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Summary. The steady laminar incompressible flow of an electrically conducting fluid over an infinite 
permeable disk in the presence of an axial magnetic field has been investigated, and a self-similar solution 
of the boundary-layer equations is obtained numerically. For large values of the suction parameter, a 
closed form solution is obtained. Also, an asymptotic solution is found for large values of the independent 
variable. The surface-shear stresses in the radial and tangential directions and the surface heat transfer 
strongly depend on the suction parameter, the ratio of the source and vortex flow and the magnetic field 
except the surface heat transfer which weakly depends on the magnetic field. The similarity solution of 
the boundary-layer equations exists only when a certain minimum suction or magnetic field is applied. 
The results of the analytical solution are in good agreement with those of the numerical solution for the 
suction parameter f~ >_ 3. 

1 Introduction 

Rotating flows have been extensively studied due to their applications in meterology, in geo- 

physics and cosmological fluid dynamics, in gaseous core nuclear reactors, and in vortex 

power generators etc. When a rotating flow interacts with a stationary surface, a complicated 

three-dimensional flow occurs which is found frequently both in external and internal flows. 

The rotating flow of  a viscous incompressible fluid over an infinite stationary disk was first 

studied by B6dewadt [1] who considered the rigid-body rotation of  the fluid. Smith and 

Colton [2] extended the above problem to include the effect of  mass-transfer. The effect of  the 

magnetic field on the rotating flow under boundary-layer approximations was considered by 

King and Lewellen [3], King [4], and Stewartson and Troesch [5]. They [3]-[5] investigated 
the generalized vortex flow v~ oc r '~, - 1  < n < 1, where v~ is the tangential velocity at the edge 

of  the boundary-layer,  r is the radial distance (n = 1 corresponds to a solid body rotation case, 

and n = - 1  represents the potential vortex case), and they have shown that no similarity solu- 

tion of  the potential vortex case exists unless a certain minimum magnetic field is applied. Tl:.e 

potential vortex flow over a stationary surface in the absence of  the magnetic field and suction 

was investigated by Kidd and Farris [6] who found that there is no similarity solution to the 
boundary-layer equations, and the solution to the Navier-Stokes equations exists only up to a 
certain (small) value of  the Reynolds number. Nanbu [7] studied the effect of  large suction on 
the potential vortex flow over a stationary disk under the boundary-layer approximations and 
obtained the solution analytically. The interaction of  a potential vortex with a source flow of  

equal strength on an infinite stationary disk was considered by Cham [8] and Hoffman [9] 
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who obtained the solution of the Navier-Stokes equations only up to the Reynolds number 
Re = 16. They also found that the similarity solution does exist for the boundary-layer equa- 
tions. 

In this paper, we have investigated the steady laminar boundary-layer over an infinite 
stationary disk due to the source and vortex flow of unequal strength in the presence of a 
magnetic field and (or) suction. The inclusion of a magnetic field and (or) suction enables us 
to obtain the similarity solution of the boundary-layer equations which does not exist in their 
absence. The fluid is assumed to be viscous, incompressible and electrically conducting. The 
ordinary differential equations governing the flow and heat transfer are solved numerically 
using a shooting method [10]. For large suction an analytical solution is obtained using a per- 
turbation technique. Also, an asymptotic solution is found for a large value of the inde- 
pendent variable r/(i.e., as r] ~ co). 

2 Problem formulation 

Let us consider a steady laminar boundary-layer flow of an electrically conducting fluid over 
an infinite stationary disk caused by the interaction of a potential vortex with a source flow. 
The physical model and the coordinate system are shown in Fig. 1. The magnetic field B is 
applied in the z-direction (i.e., the axial direction). The magnetic Reynolds number 
R m  (= p o ~ V L )  is small, where #0 is the magnetic permeability, cr is the electrical conductivity, 
and V and L are the characteristic velocity and length, respectively. Under this condition it is 
possible to neglect the induced magnetic field in comparison to the applied magnetic field. 
The electrical current flowing in the fluid will give rise to an induced magnetic field if the fluid 
were an insulator. Here we have taken the fluid to be electrically conducting. The effects of 
viscous dissipation, Ohmic heating and Hall currents are neglected. The wall and the free 
stream temperatures are kept constant. The flow is assumed to be axisymmetric. Under the 
above assumptions the boundary-layer equations governing the flow and heat transfer over 
an infinite stationary disk are given by [3]- [5], [7], [11], 

u~. + u / r  + w~ = O, 

uu~, + wuz  - v 2 / r  = - 0  1> + Z,Uz~ - o-B2u/O,  

~,~  + ~ + ~ I r  = . ~ z  - ~ B ~ ( v  - ~ ) 1 ~ ,  

(*) 

