
Acta Informatica 31, 719-728 (1994)

i . mrmatlca
�9 Springer-Verlag 1994

Petri net algorithms in the theory of matrix grammars

Dirk Hauschildt* and Matthias Jantzen

FB Informatik, Universitfit Hamburg, Vogt-K611n-Strasse 30, D-22527 Hamburg, Germany

Received August 18, 1993/February 18, 1994

Abstract. This paper shows that the languages over a one-letter alphabet generated
by context-free matrix grammars are always regular. Moreover we give a decision
procedure for the question of whether a context-free matrix language is finite. Hereby
we strengthen a result of [Mk 92] and settle a number of open questions in [DP 89].
Both results are obtained by a reduction to Petri net problems.

1. Introduction

Petri nets and vector addition systems are different representations of the same con-
struct. While their notation as nets emphasizes their role as a specification and analysis
tool for distributed systems, their alternative definition as vector replacement systems
illustrates their importance in the theory of formal languages. Here they are regarded
as semi-Thue systems for commutative monoids over a finite alphabet in contrast to
the usually considered free monoid. The alphabet is represented in the set of places,
the transitions play the role of grammatical rules, and the actually derived sentential
form is encoded in the marking.

Additional features of grammars, such as the distinction between intermediate
sentential forms and actual elements of the generated language, do not occur in the
definitions of the nets, but can be implemented by considering only those elements
of the reachability set of which submarkings on certain places have a fixed, predeter-
mined value.

Therefore, Petri net theory is applicable to certain problems in formal language
theory in which

- the ordering of the letters in words of the generated language is irrelevant, and

* {dirk, jantzen}@informatik.uni-hamburg.de

720 D. Hauschildt and M. Jantzen

- t h e ordering of the letters within sentential forms does not influence the further
derivation (except for the ordering of the result).

The first condition is fulfilled if the alphabet contains only one letter or for problems
like emptiness or finiteness of a language. The second requirement is a characterization
of context-free grammars.

Petri net theory is also applicable to extensions of ordinary grammars such as
matrix grammars and random context grammars because their additional requirements
can be easily expressed in terms of the nets.

We will give two examples of this method by solving two problems about matrix
grammars posed open in [DP 89].

- First, we show that languages of matrix grammars or random context grammars
over a one-letter alphabet are always regular.

- Second, we give a decision procedure for the question of whether the language
of a matrix grammar or of a random context grammar is finite.

For this purpose we make use of the semilinearity algorithm presented in [Ha 90].
Given a specification of a portion of the reachability set of a net, this algorithm decides
whether the specified set is semilinear. It produces a semilinear representation of the
set in that case and two close estimates otherwise. Another algorithm solving the
same problem was developed by J.L.Lambert and can be found in [La 90].

A similar approach was applied in [KLM 89] to show that projections of reacha-
bility sets to one coordinate are always semilinear. But since it is based on coverability
graphs instead of MGTS's , one cannot put constraints on the final markings and apply
the result to projections of e.g. certain linear subsets of the teachability set.

Another algorithm investigating coverability graphs of Petri nets can be found in
[Sch 92]. It allows to decide the problem of whether the the free Petri net language
(again without final marking) is context-free.

Section 2 gives the net theoretical definitions needed in the sequel. The semilin-
earity algorithm, on which our results are based, is introduced in Sect. 3. The next
section develops some applications of the algorithm in the field of Petri nets. Our
two main results mentioned above are presented in Sect, 5. Finally, Sect. 6 contains a
more detailed list of open problems which have been solved with our methods.

2. D e f i n i t i o n s

2.1. Notations

Throughout this paper we use capital letters for two-dimensional objects such as
matrices. We write vectors (underlined) and atomar objects in downcase letters.

A function ~ : A ---,/3, A being finite, is identified with the vector B A. Therefore
we usually write za for _z(a). A function F �9 A -* zW B is considered equivalent to a
B x A-matrix F .

2.2. Petri nets

A Petri net (more exactly: place/transition net) N = (P, T, F, B) consists of the set
P of places, the set T of transitions, and two weight functions

Petri net algorithms in the theory of matrix grammars 721

F : T - + f V P,

g �9 T--+ffg P.

P and T are assumed to be finite and disjoint.
Markings are functions m �9 P --~ zW (usually written as vectors in zrvP). Some-

times we will associate an initial marking _m 0 and/or a final marking rnf with a net.
This is done by adding m 0 and/or my to the above 4-tuple.

F is called the forward incidence function. F(t) describes how many tokens are
moved from the places to the transition t when t fires. Conversely, the backward
incidence function B determines the number of tokens returned by a transition. Hence,
A := B - F describes the change of the marking produced by the firing of a transition.
It is called the incidence function of the net.

