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Summary. In Eulerian rate type finite inelasticity models postulating the additive decomposition of the 
stretching D, such as finite deformation elastoplasticity models, the simple rate equation indicated in the 
above title is widely used to characterize the elastic response with D replaced by its "elastic" part. In 1984 
Simo and Pister (Compt. Meth. Appl. Mech. Engng. 46, 201 215) proved that none of such rate equations 
with several commonly-known stress rates is exactly integrable to deliver an elastic relation, and thus any 
of them is incompatible with the notion of elasticity. Such incompatibility implies that Eulerian rate type 
inelasticity theory based on any commonly-known stress rate is self-inconsistent, and thus it is hardly sur- 
prising that some aberrant, spurious phenomena such as the so-called shear oscillatory response etc., may 
be resulted in. Then arises the questions: Whether or not is there a stress rate ~* such that the hypoelastic 
equation o f  grade zero with this stress rate is exactly integrable to really define an elastic relation? I f  the an- 

swer is yes, what is or are such stress rate(s)  ? The answer for these questions is crucial to achieving rational, 
self-consistent Eulerian rate type formulations of finite inelasticity models. It seems that there has been no 
complete, natural and convincing treatment for the foregoing questions until now. It is the main goal of 
this article to prove the fact: among all possible (infinitely many) objective corotational stress rates and 

O, other welt-known objective stress rates r , there is one and only one such that the hypoelastic equation of 
grade zero with this stress rate is exactly integrable to define a hyperetastic relation, and this stress rate is 
just the newly discovered logarithmic stress rate by these authors and others. This result, which provides a 
complete answer for the aforementioned questions, indicates that in Eulerian rate type formulations of 
inelasticity models, the logarithmic stress rate is the only choice in the sense of compatibility of the hypo- 
elastic equation of grade zero that is used to represent the elastic response with the notion of elasticity. 

1 Introduction 

In Eulerian rate type formula t ion  of  cont inuum models characterizing inelastic behaviours of  

isotropic materials,  such as finite deformat ion  elastoplasticity,  an additive decomposi t ion of  

the stretching D into the "elastic" par t  D r and "inelastic" part(s) is introduced.  Then, the 

inelastic response is formula ted  by certain inelastic laws, e.g., associated or nonassociated 

flow law and hardening rule etc., while the elastic response is widely assumed to be characteri-  

zed by a hypoelast ic  equat ion of  grade zero (see Truesdell  and Noll  [47] for a comprehensive 
account  of  hypoelastici ty),  i.e., 

}* = H 0 :  D e = A(trD ~) I +  2#D ~. (1) 

In the above,  ~* is an objective stress rate, and H0 is the constant  isotropic linear elasticity 
tensor  

H0 = AI |  I +  2#T ,  (2) 
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where A and # are the Lain6 elastic constants, and 
1 

I~ = 6ij; % y  = ~ ( ~ j l  + 6~j~). (3) 

Throughout, (5~s is used to denote the Kronecker delta. 
How to choose the stress rate ~* in (1) has been one of the crucial points. Although use of 

various stress rates makes no difference in the structure of this rate equation, fundamental 
difference in modelling material behaviours may occur. Lehmann [24] [25], Dienes [8], and 
Nagtegaal and de Jong [32] disclosed that hypoelasticity models and elastoplasticity models 
with the Zaremba-Jaumann-Noll stress rate predict aberrant, spurious responses at finite 
simple shear deformation, now known as shear oscillatory phenomena. Prompted by these dis- 
coveries, several alternative stress rates have been suggested, examined and compared for 
simple shear responses and some other responses. For this aspect, we refer to, e.g., Truesdell 
[44]-[46], Lehmann [24]-[25], Dienes [8], Nagtegaal and de Jong [32], Dafalias [5]- [7], Lee, 
Mallett and Wertheimer [23], Loret [27], Reed and Atluri [36]-[37], Atluri [1], Johnson and 
B ammann [18], Key [19], Moss [31], S owerby and Chu [42], Paulun and Pechersky [35], Haupt 
and Tsakmakis [13], Dubey [9], Metzger and Dubey [30], Zbib and Aifantis [56]-[57], Szab6 
and Balla [43], Yang, Cheng and Hwang [54], Xia and Ellyin [48], et al. A detailed account of 
this aspect can be found in Khan and Huang [20]. However, it seems that a complete, natural 
and convincing treatment has not been attained yet. 

It seems that the decisive conclusion for a model can not be drawn only from some reason- 
able particular responses such as simple shear responses etc., and, moreover, for each model it 
is impossible to calculate all possible responses. One of the decisive criteria should be: when 
D = D ~, the rate equation (1) that is used to represent elastic behaviour must be exactly integra- 

ble to really define an elastic relation. If the just-stated criterion is violated, the rate equation 
(1) will be incompatible with the definition of any elastic behaviour, and therefore fails to 
represent any elastic behaviour faithfully and undistortedly in nonlinear range. In such a case, 
it is hardly surprising that some aberrant, spurious phenomena inappropriate for any elastic 
behaviour may be resulted in, such as hysteretic energy dissipation (see Bernstein [2], and 
Truesdell and Noll [47]) and residual stress for a closed strain path (see, e.g., Kleiber [21], 
Kojic and Bathe [22], and Roy et al. [39]), etc. 

