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Introduction 

Given an almost complex manifold (M, J) (J being the almost complex struc- 
ture) one can define the operator ~-which maps the space of (p, q)-forms on 
(M, J) into the space of (p, q+  1)-forms [3]. It is well-known that the almost 
complex structure J is integrable if and only if ~2 =0. So in the general case 
~2 =t = 0 and this is one of the main reasons which make difficult even the local 
study of the ~-equation on a non-integrable almost complex manifold. The first 
step in this direction is to consider the problem of local existence of functions 
satisfying the equation ~ f  =0. We call these functions holomorphic on (M, J) [8, 
15]. Not  much is known on the 6-equation even in this simplest case. The 
celebrated Newlander-Nirenberg theorem [14] states that each point of M has 
a neighbourhood in which there exist 1 /2d imM (functionally) independent 
holomorphic functions if and only if the Nijenhuis tensor of J vanishes. On the 
other hand Hermann [8] and Calabi [-2] have constructed examples of almost 
complex manifolds which even locally have no holomorphic functions except 
constants. Recently, Dimiev [-4] has given a sufficient condition for the local 
existence of independent holomorphic functions on a real-analytic (M, J). 

The main point of the present paper is to give a general criterion for the 
local existence of k (0__< k<  1/2 dim M) independent holomorphic functions on 
an arbitrary (smooth) almost complex manifold, which will englobe all these 
results. More precisely we show in Sect. 2 that the local existence of inde- 
pendent holomorphic functions on (M, J) is equivalent to the local existence of 
a subbundle of the tangent bundle of M, having some special properties 
(Theorem 2.1). The key result for a crucial step in our proof is a theorem of 
Treves [17], which in turn depends on the Newlander-Nirenberg theorem. 

Given an almost complex manifold (M, J) and a point x in M, let re(x) be 
the maximal number of holomorphic functions which are independent at x. In 
general m(x) is not constant, hence we introduce the following: 

Definition. The almost complex manifold (M, J) is said to be of (constant) type 
m if m(x)=m for all x~M. 
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This is a more restrictive condition than Spencer's in [15] who defines the 
type of (M, J) to be the minimum value of re(x) when x ranges over M. In our 
terminology (M, J) is an integrable almost complex manifold if and only if it is 
of type 1/2dimM. A main purpose of this paper is to investigate various 
classes of almost complex manifolds which have been previously studied from 
a differential-geometric point of view, and show they are of constant type. 

Accordingly, in Sect. 3 we give a simple criterion for an almost complex 
manifold to be of type 0 (Theorem 3.1). Furthermore, we show how the results 
of Hermann and Calabi mentioned above can be obtained by applying this 
criterion (Examples 3.2 and 3.3). 

Section four is devoted to the most interesting class of almost Hermitian 
manifolds, namely that of nearly K~ihler manifolds [6]. In this case the Nijen- 
huis tensor satisfies some extra conditions (Lemma4.1) which allows us to 
obtain an explicit formula for the type of a nearly K~ihler manifold (Theo- 
rem 4.2). 

In Sect. 5 we reduce the question of determining the type of a reductive 
homogeneous almost complex space to a purely algebraic problem (Theo- 
rem 5.1). As an application we discuss Thurston's example [16] of a compact 
4-dimensional almost K~ihler manifold which does not admit a K~ihler struc- 
ture and show it is of type 1 (Example 5.3). 

Finally in Sect. 6 we examine the almost complex manifolds (T(M),.I), 
where T(M) is the tangent bundle of a smooth manifold M and J is the almost 
complex structure on T(M) defined by a flat connection D of M [5]. We 
determine the type of (T(M), J) by means of the torsion tensor of D (Theo- 
rem 6.1). 

I. Preliminaries 

In this paper, manifolds and tensor fields are assumed to be of class cs unless 
otherwise specified. 

