
Int J Adv Manuf Technol (1996) 12:66-76 
© 1996 Springer-Verlag London Limited 

Behavioural Analysis of a Complex System 

Pierre Massotte 
Innovation and Strategies, Industrial Information Systems, IBM France, Montpellier, France 

The ~ t i o n a l  Jo~nat of 

Rdvanced 
manufacturing 
Technolog[i 

Recent works have shown that welt-known models used for 
the analysis of human behaviour, in economics and in 
production-distribution contain unsuspected regimes of deter- 
ministic chaos. This paper is intended to study and analyse 
such behaviour in manufacturing and assembly shops. 

We have shown how deterministic chaos could be produced 
by human decision making: the equations built from decision 
rules generally applied in a complex manufacturing system, 
lead to chaotic behaviour in a realistic region of parameter space. 
Also, we have implemented a methodology with associated tools 
to verify the nature of a production system and to highlight 
the above assumptions. Such target systems concerned by a 
deterministic chaos cannot be controlled through conventional 
management systems. 

Dynamic modelling analysis of different production systems 
including delays, multiple-feedback loops, environmental and 
intrinsic disturbances, enables the induction of the management 
rules to be implemented for improving the control of such 
complex and chaotic systems. 
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This is in agreement with the deterministic approach, as 
defined by Laplace: "If we know, at a given time T, the 
location and the speed of any particle in the sky, then we 
are able to know all the future of the Universe." If we apply 
this principle to planning and scheduling fields, we could say: 
"If we know the location and process status of any part, in a 
production system, then we are able to determine the future 
and the evolution of this manufacturing system, based on the 
routeings and/or the technical description of the product/ 
process." 

Unfortunately, if we consider a multi-product, multi-process 
production shop involving thousands of steps and operations, 
with hundreds of parts, associated with a particular manage- 
ment system, submitted to various inputs, we cannot calculate 
and predict what will happen in time, that is to say: what the 
WIP will be, or the location and the status of any parts. We 
are not able to determine future and the dynamic evolution 
of the production system. This is due to the volume of 
information we have to handle and also to the application of 
the Uncertainty Principle as defined by Heisenberg. In the 
following, we will address the complexity of a production 
system and we will see why, and how, we have to introduce 
a new paradigm. 

1. Introduction 

A model is basically a simplification or an abstraction of the 
real world. Until now, only the quantitative aspect has been 
considered when describing and modelling a system. The 
Galilean principle, on which this approach is based, consists 
in determining parameters and variables, then in defining and 
measuring their values and numbers. These numbers are 
linked together with mathematical formulae; they are organised 
in equations. Solutions to these equations enable us to predict 
the future. This principle supposes that the system is predictable 
and that there is absence of ambiguity. 
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2. Complexity 

2.1 Preliminary Definitions 

For many years, industrial systems, and more generally 
production systems, have been evolving in a continuous way: 
they are comprised of more and more complexity. At the 
beginning, they were related to the assembly, or manufacturing, 
of simple products based on elementary operations. Later on, 
they were organised and combined together to form more 
complex products. To produce such products, a great number of 
sophisticated operations is then necessary" and their associated 
routeings become longer and more varied. 

For instance, in a typical semi-conductor manufacturing 
line, many local, complex routeings are involved in thousands 
of operations. The production system is multi-product (with 
several 10"2 P/Ns), multi-process (each one related to a 
family of products) and it is difficult to describe or to model 
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such a system with general algorithms and conventional 
programming. The complexity is high, even without considering 
any change in the priorities which disturb the system rather 
than providing a good balance of flow of parts. 

Here, the complexity is a function of the structure of the 
involved objects and cells and of the associated procedures. 
In the case of a study using modelling and simulation, the 
complexity will be expressed by the cost of the model build- 
up (length of coding, number of formulae, run time . . . .  ). For 
example: 

In an MRP system, the structure, capacity, and sophisticated 
local rules are not always considered. In this case, the 
complexity is tow and the scheduling system is governed by 
simple programs. 

In a PULL system, the management of production is simple, 
but the implementation of the strategy implies considering a 
flow of information associated with a physical flow of products. 

Now, more and more mixed push+pull strategies are applied. 
When they are not well defined and applied (i.e. inconsistent 
clustering of the process, buffers and "kanban" not well 
adjusted), anything can happen to the WIP and TAT. 

2.2 Different Types of Complexity 

In fact any production system is subject to several possible 
phenomena. The following are some examples associated with 
three types of complexities, as generally considered: 

1. Structural complexity of the system itself. 
Here, the complexity is related to the structure of the 
products: 

Assembly: in this case we have several levels in the bills of 
material structured as a tree. Problems are related to the 
synchronization of the parts flow and to the large volume of 
various technical data to be managed. 

Parts manufacturing: main problems are related to the 
scheduling of the resources and the organisation of the means 
to be involved. 