(2) 

(a) 

(4) 

The boundary conditions are given by 

u(r, 0) = v(r, 0) = 0, w(r, 0) = Wo, T(r, 0) = T~, 

~(~ o~) = ~ ( r ) ,  v(~, oo) = v~(r), T(r, oo) = r ~ .  

The velocity components at the edge of the boundary-layer, u~ and v~, are given by 

u~ = a / r ,  % = b / r ,  a > O,b > O. 

(5) 

(6) 

Hence, from Eqs. (2) and (6) we obtain 

- ~  1 p r  = , ~ ( ~ ) ~  _ ~ 2/,~ + ~,B2~,~/O = _ (~2  + b2 ) / r  3 + ~ B ~ / ( o r )  . (7) 
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Here ~', 6, z are the cylindrical polar  coordinates; u, v and w are the velocity components  
along r, 0 and z directions, respectively;/3 is the magnetic field; T is the temperature; ~o and 
are the density and kinematic viscosity, respectively; p is the static pressure; a is the thermal 

diffusivity; a and b are constants; the subscripts r and z denote the derivatives with respect i:o 
r and z, respectively; and the subscripts e, w and ec denote the conditions at the edge of the 
boundary-layer,  on the wall and in the free stream, respectively. 

I t  may be noted that  the flow considered here is fully viscous which can be divided inl:o 
two regions. The main flow consists of  a region in which axial gradients are negligible in com- 
parison with the radial gradients. Hence, the flow can be considered independent of  z. Tile 

other region is the boundary-layer  region near the surface where the axial shear is much larger 
than the radial shear. These two regions should be matched to obtain the whole flow field. 

For  rotating flows over a stat ionary disk, the radial velocity is directed towards the disi.~, 

and the angular momen tum is created at a large radius and transported to a small radius. 
It  is possible to reduce the partial differential equations (1) - (4)  to a system of  ordinary 

differential equations by using the following transformations: 

~l = ( b / ~ ' ) l / 2 ( z / r ) ,  ~ = ( a / r ) f ' ( r ? ) ,  v = (b/r)9(~?) , 

w = ( a z / r  2) f ' ( ~ )  - ( a / r )  (~,/b) 1/2 f ( z l ) ,  0(71) = ( T  - T ~ . ) / ( T ~  - T w ) ,  

S = cr/32rl~u~,  f ~  = - ( w o l u , ) ( b i t )  1M , P r  = ~/c~ , m  = a / b  > O. (8) 

Consequently, Eq. (1) is identically satisfied, and Eqs. (2 ) -  (4) reduce to 

f ' "  + m ( f "  + f ,2)  + (921m)  _ (m 2 + 1)/rrz - S ( f  1) - 0, (9) 

g" + r r z f j  - S ( 9  - 1) = 0, (10) 

0 " +  P r m f O '  = 0. (11) 

The boundary  conditions (5) reduce to 

f = f w ,  f ' = 9 = O = O  at r / = 0 ,  

f ' = 9 = O = l  as r / - -+ec .  (12) 
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Here r/is the t ransformed variable; f / a n d  g are the dimensionless velocity components  in 
the radial and tangential directions, respectively; S is the dimensionless magnetic parameter;  0 

is the dimensionless temperature; P r  is the Prandtl  number;  and a prime denotes a derivative 

with respect to rh The suction parameter  fw(f~, > 0) is a constant if w0 is selected in such a 
manner  that  (wo/ue)  is a constant. The ratio m is a dimensionless constant and denotes the 
relative magnitude of the source and the vortex flow; m > 1 implies that the source flow dom- 
inates over the vortex flow, and for m < 1 it is the other way around. Also, for the magnetic 

parameter  S to be of  0(1) while the magnetic Reynolds number  R ~  << 1, it is necessary that  
the ratio (B2/(O#oue2)) >> 1. 

