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w 1. Introduction 

1.1. The object of this paper is to throw some light on the nature of the infinitely 
generated subgroups of finitely presented groups. In order to help put our 
results into perspective we term a groffp recursively presentable if it can be 
generated by a recursively enumerable set of generators and completely defined 
in terms of these generators by a recursively enumerable set of relators. 

In 1961 Graham Higman [10] proved the following remarkable theorem: A 
recursively presentable group can be embedded in a finitely presented group. 
Higman's  theorem provides a simple characterization of the finitely generated 
subgroups of finitely presented groups, viz.: A finitely generated group is a 
subgroup of a finitely presented group if and only if it is recursively presentable 
(Higman [10]). 

No such characterization exists, however, for the infinitely generated sub- 
groups of finitely presented groups. Of course, a countable subgroup of a finitely 
presented group is locally embeddable in a finitely presented group (where, as 
usual, a group is said to have a property locally if all its finitely generated 
subgroups have this property). On the other hand, Higman has constructed a 
countable group H which is locally embeddable in a finitely presented group but 
which is not itself so embeddable. This serves to underline the difficulty in 
obtaining satisfactory conditions which ensure that a countable group can be 
embedded in a finitely presented group. This paper is mainly concerned with 
obtaining such conditions and, in this, we have been fairly successful. 

1.2. Our main theorem revolves around a technique embodied in Theorem 2.1, in 
w for realizing a countable ascending union in terms of HNN-constructions.  
Theorem 2.1 is a little too complicated to formulate here. We prefer, instead, to 
record at this point two extremely interesting applications of this theorem. First 
we have the 

Theorem3.1. A countable locally free group can be embedded in a finitely 
presented group (with solvable word problem). 
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Next we have the 

Theorem4.8. Every countable locally polycyclic-by-finite group can be embedded 
in a finitely presented group. 

Theorem4.8 yields, in particular, the embeddability of countable locally 
finite groups, as well as countable abelian groups, in finitely presented groups 
(Higman [103). However, its scope is obviously far greater than these two results 
of Higman, which together with the theorems of Higman cited at the outset, 
constituted all that was known about the subgroups of finitely presented groups 
until now. 

Corollary 2.5 will be utilized in the forthcoming part II of this work to give 
embeddability results for certain locally solvable groups. For  the present we 
note that Theorem 2.1 can be utilized in other ways. In particular it provides us 
with a necessary and sufficient condition for a countable group to be embedded 
in a finitely presented group, detailed in Theorem 2.4 in w 

1.3. We turn our attention next in w to automorphism groups where we prove 
the pleasing 

Theorem 5.1. The automorphism group Aut(G) of any finitely presented group G is 
recursively presentable. I f  G has solvable word problem then Aut(G) has a 
presentation for which the word problem is solvable. 

Actually, Theorem 5.1 can be formulated in very much more general terms, 
for universal algebras (see Theorem 5.3). 

Putting Theorem 5.1 and Higman's embedding theorem together we obtain 
our second necessary and sufficient condition fo r  a countable group to be 
embeddable in a finitely presented group. 

Theorem 5.3. A group H is embeddable in a finitely presented group if and only if 
it can be faithfully represented as a group of automorphisms of a finitely 
presented group. 

1.4. In w we turn our attention to linear groups, i.e., groups isomorphic to 
matrix groups over commutative fields. It is easy to prove, by combining a well 
known theorem of Mal'cev [143 with work of Rabin [-15] the 

Theorem 6.1. A countable group, locally linear of bounded degree, can be embed- 
ded in a finitely presented group with solvable word problem. 

In particular Theorem 6.1 yields again the embeddability of countable locally 
free groups in finitely presented groups, since a countable free group has a 
faithful representation as a linear group of degree two. It is worth noting that we 
have been unable to determine whether every countable locally linear group can 
be embedded in a finitely presented group. 

1.5. We conclude, in w 7, with some examples of countable groups which are not 
embeddable in finitely presented groups. 

First of all we establish a necessary and sufficient condition, Theorem 7.1, for 
the wreath product of two finitely generated groups to be recursively present- 
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able. This provides us with a host of finitely generated groups which are not 
embeddable in finitely presented groups (see w 5.1). 

Next, we concoct, in w a simple example of an extension E of two finitely 
generated solvable groups A and B such that E is not embeddable in a finitely 
presented group although A and B are. 

Higman's example, cited in w of a countable group H which is locally 
embeddable in a finitely presented group but which is itself not embeddable 
contains a finitely generated subgroup with unsolvable word problem. In w 
we construct another countable group K which is like Higman's group H in that 
it is locally embeddable but not itself embeddable in a finitely presented group. 
However, unlike H, all the finitely generated subgroups of K have solvable word 
problems. 

Our final example is one of Macintyre's [12] countable algebraically closed 
groups which is locally embeddable in a finitely presented group but which, as 
we show, is not itself embeddable (see w 

w Local Systems 

2.1. Let H be a group which is an ascending union of its subgroups 

/-/I_-<H2_-<..._-<H= UHo. 
n>l 

Furthermore, let W be another group such that each H,(n>= 1) is embeddable in 
W. If the group A is embeddable in group B we denote this by the symbol 
A ~ B. Now H itself need not be embeddable in W. However, as we shall show, 
H can be embedded in a suitable HNN-construction over W. 