Complexity is also related to the nature and the size of the 
production system in which different kinds of relationships 
exist between the cells. In a manufacturing plant, the shop is 
often organised similarly to a Bill of Materials (BOM) with 
tree structures. The cells will be clustered in consistent sectors 
and the routeing of the products, which may be simple for 
some, may be very complex for others. Nevertheless, the 
complexity can be more or less important according to the 
constraints of synchronisation and also according to the 
complexity of the products (quantity of assembly levels, links, 
...). We have few "states" for the target system under study, 
but computations needed for this type of model are much 
more complex and can be prohibitive. 
2. Ill-defined complexity. 
Sometimes, an accurate and reliable numerical model does 
not exist, or is only partially reliable: very often in process 
control, we have to reason with partial or incomplete 
information. This type of problem is also encountered in 
economic modelling or in diagnosis, where the degree of 

uncertainty increases. Here, the systems become much more 
difficult to understand and hence to reason on. The only way 
to make precise and relevant statements is to abstract the 
support set until consistent associated relations are shown 
(principle of incompatibility, Zadeh 1973). 

3. Dynamic complexity of the deterministic chaos. 
In any case, the complexity is first structural, then it becomes 
progressively behaviourat. A production system, even with 
few cells and subject to a simple strategy, may be subject to 
unexpected events or to an unusual behaviour. Something 
simple may well lead to something complex. In this case, the 
complexity involves either an instability or a great quantity 
of various "states" that the system may have. 

2.3 Consequences 

Constructionism fails when faced with the difficulties of scale 
and complexity. Many production systems are difficult to 
model. Consequently, the analysis of their behaviour and 
their predictability is limited or difficult with actual tools, 
techniques and technologies. 

In this sense, we will apply, in the field of scheduling, the 
principles as defined by P. Anderson: "The behaviour of 
the complex aggregates of elementary particles cannot be 
understood by extrapolation of the one related to a small 
number of particles. At each level of complexity, new 
characteristics appear and they have to be studied and 
modelled through quite different and specific ways in order 
to understand the behaviour of the whole system". This is in 
contradiction to the commonly used approach which consists 
of developing submodels to describe and analyse the local 
behaviour of a system, then assembling all the submodels to 
study the global behaviour (as a result of the interactions 
between the different local behaviour). 

As we cannot satisfactorily describe a complex system as 
an assembly of objects or components associated with local 
and elementary laws, a different approach, based on com- 
plexity, has to be designed, implemented and applied. In this 
paper, we will mainly focus on the dynamic complexity of a 
system we will call also behavioural complexity. 

3. Behaviour of a Complex System 

Chaotic dynamics is a new area of mathematics applicable to 
the complex dynamics field. The complexity of the behaviour 
results from simple mathematics. A small change in a control 
variable can turn an ordered flow of parts from a tap into a 
highly complex chaos of vortices. 

As we will see in this section, a subsequent order emerges 
from that chaos. 

3.1 Initial Conditions Necessary for a Chaos 

Chaos is not necessarily generated with a large amount of 
data: simple systems, submitted to few nonlinear rules, and 
very sensitive to initial conditions will be unpredictive and 
they are generally governed through Lorenz attractors. 
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Now, we are going to detail two characteristics, very 
common in a complex system, which are prerequisites for any 
chaotic behaviour. 

1. Sensitiveness 
Sensitiveness is a characteristic present in many closed-loop 
systems involved with either feedback loops or effect amplifiers. 

For instance, if we consider a production system in which 
we denote the WIP by X and the Turn Around Time (TAT) 
by Y, X and Y will be very sensitive to repair. As an example, 
we consider first a simple operation (or a set of simple 
operations) as described in Fig. 1. In this case, D% represents 
the yield and X0 the initial demand. 
The WIP is expressed by: X = X0/(1 - D) 
The TAT, called Y, compared with the raw process time, 1Io, 
follows the same rule: Y = Y0/(1 - D),  when it is stabilised. 
When D is varying and is near to "1", the WIP, X, becomes 
very "high". Nevertheless, after a transient period of time, 
the throughput, called Z, remains constant. 

2. Nonlinearity 
For easy calculation of the "curve" of the system, and then 
to obtain a predictive system, the corresponding parameters 
and variables have to be expressed through linear equations 
or through linear relationships. 

For instance, the variables X, Y and Z at a given time T, 
must be used in proportional relations to the power of "1". 
They have to be combined linearly in a formula. In reality, 
the variables are sometimes multiplied or divided together. 

A set of such equations may not have a possible "algebraic" 
solution. Because of this, we are not able to predict the curve 
of the system then its sensitiveness and reaction to some 
initial conditions. 
Here are some detailed examples: 

In a manufacturing line, the throughput is expressed by a 
ratio: 

Z = X / Y ,  where X is a quantity of product and Y is a time 
duration. 