3 Analytical solution 

For  a large suction rate (f~ > 3), it is possible to obtain analytical solutions of  Eqs. (9)-(11)  

under the boundary  conditions (12) using a perturbat ion technique when the parameters  S 

and m are of  order one. For  large suction f~, the boundary-layer  becomes very thin, and 
there is a large change in the dependent variables across the boundary-layer.  Hence, it is con- 

venient to stretch the coordinates by using the following transformations:  

= fwr], f ( ~ )  = f i~F(~) ,  9(r]) = G(g) ,  0(7 ) = r  s = f~2.  (13) 

Substituting relations (13) into Eqs. (9)-(12) ,  we obtain 

F// /+ ~ (FF / I  + F '2) - c S F  I + ~2(C~/~)  - ~bl  = 0, (14) 

G" + m F G  I - s s ( a  - 1) = 0, (15) 

011+ P~ ~ F r  = o, (16) 

F = I ,  F ' = G = r  at ~ = 0 ;  F ' = e ,  G = r  as r / - -+oc.  (17) 

Here bl = (m 2 + 1 - m S ) I r a  is a constant, and a prime denotes a derivative with respect 

to ~. For  large values of  fw the perturbat ion quantity s is small. Hence, F,  G and 0 can be 

expanded in terms of s as follows: 

F = F0 + s F I +  e2F2 + . . .  , 

G = Go + gG1 + s2G2 + . . .  , 

r = r + sq51 + e202 + . . .  (18) 

Sub stituting relations (18 ) into Eqs. (14) - (17) and equating the coefficients of  various powers 

of  s, we get the following system of equations, along with boundary  conditions: 

Zero- th  order equations 

s0"  + ~(F0~0" + (F0') 2) = 0, 

Go" + mFoGo I = O, 

r + P r  mFor = O, 

Fo = 1, Fo' = Go = Oo = 0 

F0 I = 0 ,  G 0 = 4 , 0 = l  as 

at ~ = O, 

~ --+ C~ . 

(19.1) 

(19.2) 

(19.3) 

(19.4) 
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First-order equations 

F~"' + m(FoF~" + 2Fo'F~' + Yo'F~ - SFo') = O, 

O1" + re(Fog/+ Go'F~) - S(go - I) = 0, 

r + Prm(For + r = 0, 

F , = F , ' = G ~ = r  at ( = 0 ,  

F t ' = I ,  G1-r as ~--~o~. 

(2o.1) 

(2o.2,) 

(2o.~) 

(2o.~) 

Second-order equations 

F2" -[- T/),(SoE2" -]- 2fot/V,Z + Fo'tF2' -}- ElF1N -}- F1 '2) SFI' + Go2/m - b~ - O, (21.1) 

g2" + re(FoG2' + F1GI' + F2Go') - SG~ = 0, (21.2) 

.oz '+ Prm(For + F1,61' + Fzr = 0, (21.3) 

F 2 - - F S - - G 2 = ~ 2 = 0  at E - - 0 ;  F 2 ' = G 2 = r  as ~ - + o o .  (21.4) 

The solutions of  the previous system of  equations are given by 

F0 = 1, (22 .0  

Go - 1 - exp ( - raG),  (22.2) 

Oo - 1 - exp ( - p ~  ~ ) ,  (22.3) 

F~ = ~ - ~-111 - ~xp ( - ~ ) ] ,  (23.1) 

c~ : [ ~ 2 / 2  + s ~ / ~  + 1/(2ra)l exp ( - ~ )  - (2~ )  1 ~xp ( - 2 ~ ) ,  (23.2) 

41 = [m-1 (Pv + 1 ) - l P r  2 - (PT - 1) ~ + P r  ra ~2/2] exp ( - P r  m~) 

__ 7/%-i(/D~ _h 1) ]lOT2 exp [--T/%(1 @ ef)~], (23.3) 

F2 : [2 lm 4(3 - 2mS) 4- <rt-a(m 2 + 2 - mS) ~ - ~2/2] exp (--rn,~) 