1.1. Let M be an almost complex manifold with almost complex structure J, 
i.e. J is an automorphism of the tangent bundle T(M) of M, such that j z  = - I ,  
where I is the identity automorphism of T(M). Denote by C T(M) (resp. 
CT*(M)) the complexification of the tangent (resp. cotangent) bundle of M. 
Extending J by complex-linearity to an automorphism of I13 T(M) we can write 

t12 T(M) = T(M) 1" o | T(M)O, 1, 

where T(M) 1'~ and T(M) ~ are the complex subbundles of ffr associated 
respectively with the (+  i) and (-i)-eigenspaces of J (i2= _ 1). Also 

ff2T*(M) = T * ( M ) I ' ~  | T*(M) ~ 1, 

where T*(M) 1'~ and T*(M) ~ are the dual bundles of T(M) 1"~ and T(M) ~ 1 
respectively. For  any complex vector field Z on M we denote by PI,o(Z) (resp. 
Po, 1 (Z)) the (1, 0) (resp. (0, 1))-component of Z, so that 

Pt, o (Z )=I /2 (Z- i JZ) ,  Po, I (Z)=I/2(Z+iJZ) .  (1.1) 
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Note that Z is a (1, 0) (resp. (0, 1))-vector field if and only if Z = X - i J X  (resp. 
Z = X + i J X ) ,  where X is a real vector field on M (cf. [113). 

1.2. Let f be a complex-valued cg~o function on M. We denote by 0 f  the (0, 1)- 
component of the 1-form d f, where d is the exterior derivative. Recall that f is 
said to be a holomorphic function on (M, J) provided 0 f = 0 ,  or equivalently if 
df  is a (1,0)-form on (m,J) (cf. [8, 15]). Let f l , f2,  ...,fk be holomorphic 
functions defined on a neighbourhood of a point x ~M. Then these functions 
are said to be (functionally) independent at x if the (1, 0)-forms d fl ,  df2, ..., dfk 
are C-linearly independent at x [15]. It is well-known (cf. loc. cit.) that the 
almost complex structure J is integrable if and only if at any point of M there 
exist 1/2 dim M independent holomorphic functions. 

1.3. Denote by 3;(M) the Lie algebra of all real vector fields on M. The 
Nijenhuis tensor of J is the tensor field N defined by 

N (X, Y) = IX, Y] + J [J  X, Y] + J IX, J Y] - [J  X, J Y], 

where X, YeY,(M) and [ . , . 3  is the Lie bracket. It is easily verified that N 
satisfies the following identities: 

N(X, Y) = -N(Y ,  X), N(X, J Y) = - J N ( X ,  Y) (1.2) 

for all X, Y~Y~(M). The Newlander-Nirenberg theorem [14] states that the 
almost complex structure J is integrable if and only if N = 0. 

1.4. Given a complex subbundle ~U of C T(M) we denote by F(~//) the space of 
all smooth sections of U and by ~U(x) the fibre of ~ over x cM.  According to 
classical terminology, V is called involutive if [F(~K'), F(~U)] cF(~/#), i.e. given 
any two sections X, Y of ~ the Lie bracket IX, Yl is also a section of ~ .  Now 
let ~ be a complex subbundle of CT*(M). According to Treves [17] ~/U is 
said to be closed if for any local chart (U, (Pl, .-., Ok) of ~ and for any smooth 
section ~b of ~ over U, there exist k smooth 1-forms in U, ~k 1, ..., ~bk, such 
that d~b=q)l ^~ba+...+~G/x~b k. Let ~/U • be the orthogonal vector bundle of 

with respect to the duality between tangent and cotangent vectors. Then 
~/K • is the complex subbundle of C T(M) with fibres: 

~/'J-(x)={vsGTx(M); O(v)=0 for all ~b~/U(x)}. 

It is known (cf. [17, Chap. I, Proposition 1.1]) that ~/U is closed if and only if 
its orthogonal bundle ~/U • is involutive. 

2. Existence of Holomorphic Functions and/J-Bundles 

Let (M, J) be an almost complex manifold with Nijenhuis tensor N. For  any 
point x ~ M we define 

LP~#(x) =Span  {Nx(a, b); a, b~ Tx(M)} 
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and set r a n k x N = d i m ~ J V ( x  ). Notice that rank~N is an even integer since 
~JV(x)  is a J-invariant subspace of Tx(M) (see (1.2)). If rankN:  x~-,rankxN is 
a constant function we denote by ~. /V the subbundle of T(M) with fibres 
~JV(x),  and call it the Nijenhuis bundle of (M, J). 