O, 
Simo and Pister [41] have proved that with several commonly-known stress rates r , none 

of the corresponding hypoelastic equations of grade zero is integrable to yield an elastic rela- 
tion, and any of them is thus incompatible with the definition of elasticity, in particular, 
hyperelasticity. Such incompatibility implies that any existing Eulerian rate type finite inelasti- 
city theory with (1) is not self-consistent in the sense of characterizing the elastic response. To 
further pursue Simo and Pister's study from a general point of view, we may ask: whether or 
not is there a stress rate such that the hypoelastic equation of grade zero with this stress rate is 
exactly integrable to define an elastic relation? If the answer is yes, what is or are such stress 
rate(s)? The answer for these questions is crucial to achieving a rational self-consistent Eule- 

rian rate type finite inelasticity theory with (1). 
It is the objective of this article to find the complete answer for the above questions. We 

shall prove the fact: There is one and only one corotational stress rate ~* such that the hypo- 
elastic equation of grade zero with this corotational stress rate is exactly integrable to define 
an elastic relation, and this corotational stress rate is just the newly discovered logarithmic 

stress rate by these authors [50]- [53] and other researchers (see Lehmann et al. [26], and Rein- 
hardt and Dubey [38]). This fact implies that, to achieve the positive answer for the afore- 
mentioned questions, the logarithmic stress rate is the only choice among infinitely many 
objective corotational stress rates (see [52] and [53]) and other well-known objective stress 
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rates including Oldroyd rate [34], Cotter-Rivlin rate [4] and Truesdell rate [44]-[45]. As a 
result, the new finite deformation elastoplasticity models based upon the logarithmic stress 

rate, suggested by these authors in a succeeding article [3], are not only the first, but also uni- 
que, self-consistent ones of their kinds, in the sense of compatibility of the hypoelastic equa- 

tion of grade zero used to represent elastic response with the definition of elasticity. 

We conclude this introduction with some facts that will be used. Let T2, S y m  and Skw be 
the sets of all second-order tensors, all symmetric and all antisymmetric second-order tensors 
over a real three-dimensional inner-product space )2, respectively. As usual, each second- 

order tensor over )2 is regarded as a linear transformation from F to itself. Furthermore, each 

fourth-order tensor H over F with the index symmetry properties 

H~y = HiSk = Hsik~ 

is identified with a linear transformation on S y m  by virtue of the third expression below. In 
so doing, we aim to have the benefit of utilizing the powerful spectral theory for real symme- 

tric linear transformations, which will prove to be essential to our subsequent account. 

In what follows, A, B E T2, and H, H',  A are two fourth-order tensors and a sixth-order 

tensor over F, respectively. Throughout, we shall use the notations A : B, AB, H :  A, A : H, 

H : / f ,  A : A and A : H to designate the scalar, the second-order tensors, the fourth-order 
tensors and the sixth-order tensor defined by: 

A : B = AijB~j, 

(AB)ij = AikBkj, 

(H :  A)i j = H~yA~z, 

(A : H)i  j = AklH~t~, 

(A : A)#~z = A#kz~A~, 

(A:  H)ijlclrs = AiypqHpqrs. 

Moreover, let Q ~ T2 be an orthogonal tensor over F, i.e., 

Then we shall use Q ,  A and Q ,  H to represent the second-order and fourth-order tensors 
given by 

( Q * A ) i j  = @~QjIAkl, i.e., Q * A  = QAQ T, 

(Q * I-I)ijk I = @pQjpQkrQJIpq~. 

Throughout, the symbol A T is used to represent the transpose of the tensor A E T2. The fol- 
lowing identities will be useful: 

Q * ( H :  A) = ( Q . H )  : ( Q . A ) ,  

Q .  ( R . A )  = (QR)*A,  

a .  (R . H) = (QR) * H, 

(4) 

(5) 

(6) 

for any orthogonal tensors Q and R. 
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Finally, we shall use the notation p V q, where p and q are any given two vectors, to signify a 
symmetric second-order tensor over V given by 

p V q  = p | 1 7 4  (7) 

2 Logarithmic strain and objective corotational rates 

2.1 Logarithmic strain 

In this subsection, we recapitulate some related basic facts about kinematics of finite deforma- 

tions. A detailed account of this aspect can be found in, e.g., Truesdell and Noll [47], and 

Marsden and Hughes [28]. 

Consider a continuous body B experiencing continuing deformation. We identify each 

particle of the body/5 with a position vector X in a referential configuration, e.g., an initial 
configuration. The current position vector of a particle Xis denoted by x -- x(X, t), and hence 

the velocity vector of a particle X is given by 

Throughout, the superimposed dot is used to designate the material time derivative of a scalar 

or tensor field. 
The local deformation at a particle X is described by the deformation gradient 

Ox 
F : - -  

OX' 

while the rate of change of deformation at a particle X is characterized by the velocity gradient 

L:0v:rrl. 
Ox 

The following polar decomposition formula and additive decomposition formula are well- 

known: 

F -  VR, V 2 = FF T, (8) 

w =  

In the above, the symmetric positive definitive tensor V c Sym and the proper orthogonal 

tensor R are known as the left stretch tensor and the rotation tensor, and the symmetric and 
antisymmetric tensors D E Sym and W c Skw are called the stretching and the vorticity ten- 

sor. 