A transition t is enabled in the marking m if and only if F(t) < m. This is denoted
by __re(t). The firing of t transforms m into m r = m + At(t) (in symbols __m(t)__mr). This
definition is recursively extended to sequences of transitions: A transition sequence
w = ~ l " ' t n E T* is enabled in rrz iff___m(tj) and t 2 " ' ' t n is enabled in m + At(tt).
Then __m(w)m + A(/h) + . . . + A(tn) . Moreover, we assume that the empty word A is

always enabled, i.e., m(A)__m holds for all markings __m of ZW P.

2.3. (Semi-)linear sets

A constant _c and a set of periods X = { x j , . . . ,x_n}, each of which is an element of
g n , for some finite set A, defines the linear set

L := ./I/(c; X) := {c + X . r J _r ~ ~ x } .

The information encoded in X is twofold: considered as a set, it defines the number
of basic periods of L and considered as a mapping, it describes which periods can be
added to elements of L without leaving the set. The image X._r of the homomorphic
mapping X : ZW x ~-~ Z A is the set U'(_0; X) of linear combinations of X. If r~ -7' 0
for all Z c X we call X �9 _r a proper linear combination of X .

A semilinear set SL is the union of finitely many linear sets. If the periods sets
of all l inear components of SL coincide, i.e., if SL = U {.~If(e_; x)] e C C} for a
fixed set X , we characterize it more shortly by ..4/'(C; X).

The Parikh mapping ~ �9 A* ~ ~ A relates every word w C A* to the vector
_x c fV A for which xa contains the number of occurrences of the symbol a in w.

The dimension of a semilinear set SL (written as DIM(SL)) is not defined as
the dimension of its affine hull, but as the maximum of the dimensions of its
linear components (which are defined as usual). For SL = ./V'((O,O); {(0, 1)}) U

./1/'((0,0); {(1,0)}) we have DIM(SL)= 1.

2.4. The reachability relation

The reachability relation]~N of a Petri net N is defined by

R N := {(_a, b) c ~W P x ~W P I 3w ~ T*: _a(w)b }.

It is often useful to extend this relation by some information about the paths connecting
a and _b. Therefore we define the extended reachability relation

722 D. Hauschildt and M. Jantzert

ERN := {(_a, _b, f) C P I P x/}YP x P IT f 3w E T*: _a(w)b and tb(w) = f }.

The index is omitted if the net is evident from the context.
Very often one is interested in the reachability set R (N, __m0) of markings reachable

from a certain fixed initial marking m 0. It is defined by

R(N, mo) := {(m E P I P I @w E T*: _mo(w}_m }.

We will also consider the set of paths leading from a fixed initial marking to
a fixed final marking. Given a homomorphism h : T* -~ A*, where A is a finite
alphabet, we define the labelled terminal Petri net language L (N, h, too, my) by

L(N,h , mo,mf) := {h(w) ~ A* I mo(w)ms} .

3. The semilinearity algorithm

In order to formulate queries about portions of the reachability relation, a kind of a
specification language for reachability relations was introduced in [Ha 90]. It contains
semilinearity problems of the form ~ = (N, L, 70 where

(i) N is a Petri net,
(ii) L C_ P I P x P I P • P I T defines the portion of the reachability relation to be dealt

with, and
(iii) the homomorphism 7r : s P x ZW P x ggT ---, V selects the type of information

to be computed. V is an arbitrary vector space. Usually, 7r is just a projection.

The set of interest specified by ,~,,o is SOL~ := 7r(ERN N L).
If, for example, the net has a fixed initial marking m o, the reachability set

R (N,__mo) can be specified by setting L to {__too} x P I P x P i T and 7r(_a,_b, f) := _b.
Given a semilinearity problem ~/~, the semilinearity algorithm presented in

[Ha 90] computes two semilinear sets LBs.,~ and UBs,~ with

L B ~ a_ SOLs~ C_ UB~

and such that
DIM(UB.~ \ LB~) >_ DIM(UB.~ \ LB;~)

holds for every pair LB ~, UB ~ of semilinear sets with LB ~ c SOLs/~ C_ UB t. This
assertion implies L B ~ = SOL:~ = UB,s,, for the case that SOL~/itself is semilinear.