To this end, we need to introduce some terminology. A system of monomor- 
phisms in W is a family of monomorphisms 4'~,~: U ~  U~ from various subgroups 
U s (c~ ~ I) of W into various others. We allow the possibility that several of the 
U~'s may coincide. The system of monomorphisms {~,~} need not contain a 
monomorphism for each pair of indices, but when it does we say ~ ,  p is defined. 
An immersion of the sequence {H,} in the system {~,p} of monomorphisms is a 
function ? from the natural numbers to the index set I for the U~'s together with 
a sequence of embeddings f, :  H,~UT(,) such that, for each n, ~(,),~(,+~) is 
defined and the diagram 

inclusion 
H, , H,+ 1 

fn 1 f.+l 

commutes. Note that the embeddings fn need not be onto the Us(,). Notice that 
if the H,'s are all embedded in W, then there always exists a system of 
monomorphisms in W in which {H,} can be im m er sed - fo r  example, the family 
of all monomorphisms between all the subgroups of W. Roughly speaking, the 
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sequence {H.} can be immersed in the system {~,~} if the H.'s can all be 
embedded in W and there are enough monomorphisms ~ ,~  to realize the 
embeddings H.~--~ H.+ a. 

The HNN-construction G associated to the system {~,~} of monomorphisms 
in W is the HNN-construetion obtained from W by adding for each ~., p which 
is defined a new generator s~,~ together with defining relations s~,~ u s2,~ = O~,p(u) 
for all u e U~, A well known result of G. Higman, B.H. Neumann and Hanna 
Neumann asserts that W is naturally embedded in G. We shall adopt this 
notation in the statement and proof of the following 

Theorem 2.1. Let H be a group which is an ascending union of its subgroups 

HI<=H2~'"<=H= 0 H.. 
n > l  

Let {~ ,  ~} be a system of monomorphisms between a family of subgroups of W. I f  
the sequence {H.} can be immersed in the system {~,p}, then H can be embedded 
in the HNN-construction G associated to the {~p.,~}. 

Proof. For each n, put t.=s~(.),~(.+l ). Then, for each h e l l . ,  t . f . (h ) t ;  1 =f .+l (h)  
by the definition of an immersion. Define a map O: H o G  as follows: OIHl=fl. 
For n > l  and x e H . + l ,  put 

OlH.+ l (x )=t~ l  t21 ... t:lfn+ l(x) t . . . .  t2t 1. 

Note that if x e H . ,  then 

OlH.+ l ( x )= t r  l t~ 1 ... t~ l f.+ l (x) t. ... t2t 1 

= t[ 1... t;_llf.(x) t._ 1.'. tl 

=OIH.(x). 

Hence, O[H.+ 1 extends OIH. for each n. Also OJH. is an embedding for each n 
since f .  is an embedding. Hence 0: H ~ G  is an embedding. 

By the full system of finitely generated monomorphisms in W we mean the 
system of all monomorphisms from one finitely generated subgroup of W into 
another. 

Corollary 2.2. Let H be a countable group which is locally embeddable in W. Then 
H can be embedded in the HNN-construction G associated with the full system of 
finitely generated monomorphisms in W. 

Proof. Let {hi, h E . . . .  } be a list of the elements of H, and let H, be the subgroup 
generated by {h 1, ..., h,}. Then by hypothesis H, is isomorphic to a finitely 
generated subgroup, say, to U~(.), of W, via an isomorphism f.:  H.--*U~(.). But 

o --1 then f.+ 1 o i. f .  , where i. is the inclusion of H. into H.+ 1, is a monomor- 
phism of U>,(.) into UT(.+ n, and so belongs to the full system of finitely generated 
monomorphisms in W. Thus, the sequence {H.} is immersed in the full system, 
and the result follows from Theorem 1. 

2.2. To produce embeddings into finitely presented groups, we need some 
recursion theoretic conditions. Suppose that W is recursively presented. We say 
that the system {~,~} is a recursively enumerable system of finitely generated 
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monomorphisms if the U~'s are all finitely generated and if the collection of pairs 

({x~, 1, . . . ,  x~ , ,~} ,  {O~,~(x~, 1),..., ~,~,~(x~,,~)}) 

of finite sets of words specifying the subgroups U~ and the monomorphisms 0~, 
which are defined is recursively enumerable. From the definition and Higman's 
theorem, we have the following 

Lemma 2.3. Let W be recursively presented. I f  {0~,p} is a recursively enumerable 
system of finitely generated monomorphisms, then the HNN-construction G as- 
sociated to the system can be recursively presented. Hence, G can be embedded in a 
finitely presented group. 

We are now in a position to give a characterization of the subgroups of 
finitely presented groups. 

Theorem 2.4. Let H be a countable group. Then H can be embedded in a finitely 
presented group if and only if H is an ascending union of subgroups 

HI ~ H 2 ~ . . .  <-_H -- (..) H.  
n>=l 

such that the sequence {H,} can be immersed in a recursively enumerable system of 
finitely generated monomorphisms {~,~} in a recursively presented group W. 

Proof. The sufficiency is clear from Theorem2.1 and Lemma2.3. For  the 
necessity, suppose H can be embedded in the finitely presented group K. Take 
W= K and let the system consist of the identity map on W. Then, in fact, any 
representation of H as an ascending union can be immersed in this system. 

This result is of use mainly for proving local embedding results because of 
the following: 

Corollary 2.5. Let W be a recursively presented group. Suppose that the collection 
of pairs ( { X l ,  . . . ,  Xn} , {Yl, ..., Y,}) of finite sets of words of W such that xi~--~y i 
defines an isomorphism of finitely generated subgroups is a recursively enumerable 
set of pairs. I f  H is a countable group which is locally embeddable in W, then H 
can be embedded in a finitely presented group. 

Proof. The desired result follows immediately from Corollary2.2 and 
Lemma 2.3. 