To implement the continuous flow manufacturing (CFM) 
concepts, the demand E = 3(o to be sent at the previous 
operation is a combination or a selection of the two following 
values (see Fig. 2): 

Xm = Min(Xl,  X2) = Qmin or Xo2 = M A Q  = Qmax 

The information related to Xo is determined when the WIP 
reaches a maximum allowable quantity (MAQ) .  

Also, in a very flexible manufacturing system, some nodes 
are quite autonomous and are controlled or managed through 
behavioural rules such as: X = F(X1, )(2 . . . .  ). 

Cell buf fer  

, ' t omo 
I I  

m 
" l w m  i m m  R l i m B O  ~ R m  i W U ~ U R I m m m m m 

Fig. 2. Nonlinear basic cell. 
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Such management rules are nonlinear and they make the 
mangement system more complex. 

3.2 Mathematical Analysis of Chaos 

In a flexible shop, or manufacturing line, some cells are 
devoted to several operations and parts are sent back to an 
identical or different cell in the manufacturing line. 

Similarly, in many complex assembly lines involving several 
hundred operations, some of them are replicated several times 
all along the process and could be performed tens of times 
on the same product. Here, we intend to analyse the evolution 
of the state variables. 

Basically, we are faced with a process subjected to 
nonlinearities and feedbacks. The state variable, or the set of 
state variables, is called X. We will adopt a dynamical point 
of view, with the aim of establishing a relation, or "rule", to 
generate the new value of Xn+a (for instance the WIP or TAT) 
from the previous value X,.  The mathematical expressions 
describing how a set of state variables {X} evolves in time 
are given by: 

dX/d(t)  = F , (X ,L )  

Here, we want to express the idea that evolution is 
influenced by the variation of some parameters present in the 
problem that can be modified by the external world. We call 
these entities, or problem parameters: control parameters, 
and we denote them {L}. Whatever the form of F, ,  when 
an equilibrium or non-equilibrium steady state is reached, 
this corresponds to the solution of: F , ( X , L )  = O. 

These relations impose certain restrictions because any 
physical system cannot always be reduced to simple mathemat- 
ical formulae. However, we will use them to model part of a 
process regarded as more typical or generic, from the 
mathematical point of view. 

Again, let us consider a simple closed-loop system (Fig. 
3), which describes a nonlinear behaviour linking the steady 
state value (X) to the control parameter  C, at stages (n) and 
( n + l ) .  In this graph, F ( X , , C )  acts as an amplifying factor. 
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Fig. 1. Basic cell. 
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Fig. 3. Closed loop system. 
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This nonlinear function, in some conditions, may lead to 
chaos. 

In both cases, (n) is the index representing the number of 
passes of the flow of parts in a given cell (or set of 
manufacturing cells). F(X , ,C)  corresponds to a dynamic 
system which successively propagates an initial Xo value into 
the points )(1, )(2 . . . . .  Xi ... This sequence of points to which 
the value Xo is sent may be called the path, or orbit, of Xo. 
If the path is ordered, we may speak of ordered dynamics; if 
not, it is described as chaotic dynamics. 

After  several successive backwards loops or recyctings, in 
the production process, the quantity of parts present in a cell 
is defined by: Xn = (1 + R)n Xo, where Xo is the size of the 
initial batch in the cell. 

In reality, this exponential growth will not occur because 
of several reasons: 

The processing capacity of an involved cell is limited to a 
maximum value Xm. 

The yield, leading to R, is controlled, and many change with 
time or circumstances so that it is generally improved: the 
rate always drops from R to a lower value, when the 
population approaches X. 

The resources, and consequently the efforts, assigned to a 
manufacturing system are sized to the "criticality" of the 
situation. Then an "autoregulation" phenomenon always 
applies. This introduces the concept of self-control which we 
will develop later. 

In a practical way, each time the growth of the population 
becomes too high, the solutions offered may be of three 
kinds, as follows: 

1. Limitations by the "MAQ":  
The maximum allowable quantity ( M A Q )  enables regulation 
or limitation of a flow of parts in a shop: the input of the 
parts, in a cell, is limited thanks to a buffer control approach. 
When the cell is full of parts, the upper limit of the WIP is 
reached, then parts from the previous cells are not accepted. 
If the WIP is denoted by X, then the evolution of X is 
mathematically represented by: Xn+l = ((1 - A )  + R)Xn, 
where: A = C1X, and C1 = 1/X. C1 is defined so that input 
is 'O '  when X is equal to X,,  In this case we have the general 
formula: X ~ z  = (1 + R - ( 1 / X ) X , ) X , .  

At the steady state, when the limit is reached, the WIP 
becomes: X,+I = X ,  + X , ( R  - X , / X ) .  