Let A1 > O, . . . ,  An > 0 be the distinct eigenvalues of Vand P1, "' ", P,~ the corresponding sub- 
ordinate eigenprojections of V. Then we have the simple manipulation formula 

P~P~- = 6~P~ (no summation), (10) 

P1 §  + P,n = I. (11) 

Following Hill [15], we define a class of strain measures by 

7~ 

e = f (V)  = Z / ( A ~ ) P ~ ,  (12) 
o - - 1  
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where the scale function f(A) is a smooth strictly increasing function with the property 
f(0) = i f ( 0 ) -  1 = 0. In particular, the logarithmic scale function f ( A ) =  in A yields the 
Hencky's logarithmic strain measure (see, e.g., Hencky [14], Hill [15], and Fitzjerald [10]) 

77~ 

0"=1 

which here will be of particular interest. Some important results on the logarithmic strain and 
its rates can be found in Fitzgerald [10], Gurtin and Spear [12], and Hoger [16], et al. 

2.2 Objective corotational rates 

Let f Y E  Skw be a time-dependent spin tensor. In a rotating frame with the spin fF,  an objec- 
tive Eulerian symmetric second-order tensor S E Sym in a fixed background frame, becomes 
QSQ T, and hence its time rate in this rotating frame is given by 

(Q s) : (Qso ), 

= Q,SQT + QSQT + QsQT, 

= Q~QT = O . ~ .  (14) 

In the above, Q is a proper orthogonal tensor defining the spin fF,  i.e., 

a* = QT Q = _QT Q, 
(15) 

and moreover 

�9 

s ~ = s +  s ~ *  - ~ * s .  (16) 

O 

The latter, i.e., ~ ,  is called the corotational rate of the tensor S defined by the spin fF.  It is 
evident that there are infinitely many kinds of corotational rates. Not all of them, however, 
are objective. The objectivity of a corotational rate depends on its defining spin tensor, and 
the latter must be associated with the rotation and deformation of the deforming body under 
consideration in a suitable manner, as shown by several known examples, e.g., f F =  W 
(Zaremba-Jaumann-Noll rate; see, e.g., Zaremba [55], Jaumann [17], Noll [33]) and 
fF = R R  T (Green-Naghdi-Dienes rate; see, e.g., Green and Naghdi [11], and Dienes [8]), etc. 

Since the deformation gradient F and the velocity gradient L respectively characterize the 
local deformation state and the rate-of-change of local deformation state at a generic material 
particle, the most general form of spins f~* defining objective corotational rates may be as- 
sumed to be of the form: 

a* = w(F, L), 

where w(F, L) is an antisymmetric second-order tensor-valued function of the deformation 
gradient F and the velocity gradient L. To make the corotational rate defined by the above 
spin f~* to be a reasonable objective rate measure, certain necessary requirements must be 
imposed on the defining spin fF.  From the following requirements (see the second footnote in 
[52] and the three conditions listed at the start of Sect. 3 in [52]. In the following, the third one 
of the latter is dropped, and hence more general case is treated here): 

(i) any superimposed constant rigid rotation has no effect on fF,  
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(ii) the corotational rate of an Eulerian tensor defined by the spin fY depends linearly on 
the change of time scale, 

(iii) the corotational rate of each time-differentiable objective Eulerian symmetric second- 
order tensor field defined by the spin [2* is objective, and 

(iv) the tensor function cv(F, L) is continuously differentiable at L = O, 

these authors [52] - [53] have derived a general form of spin fF  as follows (see the formula pre- 
ceding the condition (34) given in [52]. The former, i.e., the formula given below, is more 
general than that given by Eq. (26) in Theorem 2 in [51] due to the less restrictive requirements 
adopted here, as mentioned before): 

a* = W +  ~ h(A~, A~, I) P~DP~, (17) 
~r:T--i 

where I = V : I = tr V is the trace, i.e., the first principal invariant, of the left stretch tensor V, 
and the function h(x, y, z) from R + x R + x R + to R, which defines the spin tensor fF  and is 
hence called the spin function, is antisymmetric with respect to its first two variables, i.e., 

h(x, y, z) = -h(y ,  x, z). (18) 

The general formula (17) (18) incorporates several commonly-known spin tensors as particu- 
lar cases [52] [53]. For example, according to (17), the following four particular forms of spin 

functions 

1 - -  i+ 2 x 
Y g 

l + -  y i- i- 

h(x,  y, z) = O, 

define the vorticity tensor W, the spin tensor/~R T and the twirl tensors f~E and f~L of the 
Eulerian and Lagrangean triads (el, n2, n3) and (RTnI, Rrn2, RTn3), here (el, n2, n3) being 
three orthonormal eigenvectors of the left stretch tensor g. A detailed account of these spin 
tensors can be found, e.g., in Hill [15], and Mehrabadi and Nemat-Nasser [29]. A spin tensor 
that will prove to be essential to our purpose will be introduced slightly later. 