2.3. We will now give several embeddability results which are consequences of 
Corollary2.5. In each case, the main task is to verify the hypothesis of 
Corollary 2.5 concerning the recursive enumerability of finitely generated sub- 
groups. 

w 3. Locally Free Groups 

3.1. We now give our first embeddability result. 

Theorem3.1. A countable locally free group can be embedded in a finitely 
presented group. 
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Proof .  Let H be a countable  locally free group, and let W be a free group of 
rank 2. Then H is locally a subgroup of W. F r o m  an enumerat ion of all pairs 
({x,, ..., x,}, {Yl . . . . .  y,}) of finite sets of words of W we select those pairs such 
that x~--~y~ (i--1, . . . ,n)  defines an isomorphism. This can be accomplished 
effectively as follows. By successively applying Nielsen t ransformations to 
{xl,  ..., x,} (see Nielsen [17] or Magnus-Karrass-Sol i tar  [13]) we can t ransform 
this set into an equipotent  set { u l , . . . , u  m, 1 , . . . , 1}  where u l , . . . , u , ,  freely 
generate the subgroup of W generated by x~, ..., x,. Suppose that  the same 
sequence of  Nielsen t ransformations applied now to { y , , . . . ,  y , }  yields 
{vl, ..., v,}. Then the map xi~--,y ~ ( i=  1 . . . . .  n) is an i somorphism if and only if 
vm+ ~ . . . . .  v, = 1 and gp(vl ,  ..., Vm) is a free group of rank m. Since the rank of  a 
given finitely generated subgroup of  a free group can be effectively computed  
(Nielsen [17]), it follows that  Corol lary  2.5 can be applied here. This completes 
the proof. 

w 4. The Embeddability of Locally Polycyclic-by-Finite Groups 

4.1. A polycyc l ic  group is, by definition, a group with a normal  series with cyclic 
factors, i.e., a series 

I=Go~GI_~ "" ~ G = G  (1) 

where GI/G ~_ 1 is cyclic (i = 1, ..., k). We term k the length of the polycyclic series 
(1). Choose a ~ G  i so that  G~=gp(al,  G~_ 1). We term al ,  . . . ,  a k a polycyclic basis 
for G. If  a~ is of  order e~ > 1 (possibly el = oo) modulo  @_ 1 then every element 
g ~ G can be written uniquely in the standard f o r m  

g = a~ 1 ... a~, k, where 0 < 7i < ei if e i < Go. (2) 

Notice that  we do not allow e~= 1; i.e., G~_ 1 = G~. Given the above information,  
we can form a presentat ion ~z k for G as follows: 

generators of ~k: a l ,  . . . ,  ak 
relations of Zrk: (Type I) a i~ = ui(a l ,  ... , a l -  1) 

if 1 <e~<  ~ where u~(a 1 . . . . .  a~_l) is a word  on a 1, ..., a~_ 1 
in the form of (2); if e~= oo Type I relations do not  occur. (3) 

(Type II) aj- 1 ai a5 = v i i (a1 , . . .  ' a j_  1) 
where l < i < j < k  and vii(a1,  . . . ,  a j _ l )  is a word on a 1 . . . . .  aj_ a 
in the form of (2). 

Then G = gp(zCk), the group presented by ~k. Also notice that, for any G~ in the 
polycyclic series (1) for G, we can similarly form ~ and ~ c _ ~ +  1 in the obvious 
sense. We term k the length of  the presentat ion ~k and note that  we have a 
natural  order 

~ = ~ 0  ~7~1~___ ~2  ~ ' ' '  ~ TEk 

on subpresentations of  (3) corresponding to the series (1). A presentat ion of the 
form (3) will be called a polycyc l ic  presentat ion.  
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Conversely, any presentation of form (3) has a naturally ordered collection of 
subpresentations. Such a polycyclic presentation will be termed honest if for 
each l<_i<_k, the inclusion rCi_l___rci induces an embedding gp(~h_l)~---~gp(~i). 
(Then the order of a i mod gp(~zi_l) is %) Notice that even if ~k-1 is honest ~k 
may fail to be honest because (for instance) the type II relations specifying the 
action of a k on gp(rCk_l) may not define an automorphism. Obviously, every 
polycyclic group has an honest polycyclic presentation. Below we shall give an 
algorithm to determine of an arbitrary polycyclic presentation where or not it is 
honest. 

4.2. Two facts concerning polycyclic groups beyond the definition will be 
needed: (i) polycyclic groups satisfy the maximum condition for subgroups 
(since cyclic groups satisfy the maximum condition this follows easily by 
induction on the length of a polycyclic series); and (ii) polycyclic groups are 
hopfian, i.e., every surjective endomorphism is an automorphism (see, for 
example, H. Neumann [-16] Lemma 32.1 and Corollary 41.44). 

We also observe the following fact which is easily established by induction 
on length. 

Lemma 4.1. I f  rc k is an honest polycyclic presentation as in (3), and if  g~gp(~Zk) 

has f in i te  order, then [gl divides I ]  ei. 
1Ni<=k 
e i < ~  

We also observe the following: 

Lemma 4.2. I f  ~z k is an honest polycyclic presentation as in (3), then there is a 
recursive procedure which, when applied to any word W in the generators o f  ~g, 
gives the unique word in standard form equal to W. In particular, this algorithm 
solves the word problem for  gp (~k). 

Proof. Use type II relations to push higher subscripted generators to right and 
type I relations to reduce mod e~ < oe. Eventually, standard form will be arrived 
at which is unique since rCg is honest. This concludes the proof. 

