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Summary. A system of ordinary differential equations describing the velocity, strain and stress fields of 
an isotropic rigid perfectly plastic material flowing through an axisymmetrical converging channel was 
derived. The plastic flow behavior was assumed to be described by an arbitrary yield condition and its 
associated flow rule. The solution of this problem was applied to the case of a yield function suitable for 
isotropic FCC polycrystals such as aluminum alloys. The singularity of the strain rate field at the channel 
wall where maximum friction forces occur was discussed and the influence of the yield surface shape on 
the velocity, strain and stress fields was investigated. 

1 Introduction 

Flow through a channel is one of  the classical problems in solid and fluid mechanics. Applied 

to the case of  plastic material, this problem is the simpliest approximation of  extrusion proces- 

ses. There are only a few exact analytical solutions for a rigid, perfectly plastic material under 

axially symmetric conditions. These solutions can be used to calculate the stress and plastic 

deformation which occur during the flow of  the material through an infinite converging 
channel (Sokolovski [1]; Shield [2]; Brovman [3]), the flow of  a plastic material along a rigid 

fiber (Spencer [4]) and the steady penetration of  a rigid cone into an infinite plastic space 

(Durban and Fleck [5]). The Von Mises and Tresca yield conditions were adopted in all of  

these solutions, and a constant shearing stress was assumed on the friction surfaces. These 

solutions showed that if the shearing stress is equal to the shear yield stress, the shear st:rain 
rate as well as the effective strain rate tend to infinity on the friction surfaces. It was shown 

that this is a general feature near the surfaces with maximum friction and a velocity jump for 

a rigid perfectly plastic material. The asymptotic behavior of  the velocity field was found 
under plane strain conditions by Sokolovsky [6], under axially symmetric conditions by Alex- 

androv and Druyanov [7] and Druyanov and Alexandrov [8] for a Von Mises material, and 

Alexandrov and Richmond [9] for a Tresca material. The asymptotic behavior in the general 
case of  an arbitrary three-dimensional flow was derived by Alexandrov [10], [11] with the Von 

Mises yield condition. Because the effective strain rate influences many material properties 
such as hardening, softening and fracture and physical fields such as temperature, it is impor- 
tant to know whether the singular behavior near the friction surface with maximum friction 

and a velocity jump is still valid for a material following a yield condition other than Tresca 
or Von Mises. 

In classical time-independent flow theory of  plasticity, the yield condition serves as a 
potential for the strain rates, i.e., the strain rate is normal to the yield surface. Hecker [12] 
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reviewed many biaxial and triaxial experiments on metals and concluded that, though the 
normality rule could not be proven, it was never violated. For polycrystalline materials, 
Bishop and Hill [13] demonstrated that if dislocation glide obeys the Schmid rule, i.e., slip 
occurs in crystallographic planes and directions for which the resolved shear stress reaches a 
critical value, the yield condition was also a potential. Therefore, for metals and alloys, the 

classical flow theory seems to be a good approximation of the plastic behavior. It has been 
used with yield conditions different from Tresca and Von Mises for isotropic and anisotropic 
materials (for instance Hill [14]; Hershey [15]; Hosford [16]; Bassani [17]; Hill [18]; Logan and 
Hosford [19]; Budianski [20]; Hill [21]; Barlat, Lege and Brem [22]; Karafillis and Boyce [23]). 

The material behavior has a major impact on the prediction of properties such as plastic 
flow localization, fracture and, more generally, on stability or bifurcation phenomena. For 
instance, in a thin sheet, the prediction of plastic flow localization assuming either an imper- 
fection in the material (MK theory, Marciniak and Kuczynski [24]) or a singularity (develop- 
ing vertex) on the yield surface (StSren and Rice [25]) strongly depends on the yield surface 
shape. Barlat [26] computed the forming limits in a thin sheet for Von Mises and Tresca mate- 
rials using the MK theory. In the biaxial stretching range where the sheet is stretched by the 
same amount in any direction, the Von Mises limit strains were four to five times larger than 
the Tresca limit strains. Bate [27] and Barlat [26] computed the yield surface of FCC metals 
with the Taylor [28]/Bishop and Hill [13] polycrystal model (TBH) and used it to predict the 
forming limit of FCC sheets. The limit strains were in between the forming limits computed 
with either the Tresca or the Von Mises potentials and in better agreement with the experi- 
mental trends. 