Now we are in a position to establish the relationship between the stretching D and the 
O 

general objective corotational rate h* of the logarithmic strain h (see (13)) defined by the spin 
fF  of the form (17), which will be needed in the proof of the main result of this article. It 
seems that Fitzgerald [10], Gurtin and Spear [12], and Hoger [16] were the first to obtain some 
rigorous and complete results on this aspect for several well-known objective corotational 

rates. 
First, we have the equality (see Eq. (40) in Xiao et al. [50]) 

I/ = ~-~ ( A~2 + A~2p~,Dp~- (A~,- A~) P~WP~) (19) 

and the gradient formula (see Eqs. (30)-(31 a, b) in [49]; note that/~ = OE/OU: U therein, 
and that E and U are replaced by h and Vhere; see also [53]) 

Oh ,@, in A~-  in ~ : V :  Z_~ l~ p~i/p~, (20) 
c~;-=1 la - AT 

with the limiting process lima~a,(ln l~ In A~)/(A~- AT) = A~ -1 understood for ~r = ~-. 
Then, substituting the above two expressions and (13) and (17) into the second equality below 
and then using the simple manipulation formula (10) for the eigenprojections, we deduce (see 
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Xiao et al. [53]) 

o 

h* = ] i + h f F - f Y h  

37 

Oh 
0 r  P + h f r  - f~*h 

.... 1 A~ - -  A~- ~k AG + AT 

a,T--i 

= ~ ( l n A ~ - l n A ~ ) ( A ~ 2 + A ~ 2 + h ( A ~ , A ~ , I ) ) P ~ D P ~ .  (21) 
~r \/~o2 -- "X'c2 

Hence, we have 

O 

h* = r :  D,  (22) 

where F = F(V) is a fourth-order  tensor depending on the left stretch tensor V. 
The spin function 

2 
h ( x , y , z ) =  hI~ = 2 + ~  (23) 

\ y /  

defines a particular spin tensor f l  l~ called the logarithmic spin [50]- [53]. Accordingly, the 

corotat ional  rate of  an objective Eulerian tensor S defined by the spin gl t~ i.e., 

= s + s a  - (24) 

is called the logarithmic rate of S. Eqs. (23), (21) and (11) yield the defining tensor equation 
for the logarithmic spin f l  l~ as follows: 

o 

h l~ =/~ + hF~ l~ - 121~ = D, (25) 

which indicates that the logarithmic rate of  the logarithmic strain h is identical with the stret- 

ching D. Further  properties and results for the logarithmic spin and the logarithmic rate can 
be found in Xiao et al. [50] [53]. In Xiao et al. [50], the introduction of the logarithmic spin 

was mot ivated by examining the just-stated fact and inspired by the work by Gurt in  and 
Spear [12], the latter authors being the first to indicate the fact that  several well-known coro- 

tational rates of  the Eulerian logarithmic strain can equal the stretching under certain condi- 
tions (see also Hoger  [16]). 

Finally, we provide the expressions for the two fourth-order  tensors Oh/OV and F, both  
depending on V. Let A, B E T2. We define a fourth-order tensor A o B over 12 by 

(A o B)~y = AikBjz. (26) 

Hence, we have 

(A o B) : X =  AXB T 

for each second-order tensor X over 12. Further,  we introduce the following fourth-order tensor 

[A o B] = " r :  (A o S ) :  ~C, (27) 
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where T is the identity transformation on Sym given by (3.2). We have 

[A o B] = [B o A] 

for any A, B c T2. Evidently, as a map from T2 x T2 to T4, [A o B] is bilinear. Moreover, the 
fourth-order tensor [A o B] is a linear transformation on Sym. In particular, we have 

1 
[(!~ 1 @ V2) o (V 3 @ 1~4) ] = ~ (V 1 V Y3) @ (1~2 V ~4), (28) 

for any four vectors vl, .. -, v4. Then, from the above definition and (20)- (22) we obtain 

oh _ @ in a~ - in at 
P~], (29) /__, O 

0 V A~ A~- O'~T=I 

o-,'r=l /~s2 /~r2 

Both 0h/0 V and F are symmetric linear transformations on Syrn. An important property of 
(29) and (30) is: either of them is a spectral expression. In fact, by using (26) (27) we have 

([e~ o P, ] :  [P~ o p~]): x = [P~ o Pg]: (It's o e q :  x ) ,  

i v = : (P~P~XP~P 9 + P~P~XPoPg) 
2 

for each X E Sym. Then, by Eq. (10) we infer 

{ 4[P~- o P~], a = fl = o- = % 

2[P~oPg]:2[P~oPT]= 2[PsoP~], (a,~)=(cr,~-) or (~-,~),cr#~-, 

O, otherwise. 