Definition. Let r be a subbundle of T(M). We say that ~ is an / J -bundle  if 
the following properties are satisfied: 

(i) ~ is J-invariant, i.e. each fibre ~ ( x )  of ~ is a J-invariant subspace of 
T~(M). 

(ii) ~JV'(x) ~ ~Y(x) for all x a M. 

(iii) V is involutive. 

(iv) [X, Yl +J[X,  JY]  e F ( V )  for all X a F ( ~ )  and all Ya t (M) .  

We now state our main result. 

Theorem 2.1. Let (M, J) be an almost complex manifold and let x ~ M  be an 
arbitrary point. Then in a neighbourhood of x there exist k independent holomor- 
phic .functions if and only if on some neighbourhood of x there exists an I J- 
bundle of fibre dimension dim M - 2 k. 

We deride the proof of the Theorem into two lemmas. 

Lemma 2.2. The local existence of k independent holomorphic functions on 
(M, J) is equivalent to the local existence of a closed subbundle of T*(M) 1'~ 
with complex fibre dimension k. 

Proof of Lemma 2.2. Let f l ,  f2, ..., fk be independent holomorphic functions on 
a neighbourhood U of x. Then it is easy to verify that the subbundle of 
T*(U) 1'~ generated by dfl,  df2, ..., dfk is closed. 

Conversely, let r be a closed subbundle of T*(U) 1"~ with complex fibre 
dimension k. Then the complex conjugate bundle U of U is a subbundle of 
T*(U) ~ In particular U ~ = 0  and by a result of Treves ([17, Chap. I, 
Theorem 1.1]) it follows (contracting U if necessary) that ~/~ is generated by 1- 
forms dfl,df2 .... , d f  k, where f l , f2  .... ,fk are smooth functions on U. Since 
d f l ,  d f2, ..., dfk are (1,0)-forms it follows that f l , f2 ,  "",fk are independent 
holomorphic functions on U. 

The lemma above reduces the question of local existence of independent 
holomorphic functions on (M, J) to the description of the closed subbundles of 
T*(M) 1'~ To do this we need a further piece of notation. Let V be a complex 
subbundle of T*(M) I'~ Since the (1,0)-forms are annihilated by the (0,1)- 
vectors we can write 

~y-• = ~//-1. o | T(M)O, 1, 

where ~//~1,0 is a complex subbundle of T(M) l'~ Denote by V~ the subbundle 
of T(M) with fibres: 

~/f~(x) ={v~ T~(M); v -iav~*//-l '~ 

Note that ~/F is a J-invariant subbundle of T(M) since #-1,o is a complex 
subbundle of T(M) l" o. 
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Lemma 2.3. The correspondence ~/#~-*~Ue is a bijection between the set of all 
closed subbundIes of T*(M) 1'~ with complex fibre dimension k and the set of all 
1J-bundles on (M, J) with real fibre dimension d i m M - 2 k .  

Proof of Lemma 2.3. Let ~U be a closed subbundle of T*(M) 1'~ Then the 
orthogonal bundle ~ •  of ~U is involutive and therefore we have the following 
inclusion relations: 

pl,o[rU/l,o), r ( ~ l ,  o)3 = r ( V  ~,0) 

P~,o [F ('F'" o), F(T(M)O, ')1 c P('~t/"1' o) (2.11 

Pl, o [F(T(M) ~ 1), F(T(M)O, 1)j = F ( ~ I ,  o). 