The goal is achieved by iteratively computing sets F ~ of so-called M G T S ' s
(marked graph transition sequences) each of which describes a portion of SOL~.
These structures are adopted from similar constructs used in algorithms for the reach-
ability problem: given a net N and two markings m0, m s , is _m S reachable from
m 0. An MGTS is essentially the same as a regular constraint graph with a consistent
labelling in [Ma 84] and still very similar to a GVASS satisfying 0 in [Ko 82]. The
name MGTS itself firstly occurred in [La 86]. (A shortened version of this paper
was later published as [La 88].) In fact, every MGTS computed in the semilinearity
algorithm is the result of an invocation of the teachability algorithm.

The exact structure of an MGTS is not important for our purposes and will not
be discussed here. With every MGTS U we can associate a set SOLu containing the
elements of SOLc~ described by U. Unfortunately, no method to characterize SOLu

Petri net algorithms in the theory of matrix grammars 723

in a more effective way than by giving U itself is known so far. The set F ~ of
MGTS's is a complete description of SOL:~ by virtue of the fact that

U {SOLu I U E F,~} = SOL.~/..

The additional information about SOL~/, contained in F~r comprises in two state-
ments. Firstly, a fixed, linear upper estimate UBu of SOLu is attached to every
U C F~,. Theorem 3.1 below exhibits a method to compute also some lower bounds
for SOLu. By defining one of them as LBu we determine two first approximations

L B o : = U { L B u I U � 9 and U B o : = U { U B u I U � 9 (1)

of SOL~. The algorithm proceeds by recursively considering the linear components
of UBo \ LBo as L. This way, it evaluates some closer information about the still
undecided regions. The process halts when no more progress can be made this way.

In every round of its computation, the algorithm considers a portion Li of L and
computes a set Fi of MGTS's describing Li. The problem to be solved then is to
determine some lower bounds LBu C SOLu for every U �9 -Pi in such a way that
DIM(UBi \ LBi) < DIM(Li). One can show that UB~_I and LBi-I were already
optimal (in the sense that the dimension of the undecided region is minimal) when
such lower bounds cannot be found.

Theorem 5.3.7 is used in [Ha 90] to construct linear subsets of some SOLu. To
avoid unnecessary definitions we give only a simplified version of that theorem.

Theorem 3.1. Let U be an MGTS with UBu = .,/t/'(_c_; X). Given a finite subset C of
UBu and a proper linear combination z_ of X, one can find a constant n > 0 with

./F'(C + n . x_; {x}) C SOLu.

Informally, the theorem says that one can shift any element of UBu =: ./V'(g_; X)
into SOLu by sufficiently often adding an arbitrary proper linear combination z__ of
X to it. The number n in the theorem can be obtained by determining the necessary
number of shift operations for every _c �9 C and then building the maximum.

4. Applications in the field of Petri nets

This section extracts the information needed in connection with matrix grammars
out of Theorem 3.1. We consider an MGTS U with UBu = ..4/'(_c; X). If the set
X of periods is empty, i.e., if UBu = {c}, the theorem (applied to C := {_c} and
x := 0) reveals that c E SOLu. With IXI >_ 1 the theorem shows that SOLu contains
infinitely many elements. This leads to our first observation.

Corol la ry 4.1. For a given semilinearity problem ~ it is decidable whether SOL J~
is fnite.

Proof. We just have to compute the set F.~ of MGTS's. SOLu is infinite if and only
if there is a U E F~ withUBg =: ,/I/'(c_;X) and IxI _> 1. []

The other case we consider contains semilinearity problems ~ = (N, L, :r) in
which 7r maps L to the set zW of natural numbers. We will show that in this case
UBo \ LBo is finite, i.e., that the first round of the semilinearity algorithm decides
x E SOL~, for all but finitely many numbers x. By Eq. (1), it suffices to consider the
UBu and LBu, U �9 I':~, separately.

724 D. Hauschildt and M. Jantzen

Lemma 4.2. Let ~ = (N, L, 7r) be a semilinearity problem with 7r �9 L ---+ fig. For
every MGTS U c Fp there exists a subset Lt3u of S O L u such that UBu \ L B u is
finite.

Proof Let UBu = ./t/'(c; X) and m be a proper linear combination of X. By the
choice of 7r, m is a natural number. If m = 0, UBu is finite and the lemma holds
trivially.

Assuming m > 1, we partition fig into residue classes

R i = { x E f i g l x - i (m o d m) }

and select a point r~ E Ri for every Ri not disjoint to UBu. By applying Theorem 3.1
to

C : = { r i] R i n U B u r and x : = m ,

we obtain a subset L B u := J l / ' (C + n . m ; {m}) of S O L u which contains all elements
of UBu which are not smaller than a certain bound, namely n.m+max{r i] R i A U B u 7 !
t3}. To see this we consider the residue classes Ri separately. Nothing is to prove if
Ri (? UBu is empty. Otherwise the subset

. / U ' (r i + n . m ; { m }) : { x c f i g l x > r i + m . n , x ~ r i (m o d m) }

of L B u contains all sufficiently large elements of R~. []

Since the semilinearity algorithm selects all its lower bounds as suggested by the
lemma, it nearly has finished its task after one round. The second round only has to
consider the elements of the set difference UBo \ LBo one at a time to determine
whether they belong to S O L ~ . This leads to our second corollary.