Moreover, by Eq. (11) we deduce 

[e~ o e q  = v :  ( lo  I ) :  v = v .  (3~) 
o-,q--- 1 

Hence, we conclude that the m(m + 1)/2 fourth-order tensors 

{ [P~oPs], ~ = l , . . . , m ;  

2[Ps o P~], T >  ~r= 1 , . . . , m -  1, 

are the eigenprojections of either of the symmetric linear transformations Oh/OV and r on 

Sym, and 

in A~- in A~ 

As - A~ 

and 

(in as - l n  a~) \ ~  + h(a~,a~,Z) 

are the corresponding eigenvalues of the foregoing two symmetric linear transformations on 
Sym, respectively. 
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Thanks  to the spectral proper ty  indicated above, it becomes tractable to deal with the exis- 
tence of  and the expressions for the inverses of  the two fourth-order tensors mentioned before, 
which will be needed. Now we can assert that  the gradient Oh/OV is invertable, since every 

eigenvalue of it is nonvanishing. We have 

OV ( Oh , -1 ~ %~ _ ~ [e~ ~ e~l (32) 
0 h =  k , ~ ]  = lnA~ lnA~ ' Gr,T~I 

where for the gradient 0 V/Oh the left stretch tensor V is regarded as being determined by 

a tensor function of  the logarithmic strain h, i.e., V = e h. Moreover,  we assert that  F is in- 

vertable if 

h(x, > z) # 2. (33) 

When the above condition is fulfilled, we have 

CY~T~ i ()_1) 
A~ 2 17 2 

In deriving the latter, (31) is used. Besides, we use the symbol ~ to mean the summat ion  for 
cr#r 

all or, r = 1, . .- ,  m and c r r  r .  When m = 1, this summation is assumed to vanish. 

2.3 A chain rule for corotational derivatives of a second-order tensor-valued isotropic function 

In this subsection, we supply a useful result for corotat ional  derivatives of  second-order ten- 
sor-valued isotropic functions of  a symmetric second-order tensor. 

A symmetric second-order tensor-valued fuction r of  a symmetric second-order tensor 
A E Sun,  i.e., 

r = r  c Sym, 

is said to be isotropic if 

~ ( Q .  A) = Q .  (+(A)) ,  

i.e., 

Q * r  = r  (35) 

for each A c Sym and for each orthogonal  tensor Q E T e .  Let r be differentiable and 
moreover  let the tensor argument  A be time-dependent.  Then the following chain rule holds: 

Or 
i == 0-~: zi. (36) 

We intend to prove that  a corresponding chain rule holds for any corotat ional  rate of  v, i.e., 
for any given t ime-dependent spin fY c Shw, we have 

Or o, 
~'* = ~ : A  , (37) 
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o 
where ~r* and A* are the corotational rates of the tensors v and A defined by the spin fF,  ob- 

tained by replacing S with ,r and A, respectively, in the defining formula (16). 
In fact, by differentiating the two sides of (35) and utilizing the chain rule (36) we deduce 

= 5 5  

Then, letting the Q above be an orthogonal tensor defining the spin f F  (see (15)) and appiying 
(14), we infer 

Q , ~, Or o.a o 
= g 2  : ( Q . A * ) .  

Hence, by acting QT on the two sides of the above equality and then using (4) (5) we obtain ( ))o 
= : a * .  ( a s )  

Q,A 

Here and below, we use the notation Ol{ to designate the value of the function @ = O(w) at 

w = {,i.e., 

ol = 

On the other hand, by the definition of gradient of  a tensor function (see, e.g., Truesdell 
and Noll [47], and Marsden and Hughes [28]) and the isotropy of r as well as (4)-(5) we 

derive 

Ov o,a r  A + eeX) -r  : X  = lira 
_ c~-+O OZ 

: lira Q ,  r + c~QT, J0 - Q ,  qS(d) 
c~--~0 O~ 

= Q* ( Iimr + a Q r  *-X) - r  a 

= : ( Q r  

= 9~ : X  

for any X c Sym. The latter yields 

Or era Or (39) = Q ' 5 5 "  

Thus, from Eqs. (6), (38) and (39) we conclude that Eq. (37) holds. 

3 Gradient of a fourth-order tensor-valued function 

To prove the main result of this article, the main effort will be to evaluate the gradient of the 
fourth-order tensor-valued function F -1 of V (see (34)). In this section we shall attack this 
tough problem by virtue of the powerful eigenprojection method. 