By appropriate alteration of the units of measurement, the 
formula is then simplified as follows: 

X =  (1 + R ) X -  X2 

The graph of the trajectories is shown in Fig. 4. As we can 
see, the behaviour of the cell is a deterministic chaos. This 
situation appears as soon as R ~> 2, that is to say for a yield 
lower than 50% (D ~< 0.5). 

Symmetry-breaking bifurcations: 

First bifurcation is found when F(X)  = X. 
In this case, 2 solutions are possible: X = 0 and X = R. 
Then F ' (0)  = 1 + R and F'(R)  = 1 - R. 
With R > 0, X = R only is valid. 

WIP 
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P 

Fig. 4. Phase plane trajectories (MAQ). 

Bifurcation is reached when abs[F ' (X)]  = 1 that is to say 
when: R = 2 and X = 2. 

Second bifurcation is given by Fz(X) = X ~ - X  2 + 
( R + Z ) X - ( R + 2 )  = O. 
Then Xa = ((R + 2 ) + ( ( R  2 - 4)) × 0.5)/2, 
and X2 = ((R + 2 ) - ( ( R  2 - 4) × 0.5)/2. 
We can easily deduce: R = 2.45, XI = 0.517 and X2 = 
2.931. 

This also addresses the manufacturing lines where some set 
of operations are duplicated several times in a process. 

2. Limitations through "dispatching rules": 
In order not to affect the main flow of parts, the dispatching 
rules may be changed, giving lower priority to recycled and 
repaired parts in the cell. 

In this case, the variable growth rate R, used in the previous 
mathematical expression, will be limited by a threshold and 
is now replaced by: R - C2 An, where (72 = R/X.  
This expresses that the growth of the population becomes 
zero when: 

X~ = Xm (Am being the upper possible limit of X). 
Thus: X~+I = (1 + R - C2 X,)X~.  
When Cz is replaced by its value, we get: 
x . + l  = xn + n X~(1 - Xn/X).  

As stated above, the formula yielding a stationary state value 
becomes: 

X =  X + R X ( 1 -  X )  

The representative graph is shown in Fig. 5. 
Again, the behaviour of the cell is a deterministic chaos: 

First bifurcation appears when F(X) = X, then X = 0 or 
X = R .  
We can define: F ' (0)  = 1 + R and F'(R)  = 1 - R, 
consequently: R = 2 and X = 2. 

Second bifurcation is obtained with F2(X) = X, 
Then: - X  2 + ( R + 2 ) X  - (R+2)  = 0 gives X1 and X2 as 
before. 
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Fig. 5. Phase plane trajectories (dispatching). 

With R = 2.45, we can calculate X1 = 0.619 and X2 = 
1.197. 

These formulae are similar to the very well-known equations 
defined in 1845 by P. F. Verhulst. 

3. Bottleneck management 
In some recent manufacturing and assembly shops, for instance 
in semiconductor plants, the process involves hundreds of 
products, described by different routeings, each one involving 
hundreds of operations. The process is often repetitive because 
of the similarities of some operations: mask, exposure, 
clean, burning. The equipment at these stages is frequently 
sophisticated and expensive. Consequently, they are limited 
in quantity. This explains why we have some bottlenecks 
owing to hardware limitations. Generally they are solved 
through management of the product flow, in the shop itself. 

The usual way to handle such a bottleneck is to apply the 
following strategy: "If a given operation is a congesting one, 
never leave it unloaded. As soon as the queue length is below 
a threshold, load the shop with the products having the 
highest processing time at the bottleneck ... even without a 
demand!" 

Let us call Xb and Tb, respectively, the values of the WIP 
and of the threshold at this bottleneck. 

The value of the total WIP, along the time is defined by: 

Xn+l = Xn Ac K(Tb - Xb) -- Xb with g = F(1/Xb) 

This formula can also be expressed by: X,+I = Xn + C(1 + 
X 77X), where C is a constant, acting as a control parameter. 
In a stationary state, this leads to the more general formula: 

X =  X +  C/X  (X2 + X -  7") 

Here again, according to the form of the formula, the resulting 
behaviour of the WIP will be chaotic. 

4. Validation of the Concepts 

In the previous section, chaotic behaviour was demonstrated, 
based on modelling of simple cells. In fact, modelling of a 
complete production system is complicated: many overlapping 
cells have to be considered and mathematics are not sufficient. 

The objective is now to validate our assumptions and to 
prove the presence of such a behaviour in a real production 
system. For that purpose, a set of simulation tools, image 
analysis techniques and tests have been set up in order to: 

Check the presence of any chaotic phenomena in a production 
system. 

Measure and visualise these phenomena in the system under 
study. 