Corol la ry 4.3. Let ~ = (N, L, 7r) be a semilinearity problem with 7r : L --~ fig. Then
SOL.~ is an effectively computable semilinear set.

From Corollary 4.3 it easily follows that the length set, i.e., the set {[w]] w E L},
of every Petri net language L is semilinear. Furthermore, if L is a language over a
one-letter alphabet, then it is regular. Hence we obtain the following corollary.

Corollary 4.4. Let L = L (N , h, re_o, my) be a Petri net language with h " T* --+ {a}*.
Then L is an effectively computable regular set.

5. Applications in the field of matrix grammars

It is well known that programmed grammars generate the same class of languages
as matrix grammars with appearance checking, Arbitrary matrix grammars with ap-
pearance checking and A- rules generate the recursively enumerable languages, while
those without A-rules generate only context-sensitive languages that are in NP. We
begin with some definitions from [DP 89].

Definition 5.1. Let G = (VN, I/T, S, R) be a context-free grammar with nonterminal
alphabet VN, terminal alphabet VT, initial symbol S E VN, and a set 1~ C VN x
(VN U VT)* in which all productions carry a unique label from a set Z. I f r is a label
o f the production A ~ w we write r : A ~ w.

A context-free matrix grammar 5~ based on the context-free grammar G is specified
by the triplet Yr := (G, M, F) where M C_ E* is a finite set of sequences'of production

Petri net algorithms in the theory of matrix grammars 725

labels, each of which is called a matrix and the set F C_ Z, containing the labels of
those productions that can be passed over in case they are not applicable. This is
called appearance checking.

Derivation of sentential forms proceeds as follows: u ~ v holds if and only if
a c

there exists a matrix m = rl r2 . . . rn in M with ri " Ai -+ v~ and some strings
Wo, W l , . . . , w n E (VN U VT)* such that u = wo, v = w~, and for each i C { 1 , . . . , n }
either of the cases (a) or (b) holds:

(a) w~_~ = w~_~ A~ w~'_, and we = w~_~ ve w~'_~,
(b) wi = w~_l, Ai does not occur in wi, and ri E F.

I f F = ~ then we write ~ instead of ~ . Note that in this case all non-applicable pro-
a c

ductions lead to a blocking derivation. The language generated by the matrix grammar
~ ' := (G, M, F) is defined as

L(.~c) := {w �9 V~ I Ao ~ w}.
~ C

Definition 5.2. The family of all context-free matrix languages with possible appear-
ance checking is denoted by cc~ / (M, ~,~;~T, ac). We write S (M, D - A , ac) if only
A-free context-free grammars are permitted. The corresponding classes of languages
that can be generated by grammars without appearance checking, i.e., with F = O, are
denoted by oc~j (M, ~) and cg~ (M, D - A) .

It is known that , ~ (M, U ~ ' - A , ac) is an A F L strictly contained in the family of
context-sensitive languages (see [Ro 69], [vL 75], and [DP 89]), w h i l e , ~ (M, ~ , ac)
equals the family of recursively enumerable sets. The inclusions

, ~ (M , ~ - A) c_ , ~ (M , ~ ' - A , ac) and , ~ (M , ~ - A) C_ , ~ (M , g-Av--~)

are obvious from the definition. It was conjectured, but not proved in [DP 89] that
these inclusions are proper. This assumption will be confirmed in this section by
proving that each language over a one-letter alphabet within the former family is
necessarily regular.

It was shown in [DP 89, pp. 267-270] that Petri nets (with a fixed initial marking)
can be simulated by matrix grammars, i.e., given N and m o, one can compute a
matrix grammar ~~ such that the set of reachable markings equals ~b(L (.~)).

We will demonstrate here that the reverse simulation can be accomplished as well.
Let ~ = (G, M, 0) be a context-free matrix grammar with G = (VN, VT, R, S) being
its underlying grammar, and ,..,4 = (Q, ~', q0, {q0}) be the canonical finite automaton
accepting M*, the set of valid applications of sets of rules of G.