In this paper, the plastic flow in a converging channel is studied assuming that the material 
behavior obeys the classical flow rule of plasticity with an arbitrary isotropic convex yield 
function independent of the hydrostatic stress. It is also assumed that this function is differen- 
tiable with respect to its arguments. In the first Sections of this paper, the general governing 
equations are derived. Because the yield condition has such a tremendous impact on material 
properties, it is important to select and use yield conditions that best describe the material 
behavior. For FCC polycrystals such as aluminum alloys, Hershey [15] and Hosford [16] pro- 
posed an isotropic yield condition which can approach the theoretical polycrystal yield condi- 
tion very well. Therefore, for a numerical example, this yield condition is combined with the 
general governing equations of the converging channel problem. Results pertaining to Von 
Mises, Tresca-like and FCC (such as aluminum alloys) materials are discussed. 

2 Statement of the problem 

It is assumed that the material flows through a conical circular channel of sufficient length so 
that the steady flow in the channel is not affected by its extremities. The angle of the conical 
channel is denoted by 2c~ and the material is assumed to behave like a rigid perfectly plastic 
body. A friction force between the channel wall and the material counteracts the plastic flow. 
The corresponding friction stress is assumed to be kT, where ~- is the flow stress in shear and k 
is a constant coefficient (0 < k < 1). A spherical coordinate system r, 0 and ~ (Fig. 1) is used 
to describe the problem. The material is assumed to be isotropic and, as a result, the velocity, 
strain and stress fields exhibit axial symmetry. Therefore, as for the plane strain channel prob- 
lem (Hill [29]), one angle denoted by ~ is sufficient to characterize the rotation between the 
principal reference frame and the spherical coordinate system as illustrated in Fig. 1. 
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U CYrO = k'c 

~._.._._._.matenal 
Fig. 1. Sketch of the converging channel with 1 and 2 being 
the principal stress axes 

3 Relationships between stress components 

Due to the symmetry of  the converging channel problem, the two components tow and t ~  of  

the stress (or rate of  deformation) tensor t are equal to zero. The relationship between the 

principal components and the components of  t expressed in the spherical coordinate system 
are given by the usual tensor transformation formulae, 

1 
tl  = ~1 (t~ + to) + ~ (t~ - to) cos 2~ + t~o sin 2~, 

t2 = ~1 (tr + to) - 21 (t~ - to) cos 2~p - t~o sin 2~, 

t3  = t~v , 

1 
0 = ~ (to - tr) sin 2~ + t~0 cos 2~. 

(s) 

(2) 

(3) 

(4) 

These equations can be applied to the case of  the stress tensor, a< is larger than or0 because a 

material elongates along the channel. Moreover, the friction of  the die on the material is 
opposed to the flow motion. As a result, the angle ~ can be defined without ambiguity as a 

function of  the stress components expressed in the spherical coordinate system (Eq. (4)), 

2arO 
tg 2~b = - -  > 0 or 0 < ~) < 7r/4, (5) 

0 - , r  - -  0-0 

and, using trigonometric relations, 

O-r - -  CrO 20-r0 
cos 2~p -- __ and sin 2~ -- __ (6) 

+<0 +<0 
It is possible to eliminate ~p from the principal stress expressions (Eqs. (1) and (2)), 

1 1 ~/(0-~ _ 0-0) 2 + 2 0-1 : ~ (0-~ + 0-o) + ~ 40-~0, 

1 1 ~/(0-~ _ ~0)2 + 40-~0. 0-2 : ~ (~,. + 0-0) - 

(7) 

(s) 

In the following, cr = (cr~ + 0-0 + cry)/3 will denote the mean stress and Pk the difference be- 

tween two of  the principal stresses (or twice the maximum shear stresses in the principal axes 
frame). Pk can be expressed with the deviatoric stress components from Eqs. (3), (7) and (8), 