Theorem4.3. There is an algorithm to determine o f  an arbitrary polycyclic 
presentation rc k as in (3) whether or not 7~ k is honest. Moreover,  i f  rc k is honest, 
there are algorithms (uniform in ZCk) for  solving the following problems: 

(i) decide for  arbitrary f ini te  sets o f  words w 1 . . . . .  w n in ~z's and arbitrary 
gErc k whether or not gegp(wl ,  ..., w,) (called the generalized word problem, 
membership problem, occurrence problem, etc.), 

(ii) for  an arbitrary f in i te  set o f  words wl ,  . . . , w  n in zc k f ind  a f in i te  
presentation for  gp(wl, . . . ,  wn) (such a presentation exists since the subgroup is 
polycyclic),  where the generators in the presentation naturally correspond to 
W 1 ,  . . . ~  W n. 

Proof. By induction on the length k of the polycyclic presentation rc k. For k = 1, 
all assertions are easily checked. Suppose the theorem has been established for 
polycyclic presentations of length < k. Consider rc k. Decide inductively if gk- 1 is 
honest. If not, ~z k is not honest and we are done. So suppose rCk_ ~ is honest. 
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Consider  the type II  relat ions 

a ~  l a i a k = V i k ( a l  . . . . .  ak_  O = V i k ( 1  <=i < k ) .  

N o w  ~k is honest  if and only if the map  ai~-*vik ( l < i < k )  defines an au tomor -  
ph ism of gP(~k- l )  and if the ek - th  power  of  this a u t o m o r p h i s m  is conjugat ion by 
u k (cf type I relations) when e k < ~ .  Using the solution to the word  p rob l em in 
gP(~k- l )  ( L e m m a  4.2) we may  check to see whether  the map  defines a homo-  
morphism.  Using the solut ion to the generalized word  p rob lem (part  (i)) for rc k_ 1, 
we m a y  decide whether  

a i e g p ( v t ,  k . . . .  , l ) k _ l , k )  for all 1 < i < k .  

Thus we may  effectively decide whether  ai~-~Vlk defines a surjective en- 
d o m o r p h i s m  of gp (nk- 1) and, hence, an au tomorph i sm,  by hopficity of  polycyc- 
lic groups.  Moreover ,  using the solution to the word  p rob lem in nk we may  
check whether  the ek - th  power  of  this a u t o m o r p h i s m  is conjugat ion  by u k. Thus, 
we may  effectively decide whether  n k is honest.  

Assume ~k is honest.  We must  produce  a lgor i thms for solving p rob lems  (i) 
and (ii). By induction hypothesis,  we already have a lgor i thms for solving these 
p rob lems  for n k_ 1. Let  wl,  ..., w, be an arb i t ra ry  finite set of words  in n k and let 
S = g p ( w  1, ..., wn) be the subgroup  they generate. By L e m m a  4.2, we m a y  assume 
each wl is in s tandard  form (2). Let  ~k, 1, ..-, 7k, ,  be the powers  of a k appear ing  in 
their s tandard  forms, and let e be the greatest  c o m m o n  divisor of 

Yk, 1, .-., 7k,,, ek (if e k < (X)) 

and take integers fie so that  

~ = f i l  7k, 1 + " '  + f i ,  Yk, ,  + f l ,+ 1 ek" 

Then, by applying the relat ions of  types I and II, the s tandard  form of r 
= W~l~ ... w, p" has a k to the power  a appearing.  Moreover ,  for each i, w i mult ipl ied 
by a suitable power  6 ( 0  of r has w i r ~ ( ~ ) e g p ( u k _ l ) .  So 

S = gp(r,  w 1 r ~(1) . . . . .  w,r~(")).  

Now, clearly this new set of  generators  for S can effectively be found since only 
the Euclidean a lgor i thm is involved. (Note, we have tactily assumed that  all the 
w~'s involve a non-zero power  of ak; if some wi's have zero power  of a k apply  the 
above to the remaining w~'s. However ,  if all w~'s have zero power  of ak, then S 
and all the w~'s lie in gP(Uk-O and the desired result follows easily by the 
induct ion assumption.  Thus, we assume hereafter  that  some w~ has a non-zero  
power  of a k and so 1 ___< ~ < e k.) 

Let us relabel the generators  for S as r, x~, ..., x ,  all in s tandard  form, where 
x i e g p ( ~ k _ l )  and a k appears  in r with power  c~(1 _-<e<ek). If e k <  CO, let c5 denote  
the order  of r m o d  gp (Uk-1) and add the element r~e gp(~z k_ ~) to the genera tors  
of  S. Re-label the generators  of S r, Yl . . . . .  Ym- Decide, using (i) for Uk-1, whether  
r -  ~ yj r e gp (y~, ... ,  Ym) for j = 1, ..., m. If not, add these elements  r - ~ yj r to the 
generators  of  S, re-label the generators,  and repeat.  By the m a x i m u m  condition, 
this process must  terminate.  Thus, we can effectively find a set of  generators  
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r, t l ,  ..., t o for S with tiEgp(TCk_l) and r - l t i r e g p ( t ~ ,  .. . ,tq) and r~egp( t l ,  ..., tq) 
in case e , <  ov and 6 = o r d e r  of r modgp(nk_ 0. 

In terms of the generators r, t~, ..., tq we can easily obtain a presentation for 
S. By the induction hypothesis we can effectively find a presentation A for 
gp(t 1 . . . .  ,tq)__<gp(~k_ 0 on generators t-1,...,t~ corresponding to the ti's. A 
presentation for S can be obtained by adding a new generator f together with 
relations f--l{~r-=b-~(t-~ . . . .  , {q) and r  . . . . .  /q) where the words vi, u can be 
effectively found by the properties of the generators for S. Moreover, since 
r , t  1, . . . , tq were effectively constructed out of % ,  . . . ,w,  we can reverse the 
process and by Tietze transformation obtain a presentation for S on generators 
corresponding to w~, ..., w,. This completes the required algorithm for (ii). 