4.1 Detection of a Chaos in a Production System 

Mathematical Methods 

Nlathematical methods can be used for detecting the chaotic 
behaviour of a dynamic system. Most of them are qualitative 
and are able to determine with a high level of confidence if 
the system under study is chaotic. Among these methods that 
we have implemented and experimented on real systems, we 
can quote: 

Spectrum analysis. We have developed an FFT program to 
analyse a large set of observed data. 

Phase graph analysis (with a 3D visualisation tool called 
Galaxy, implemented on a RS/6000). 

Poincare map. 

Sugihara May test. 

Comments: All these approaches can describe the character- 
istics of a possible chaotic system. However, during our 
experiments, we were not able to confirm clearly and to 
prove the chaotic type of a dynamic system. Best results were 
obtained with FFI': we could analyse a time series representing 
daily deliveries of TCM products; existence of continuous 
spectra were observed. 

To Improve the Behavioural Analysis 

To improve the behavioural analysis of a dynamic production 
system, a different and more quantitative approach was 
implemented. It is based on Lyapunov exponents. This 
approach, thanks to specific and precise calculations, enables 
us to predict the situation of a dynamic system, by measuring 
the deviation of the trajectory near the attractor. 

In the following, we will not detail the formulae and 
calculations principles which are quite complex, but remember 
that the condition of a system can be specified by the value 
of two exponents: 

IF Lambda and Sigma are positive, THEN the system is 
chaotic. 
IF Lambda and Sigma are negative, THEN the system is 
steady. 

Considering the complexity of calculations to determine the 
values of the Lyapunov coefficients, two methods have been 
implemented: 

Use of the set of differential equations describing the system. 

Use of a set of data coming from observations related to the 
system. 
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Comments: a reliable analysis of a production system requires 
a large set of data (about 10/30 °,  D being the dimension of 
the attractor). For our experiments we could not collect a 
reliable set of data large enough to validate our assumptions: 
the Montpellier plant is involved with the assembly and test 
of TCM modules and large systems; here, the information 
system collects and stores the quantity of products manufac- 
tured every day in the production system. As the lifetime of 
a product is around three years, we had time series consisting 
of around 1000 values. Under these conditions, it was very 
difficult to confirm reliably the evidence of chaos in our 
production system. 

Information and Results 

To obtain information and results on the production system 
involved, one solution consists in modelling then simulating 
the system. Simulation is a good and realistic way to represent 
complex systems with much more detail and behavioural rules 
than would be possible with mathematical methods. Again 
two approaches have been defined: 

Dynamic simulation language (DSL): this is a high level 
language enabling continuous simulation of a production 
system. DSL is based on the resolution of differential 
equations. It comprises many functions to represent some 
behavioural methods in a dynamic system. DSL is fully 
adapted to transient analysis and we could simulate all the 
production systems we intended to study. 

NETSIM: this tool was developed to model and simulate a 
network. Each node of the network can be a piece of 
equipment or a cell and the nodes are linked together with a 
procedure which defines the management methods between 
two cells, the values of the parameters. NETSIM is an object 
oriented, easy to use, tool. It is written in Smalltalk. 

Comments: DSL and NETSIM are very useful for generating 
large sets of data, well-fitted to different types of production 
systems. These data are the inputs of the Lyapunov program, 
to calculate the exponents associated with the dynamic system 
under study. 

Figure 5 shows some outputs we get with NETSIM: we 
could verify, as we did in the real system and according to 
the values of the control parameters, that we had cycles with 
16, 24 and 32 periods of time. 

4.2 Methodology 

Determination of the nature of a dynamic system may require 
several studies through the various tools we have developed. 
We found it is possible to define a chaining between the tools 
and associated methods, according to the characteristics and 
the nature of the observations and also depending on the 
structure of the production system. This can be summarized 
on the diagram depicted in Fig. 6. 

This methodology has been succesfully used in several 
studies we have recently conducted. Each time the quantity 
of observed data is not large enough, simulation based on 
DSL has to be used. The difficulty is to select the most 
significant parameters related to the modelling of the pro- 
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Fig. 6. Methodology. 

duction system. The definition of the equations is not the 
most difficult work. 

F F r  is a good tool for analysing the response spectrum. 
However, the proof of the existence of a possible chaos must 
be based on Lyapunov exponents testing. 

Finally, visualisation is interesting, as a qualitative tool, to 
demonstrate how the variables of a dynamic system are 
arranged and to represent a periodic trajectory in pseudo- 
phase-space coordinates. 

4.3 Application to a Production System: Results 

Several production systems have been studied theoretically 
and experiments have been conducted over a long period of 
time. 

On some of our production systems, we analysed the WIP 
and found it was quite impossible to predict future events and 
to determine any cycle on the WIP variations. Mathematical 
modelling of such systems has demonstrated a chaotic behav- 
iour. In that case, the demand remains constant and the 
variables we considered were: the WlP and the throughput; 
the control parameter being the size of the kanban's. We 
selected these characteristics as they are easily visualisable. 
Moreover, in case of validation of some assumptions, a partial 
display of the attractor is sufficient as a first approach. 