1 1 {  2 
P1 = 0-2 - -  0-3 = ~ (&r -< 80 - -  28~) -- ~ (&r -- 80)  2 -~ 48r0, (9) 

1 ( 2 ~ -  8 ~ -  8 0 ) -  1 { 2 (lo) P 2  = 0-3 - 0-1 = ~ ~ (8r  - -  80)  2 -}- 48, .  0 , 
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P 3  z 0-1 - 0-2 = ~ / ( s , c  - so) 2 Jr- 4 8 2 0  . (11) 

For  convenience in this problem, P = s~ + so = - s ~  will be used as an independent stress 

variable. The quantities P1 and P2 can be expressed as a function of  P and Pa only, 

3 P  - Pa - 3 P  - Pa 
P1 - ~ ,  /:)2 - 2 (12)  

The set of  variables o, P, Pa and s~o will be used throughout  this paper to characterize the 

stress state in the channel. 

4 Relationship between velocity and strain components 

The plastic flow is assumed to be radial with the velocity v~ = v. The components of  the rate 

of  deformation tensor are 

Ov v 10v  
z - -  z - -  - -  

e~ Or eo = e~ r and e~0 2r 00 '  (13) 

and because of  plastic incompressibility, v obeys the following differential equation: 

Ov 2v 
Or F r o. (14) 

Integration of  this equation leads to 

~0(0) ~ =  ~ 2 ,  (15) 

and the components of  the rate of  deformation can be rewritten as 

_ 1 dvo(O) 2v0 (0) a~ v0 (0) and c~.0 - (16) 
cr - -  r3 , co = c~ -- 2 r 3 2r 3 dO 

Because the material is isotropic, the tensor transformation equations (Eqs. (1) to (4)) are also 

valid with the same angle ~ for the strain rate components. Equation (4) applied to the rate of  
deformation results in 

2crO 4crO 
tg 2~ . . . .  > 0 

cr - cO 3Cr -- 

and, using trigonometric relations, 

3Or 
cos 2~ -- and 

\/9c~ 2 + 16e2~0 

(17) 

4cr0 
sin 2r  - ~/9er2 + 16e2 ~ . (18) 

5 Material  behavior 

The material is assumed to be rigid perfectly plastic and to obey the classical flow theory of  

plasticity with an isotropic yield condition ~ = qS0 and the associated flow rule. The relation- 
ship between principal stresses and strain rates can be expressed with the variable Pk, 

O; OGi OPk~ opkOr (19) ei A = A 0 - Ar with 0~ - 
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or, taking Eqs. (9) to (11) into account, 

C1 = /~(03 - -  r  s = /~(r  - -  r  C3 = A(r -- r (20) 

It is possible to introduce the function F = @1 + e2)/(Cl - e2) which may be expressed as a 
function of  r or r by means of  Eqs. (1), (2), (13) and (20) in the following form: 

e l  4- s r - r eT 1 
F . . . . .  g c o s  2r  (21) 

g l  - -  s  2r -- r -- r ~9er2 + 16e~0 

Using the relations between velocity and strain rate, Eq. (16), Eq. (21) results in 

1 
vo(O) ~ - +  - ~ - - ~ 7  - 9 = + 3 t g 2 r  (22) 

A consequence of  Eqs. (21) and (22) is that both ek and Pk are functions of  only one variable, 

r or 0 and, by implication from Eqs. (9) to (12), sT, so, s~ and P can also be assumed to be 
functions of  r or 0 only. The two variables P and Pa that are used to describe the stress state 

in the channel can be expressed as a function of  r using the yield condition and Eq. (21) 

which, for the present calculations, are more conveniently used in differential forms, 

de = r dP1 4- r dP2 4- r dPa = de0 = 0, (23) 