Let g be an arbitrary element of gp (rc,). We want to decide whether g ~ S. We 
may suppose g is in standard for (2). If a k appears in g with power fl, and e does 
not divide f imod  e k then g 6 S .  This may be effectively tested. Suppose 
~ . n - f l m o d e .  Let h = r - " g  so h s S  if and only if g 6 S  and hEgp(~zk_ 0. By 
properties of the constructed set of generators for S, h ~ S  if and only if 
h~gp( ta ,  ...,t~) which is decidable by induction hypothesis. This solves the 
generalized word problem (i) for r~ k and completes the proof. 

4.3. Remark:  That  polycyclic groups have solvable generalized word problems 
was known. Indeed, Remmeslenikov and Toh have (independently) shown 
polycyclic groups are subgroup separable. However, we obtained the solubility 
result for only a little extra work on the way to proving (ii). 

Corollary 4.4. There is an effective procedure to tell of  two arbitrary f ini te sets of  
words {w I . . . . .  wn} and {z I . . . .  , z,} in an honest polycyclic presentation ~ whether 
or not the map w~-~z i defines and isomorphism between the subgroups of  ~z which 
they generate. 

Proof. Since ;z is honest, by Theorem4.3, we may effectively find finite pre- 
sentations for W =  gp (w l, ..., %) and Z--gp(z~ ,  ..., z,,) on the given generators. 
Let q~: W ~ Z  be the map defined by wi~-.z i and 0: Z---,W the map defined by 
z?--~wi. Using the solution to the word problem for ~ we can decide whether ~0 
and 0 determine homomorphisms by checking to see that they preserve defining 
relations. If so, they are obviously isomorphisms as they are inverse to each 
other. This completes the proof. 

4.4. Observe that if ~k and ;z~ are honest polycyclic presentations of lengths k 
and l then there is an obvious honest polycyclic presentation Ak+ ~ of length k + l 
for nk X ~'z (direct product) obtained from ~k by successively adding generators of 
~i acting trivially on generators of ;z k. Thus if ~, 7c', ~", ... is a sequence of honest 
polycyclic presentations we may form a sequence 

of honest polycyclic presentations such that ~z, n • n', n • n ' •  n", ... etc., are all 
honestly presented at some state A i. By Theorem4.3 the sequence of all 
polycyclic presentations is recursive; let A i be the corresponding ordered se- 
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quence of honest polycyclic presentations and put z l=gp(  ~ Ai). Then zT con- 
i>__1 

rains an isomorphic copy of every polycyclic group and A is locally polycyclic. 
By construction, zl is recursively presented; by Corollary4.4 and the fact that 
the Ai's are honest, the set of pairs of finite sets of words {w 1, ..., w,} and 
{zl, ..., z,} such that wi~-,z 1 is an isomorphism of subgroups is recursive. Thus 
by Corollary 2.5 we have 

Theorem 4.5. Every countable locally polycyclic group can be embedded in a 
finitely presented group. 

4.5. We now begin the study of polycyclic-by-finite groups. We proceed as 
follows. We recursively enumerate all wreath products of polycyclic groups by 
all finite groups, giving us the groups 

wl, w2, w3 . . . . .  

say, together with their presentations, where the polycyclic component has been 
presented by means of an honest presentation (c.f. 4.3). We need then the 

Lemma4.6. Let W = G  %F where G is polycyclic and F is f inite and let J 
=gp(w 1 . . . . .  w,) be a f initely generated subgroup of W. Then we can effectively 
f ind a f inite presentation for J. 

Proof. Note that W is a split extension of B by F where, as usual, 

B=gPw(G)= I]  U 1Gf  �9 
f e F  

Our first objective is to obtain a set of generators for Jc~B. To this end let us 
write each w i in the form 

wi=flbl  ( f i eF ,  blaB). 

We may assume that if f f j = f k  then fgb k is included among the generators of J. 
Consider now the elements 

fblf~bj(fkbk) -1 = cl, j, 

where fk bk is any one of the generators of J for which f ~  =fk. We claim that 

Jc~B =gp(cij  ) ( i , j= 1, ..., n). 

For, suppose, 

wix wi2 ... wit e B. 

(Note that we need only consider "positive" words by adjoining all inverses of 
the c~.j to the given set of generators.) Then, assuming f~,f~2 =fj l ,  we find 

wi, wi2.., wit = (fl, bl, fi2 bi2"" fi~ bi~) 

= ci~,j~(fj, bj, . . . L b ~ )  

= C i ~ , j  ~ �9 C i s j ,  2 . . .  e i h , j ; f b ,  
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for some f ~  F, b e B and an appropriate choice of the subscripts. It follows that 
f =  1. Notice that f b  = b arises from a product 

( f ,b ' f , ,b , , ( f , f , ,b , , , ) - l )  f,f,,b,,,, 

i.e., as f ' f " b ' " = b ;  in other words, b is simply one of the original cz.j's or an 
inverse of such. Thus, we "have our hands" on J n B ,  an implicitly given finitely 
generated subgroup of a polycyclic group B which has an obvious basis made up 
from a basis for each of the conjugates f -  1 G f  of the given polycyclic group G. 
By Theorems 4.3 and 4.4 we can effectively find an honest presentation for J c~ B. 
This leads to a presentation for J itself since we have a natural presentation for 
J / J n B  and we can easily find the action of the elements w~ on the generators of 
J c~ B since W is a group with an explicitly given multiplication table. 