Any section Z of T(M) ~ can be written as Z = X + i J X ,  where X~Y-(M) (cf. 
Sect. 1). Similarly, any section Z of "U 1'~ can be written in the form Z = X  
- i J X ,  where X ~F(:U~). Then by (1.1) we have 

2PI,o[X +iJX, Y+iJY]  =[X +iJX, Y + i J Y J - i J [ X  +iJX, Y +iJYJ 

=N(X, Y ) - i J N ( X ,  Y), 

where N is the Nijenhuis tensor of J. Hence the last inclusion of (2.1) is 
satisfied if and only if N(X, Y)EF(~Ue) for all X, Yey-(M). This is equivalent to 
the condition s for all x eM. Using the same arguments for the 
remaining inclusions of (2.1) we see that V • is involutive if and only if the 
bundle Ve has the following properties: 

(a) U~ is J-invariant, 

(b) 5r c ~/~.e(x) for all x e M, 

(c) IX, Y ] - [ J X ,  JY]EF(~K'~) for all X, YeF(~U~), 
(d) [X, Y]4-J[X, JY]EF('U'~) for all X~F('r  and all Ycy-(M). 
To prove that ~Ue is an /J-bundle it remains to show that it is involutive. 

Let X, YeF(~U~). Then by (d) we have [JX, YJ+J[JX,  JYJeF(~U~) and 
[Y, JXJ - J [Y ,  X] e F ( ~ )  which imply [X, Y] + [JX, JY] eF(~U~) since ~U~ is 
J-invariant. Hence by (c) we get [X, Y] e F(~U~) as required. 

Conversely, if we are given an /J-bundle ~K (with real fibre dimension 
dim M -  2 k), we can define an unique complex subbundle ~U of T*(M) 1' o (with 
complex fibre dimension k), such that ~Ue=~K. Since ~r is an /J-bundle it 
follows that V e has the properties (a), (b), (c), (d). Hence U• is involutive and 
therefore "U is closed. 

Theorem 2.1 follows by combining Lemma 2.2 and Lemma 2.3. 
As a consequence of Theorem 2.1 we obtain the following useful criterion 

for an almost complex manifold to be of constant type, in the sence of the 
Introduction. 

Theorem 2.4. Let (M, J) be an almost complex manifold with Nijenhuis tensor N 
and let r a n k N = d i m M - 2 m  be a constant function. Then (M,J) is of type m if 
and only if the Nijenhuis bundle ~#~Az has the following properties: 

(i) 2-~JV" is invoIutive, 
(ii) [X, Y] + J [X, J Y] e F(Lf JF) for all X ~ F(~Cf ~#) and all Y~ Y.(M). 
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Proof. By Theorem 2.1 (M, J) is of type m if and only if s176 is an /J-bundle.  
This is equivalent to conditions (i) and (ii) since ~ is J-invariant (see (1.2)). 

3. Strict Almost Complex Manifolds 

The almost complex manifolds which are the furtherst away from the complex 
manifolds are those on which every locally defined holomorphic function is 
constant. In our terminology these are the almost complex manifolds of type 0. 
In this section we propose a simple criterion for an almost complex manifold 
to be of type 0. 

Definition. An almost complex manifold (M, J) is called strict provided {x ~ M; 
rankxN =d imM} is a dense subset of M. 

Let (M, J) be a strict almost complex manifold. Then the only (local) I J- 
bundle on (M, J) is the tangent bundle T(M). Hence by Theorem 2.1 we get the 
following 

Theorem 3.1. Any strict almost complex manifold is of type O. 

In the next example we generalize slightly a result of Calabi stated without 
proof in [2, p. 429]. 

Example 3.2. Let M be an orientable hypersurface of IR v equipped with the 
Calabi almost complex structure J [2] and let N be the Nijenhuis tensor of J. 
For any point x e M  denote by A x the symmetric transformation of Tx(M) 
determined by the second fundamental form of M and an unit normal vector 
field to M [11]. Then K x = - A x + J ~ A x J  ~ is a symmetric Hermitian transfor- 
mation of T~(M) with respect to the restriction of the usual metric of IR 7 and 
the complex structure of T~(M) determined by J~. Hence K~ has three real 
eigenvalues, say kl(x), kz(x ) and k3(x ). Denote by k the following function on 
M: 

k(x) =(kl (x) + k2(x))(k2(x) + k3(x))(k3(x) + k~(x)). 