Based on experiments and observed values we could only 
demonstrate firmly that a chaotic behaviour exists in some of 
our production systems. The reasons are as follows: 

The yield which implies feedbacks is variable with time. 
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The number of state variables depending upon the complexity 
of the dynamic system is changing regularly because of 
modifications in the process and/or in the routeings. 

As explained before it was difficult to collect a large set of 
data. In many cases we had a strong belief that the chaos 
was there but we could not state that fact with a high level 
of confidence. 

A simple approach consisted of highlighting on bifurcations: 
we could observe double the number of states when the 
control parameters were changed (one stable, steady, state, 
then 2, 4, 8 . . . . .  till non-predictable variations). 

As said before, we could check the evolution of the system 
towards a chaotic behaviour. However, we can consider that 
reliable and regular measurements are difficult and this could 
lead to some caution. 

When checking the real sets of data, we could detect some 
anomalies due to, for instance, the introduction of random 
events, like failures, which disturb the set of observed data. 

As a conclusion, the mathematical approach shows that chaos 
occurs in our production systems. The validation of such 
assumptions is difficult, but we have a strong belief that such 
behaviour often exists and we will consider that fact in the 
design and the implementation of future management and 
control systems. 

5. Analysis of Manufacturing Control 
Systems 

5.1 General 

In the previous section, we have seen that chaotic behaviour 
could exist in some production systems. The aim of this 
section is to study two families of control systems widely used 
in the industry and often described in the CIM field. Their 
characteristics will be highlighted and a classification will be 
deduced accordingly. The objective of this classification is to 
help the decision maker in choosing the type of strategy he 
has to apply when he faces a given situation. In the following, 
the production system under study is submitted to an input 
variable, called DM, the nature of which is either a stochastic 
or a deterministic chaos. 

5.2 Case Study 1: Planified System 

First, let us consider a shop conventionally controlled through 
an MRP system; it comprises feedback loops of information. 
Moreover, different shops, like this one, are connected 
together to make up a complete facility. Such a system is 
similar to the one we have studied for the French Manufacturing 
Headquarters: The problem consists of analysing the behaviour 
of a complete production system in the computer industry. 
For this purpose we have used industrial dynamics techniques 
to study the interactions and behaviour between the different 
shops: CHIP +-~ CARD ~ BOX. 

Modelling 

The model, developed with Dynamo, was submitted to a step 
function, in terms of demand (DM), at box level. The purpose 
was to analyse the consequences of the variations on DM at 
chip and card level and the evolution of the WIPs. 

The equations used to process the flow of information were 
simple. The parameters on which we could react were: the 
size of the buffers, the "rates" and the delays (response 
times) introduced in the formulae. 

In that case, the total WIP of chips evolved as shown in 
Fig. 7: when the demand "DM" changes, the WlP is subject 
to decreasing variations. Nevertheless, for some values of the 
control parameters, these variations may persist in time, and 
in some cases, we can observe an oscillation or an increasing 
oscillating curve. In these conditions, the system is said to be 
"PUMPING". In addition, these oscillations, due to feedback 
loops, are either amplified or absorbed according to the values 
of the different parameters. Although the system is modelled 
with simplified equations, it is difficult to control the system 
in a stable way, but we could not demonstrate that it was a 
chaotic one. 

Chaotic demand 

This example is related to the analysis of the behaviour of 
the TCM BAT manufacturing line, in the Montpellier plant. 
This production system has been modelled and simulated with 
RESQ. 

Now, let us consider, as the input stimuli, a real set of 
values for DM (see Fig. 8). Contrary to appearances, this 
initial demand is not "random": for several reasons we will 
not detail here, the vector DM issued from a history in the 
BAT shop has a "memory effect" of previous events and 
situations. In fact, DM is the result of a deterministic demand 
modified by several and successive simple laws, fits and starts, 
generated by different decision makers. In this study, we did 
not have sufficient available data, whatever the product, to 
demonstrate firmly that the DM vector is a "chaotic" one; 
nevertheless there is a strong belief that we should made such 
an assumption. 

Curves, showing the evolution of the different parameters 
are shown in Fig. 8. The production is represented by the 
curve (PC). We may observe that the evolution of the order 
file (CC) and of the WIP (ST) follows the input (DM). 
However, according to the quantity of buffers, their size, the 
delays, etc. the results are either smoothed, attenuated or 
amplified (pumping effect). When the buffers are too big, 
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Fig. 7. Stable production system. 
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Fig. 8. Behaviour analysis of the TCM production system. 

and corrective factors in the feedback loops too high, the 
system may diverge; it creates and amplifies the noise. 