Corollary 4.7. Let Wi = Gi %Fi (i = 1, 2) be the wreath product of the polycyclic 
groups G i by the finite groups Fi, where the G i are explicitly given in terms of a 
polycyclic basis. Let 0 be the mapping of a finite subset {wl, ..., w,} of W I into 
the subset {W'l, ..., w',} of W 2 given by wi~-*w' i (i=i, ..., n). Then one can determine 
effectively whether 0 is an isomorphism. 

Proof. Put J l = g p ( w l ,  ...,w,), Jz=gp(w]  . . . .  ,w',). We effectively obtain finite 
presentations for J1 and J2 by the lemma above. Thus, we can check whether the 
maps 

~o : w ~ w'~ 

and 

O: w',~w~ 

define homomorphisms since W 1 and W 2 have solvable word problems. Then 0 
is an isomorphism if and only if the composed maps ~o 0 and ~ (p are the identify 
which can be effectively verified. This concludes the proof. 

4.6. We are now in a position to apply Corollary 2.5. We enumerate all the 
wreath products W~, enumerate all the finite pairs of objects (X, Y) of equipotent 
sets of generators X ~  Wi, y_c Wj where X =  {xl , . . . ,  xr}, Y={yl  . . . .  ,Yr} and 
xi~--,y i defining an isomorphism. The resultant H N N  construction then gives the 
following 

Theorem 4.8. A countable locally polycyclic-by-finite group can be embedded in a 
finitely presented group. 

w 5. Automorphism Groups 

5.1. In this section we prove the 

Theorem 5.1. The automorphism group Aut (G) of any finitely presented group G 
is recursively presentable. I f  G has solvable word problem then Aut(G) has a 
presentation for which the word problem is solvable. 
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Proof. The argument is extremely simple. Instead of trying to enumerate the 
automorphisms of G alone, we enumerate an automorphism and its inverse at 
the same time. Let 

G = ( x l ,  ...,xn; R I = I  . . . . .  R , , = I ) .  

Each Ri=Ri(x  1 . . . . .  x,) is a word on the x i ' s - w e  will sometimes use vector 
notation 2 = ( X  1 . . . . .  Xn) for brevity. Suppose c~: G ~ G  is an automorphism. Then, 
for suitable words Wi(2), e(xl)= W/(2) in G for l<_i<n. Since e is a homomor- 
phism, the equations 

Rj(W~(Sc) . . . .  , W,(2))=l where l < j < m  hold in G. (1) 

Suppose that/3: G ~ G  is the inverse of c~. Then/3(x~)= Ui(2 ) for suitable words U~ 
in the xSs. Moreover, the following equations hold in G: 

Rj(UI(2), ..., U,(2))=l where l <j<__m. (2) 

In addition, because e and/3 are inverses of each other, the following equations 
hold in G: 

Uk(Wl(2 ) . . . .  , W,(2))=x k for l<_k<n 
(3) 

Wj(UI(2), ..., U,(2))=xj for l < j < n .  

Conversely, if (W 1 . . . . .  W,) and (U1, ..., U,) are pairs of n-tuples of words in the 
x~'s satisfying the systems of Equations (1), (2), and (3), then the maps defined by 
a: x~--~ W~ and/3: x~--, U~ for 1 <_iNn are automorphisms of G which are inverse 
to one another. 

Since G is finitely presented, the set of pairs (W~, ..., W,) and (U~ . . . . .  U,) of 
words in the xi's satisfying the finite systems of Equations (1), (2), and (3) is 
recursively enumerable. Note that if G has solvable word problem, then this set 
of pairs is even recursive. This enumeration clearly gives a recursively enumer- 
able set of generators for Aut (G). 

Words in the above set of generators for Aut (G) correspond to the automor- 
phism (which will again appear among the generators) gotten by composing the 
actions on the x~'s. Thus to enumerate a set of relations in the above set of 
generators it suffices to enumerate those pairs representing the identity auto- 
morphism. But ~: xi~-~ W~(2) for 1 <_ i <_ n represents the identity if and only if W~(2) 
= x  i for all i=1,  . . . ,n.  Since G is finitely presented, the pairs satisfying this 
condition are recursively enumerable, and so Aut (G) is recursively presentable. 
If, in addition, G has solvable word problem, then this condition is recursive and 
so Aut(G) has solvable word problem in the given set of generators. This 
completes the proof. 

Corollary 5.2. The automorphism group Aut (G) of a finitely presented group G is 
embeddedable in a finitely presented group H. I f  G has solvable word problem we 
may choose H to have solvable word problem. 

Proof. By Theorem 5.1 and Higman [10] the first half of Corollary 3.2 follows. 
The second half follows by Cannonito-Gatterdam [5] and either Clapham [6] 
or Gatterdam [8]. 
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Theorem 5.3. A countable group G is embeddable in a finitely presented group H 
if and only if it has a faithful representation as a group of automorphisms of a 
finitely presented group. 

Proof. "If" follows from Corollary5.2. To prove only if, we assume G is 
embedded in the nontrivial finitely presented group H. Then if K is the free 
product of H with an infinite cyclic group, K is finitely presented and has no 
center. Thus, K is isomorphic to Inn (K), the group of inner automorphisms, and 
so G is embeddable in Aut (K). 

5.2. An examination of the proof of Theorem 5.1 yields the somewhat more 
general (see Cohn [7], p. 153f.). 

Theorem5.4. Let ~ be a variety of universal algebras in which the finitely 
generated free algebras have solvable word problem and let A be a finitely 
presented algebra in ~. Then Aut (A) is recursively presentable; moreover, if A has 
solvable word problem there is a presentation of Aut(A) for which the word 
problem is also solvable. 