2 OF 
dF = F1 dP1 4- F2 dP2 4- F3 dPa = - ~ sin 2r  de  with Fj = OPj (24) 

Differentiating Pk as a function of  P and Pa only (Eq. (12)) and substituting in Eq. (23) leads 

to a system of two differential equations that can be used to calculate P and Pa as a function 
o f r  

dP 4 1 
dr  -- 3 sin 2r  - F2) - (2F3 - F1 - F2) cos2r  

dPa dP (25) 
de - cos2r  

6 Equilibrium equations 

Due to the axial symmetry of  the channel, the stress components cry0, ~r0~ equal zero, and the 
equilibrium equations in spherical coordinates reduce to 

0~TT + 1 0aT0 + 1 {2~7T - a0 - cr~ + aT0 cot 0} = 0 (26) 
& ~-o0- 7 

O~TO0,. ~-7~-1  &0 + 71 {(~0 -- ~'~) cot 0 + a~To} = o. (27) 

Using the decomposition of  the stresses into the deviatoric components and the mean pres- 
sure, Eq. (26) can be written as 

a a  c(e) &~e . 
o~ + ~ = o, wh~r~ ~(0) = -hV + a~. + ~rO oot 0 (2S) 
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and, by integration, 

o- = - c ( O ) l n r  + A(O). (29) 

To satisfy Eq. (27), it is necessary to impose c(O) = - C ,  where C is an arbitrary constant. 
Then, the two equilibrium conditions (Eqs. (26) and (27)) become 

Osro 
C + ~ -  + 3s~ + s~o cot 0 = O, (30) 

Oso dA 
or  ~ ~ + (s0 - s~) cot 0 + 3~o = o. (31) 

Using the variables P - - s v ,  P3 defined by Eq. (11), cos 2~ and sin 2~ defined by Eq. (6), it is 

possible to express s~o and st, 

Pa sin 2~ P + Pa cos 2~ 
s,-o -- - -  and & - (32) 

2 2 

Substituting in the equilibrium equation (Eq. (30)), and using the differential system (Eqs. 
(25)) to express the stresses P and Pa as a function of  ~b only, it is possible to express 0 as a 

function of  ~ in a differential form, 

4 COS 2~) s in  2 2~9 tg 0 
dO 2P3 cos 2~ tg 0 q 

3 [3(F1 - F2) - (2F3 - Fx - F2) cos 2~] (33) 
dO - (2C + 3P  + 3P3 cos 2~b) tg 0 + P3 sin 2~b 

7 A n a l y s i s  o f  e q u a t i o n s  

Equations (25) and Eq. (33) form a differential system of three equations with three functions, 

0, P andPa, to determine as a function of  ~b. This system is valid for any smooth isotropic yield 

condition which appears in the system through the function Fj. In order to solve this system, 

three boundary conditions are required and one condition is needed to determine the value of  C. 
Because of  the axial symmetry of  the channel, s~o = 0 at 0 = 0 which gives ~b = 0 from Eq. (32). 

In addition, because of  this symmetry, so = s~ at 0 = ~b = 0. The stress state on the channel axis 

is equivalent to uniaxial tension superimposed with a hydrostatic pressure and, therefore, 

s ~ _ s o _  s ~ _  1 s , .O_O (34) 
cry O-y cry 3 ' cry 

where cry is the uniaxial flow stress. Therefore, the boundary condition for Eq. (25) is 

P3 3P  
- - 1 .  ( 3 5 )  

cry cry 

However, for this case, the point 0 = 0, r = 0 in Eq. (33) is critical and a direct numerical proce- 
dure is not possible at this point. To overcome this problem, a linear approximation of  this equa- 
tion is considered, assuming that 3(F1 - F2) - 2(Fa - FI - F2) r 0 at this critical point. This 
inequality may be checked for the boundary condition Eq. (25) and a specific yield condition. 

Small quantities r and 0* can be introduced instead o f r  and 0 near the critical point. Then, 

de  r 
- -  ~ - - ,  ( 3 6 )  sin 2~* ~ 2~*, tg 0* ~ 0* and dO O* 
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and Eq. (33) leads to 

dO* O* 
de* c~O* + r 

where cl = (2C + 3P + 3Pa)/2P3. 