For our purpose, it is sufficient to deal with the case when Vhas three distinct eigenvalues. 
Let A1, " ", A3 be the three distinct eigenvalues of V and nl, .. . ,  na three corresponding ortho- 
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normal eigenvectors of V. Hence, the three eigenprojections of V are given by 

P1 = nl  @ nl,  P2 = n2 @ n2, P3 =/'13 @//3. (40) 

The fourth-order tensor-valued function considered here is of the form: 

3 
f = e ( v )  = ~ ~(a~, aj, i)[P~ o Pj], (41) 

iCj 

where the function 

g = ~(z, y, ~) 

is assumed to be differentiable with respect to each variable of it and symmetric with respect 
to its first two variables, i.e., 

g(~:, Y, z) = 9(Y, x, z). (42) 

By the definition of gradient we have 

a t  ~ +( V+ ~X) - +(V) 
0-#: X = ~-~01im c~ ' VX E Sym. (43) 

To evaluate the gradient 0 I ' /0  V, it suffices to calculate the above limits for 

X = n i V n j ,  i , j  = 1,2,3, 

each of which is a fourth-order tensor. First, let X = Pi = n~ | ni and (ijk) a permutation of 
(123). Then, the eigenvalues of the symmetric second-order tensor V+ aPi are given by 
),i + a, Aj and ),~, and the corresponding eigenprojections by Pi, Pj and Pk. Hence we have 

Or ,~(V+ ~e~) - '~(V) 
~i?:Pi = lira 

a-~O O~ 

where 

= lim~(Xi + c~,)~j, I + a)-9()~i ,  Xi, I) ( 0 9 + 0 9 )  
o~ij 

l im~(~:--a .  Am, I +  o~)- ~()~i, ~ , I )  (0~" ~ )  (,x,,~,~,,) 
~it; a---~O O~ 

c~j~ = ~-~01im ~()~j' ~k, [ + a)a - ~(Aj, Ak, I) =--O90z (~j,~,5" 

In deriving the above results, the symmetry condition (42) has been used. Then we obtain 

1 o~' og 0g [p~ o p~l + ~ + N 
o v : P i =  ~ x + ~ z  

09 (),~.),k,I) [ej o P~] (44) 
+Oz , 

In the above process, the following notation for a function f = f(x, y, z) is used: 

with any given numbers (a, b, c). 
Next, let X = Pi j  = ni V nj and (ijk) again a permutation of (123). The eigenvalues of the 
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tensor l /  = V + ozPij a r e  given by 

/ h~ = �89 (h~ + h~ - s ) ,  

A ~ = ~ ,  P = i ( h ~ - h ~ )  ~ + 4 a  ~ 

and the corresponding eigenprojections by 

e j  ~- - P  l(ozPij  4- (hi - ~i) Pi  4- ()~j - Xi) e j ) ,  

P~ = P ~ .  

(45) 

(~6) 

Hence, by using the above facts and the symmetry condition (42) we get 

~'( g +  ~eis) = 2~ (A~, ak, [)[ei o ek] + 20(hi, ak, I)[Pj o e~] + 2~ (A~, Aj, I)[P~ o ej], 

where 
/~j -- Xj 

[P~ o ed  = p~ [Pk o e~j] + ,x~ -p 2,j [e~ o ed  + p [ej o e~], 

p P P 
O~ 2 

c~(,X~ - ~ j )  
p~ ([Pi o eij]  - [P3 o Pi2]) 

(h~ - a~)~ + ~ [e~ o pj]. p~ 

Utilizing the above results, we derive 

~0f' 1,. ~ ( ~ / +  ~p~) - (I,(V) 
~ : P i i  = - ~!m 2c~ o c~ 

=/~ij~[P~ o Pij] + fli~[Pi o P~] +/~j~[Pj  o P~] +/~i j[Pi  o Pj] 

+ 7i j([Pi  o Pi] 4- [Pj o Pj] - [Pij o Pij]) 4- Fij([Pi o Pij] - [Pj o Pij]),  

where 

/3ije = lim O(Xi, hA, I) - ~(Aj, h~, I) = 0(hi, h~, [) - ~(hj, h~, I) 
~-~o p hi - hj ' 

/3jk = ~olim _10~ ( Aj -p AJ ~(Aj, ha, I) 

lim 2~-c~- - - O, 7ij 

7]ij = - lim -~i = Aj ~(2~, Xj, I) -- 

hi \ 
' ~  ~(Xj,  ,xk, z )  - ~(,x~, ,x~, _r)) = o, 

P / 

-~i - -  "~j 
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In evaluating some of the above limits, the following asymptotic formula is useful: 

; - 

where 

lira o(a) = 0. 
v~--4) O~ 

Thus, from the above results, we arrive at 

2 0 V : P~2 = A~ - Aj [Pk o Pij] (47) 0(Ai, Aj, I) ([pi o Pi j ]  - [P j  o P i j ] ) .  

4 T h e  m a i n  result  and s o m e  r e m a r k s  

Theorem A. Let fF  be a spin tensor defined by the spin function h(x,  y, z) through (17) and ~* 
the objective corotational stress rate defined by this spin tensor (see (16) with S = r). Then 
the hypoelastic equation of grade zero 

}* : A(trD) I +  2#D = Ho : D (48) 

is exactly integrable to define an elastic relation if and only if the spin fF  is the logarithmic 
spin ~2 l~ defined by the spin function hl~ given by (23), i.e. if and only if the corotatio- 
hal stress rate ~* is the logarithmic stress rate ~1o~ (see (24) with S = r). When the stress rate 
~* is the logarithmic stress rate and r is the Kirchhoff stress, the integrable-exactly hypoelastic 
equation (48) defines the isotropic hyperelastic relation 

1: = A(ln (det V)) I +  2,1n V, (49) 

where det V is the determinant, i.e., the third principal invariant, of the left stretch tensor g. 

