R, form the corresponding
primary ideals {Q:} as above, and suppose 7€M Q;. Consider the ideal
I annihilating r. If I == R, then I is contained in some M;. But r € @;
means that there exists an element c€M; with cr =0, i. e. with
¢ €1. This contradicts I < M;. Hence I = R and r = 0.

Proof of the theorem. Let R be a D-ring. If N is the inter-
section of the maximal ideals, R/N is also a D-ring. Lemma 4 then
shows that R has only a finite number of maximal ideals, say
M . M.. By Lemma 5,

0=0,n...0nQn,

where Q; is a primary ideal with M; as radical. Since the @; are
pairwise comaximal, B is the direet sum of rings isomorphic to R/Q;.
So it is sufficient to show that R/Q; is a principal ideal ring, and
for this it suffices to show that its maximal ideal is prineipal.

Hence assume now that the D-ring B has only one maximal ideal
M, M == 0. By hypothesis,

(5) M=aeRoa,Re- -

130

where the a; are orthogonal non-zero elements. Likewise
M =dRedRe-- -

Then M/M* is the direet sum of the non-zero modules a; R/aiR. Since
a;M = aiR, a;R/a; R is a vector space over R/M. So if we can show
that M/M?® is one-dimensional over R/M, then there is only one a;,
and M is principal, as desired. Now M/M* is the maximal ideal of R/M?,
and (R/M*/(M{M?) is isomorphic to R/M, so we can make the further
assumption that M* = 0.

We wish to show that M has length 1, as an R-module. Every
principal ideal contained in M has length 1, since it is cyclic over
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R/M. It M has length greater than 1, we can, in (5) above, pass to
the residue class ring modulo a,R®---; so we may assume that M
has the form M == aR ® b K. Thus M has length 2 and R has length 3.

At this point we could quote KoTHE’s result, but for completeness
we give the remainder of the proof. Let G be the R-module generated
by » and w, subject to the relation eu+bv = 0; G is a module of
length 5. We claim that any cyclic submodule R w of G has length
1 or 3. This is clear if Mw = 0, so we suppose the contrary. Write
w=cu-+dv. Since Mw == 0, either ¢ or d is a unit in R, so we
may assume ¢ = 1. Let 7 be an element of B annihilating w. Then
ru4rdv =0, so there exists an element s with r = sa, 7rd = sb.
From the equation $b = sad, and the fact that b is not a multiple
of @, we see that s is not a unit, s € M, r = se = 0. Hence the mapping
r—rw is an isomorphism of R onto Rw, and the latter must have
length 3.

Now G is a direct sum of cyclic modules, not all of length 1, since
MG == 0. Hence

G=RweRzeRy,
with Rw of length 3, Rz and Ry of length 1. Thus MG = M w,
GIMG X (RwiMw)e Rze Ry,

giving G/M G length 3. But G/M G is isomorphic to R/M & R/M, and
consequently bas length 2. This contradiction completes the proof of
the theorem.
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