We would like to draw attention to three special cases of Theorem 5.3 
(besides Theorem 5.1). 

Corollary 5.5. The automorphism group of a finitely presented semi-group is 
recursively presentable. 

Corollary 5.6. The automorphism group of a finitely generated metabelian group is 
recursively presentable and has solvable word problem in some presentation. 

Remark. It is not hard to show that the word problem in a finitely generated 
metabelian lie algebra is solvable (see, e.g. [2]) and so we have the 

Corollary 5.7. The automorphism group of a finitely generated metabelian lie 
algebra is recursiveIy presentable and has solvable word problem in some pre- 
sentation. 

Corollary 5.6 and Corollary 5.7 depend on the fact that finitely generated 
metabelian groups and finitely generated metabelian lie algebras satisfy the 
maximal condition for normal subgroups and ideals (P. Hall [-9], Amayo and 
Stewart [1]). As a consequence they are finitely presented if observed as algebras 
in their respective metabelian varieties. 

Finally, let us remark that the automorphism group of a finitely presented 
group need not be finitely generated (see Lewin [11]). 

w 6. Linear Groups 

6.1. We begin by giving an embedding theorem for linear groups (over any field) 
which is of independent interest and which gives an alternative proof for the 
embeddability of countable locally free groups. 
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Let �9 be the countable algebraically closed field of transcendence degree No 
of characteristic p, p > 0. If GL(n, r is the group of n x n invertible matrices over 
4~, we regard it as embedded in the "upper  left corner" of GL(n+I,  g)). Denote 
by GL(~) the direct limit of the system 

GL(1, ~) < GL(2, ~) <.. .  < GL(n, ~) <. . . .  

Then GL(~) may be thought of as the group of co x co matrices which differ from 
the identity on only finitely many places and which have nonzero determinant 
(in the obvious sense). 

Next, we need the concept of a computable field, introduced by Rabin in 
[18]. Intuitively, a countable field is computable if it can be mapped injectively 
onto a subset S of the natural numbers in such a way that (CF1) there is an 
algorithm which computes the characteristic function of S, and (CF2) the field 
operations induce functions S x S ~ S  which are recursive or algorithmically 
computable. Thus, a computable field has a recursive representation in the 
natural numbers. It is easily seen that all prime fields are computable. Further, a 
pure transcendental extension of degree < N o of a computable field is again 
computable. Finally, Rabin [18] proves that the algebraic closure of a comput-  
able field is computable. Thus, our field 4~ can be viewed as a universal 
countable computable field of characteristic p. 

Now we note that GL(~) is recursively presentable. This can be seen by, for 
example, providing GL(~) with its multiplication table presentation, taking as 
generators all co x co matrices of the kind described above and as defining 
relators all words ABC -1 where A, B and C are matrices and AB = C. That this 
system of generators is recursively enumerable follows from an easily conceived 
procedure that, again, is clumsy to write out. It suffices to note merely that each 
matrix in GL(4~) is completely specified by a finite number of field elements and 
their coordinates; that is, by a finite sequence of elements of S. It is easily seen 
that we can effectively list all finite sequences of elements of S and so to 
effectively list the elements of GL(4)) we merely use the computable field 
operations to cast out those sequences which do not correspond to elements by 
computing a determinant. In a similar manner we effectively obtain all defining 
relators of the form AB C-1. 

We note that when the multiplication table presentation of a group is 
recursive the group has a solvable word problem for this presentation. Thus, in 
particular, GL(cl)) has a solvable word problem for the presentation given above. 
Hence, by Cannoni to-Gat terdam [-5] and Clapham [-6] or Gat te rdam [-8], we 
have the following: 

Theorem 6.1. The group GL(q~) can be embedded in a finitely presented group with 
solvable word problem. 

This has several remarkable consequences: 

Corollary 6.2. A countable linear group G over any field is embeddable in a 
finitely presented group with solvable word problem. 
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Proof. Since G is countable, the field elements which appear as entries in the 
elements of G all lie in some countable field, hence, in some subfield of ~ (where 
q~ is as in 4.1). Thus, G is a subgroup of GL(n, 4)) and, hence, of GL(~b), so the 
result follows from 4.1. 

This immediately gives the following: 

Corollary 6.3. A countable group G which is locally linear of bounded degree is 
embeddable in a finitely presented group with solvable word problem. 

Proof. For, by Mal'cev's local theorem [14], G is linear. Hence, we may apply 
6.2. 

As an application of 6.3, we have 

Corollary 6.4. A countable locally free group G can be embedded in a finitely 
presented group with solvable word problem. 

Proof. GL(2, ~)  contains finitely generated free groups of arbitrary rank (see 
[19]). Thus, G is locally faithfully representable in GL(2, ~)  and we may apply 
Corollary 6.3. 

Remark. Since finitely generated linear groups are countable, and finitely gener- 
ated subgroups of finitely generated groups with solvable word problem have, 
themselves, solvable word problem, Corollary 6.2 gives a proof of the theorem 
announced in Rabin [18], viz.: a finitely generated linear group has solvable 
word problem. 

w 7. Some Nonembeddable Groups 

7.1. In this section we consider several examples of groups which are not 
embeddable in finitely presented groups. 

7.2. We begin by first proving the 

Theorem 7.1. The wreath product W= U % T of two finitely generated groups U 
and T is recursively presentable if and only if both U and T are recursively 
presentable and either U is abelian or T has solvable word problem. 