Proof. The sufficiency is obviously true, since it may easily be shown that the isotropic linear 
elasticity tensor H0 (see (2)) fulfils the integrability condition (3.8) and (3.19) presented in 
[51]. In what follows, we prove that the necessity is true. 

Let the hypoelastic equation (48) be exactly integrable to deliver an isotropic elastic rela- 
tion 

r = r h = in V. (5O) 

In the above relation h may be replaced by any other strain measure e =f (V)  (see Eq. (12)), 
since there is a one-to-one isotropic relation between the logarithmic measure It and any other 
strain measure e. Here the use of the logarithmic strain measure h (see (13)) will simplify the 
subsequent account. Then by applying the chain rule (37) for corotational rates we infer 

Or o 
= h* 0 h :  ' (51) 

o 

where ~* and h* are the objective corotational rates of the Eulerian stress r and the logarith- 
mic strain h defined by a spin tensor ~* of the form (17) through (16). Substituting (22) into 
(51), we obtain 

= : r :D. (52) 
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Hence (48.2) and (52) yield: 

: F  : D = H o : D  

for each stretching D E Sym. The latter is equivalent to 

0v 
0h:  F = H0. (53) 

Since H0 is invertable, F must also be invertable, i.e., Eq. (33) must be fulfilled. The latter 
implies that the spin tensor fl* can not be the twirl tensor of the principal frame (nl, n2, n3) of 
the left stretch tensor V. 

Under the condition (33) we may recast (53) in the form 

Ov 
_ _ = H 0 : r  -L, 
Oh 

where the inverse r -1 is given by (31). By using (2) and (34) we further convert the latter to 
the form 

Or 
o~  = H0 + 2~f" (- ~')~ (54) 

where the fourth-order tensor I' is given by 

~" = r -~ - v = ~ ~(:~, ~, f ) [P~ o e~] (55) 
c~TCT 

and 

with the spin function h(x, y, z) defining the spin tensor fF.  In deriving (54), the equality 

l : r  1 = 1  

is used. 
Now we restrict ourselves to the case when V has three distinct eigenvalues, i.e., m = 3. 

Let A1, ,~2, ;~3 be the three distinct eigenvalues of V and hi, n2 and na three corresponding 
orthonormal eigenvectors. Then we identify (55)-(56) with (40)-(41) and (56). According to 
the application of Vainberg's general theorem for potential operatiors in elasticity (see, e.g., 
Marsden and Hughes [28], and Simo and Pister [41]), Eq. (54) holds if and only if the gradient 
of the fourth-order tensor, I', given by the right-hand side of Eq. (54) with respect to h, keeps 
unchanged when its last two pairs of indices are exchanged, i.e., 

(0,) (0r) 
ijkz~s ~ i~,r~kz 

i.e,, 

(57) 

(ss) 

To apply the results derived in Sect. 3, we need to establish the relationship between the two 
gradients 0I ' /0h and 0f ' /0  V. The F in the gradient 0I ' /0  V is the fourth-order tensor-valued 
function of the left stretch V as given by (55)- (56), i.e., I ' = I'(V), while the I' in the gradient 
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0I ' /0k is the fourth-order tensor-valued function of the logarithmic strain h through the com- 
position 

= ~ ( v ) ,  r =  4 .  

With this fact in mind and by using the chain rule and applying (32) and (40) and (27)- (28), 
we infer that the foregoing relationship is given by 

of' of' ov  
oh = OP: Oh 

3 1~ -1 j  of' [p~op~] 
= ~ ,  in I~ ~ tj ~ :  i,j=l 3,3./C3f') l ~ - : l i - t j ( O f ' )  

In deriving the last equality above (note the factor 1/4), the notations 

Pi = ni @ hi, Pij =- ni V nj 

and the identity (28) with (vl, v2, vs, v4) = (hi, hi, ej, nj) are used. 
Finally, choosing the Eulerian triad (el, n2, ha) as a Cartesian basis and applying the for- 

mulae (44) and (47), from (58)- (59) we derive 

2(ln x -  in y) 
(60) 

when (x, y, z) = (11, t2, I); and 

= ~ N = 0 (61) 
N 121233 oh 123312 

when (x, y, z) = (11, 12, [); and 

{/ of"~ / o f ' ' ,  

k -)132312 = k ) 31223 
;(tl, t3, 5 - 0(12,13, I) ~(11,12, 5 - ~(11,13, I) 

as well as other similar results. The above conditions must hold for any 11, ),2, 13 > 0. Hence, 
we have 

x +Og = 1 9 

Og 

for any x, y, z > 0. The second equation above implies that the function g = ~(x, y, z) is inde- 
pendent of z, i.e., 

g - )(x, y). (64) 

Assume that 

g r 0. (65) 
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Then, from (63.1) and (64), i.e., 

10g_ 1 0 ( l n x - l n y )  
9 0 x  2(ln x -  In y) Ox ' 

we obtain 

Igl = - ~ l n  Iln z -  in Yl + r In 

Since g = O(x, y) is a symmetric function, i.e., 

O(x, y) : O(y, x), 

f rom (67) we infer 

r  = c = const.  