+ [(2m 2 + 1) exp ( - 2 m ( )  - (2m ~ - 4mS + 7)]/(4m~), (24.1) 

G~ - [ - ~ / 8  - ( 2 ~  + s )  ~3/6 + { 2 ~  ~ + (2s  - 7) ~ - 2 ~ s  - 2 s  ~ } ~ / ( 4 ~  ~) 

+ {2~ 3 - 2(3 - s) ~2 - 5s~ - 2s 2 } ~/(2~ ~) 

+ ( 3 ~  ~ - l s s ~  + 34 + 3 s ) / ( 2 4 ~ ) ]  ~xp ( - ~ )  

+ [(m2 + 6Sin - S - ll)/(Sm 4) + (m2 _ 2mS + 4) (/(4m 3) + (2/4] exp (-2m~) 

- (24m4) -1 (6m 2 + 1) exp ( - 3 m ( ) ,  (24.2) 

~ = [~i~ - ~/2 + 2-i(1 ~) P~d - 2-~(P~) ~ ~ + ~] ~xp (-p~) 

+ [a3~ -~ + ~ ( ~  + ~ ) / ~  + (P~'/2) ( ~  + 2 ~  + 2 ) / ~  3] ~xp [-(p~, + l ) ~ ]  

~ ( 2 ~ )  -I ~xp [ - ( e ~  + 2 ) ~ ] ,  (24.3) 

where 

~ : [ 1 2 ~ ( 1  - ~ )  P~ (6,~ 2 - 4 , ~ s  + 7)] (4P~.~,.~), 

a~ = (Pr + 3 m -  3 ) / m ,  
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a3 -- (Pr  + 1)-3m 414m2pr4 + (12m 2 + 2 m S  - 3)Pr  3 + (8m 2 + 6 m S  - 10) P r  2 

- (2m 2 - 4 m S  + 7) P r -  2m2], 

a4 : PT (27% 2 xP'F ~- 7)%S -- 2) /7 )%3(Pr  -t- 1), 

a5 = P r  (4m 2 P r  + 2 m  2 + 1 ) / 4 m 4 ( p r  + 2), 

a6 : m la 3 -- m-2a4 -- m -3 P r  + (2m) la  5 . (24.4) 

The surface shear stresses in the radial and the tangential directions are given by 

f"(0) = fw3 [F0"(0) + f~2FI"(O) + fw4F2"(0)] = f w m  + fw 1 (2Sin  - 2m 2 - 3) /2m 2 , (25.1) 

9'(0) = f~ [Go ' (0 )+  f ,72Gi ' (O)4- f~402' (o)]  = flora + f ~ 1 ( 2 s  + m ) / ( 2 m )  

+ fwa[12m 3 + (24S - 69) m 2 - 6 6 S m  + 11 + 3S - 24S2]/24m3) ,  (25.2) 

0'(0) = fw[r + f~201'(0) + f;4r 

= e ~ f w  + / : l ( p ~  + 1 < 1  + f ; 3 [ p ~  + 1 ) - 1 ( p ~ 4  _ p~3 + p~2 _ p~. _ 2) 

- ( 4 ~ 4 ) - ~ ( 2 ~  ~ - 4 s ~  + 7) - P ~  (P~  + 1) 2 ~ - 4 ( 2 P ~ , ~ 2  + s ~  - 2) 

+ m 2 ( p r  + 1 ) - l ( P r  + 2) l { ( P r / m 2 )  (2m 2 - 8S in  + 13) 

- (Pr/2m) 2 (2m 2 + 4Sin - 7) - (Pr + i) -I ( P r  + 2) ( P r  3 + Pr ~ - 1)}]. (25.3) 

It is evident f rom (25.3) that the surface heat transfer 0'(0) is weakly dependent on the 

magnetic parameter  S. The surface shear stresses in the radial and the tangential directions 

( i f (0) ,  9'(0)) and the surface heat transfer (0'(0)) are found to be in good agreement with the 
corresponding numerical results when f~ > 3, and S and m are of  order one. 