In [12] we have shown that {xeM; r ank~N =d im M}  = { x ~ M ;  k(x)~0}. Sup- 
pose further that M is connected, real-analytic and that the function k is not 
identically zero. Since 

24 k(x) = (Trace Kx) 3 - -  4 Trace K 3 

it follows that k is a real-analytic function on M and the principle of analytic 
continuation implies that {xeM; k(x)=#0} is a dense subset of M. Hence (M, J) 
is a strict almost complex manifold and therefore of type 0. We should note 
that if M is compact then the function k is not identically zero. This follows by 
the fact that in this case there is a point x in M, such that the transformation 
Ax of Tx(M) is definite (positive or negative, depending on the orientation) 
[113. Hence any compact real-analytic hypersurface of ~7  is an almost com- 
plex manifold of type 0. 

Example 3.3. Let M=G/K be a homogeneous space equipped with a G-in- 
variant almost complex structure J. Then the Nijenhuis tensor N of J is a G- 
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invariant tensor field on M and therefore rank N is a constant function. We 
now assume that M is isotropy irreducible. Since ~ Y ( o )  (o = {K}e G/K) is an 
invariant subspace of the linear isotropy representation of K at o it follows 
that either r a n k N = 0  or r a n k N = d i m M .  Thus by Theorem 3.1 we obtain the 
following result of Hermann ([8, Theorem 3.1]): Every isotropy irreducible 
homogeneous almost complex space is either integrable or of type O. 

A typical example of an isotropy irreducible homogeneous almost complex 
space of type 0 is the sphere S6=G2/SU(3). Other examples can be found in 
Wolf [18]. 

4. Nearly Kiihler Manifolds 

Let M be an almost Hermitian manifold with metric g, Riemannian con- 
nection D and almost complex structure J. Then we have g(JX, J Y)=g(X, Y) 
for all X, Ye 3;(M). Recall [6] that M is said to be a nearly K~ihler manifold if 
Dx(J)(Y)+Dr(J)(X)=O for all X, Y~Y~(M). In this section we determine the 
type of a nearly K~ihler manifold by means of the function rank N. We first 
prove a technical lemma. 

Lemma 4.1. Let M be a connected nearly Kiihler manifold with Nijenhuis tensor 
N. Then 

(i) r ankN is a constant function. 
(ii) For the Nijenhuis bundle 5flJff and all Xs3E(M), Y~F(~JV)  one has 

D x Y~ F(~q~Jff). 

Proof. Statement (i) is known [13], but we include a proof for the sake of 
compliteness. For  any almost Hermitian manifold one has the following well- 
known identities (cf. [19]): 

N (X, Y) = - Dx(J ) (J Y) + D jy(J) (X) - Djx(J ) (Y) + Dr(J ) (J X) 

Dx(J) (J Y) = - J Dx(J ) (Y) 

for all X, Yei~(M). In particular, if M is a nearly Kghler manifold, we get 
easily 

N(X, Y)=4JDx(J)(Y ) (4.1) 

g(U(X, Y), Z) =g(N(Y, Z), X) (4.2) 

for all X, Y, Z e S ( M ) .  The Kiihler form of M is the 2-form F given by F(X, Y) 
=g( JX ,  Y). Using (4.1) it is not hard to check that 

d F(X, Y, Z)=3/4g(N(X, Y), J Z). (4.3) 

Denote by rankxdF the rank of the 3-form dF at a point x e M .  Then by a 
result of Kirichenko [10] rank~dF is constant. On the other hand (4.3) implies 
rankxN =rank~ dF and (i) follows. 

To prove (ii) we shall use an identity for the curvature operator Rxr 
(X, YeY~(M)) of a nearly K~hler manifold. In [6] Gray has shown that 
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g(RxyZ , T ) - g ( R x r J Z ,  JT)=g(Dx(J)(Y),  Dz(J)(T)) 

for all X, Y, Z, Te  5(M). Then from (4.1) and (4.2) it follows that 

RxyZ + J RxrJ  Z = - Dz(J)(Dx(J)(Y))6 F ( Y  ~/" ). 

By the very definition of Rxr we have 

Rxr Z + J RxrJ  Z = -Dx(J) (J  DrZ ) + Dr(J ) (J DxZ) + D[x ' r l (J)(JZ)  

§ J DxDr(J)(Z) - J  DrDx(J)(Z). 