Hence, we arrive at 

6e c 
< { 1 , - 1 } .  

o - , / [  i n  �9 - In y l '  

Then, using (64) and reformulating (62,2) as 

O(h~, h2)0n  ),, - tn h2) + 0(h2, h3)(ln ),2 - in h )  = O(h~, ha )0n  h~ - tn ha), 

and then substituting (68) into the latter and using 6e ~ # 0, we deduce 

Here H(x )  is used to represent the function 

+1,  x > 0, 

H ( z )  = O, x = O, 

- 1 ,  x < O. 

Without  loss of  generality, we set 

h~ > h2 > ha(>  0). 

Then (69) becomes 

in g + g : hq. 

Let 

p = In ~ ,  q : 
h2 

In 

Then 

P-+-q = 1, p > 0 ,  q > 0 ,  

r = in 11 
Aa 

1 
esp. a = - 

2' 

r > 0 ,  

and hence the following inequality holds (note that  0 < w < 1): 

+ = w  a + ( 1 - w )  c~ < 1, 1 < o~< +oo,  

which contradicts the equality (70). 
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(66) 

(67) 

(68) 

(69) 

(70) 

(71) 
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Thus, the assumption (65) is not true and hence we conclude that g = 0. This and (56) pro- 
duce (23), i.e., 1 "-1 = T,  i.e., r = T.  The latter and (22) results in the defining equation (25) 

for the logarithmic spin 9t l~ 
This completes the proof  for Theorem A. [] 

Remarks. In addition to the objective corotational rates, the other commonly-known objective 
rates include Oldroyd rate [34], Cotter-Rivlin rate [4] and Truesdell rate [44]- [45]. Simo and 

Pister [41] showed that the hypoelastic equation (48) with Truesdell stress rate is integrable 

only when 

, \ §  = O. 

Moreover, according to Sansour and Bednarczyk [40], the hypoelastic equation (48) with 
Oldroyd stress rate is integrable only when 

) , = 0 .  

It seems that neither of the above two conditions with the Lam~ elastic constants ~ > 0 and 

# > 0 is reasonable. Thus, neither of the two hypoelastic equations (48) with Truesdell stress 
rate and Oldroyd stress rate is exactly integrable, if the material constants A and # therein are 

chosen as the Lam~ elastic constants, as has been done earlier. 

Finally, the hypoelastic equation (48) with Cotter-Rivlin stress rate is of the form 

~* = ( i  + r W  - Wr)  + r D  + Dr  = A( t rD) l+  2p, D. (72) 

The latter can be regarded as a particular form of the equation (48) in Sansour and Bednar- 
czyk [40] with 

~6 = -2 ,  ao = ~, a4 = 2#, a l  = a2 = c~a = oz5 = O, 

i,e,, 

Lv'$" = A( t rD)I§  2#D - 2(rD § Dr) (73) 

where the Lie derivative (see, e.g., Marsden and Hughes [28] for a detailed account of this 
aspect) 

L ~  = (~ + r W -  W v ) -  r D -  D r  

is just the Oldroyd stress rate. From one of the integrability conditions derived by Sansour 
and Bednarczyk [40], i.e., Eq. (56) therein, we know that the rate equation (73), i.e., (72), is 
not integrable. 

On the other hand, in finite inelastic deformations, other kinds of objective eorotational 
rates can be defined by means of  plastic spins. This is done by replacing the spin tensor F~* in 
(16) with W -  I4/9, where W p is a plastic spin (see, e.g. Dafalias [6]-[7], Loret [27] and Zbib 
and Aifantis [56]-[57]). It is evident that, for any process of elastic deformation, each such 
objective corotational rate is reduced to the Zaremba-Jaumann-Noll rate, for which the corre- 
sponding rate equation (48) for elastic response has been shown to be non-integrable. 

Combining the above facts and Theorem A, we may further conclude that, to achieve an 
integrabte-exaetly hypoelastic equation of grade zero, the logarithmic stress rate is the only 

choice among all possible objective corotational stress rates and other well-known objective 
stress rates. Thus, the Eulerian rate type finite deformation elastoplasticity models based 
upon the logarithmic stress rates, suggested by these authors in a succeeding article [3], are 
not only the first, but also unique, self-consistent ones of their kinds, in the sense of  compati- 
bility of the applied Eulerian rate type formulation of elastic behaviour with the notion of 
elasticity. 
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Added in proof." As has been indicated, the unique integrable-exactly zeroth-grade hypoelastic 

equation, i.e., Eq. (48) with the logarithmic stress rate ~* - ~log, yields the isotropic hyper- 

elastic relation (49), which is a natural generalization of  small deformation Hooke 's  law with 

the replacement of  the infinitesimal strain by the Hencky's  logarithmic strain In V. In a con- 

vincing study by L. Anand [58], [59], it is shown that the hyperelastic relation (49) is in good 

agreement with experiments for a wide class of  materials for moderately large deformations. 
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