4 Asymptotic solution 

Here we consider the asymptotic  behaviour of  the solutions of  Eqs. (9 ) -  (11) under the bound- 

ary conditions (12) for large r/(i.e., as r / ~  oc). As r/--+ oc, f ' ,  9 and 0 tend to 1. Also, 

~7 
r/---+ f + f (1 - f ' )  dr/. (26) 

0 

Since the above integral is the displacement thickness of  the boundary-layer,  it must  be 

finite and is usually small. This implies that  f --+ r / for  large r/. Hence, we set for large r/ 

f(r/) = r / -  f l(r/) ,  g(~]) = 1 - gl(r/), 0(r/) = 1 - 01(r/), (27) 

where fl ,  gl and 01 are small and their squares and products can be neglected. Using relations 
(27) in Eqs. (9)-(11)  and linearizing, we obtain 

f l "  + m r ~ f 1 "  + ( 2 m  - S )  f l '  = - -2gl /Tt%,  

ool Ct -[- mr/g1 / --  S g l  = 0 ,  

01" + P r  mr/01 r = O. 

The boundary  conditions are given by 

f l t  = g l  = O1---+ O as  r/ --+ o o .  

(28) 
(29) 

(30) 

(31) 
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We first solve Eq. (29), and the solution is given in terms of  parabolic cylinder functions 

[12] 

gl = exp (--NZr]2/4)[ClDl(rrt-1/2r]) T C2D2(im 1/'2r])] , (32) 

where 

Dl(m,1/2r]):exp(_mr]2/4)(rr~l/2r]) (s+m)/m [ l _ < S  + m)(S-[- 2rrt) . ] 2m2(mr]2 ) § O(m2r] -4) , (33.1:) 

D2(imz/2r]) = exp (mr]2/4) (rr~l/2r]) s/'r 1 d 2rnz(mr]z ) +- 0(m2r] -4) , (33.2) 

and C1 and C2 are arbi trary constants. In view of the condition 91 --+ 0 as r] --+ ec given in 

(31), the divergent term D2 must be omitted. Hence the constant C2 in relations (32) must be 
zero. The solution of  Eqs. (30) under the boundary  conditions (31) is given by 

= exp(-P - r]U2)I1 - + . . . ] ,  (3 0 

where C3 is an arbi trary constant. 
Using relations (34) in Eq. (28) and then solving under the boundary conditions (31), ~e  

get 

, 

where C4 is an arbitrary constant. It  is evident from the above equations that  f1',91 and 

01 tend to zero exponentially as r] --* co. Hence, y ,  9 and 0 tend to 1 exponentially as r] ~ ~D 
(see [27]). Also if, 9 and 0 are monotonic  increasing functions of  r] in the range 0 _< r] _< co. 

Since f ~ r], f '  ~ 1 as r] --* oo, the axial velocity w (see [8]) for large r] is given by 

w = (az/r 2) - (a/r)(,/b)Z/2r], (36.1) 

and for small r] it is given by 

w = (az/r 2) f"(O) r] - (a/r) (u/b)l/2f"(O) r]2/2. (36.2) 

Existence of the similarity solution 

It is possible to show that Eq. (9) under the boundary  conditions (12) does not admit  the simi- 
larity solution in the absence of  suction f~ and the magnetic field S, but the similarity solution 
exists either in the presence of suction or the magnetic field or both. Integrating Eq. (9) twice 

with respect to r] f rom r] = 0 to r] = r]~ (where r]oo is the edge of the boundary-layer)  and using 
the boundary  conditions in (12), we obtain 

m ( f ( o o )  - r]oo)2/2 = mf~2/2 + S f dr] f (1 - if) d r / -  1 - m-1 f dr] f (1 - 92) dr]. 
0 0 0 0 

(37) 

In the previous section, it was mentioned that  f '  and 9 tend to 1 exponentially as r] --* oe, and 
they are monotonical ly  increasing functions. Hence for all r] in 0 < r] < r]~,0 _< f '_< 1. 
0 < 9 -< 1,, 9 -> g 2. Also f~, %o, S and ~r~ are positive constants. For  f~ = 0 (without suction) 
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and S = 0 (without magnetic field), the left-hand side of (37) is positive (f(ec) r ~/~), but the 
right-hand side is negative which is inconsistent. This implies that no solution exists for 

fw = S = 0. When f~ >_ .f,~ or S > S*, the right-hand side is also positive, and relation (37) 
becomes consistent. Hence for f~ > f~ or S _> S*, the similarity solution exists. The numerical 
results for m = 1 show that for S = 0, f~ = 1.851 and for f~ = 0, S* = 1.652, respectively. 