The two identities above, together with (4.1), imply that 

DxDy(J ) (Z) -DyDx(J) (Z  ) ~ F(5~ Y )  

for all X, I1, Z ~ Y(M). Taking symmetric sum in X, I1, Z we obtain, after some 
simplifications, that DxDr(J)(Z)~F(.Lf~Az ). Then (ii) is a consequence of the 
fact that the Nijenhuis bundle • Y  is locally generated by vector fields of the 
form Dy(J)(Z)(see (4.1)). 

Now we are in a position to prove the main result of this section. 

Theorem 4.2. Let M be a connected nearly Kfihler manifold with Nijenhuis 
tensor N. Then rank N is a constant function and M is an almost complex 
manifold of type 1/2 (dim M - rank N). 

Proof. We have shown in Lemma  4.1 that r a n k N  is a constant function, so it 
suffices to prove that the Nijenhuis bundle YJV" satisfies the conditions of 
Theorem 2.4. F rom Lemma 4.1,(ii) we have DxY~F(2LA 0 and D r X ~ F ( S f s ~  ) 
for all X, YEF(SPX). Hence [ X , Y ] = D x Y - D y X e F ( ~ s V  ) and therefore 
5~s~ is involutive. Now let X e F ( S ~ # )  and Ys3i(M). Then from 
Lemma 4.1, (ii) and (4.1) it follows that 

IX, Y] + J IX, J Y] = - Dx(J ) (J Y) - Dr X - J  DjyX ~ r (S f  dU). 

The theorem follows. 
The next corollary is an immediate consequence of Theorem 4.2, formula 

(4.1) and ([7, Theorems 5.2 and 5.3]) 

Corollary 4.3. Let M be a connected non-Kfihler nearly Kiihler manifold. Then 

(i) I f  d i m M = 6  then M is of type O. 

(ii) I f  dim M = 8 then M is of type 1. 

5. Homogeneous Almost Complex Spaces 

Let M = G / K  be a homogeneous space on which the connected Lie group G 
acts effectively. We fix a direct sum decomposition g = ~ �9 m, where g and f are 
the Lie algebras of G and K respectively and m is a vector subspace of g which 
may be identified with the tangent space to M at o = {K} e G/K. For the sake 
of simplicity, we shall always assume that M is reductive in the sence that m is 
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an ad(K)-invariant subspace of g. We also identify the G-invariant almost 
complex structures on M with ad(K)-invariant endomorphisms J of m, such 
that J2X= - X  for all X ~ m  [11]. 

Let (M=G/K,  J) be a homogeneous almost complex space with Nijenhuis 
tensor N. Denote the subspace 2,eJf'(o) of m by ln. Then r a n k N - d i m ~ l n  
since N is a G-invariant tensor field on M. 

Definition. A vector subspace b of m is called IJ-subspace if: 

(i) b is both ad(K)-invariant and J-invariant, 

(ii) Irt ~ t), 

(iii) [D, I)]~. c t), 

(iv) [X, Y]m+J[X, JY]mED for all X e b ,  Yem. 

(The subscript denotes the component in m.) 
Denote by d(M, J) the real dimension of the intersection of all IJ-subspaces 

of m. From (i) it follows that d(M, J) is an even integer. Note that the almost 
complex structure J is integrable if and only if d(M, J) =0 [11]. Moreover the 
following holds. 

Theorem 5.1. Let (M, J) be a reductive homogeneous almost complex space. Then 
(M, J) is of type 1/2(dimM-d(M,J)). 

Proof. Let m =re(o) be the maximal number of holomorphic functions which 
are independent at o. Since J is 'a G-invariant almost complex structure and G 
acts transitively on M it follows easily that (M, J) is an almost complex 
manifold of type m. An examination of the proof of Theorem 2.1 shows that 
the local existence of k independent holomorphic functions on (M, J) is 
equivalent to the existence of a G-invariant /J-bundle on (M, J) with fibre 
dimension dim M - 2 k .  On the other hand it is not hard to verify that the 
correspondence ~--~//~(o) is a bijection between the set of all G-invariant 1J- 
bundles on (M,J) and the set of all IJ-subspaces of m. These two remarks 
imply that d i m M - 2 m  =d(M,J) and the result follows. 