Proof. We recall that W is defined by the following properties: 

W=gp(U,  T); (1) 

(2) The normal subgroup B of W generated by U is the (restricted) direct 
product of its conjugates t - l U t  (toT). It follows that W = B ] T  is a split 
extension of B by T with T acting on B essentially by the right regular 
representation of T on itself. 



132 G. Baumslag et al. 

Now suppose that W is recursively presentable. Then it follows from 
Higman's theorem [10] that both U and T are recursively presentable. Let 

U = ~ u  1 . . . .  ,Urn; r l , r 2 , . . . >  

T = ( t l ,  . . . ,  tn; s1, $2 . . . .  > (3) 

be presentations for U and T on finite sets of generators and recursively 
enumerable sets of defining relators. If U is nonabelian, we can find ui, uj among 
the generators ul ,  . . . ,  u m such that the commutator  [ul, uj] 4: 1. Since the defining 
relators of W are recursively enumerable, the relators of the form 

[u i, w( t l ,  . . . ,  t , ) -  1 uj w ( t l ,  . . . ,  t,)] (4) 

are also recursively enumerable, where here w(t~, . . . ,  t,) is a word in the 
generators tl, ..., t, of T. But (4) is a relator if and only if W4: 1. Hence, if W is 
recursively presented and U is nonabelian, then T has solvable word problem, 
for we can recursively enumerate both the set of words w(t) such that w = 1 in T 
and the set of words w(t) such that w @ 1 in T. 

Conversely, suppose U and T are recursively presentable, with recursive 
presentations (3). If T has a solvable word problem then W can be presented in 
the form 

W =  < u l  , . . . ,Urn,  e l ,  . . . ,  t , ;  r l  , r2,  . . . ,  s l  , $2, . . .  

[ul, w(t) -1 u~ w(t~)] ( i , j =  1, . . . ,  m, w(tJ (5) 

an arbitrary word on t~ . . . . .  t~ such that w(t)4:1 in T> 

and so W is recursively presentable. On the other hand, if U is abelian, no 
restriction need be placed on the words w(O in the presentation (5) and so again 
W is recursively presentable. 

As a consequence of Theorem 7.1, note that the wreath product W =  U %T of 
a finite nonabelian group U by a finitely presented group T with unsolvable 
word problem is not recursively presentable. In particular, the wreath product of 
two finitely presented groups need not be embeddable in a finitely presented 
group. 

7.3. Let p be a prime. In [9], P. Hall constructed a recursively presented, 2- 
generator center-by-metabelian group A, having center C, which is a direct sum 
of cyclic groups of order p. Let c i ( i> 1) be the generators of these cyclic groups 
(from [9] one sees they can be written explicitly in terms of the generators of A). 
Let K be a recursively enumerable, non-recursive set of natural numbers. Let N 
be the normal closure in A of { c i l i ~ K  }. Put B = A / N .  Finally, let G be the direct 
product of A and B with central amalgamations c i = c i N  for i ~ K .  

Now G is a finitely generated, center-by,metabelian group with the follow- 
ing properties: 

(1) A is normal in G, and G / A ~ - A / C  is a 2-generator metabelian group. In 
fact, one can easily solve the word problem for A, so G is an extension of one 
finitely generated group with solvable word problem by another. 

(2) C is normal in A and C is normal in G (as a subgroup of A) and 
G / C ~ - A / C  Q A / C  which is metabelian. Thus, G is locally finite-by-metabelian. 
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(3) G is not  embeddab le  in a finitely presented group. Fo r  in terms of 
generators  for two copies A and .~ of  the group  A, in G we have c~ = C i e~,i~ K. 
Hence,  G cannot  be recursively presented,  and thus is not  embeddab le  in a 
finitely presented group.  

R e m a r k .  Propert ies  (1) and (3) contradic t  a c laim made  in [15] L e m m a  1 p. 4, 
that  "finitely generated with solvable word  p r o b l e m "  is a poly-proper ty .  The 
p roper ty  is only preserved by recursively presented extensions (and, in part i-  
cular, for finitely presented groups). 

7.4. Let H1, H2, ... be a list of  all finitely presented groups  with solvable word  
p rob lem (by Boone-Rogers  [-4] this list is not  recursively enumerable) .  
According to results of B o o n e - H i g m a n  [3] combined  with C lapham [6], a 
finitely generated group  with solvable word  p rob l em can be embedded  in a 
simple subgroup  of a finitely presented group with solvable word  problem.  Put  
A 1 = H  1 and let A,+ 1 be the result of  applying B o o n e - H i g m a n - C l a p h a m  to the 
free p roduc t  A , .  H ,+  1 lor n=> 1. Put  G =  U An. Then G is simple (being a union 

n>l 
of  simple groups) and locally has a solvable word  p rob lem (since each A, has 
solvable word  problem).  However ,  G cannot  be embedded  in a finitely presented 
group. For  if G could be so embedded  there would be a uni form part ial  
a lgor i thm for solving the word  p rob lem for the H~'s (see B o o n e - H i g m a n  [3] 
Theo rem III)  which would in turn contradict  Boone-Rogers  [4]. 

7.5. In [12] Mac In ty re  constructs  a countable  algebraically closed group G 
whose finitely generated subgroups  are exactly the finitely generated recursively 
presented groups. Thus, G is locally embeddab le  in a finitely presented group. 
However ,  G itself not  embeddab le  in a finitely presented group. Fo r  since G is 
simple and  has finitely presented subgroups  with unsolvable  word  problem,  by 
B o o n e - H i g m a n  [-3] G cannot  be so embedded.  
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