63 

(37) 

The values of P and P3 are taken at a critical point from the boundary conditions, Eq. (35). 
Equation (37) has the general solution 

7) c10 �9 (3s) 
~*-0" 2 

where 7? is an arbitrary constant which must be taken 7? = 0 to satisfy the boundary condition 
~* = 0 at 0* = 0. Then, Eq. (38) gives the solution near the critical point, 

0 (  3P(0) , 3 )  C (39) 
= - ~ C1 + ~ -1- ~ with C1 --  Ps (0)" 

Taking into account the boundary condition for P and Pa, Eq. (39) leads to 

0 
= - ~ (C1 + 2) (40) 

where C1 is defined by the friction factor on the wall. 

The only quantity that has to be known to solve this problem is the final value of ~. This 
can be obtained from the boundary condition on the wall of the channel where the shear stress 
is equal to kT. Combining with Eqs. (6) and (11), the final value ~ / i s  given by 

~f  = ~ arcsin L~ J" 

In this equation, P3 (defined by the differential system of Eqs. (25)) and ~- (the simple shear 
yield stress) can be calculated for a given yield function. The value of ~f can, therefore, be 
obtained for a given value of k describing the boundary condition on the channel wall. 

To summarize, the differential system describing the stress distribution in the channel is 
defined by Eqs. (25) and (33). Equation (25) is solved first to find the stresses as functions of 

and the interval of integration [0, ~f] for the variable r from Eq. (41). Equation (33) is 
solved to obtain the relationship between 0 and ~. This final result is obtained in an iterative 
manner, the constant C being adjusted to satisfy the boundary condition 0 = a at ~/. Then, 
the deviatoric stresses can be obtained from Eq. (32) with ss = - P  and so = - ( s t  + s~). 
Because plastic flow does not depend on the hydrostatic pressure and there is no boundary 
condition for the normal stresses, A(O) cannot be defined uniquely. The velocity can be ob- 
tained with a prescribed mass flux or value of the velocity V0 at any point, for example at 
0 = 0, by solving Eq. (22) which can be rewritten as 

dvo ( ,, dO 
,F) = -k3v0(@ tg 2 ~  

1 

4 sin 2 2~ tg 0 
2P3 t g 0 +  

3 [3(/~1 - t52,2) - (2F 3 -- F1 -- F2) cos 2~)] (42) 
= T3v0(F/) sin 2r ( 2 C + 3 P + 3 P 3 c o s 2 r  

This differential equation can be solved simultaneously with the main system of equations 
(Eqs. (25) and (33)). In Eq. (42), v0(r is negative (see Fig. 1) and, because of friction on the 
channel wall, its absolute value decreases when r increases. Since dO/dr is positive, the correct 
signs after the first and second equalities of Eq. (42) are minus and plus, respectively. 
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As an example, these equations are solved in the next Section for a given yield function 

and for the friction shear stress on the channel wall corresponding to the value of  k = 1 (maxi- 

mum friction shear stress). In this case, it follows from Eq. (41) that ~I  = ~r/4. 

8 Numerical example 

As mentioned earlier, the Hershey [15] -Hosford  [16] isotropic yield function is used as an 

application of  the general solution for the converging channel, 

(43) 

This yield function reduces to Tresca yield condition when the parameter m is equal to 1 or to 
~ ,  and to the Von Mises yield function when m is equal to 2 and 4. Moreover, this function 

leads to a very good approximation of  the yield surface calculated with the Taylor [28] poly- 

crystal model for BCC and FCC materials when the exponent is equal to 6 and 8, respectively. 

In the Taylor model, all the grains are assumed to be subject to the same macroscopic strain 

imposed on the polycrystal. In the case of  FCC metals, plastic deformation is assumed to 

occur by dislocation glide on {1 1 1} crystallographic planes and in {1 i 0) directions. In order 
to accommodate any imposed deformation, Bishop and Hill [13] showed that the stress state 

in each grain corresponds to the stress on one of  the 56 vertices of  the single crystal yield sur- 

face. The active vertex is defined by the maximum plastic work principle. For  an isotropic 

polycrystal, the grain orientation distribution is uniform in orientation space and the overall 

stress acting on the polycrystal results from averaging the stress over all the grain orientations. 