To illustrate the Theorem we consider an example. 

Example 5.2. Let U(4) be the unitary group of order 4. Consider the complex 
flag manifold M=G/K, where G=U(4)  and K =U(1) x U(1) x U(1) x U(1). Let 
g=u(4) be the Lie algebra of U(4). Then g = ~ |  where 

o o o \  

0 a33 0 
0 0 a44 / 

is the Lie algebra of K and 

; au~ll2 , 1=<i<4 

m= 
t 0 a12 a13 a14 ~ 

--a12 0 a23 a24/; 
-d13 --623 0 a j 
--614 --624 --634 ;4 

aijeC , 1 =<i<j=<4] 



292 O. Mu~karov 

is the tangent space to M at o (d u is the complex conjugate of ao). Define m12 
by 

11112 
= 12 0 0 

0 0 ; a l 2 E C  ; 

0 0 

m 1 3  , m l 4  , m 2 3  , m 2 4  , m34 are defined in an analogous way. Thus we have m 
= m 1 2 |  Let g=(g12,  g13, gld., g23, g24, g34), where eo.=-4-1. An 
U(4)-invariant almost complex structure J(e) on M is given by 

J ( g ) = g 1 2 J 1 2 ( ~ g 1 3 J 1 3 @  ... (~ 834J34, 

where Jvq" mpo--+mvq a r e  the linear m a p s  Jpq(apq)=(iapq), i 2= - 1 .  For any 
triple (p, q, r) (1 <p<q<r__<4) we denote 

C'pqr  ~ g p  q - -  '~ p r  ~ -  C" q r  - -  '~ p q  " ~ p r  " ~'qr " 

A messy but straightforward calculation shows that one has the following three 
cases 

(a) epqr=O for all triples (p, q, r). Then J(e) is an integrable almost complex 
structure. 

(b) There is exactly one triple, say (p,q,r), such that epqrq=0. Then in 
=mpq@mpr@mqr and In is an IJ(e)-subspace of m. Hence d(M,J(g))=6 and 
by Theorem 5.1 it follows that (M, J(e)) is an almost complex manifold of 
type 3. 

(c) In all other cases d(M, J(e))=12 and hence (M, J(e)) is an almost com- 
plex manifold of type 0. 

As a special case of Theorem 5.2 we obtain the following 

Corollary 5.3. Let (M, J) be a nonintegrable homogeneous almost complex space 
with d i m M = 4 .  Then (M,J) is an almost complex manifold of type 1 if and only 
if: 

(i) [In, lrt]m c In, 

(ii) IX, Y]m+J[X, JY]mcln for all X e l n  and all Yem. 

Proof. From (1.2) it follows that d i m l n = 2 .  Hence by Theorem 5.1 (M,J) is of 
type 1 if and only if In is an Ia-subspace of m. 

ExampleS.4. In 1976 Thurston [16] constructed a compact 4-dimensional 
almost Kiihler manifold W which does not carry any K~ihler structure. We 
briefly recall the definition of W following Abbena [1]. Let G be the closed 
subgroup of GL(4, 112) defined by  ( Xylz 0)0 / 

G =  0 1 0 ; x , y , z , t ~ I R  

0 0 exp(2~zit) 
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and let K be the discrete subgroup of G consisting of all matrices of G with 

integer elements. The vector fields e 1 =ffx-x ' ez =ff-vv + x  ~z '  e3 = ~ z '  e 4 = &  - are 

left-invariant and form a basis of the Lie algebra 9 of G. The Lie multiplication 
table of g is given by 

[e 1 , e 23 =e  3 [e2, e33 =0  

[e~, e3] =0  [e 2, e4.-] =0  (5.1) 

[el ,  e43 =0  [e3, e43 =0.  

Let J be the left-invariant almost complex structure on G defined by Je  1 = - e  4, 
Je  2 =e3, Je  3 = - e 2 ,  J e 4 = e  1. In particular J is invariant under K and there- 
fore J determines an invariant almost complex structure Y on W,=G/K. To 
determine the type of (W, J) we use Corollary 5.3. Since K is a discrete group 
the tangent space to W at a point may be identified with g. Then an easy 
computation, involving (5.1) shows that In is the vector subspace of 9 generat- 
ed by e 2 and e3, and that lrt satisfies the conditions of Corollary 5.3. Hence 
(W, J) is an almost complex manifold of type 1. 