With a more planifying system, we get a "dangerous system" 
with unexpected evolutions. The resulting performance para- 
meters evolve by "fits and starts". A control system is not 
generally designed to process a chaotic demand. In such a 
condition, it degrades the overall performance of the pro- 
duction system. Then, a planifled system is not adapted to 
react to a varying demand like this one. 

Moreover, as we are not faced with a planified demand, 
the only way to limit the pumping effect is to react with noise 
rather than linearly. Introducing "noise" and uncertainties in 
the control parameters and in the values of the calculated 
inputs enables compensation or even suppression of the 
pumping effect as well as the "coughs" and their unexpected 
results. 

Comments 

Most of the time, the "planifying systems" are not useful: 
they have too many constraints. They do not perform an 
adequate regulation of the production system: variations and 
variance on performances can be out of control and it is 
difficult to monitor the complete system. Now the questions 
are: 

What organisation can we propose? 
What type of modelling has to be designed to analyse a 
seasonal or varying demand? 

T 

Whatever the level of complexity embedded in the model of 
such a system, we cannot represent everything in a model at 
the risk of generating noise. Also, the manager, in a shop, is 
always introducing "bad noise": he modifies, permanently, 
the priorities of the products to be manufactured, according 
to situation changes or contradictory requests. He still creates 
more disturbances and "coughs". Then, the capacity of a 
manufacturing shop being limited, some parts are more 
penalised than others which are prioritised. Consequently, 
the "buffer" effect is always increased. 

The only way to monitor such a system is to build a simple 
model, with small buffers, with an "output follower" control 
system to correct the inputs. Finally, in order to integrate the 
"history" (memory effect) of the inputs and results, the 
model will have smoothing and moving average capabilities, 
completed with a precise scheduling system, at cell level only. 

5.3. Case Study 2: Flexible Manufacturing System 

Let us consider a very flexible manufacturing system: multi- 
products, multi-process, duplicated equipment, feedback 
loops, etc. with several and complex routings (Fig. 9). Such 
a flexible manufacturing system may have a chaotic behaviour. 
Each node, or cell, in this network (production system) has 
its own control system with dispatching and behavioural rules. 

Here, the chaos is due to the interactions between the cells 
and it may happen with only a few cells: oscillations, created 
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Fig. 9. Flexible manufacturing system. 

by the "calls" of the buffer management  system, are propagated 
from one cell to another  and vice versa. In practice, this 
induces the presence of many possible states for each cell. 
When this phenomenon  is amplified and subject to nonl inear  
functions, it becomes a chaos. This is due to the "chaining 
effects" of the physical and logical structure of the production 
system. We will call it: caterpillar effect. 

Under  these conditions, we cannot  predict the behaviour 
of the system. The model,  a very complex one,  cannot  
integrate all the parameters and assumptions: it is not  usable 
for management  purposes. In  terms of effects, the cells have 
their own "elasticity", and the disturbances are reduced, and 
they are smoothed. With small buffers, the adaptat ion of the 
outputs to the inputs will be quite fast. Then,  the best way 
to manage the system is to leave it "free": it will regulate 
itself thanks to self-organisation effects. 

Here again, we have to build up a model  condit ioned by 
the inputs, or following the inputs,  to be able to determine 
which global strategy has to be applied in the production 

system. Anyway,  we will look for situations between stability 
and instability for best flexibility. This corresponds to a kind 
of "weak chaos", which is common to many l inear production 
shops. This will be studied later on in a more detailed way. 
Note: in the previous sentence, the word "linear" is related 
to the linearity of the product routeings, the structure and 
the layout of a production system. 

6. Recommendations for Improving a 
Production Control System 

As a result of above, we can deduce recommendat ions to 
avoid inefficient management  rules: 

Adapt ing the priorities to the demand,  or changing the 
priorities in a cell, according to its performance status, on a 
real-time basis, is a very disturbing strategy leading to 
situations which are more difficult to control. Moreover,  its 
effect is quite inefficient as the system is a choatic one. 
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It is of prime importance to correct an abnormal yield, in 
order to decrease the value of D (mainly when D >>, because 
of the raise of a deterministic chaos), and to position the 
production system at a weak chaos level. 

Also to improve or to control a situation, priority must be 
given to solving any anomaly or discrepancies in the control 
parameters, then to reducing WIP in the feedback, then to 
restaring the main flow. For instance: 

1. In a turbulent environment, no strategic process may run 
without strict management and without processing much 
data related to an everyday or short-term period activity, 
such as: fluctuations of the demand, varying bills of 
materials, inputs or production, unstable resources, random 
failures on equipments. 

This is generally exhibited by a high value of the 
variance, or standard deviation, of the related parameter. 
As a consequence, we are unable to predict, plan, 
and define short-term adaptability. For example, existing 
scheduling methods are unable to provide, within a short 
period of time, a good adaptation of the production 
program in response to a variation of the demand. 