The resulting polycrystal yield surface is represented in the 7r-plane in Fig. 2. This figure also 

shows the yield surface obtained with Eq. (43) for m = 20 (near Tresca), m = 8 and m = 2 
(Von Mises). For  m = 8, the corresponding yield surface is in excellent agreement with the 

polycrystal yield surface computed for isotropic FCC materials. 
The numerical solution of  the equations derived in the previous Sections using the yield 

condition (Eq. (43)) with m = 2, 8 and 20 is discussed in the next Section. 

0.5 

-0.5 

-1 
-1 

, :)s:!ro ,o;,e,0su aoes 

3 5 -  ~ "J ;~pla 

-0.5 0 0.5 

Fig. 2. Isotropic yield surfaces in the 7r- 
plane predicted with the yield function expo- 
nent m = 2, 8 and 20 and with the Taylor/ 
Bishop and Hill (TBH) polycrystal model. 
Stresses are normalized by the uniaxial flow 
stress cry. 
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9 Results and discussion 

The deviatoric stresses normalized by the uniaxial flow stress ~ are represented as functions 
of 0 in Figs. 3a, 3b and 3c for m, the yield function exponent, equal to 2 (Von Mises), 8 (FCC 
material) and 20 (near Tresca), respectively. The stresses, particularly the component s~, vary 
significantly for the different values of m used in this numerical application. For illustration, 
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Fig. 5. Strain rate as a function of 
the angle 0 for two values of the 
channel semi-angle c~ (0.2 and 0.4) 
and for 3 values of the yield func- 
tion exponent m (2, 8 and 20) 

two values of  c~, 0.2 and 0.4, were used to compute  the stresses in these figures. In order  to 

find the hydrostat ic  component  o f  the stress, Eq. (29) can be used. However,  the value of  the 

function A(O) cannot  be determined in the case of  an infinite channel. Nevertheless, Eq. (29) 

is useful for an approximate  analysis of  extrusion and wire-drawing processes. 

Finally,  the radius- independent  par t  of  the velocity profile v0, defined by the differential 

equation in Eq. (42), was computed  as a function of  c~ and m, assuming that  the absolute 

value o f  v0 on the channel axis (0 = 0) was I. Figure 4 shows that v0 depends on the channel 

semi-angle c~ but  does not  vary very much with m. Moreover  the shear strain rate c~0 as well 

as the effective strain rate g approach  infinity for ~b = zc/4, i.e., when the friction stress on the 

channel wall is maximum,  equal to the shear yield stress. The behavior  of  these quantities is 

independent  of  the prescribed value v0 on the channel axis. The effective strain rate is plot ted 

as a function o f  0 in Fig. 5. It can be shown that  the velocity component  tangent to the friction 

surface follows an inverse square rule near this surface. 

10 Conclusions 

The solution of  the problem of  flow through a converging axisymmetric channel for an isotro- 

pic, incompressible,  rigid-perfectly plastic material  obeying the classical flow theory of  plastic- 

ity with an arbi t rary  isotropic yield condi t ion was found. I t  is shown that, in the case of  a 
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rough channel wall where maximum friction forces occur (material in contact with the wall 

yields with the shear yield stress), the effective strain rate approaches infinity. This result has 

two important  practical consequences. First, because of  the asymptotic behavior of  the velo- 
city near the surface with maximum friction forces, special boundary elements near the sur- 

face are required when numerical codes such as those based on finite element methods are 

developed. Second, because the effective strain rate influences many material properties and 
physical fields, the material in the surface layers may be subject to structural transformations, 

which may require material models and constitutive equations different from the bulk proper- 

ties. 
When the exponent ra of  the Hershey-Hosford yield criterion increases from 2 to 8 and 20, 

leading to criteria evolving from Von Mises to FCC-like and Tresca-like criteria, respectively, 
the deviatoric stresses near the channel wall change very quickly. Moreover, the deviatoric 

component  s0 changes its sign which may lead to some effects in the surface layer such as, 

depending on the hydrostatic pressure, loss of  contact between material and channel wall that 

would not occur if the Von Mises yield condition was adopted. 
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