5 Results and discussion 

Equations (9)-(11) under the boundary conditions (12) have been solved numerically using a 
shooting method [10]. We have examined the effect of the grid size At/and ~ on the solution, 

and the results presented here are independent of Arj and r/oo at least up to the 4th decimal 

place. 
The results for the surface shear stresses (f"(O), g'(0)) when S = 0 (no magnetic field) and 

u~ = 0 (no source flow) are compared with those of Nanbu [7] who considered the potential 
vortex flow in the presence of large suction. The results are found to be in very good agree- 

ment (the maximum difference is less than 0.5 per cent for fw >_ 3). Hence, for the sake of 
brevity the comparison is not shown here, Also, the surface shear stresses (f"(O), 9'(0)) corre- 
sponding to the potential vortex flow (u~ = 0) for S = 1, 2, 10 are compared with those of 

King and Lewellen [3], and these are found to be in good agreement. This comparison is given 

in Table 1. 
The variation of the surface shear stresses in the radial and tangential directions 

(F(O), g'(0)) and the surface heat transfer (0'(0)) with the suction parameter f,~ for several 
values of the magnetic parameter S is given in Figs. 2 -4 .  These figures also show the results 
of the analytical solutions (Eqs. (25.1-25.3)). It can be seen that the analytical results are in 

good agreement with the numerical results for f~ > 3. The interesting result is that the solu- 
tion exists beyond a certain value of the suction parameter fw or the magnetic parameter S. 
For S = 0, the solution exists for f~ >_ 1.851, and for S = 1, it exists for f~ _> 0.450 1. For 

S > 1.652, the solution exists for all values of the suction parameter. Below these values the 
surface shear stress in the radial direction, ft'(O) < 0, but the boundary-layer equations are 

not valid in such a situation. The effect of the suction parameter (f~ > 0) on the surface shear 
stresses and heat transfer (f"(0), g~(0), 0'(0)) is more pronounced than that of the magnetic 

parameter S. For S = 1, F(0) ,9 ' (0)  and 0'(0) increase by about 447%, 148% and 200%, 
respectively, as f,~ increases from 1.5 to 5, but for .fw = 3 they increase by about 66%, 45%, 
9%, respectively, when S increases from zero to 5. The increase in f"(0), g'(0), 0'(0) is caused 
by the reduction of both the momentum and thermal boundary-layer thicknesses. Also, the 
reason for the weak dependence of the heat transfer (0'(0)) on S is that the energy equation 

does not contain the magnetic field explicitly. 

Table 1. Comparison of the surface shear stresses in the radial and 
tangential directions (f"(O), g/(0)) for .f~ = 0, rn = 1, u~ = 0 

Present results King and Lewellen [3] 

S -f"(0) 9'(0) -f"(0)  9~(0) 

1 0.661 5 0.9682 0.655 0.959 
2 0.4776 1.411 3 0.473 1.397 

10 0.252 1 3.154 1 0.250 3.131 
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Fig. 2. Variation of the surface shear 
stress in the radial direction (f"(O)) 
with fw and S = 0 , 1 , 3 , 5 ,  rrz= L 
o = analytical solution (Eq. (25.1)) 
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,rr~ = 1. o = analytical solution (Eq. 
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Fig. 4. Variation of the surface-heat 
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m = 1. o = analytical solution (Eq. 
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The  va r i a t ion  o f  the surface shear  stresses and the hea t  t ransfer  (f"(O), g'(0),  0'(0)) wi th  

rrz, for  f , ,  = 2, S = 1, P r  -- 0.7 is p resen ted  in Fig. 5. The  funct ions  f"(O), 9'(0)~ 0'(0) increase 

by a b o u t  285%,  148% and 180% as m increases f rom 1 to 3. The  s t rong  dependence  o f  the 

skin f r ic t ion and hea t - t rans fe r  pa ramete r s  on m is due to the fact  that  m occurs  explicit ly in 



18  H . S .  Takhar et al .  

6.0 

5.0 

4.0 

3.0 

2-0 

1.0 

0.0 
0.5 

~ 8 ( 0 )  

I r 
1.0 2-0 3.0 

m �9 

o 
"(:D 

o 

ell  

o 

%. 