2. Tools and techniques in use have to help the management 
in defining objectives and operational rules. Management 
should keep the objectives while permanently modulating 
their implementation depending on: 

The situation of the production system. 

The state of the environment. 

New expectations about the future. 

3. In a turbulent environment, the strategic management 
team cannot permanently adapt its action process without 
a constant reference to a precise methodology: 

To keep a good consistency. 

To know exactly where the system stands, any time, in 
terms of chaos, and to deduce consequences compatible 
with the assumptions. 

4. In a turbulent environment, simulation is a good help in 
elaborating the schemes, because conventional optimisation 
techniques are subject to uncontrollable and unexpected 
external constraints. Simulation must lead to: 

Better understanding the environment constraints. 

Detecting, reacting to hazards (quality problems). 

Collective and global vision of the system and its environ- 
ment. 

This implies numerous interferences between the action 
process and the research process. This contributes also to 
the build-up, within an organisation, of a common vision 
of the genesis of the possible future. 

5. The more turbulent the environment is, the more important 
it is to develop local autonomous tools, to manage short- 
term difficulties and to reduce the variability of the process. 

The efforts of the executives are concentrated on daily 
issues and, sooner or later, without strategy, they will face 
a severe crash crisis. In this case, operations research is a 
vital counterbalance to define operational rules and direc- 
tive/strategies, then to limit the effects and disturbances 

of short-term unexpected events. Unfortunately, the appli- 
cability is local, at cell level, and we will have to aggregate 
a local with a global management system. 

7. Conclusion 

This paper is related to the analysis and the management of 
complex target systems. More precisely, an in-depth study 
has been performed in the field of dynamic complexity. To 
summarise the content of Section 3, most of the production 
systems can be subject to a deterministic chaos called either 
butterfly or caterpillar effect. This leads us to develop a 
methodology able to detect chaos in a production system. 
This approach is efficient and such a phenomenon could be 
observed in real systems, even if it is difficult. 

Under such conditions, the conventional management and 
control systems do not apply. This is why we have developed 
a methodology aimed at identifying such behaviours. With an 
environment which is difficult to control and a target system 
which is unpredictable, we cannot force it to react as we want 
and a new paradigm as well as a new appropriate approach 
must be used. 

We cannot cope with complexity by more complexity, that 
is to say with a management system which is too detailed and 
complex: the more complex a target system is, the more 
simple its associated control must be. 

The conventional approaches are generally based on the 
products management (flow of parts, scheduling with a given 
set of capacity limitations, resources constraints) while the 
emphasis has to be put on the process (tuning, balancing): 
we cannot dictate a given release of the parts without taking 
into consideration the process itself. 

Instead of being monolithic with a complete set of embedded 
functions, the management system will be layered. In this 
paper, we found that two application levels are sufficient. We 
defined them as the mesoscopic and the microscopic levels. 
The first one gives the guidelines to be applied to the target 
system. The second one enables the microscopic level to 
perform a local control. It is characterised by a given rigidity, 
leaving some whirlpool at microscopic level. The resulting 
models have to be modular and, more specifically, the lower 
level must be able to be adjusted to evolving situations: local 
rules wilt take into account the tasks and characteristics of 
the related cell or workcentre. 

In another way, we will pay attention to the microscopic 
level: it must be in-depth analysed and a precise and 
local scheduling will be developed accordingly. Scheduling, 
sequencing and/or dispatching have to integrate real situations 
subject to uncertainties and nonlinearities (ill-defined 
complexity). As conventional and analytical technique.s are 
not sufficient enough, we have to study new approaches based 
on alternate techniques like simulation in which A I, simulated 
annealing or even genetic algorithm based methods are 
integrated. The whole production system will adapt itself 
when faced to new situations, through its setf-organisation 
capabilities, within the framework defined at the mesoscopic 
level. 
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With such concepts, we can get a flexible and efficient 
control of a target system. It will be the basis of future 
integrated manufacturing systems. Some of these above 
concepts have been successfully implemented in an application 
called: line management advisor (LMA). This application is 
an example of the tools we have developed at Montpellier by 
the Advanced Technologies Group, to perform dynamic 
scheduling of a manufacturing shop. 
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Glossary 

Automatic guided vehicle 
Artificial intelligence 
Bond assembly and test 
Bill of material 
Capacity requirement planning 
DeMand 
Decision support system 
Floor control system 
Fast Fourrier transform 
Flexible manufacturing systems 
Genetic algorithm 
Knowledge-based system 
Line manager advisor 
Maximum allowable quantity 
Manufacturing control system 
Material requirements planning 
Numerical control 
Numerical optimisation 
Plant layout optimisation 
Research queuing package 
Shop management system 
Turn around time 
Thermal control module 
Work in process 
Workstation management system 