6. The Tangent Bundle of  a Manifold with Flat Connection 

Let M be a smooth manifold endowed with a linear connection D. Dom- 
browski [5] has shown that D determines an almost complex structure on the 
tangent bundle T(M) of M, which we denote by J. In this section we examine 
the almost complex manifolds obtained in this manner when D is a fiat 
connection (i.e. the curvature tensor of D vanishes). 

We briefly recall the definition of J following Dombrowski [5]. For  any 
XE•(M) let Xh, xv~3~(T(M)) be the horizontal and vertical liftings of X 
respectively. Then J is defined by J x h = x  ~, J X ~ = - X  h for all X ~ ( M ) .  
Denote by T and R the torsion and curvature tensors of D respectively. For  
any point x in M we define 

~ Y ( x )  =Span  {Tx(a, b); a, b E Tx(M)} 

and set rank~ T=dimA~ If rank T: x~---,rankxT is a constant function we 
denote by A~ - the subbundle of T(M) with fibres A~ It is well-known [5] 
that J is an integrable almost complex structure if and only if T=O and R =0. 
As a partial generalization we have the following 

Theorem 6.1. Let M be a smooth manifold with flat connection D and let rank T 
= d i m M - t  be a constant function. Then the almost complex manifold (T(M), J) 
is of type t if and only if D x Y ~ F ( ~ 9 - "  ) for all X~3~(M), Y s F ( 5 ~ J ) .  

Proof. Since R =0  we have the following formulas (cf. L5]): 

[X h, yh] = [X, y]h (6.1) 

I X  h, Y~] =(D x Y)~ (6.2) 

N ( X  h, yh)= - ( T ( X ,  y))h (6.3) 

N ( X  n, Y~)=(T(X,  Y))~ (6.4) 
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for all X, Y~ 3;(M), where N is the Nijenhuis tensor of J. F r o m  (6.3) and (6.4) it 
follows that r a n k N  = 2  rank T = 2 ( d i m M - t )  is a constant  function. Further-  
more  

5 r  = ~ e J  h @ 5 ~  -~, 

where 5 r  --h and s  v are the horizontal  and vertical liftings of the bundle  
5~Y-, respectively. N o w  from (6.1) and (6.2) it is not  hard  to verify that  the 
Nijenhuis bundle Y J f f  of  (T(M), J) satisfies the conditions of  Theorem 2.4 if 
and only if D x T ( Y , Z ) ~ F ( ~ J  ) for all X, Y , Z ~ ( M ) .  The theorem then fol- 
lows by the fact that  the bundle  L f g  is locally generated by vector fields of 
the form T(Y, Z), where Y, Z~3E(M). 

If M is connected and the torsion tensor T has vanishing covariant  de- 
rivative (then T is said to be parallel) it is obvious that  the conditions of 
Theorem 6.1 are fulfilled. Thus we obtain 

Corollary 6.2. Let M be a connected manifold and let D be a fiat connection with 
parallel torsion T. Then r a n k T  is a constant function and the almost complex 
manifold (T(M), J) is of type d i m M - r a n k T .  

A natural  candidate  for a manifold satisfying the condit ions of Corol-  
lary 6.2 is any connected Lie group with ( - ) - c o n n e c t i o n  of E. Car tan  [11]. 
Moreover ,  by a result of Ka m be r -T onde u r  [9] every connected manifold which 
admits a complete flat connect ion with parallel torsion is a coset space M 
=Girt, where G is a connected and simply connected Lie group and ~ is a 
subgroup of the affine group of G acting properly discontinuously and without  
fixed points on G. No te  that in this case the type of the almost  complex 
manifold (T(M), J) can be determined by means of the Lie algebra g of G. In 
fact, by the arguments  of [9] it follows that rank T = d i m [ g ,  g] and therefore 
(T(M), J) is of type d img  - d i m [ g ,  g]. 
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