Fig. 5. Variation of the surface shear stresses 
and heat transfer (ff(O),9'(O),O'(O)) with ra 
for fw = 2, S = 1, P r  = 0.7,  m = 1 

20.0 - -  

16,0 

12.0 

(D 

8,0 

4.0 

0.5 

~ S :  5.0 

/ ~ f j ~  " ~  S : 3"0 

j \ ,  
/ 

I I I I 
2.0 4.0 6,0 8 .0  10.0 

Pr" 

Fig. 6. Variation of the surface heat transfer 
( 0 ' ( 0 ) )  with P r  for m = 1, f ~  = 2 

1.0 

0.8 

S= 5.0 

0.6 S:3.0 

S=I .0  

0,4 

0-2 

0 1,0 2.0 
r t ~  

3.0 

Fig. 7. Velocity profiles in the radial direction 
( f ' ( r / ) )  f o r  m = 1, f ~  = 2 

1.0 

~ 5 : 3 , o  

o6 ~ s: 1.o 

o~ 

0,4 

0.2 

o' 1'.o ~'.o ~.o 
q ~  

Fig. 8. Velocity profiles in the tangential 
direction (907)) for m = 1, f ~  = 2 

1.0 

0.8 

I 0.6 

CD 
0-4 

0-2 

$=5,0 

I I 1.o -- 2.0 3:0 Fig. 9. Temperature profiles (0(r/)) for ra = 1, f~ = 2, 
n P r  = 0.7 



Unsteady MHD-boundary-layer ] 9 

/ /  rn:'7.0 / m= 0-5 

to., 

<: f - /  o.z , / ' / /  _ f'(q.) 

0.2 / g(q) 

0.0 I 
0 0 1.0 2.0 3.0 q _.__..~. 

Fig. 10. Velocity and temperature pro- 
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Pr = 0.7 

the momentum and the energy equations. Also, the solution exists for rrz 2 0.5375, when 

fw = 2, S =  1. 
The effect of  the Prandtl number P r  on the surface heat transfer 0'(0) for fw = 2, ra = 1 is 

displayed in Fig. 6. The surface shear stresses ( f ' (0) ,5/(0))  are not affected by the Prandtl 

number. The surface heat transfer increases significantly with P r  due to the reduction in the 

thermal boundary-layer thickness. As mentioned earlier, the heat transfer changes little with 

the change in the magnetic parameter S. For  m = S = 1, fw = 2, 0'(0) increases by about  16 

times its value as PF increases from 0.5 to 10. Since Pr  occurs in the energy equation, :kt 

strongly affects the heat transfer. 

The effect of  the magnetic parameter S on the velocity and temperature profiles ( ( f ,  9, 0) 

for fw = 2, m = 1, P r  =- 0.7 is presented in Figs. 7 9. The velocity and temperature profiles 

(y ,  g, 0) increase with S due to the enhanced Lorentz force. However, the effect of  S on the 

temperature profiles is small. 
The effect of  m on the velocity and temperature profiles ( ( f , g ,  0) for S = 1, f~ = 2, 

P r  = 0.7 is shown in Fig. 10. The velocity and temperature profiles increase with m due to the 

reduction in the momentum and thermal boundary-layers. 

6 Conclusions 

The surface shear stresses in the radial and tangential directions and the surface heat transfer 

increase with suction, the magnetic field and the ratio of  the source and vortex flow, and they 

strongly depend on these parameters, except the heat transfer which is weakly dependent on 

the magnetic field. Also, the surface heat transfer significantly increases with the Prandtl 

number. The solution exists beyond a certain value of  the suction parameter or the magnetic 

parameter. The analytical results are found to be in good agreement with the numerical results 

for f~ _> 3. 
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