The place set of the net N = (P, T, F, B) shall contain one place for every state of
.... 4 and one place for every (terminal or nonterminal) symbol of G. This is achieved
by setting P := VN tO VT U Q. Moreover, the transition set coincides with I7. For

every rule r : A --+ w let q ~ q' be the corresponding arc o f , ,-g4. Then we set

F(r) := r and B(r) := r

If the net N is started from an initial marking m o containing one token on S and
one token on qo, it simulates derivations of ..~r step by step. Every reachable marking
contains the Parikh image of the current sentential form in VN tO VT and the state of
the automaton in Q.

726 D. Hauschildt and M. Jantzen

The other two parameters of the semilinearity problem are used to select the
actual elements of L (;r We are interested in transition sequences leading from
m 0 = ~(5'q0) to any final marking in which q0 contains one token and all elements
of VN and Q are empty. This assures that the 'derived' sentential form contains no
more nonterminals and the automaton is in its (initial and) only final state. Hence we
define

L : : {@(S q0), ~(v q0), ~(~)) Iv e V~, w ~ ~* }.

The mapping 7r is used to project an element (_a,_b, f) of L onto the portion of_b
describing the final marking on VT. This way we obtain

SOL,~ : {~(w) I w ~ L (:r

as required.
With the help of this simulation we easily develop the assertions proposed in the

introduction.

Theorem 5.3. All languages over one-letter alphabets in ~" (M, ~) are regular.

Proof Let {a}* D L c ~ ' (M , ~ 7) and :J~ = (N, L, 70 be the semilinearity problem
derived from L. Then 7r maps L into ZA/"vT" = 2V. Hence Corollary 4.3 is applicable and
shows that SOL~ = ~(L (:r is semilinear. Consequently, L (,~r itself is regular.

[]

By using the same simulation, the finiteness problem for the families of context-
free matrix grammars without appearance checking can be reduced to Corollary 4.1.

Theorem 5.4. Finiteness for context-free matrix languages without appearance check-
ing is decidable.

Proof Again let L E .~//(M, ~ -) and ~/~ = (N, L, 70 be the semilinearity problem
derived from L. Then SOL~ = ~(L (.~')) being finite is equivalent to ~ L (o,) itself
being finite. Hence the theorem follows from Corollary 4.1. []

6. Answers to open questions

Dassow and Pfiun [DP 89, Problem 1.3.3] posed open six problems on matrix and
random context grammars. Four of the problems consider the decidability of the
finiteness problem for the families

(RC, ~ 7 - , ~) , ~" (M, W - A) , , ~ (RC, ~)7), and 5g ~ (M, U.~r).

Since random context grammars can be effectively transformed in matrix grammars,
all four cases can be reduced to Theorem 3.1, and answered with 'yes'.

The other two decidability questions of Dassow and P~un, the word problems for

~ ' (R C , ~ ; ") and ,)b~(M, ~ -) ,

can be solved with the methods presented in the book [DP 89] itself. If one wants
to decide whether a string w is an element of a context- free matrix language L one
first computes the matrix language L' := L N {w} (Lemma 1.3.5, closedness under
intersection by regular sets) and then determines whether L' is empty (decidable by
Theorem 1.3.4).

Petri net algorithms in the theory of matrix grammars 727

We now have a Iook at our other main result, Theorem 3.1. It tells us that matrix
languages over a one-letter alphabet are regular. Therefore the following context-
sensitive, but not context-free languages

{a2nin>_ 1}, {a 'F I n - > 1}, and {a '~ I n i s a p r i m e n u m b e r } (2)

cannot be in ~ (M , ~ j -) l . This observation solves the open problem 1.1.1 of
[DP 89]. Moreover, these sets serve as the "concrete" languages in ~ (~ J ~) \
Sr (M, g~-~r) sought for in [DP 89, Problem 1.2.2].

Since context-free matrix grammars with appearance checking, but without A-rules
exist for the three languages of Eq. (2), we can answer the last question in [DP 89,
Problem 1.2.3] as well:

Corollary 6.1. The inclusion S (M, ~"~r-A) C S (M, ~"$~'~-A, ac) is strict.

The same observation further shows that cS (M, ~ ' ~) is not a superset of
S (M, ~ -A, ac) and strictly contained in ~ ([DP 89, Problem 1.2.1]). The last
inclusion could as well be deduced from the decidability of the membership problem
for S (M, fr (see the remark above).

The inclusions ~ (RC, f r C_ c ~ (M, ~) C , ~ have some implications
to closure properties as well:

Corollary 6.2. The families S (RC, ~) and S (M, ~m-~) are not closed with re-
spect to intersection or to complementation.

Proof It is well known (see [GGH 67, Theorem 3.1]) that the closure of ~ with
respect to homomorphism and intersection is the class of recursive enumerable lan-
guages. Since both, c ~ (RC, U~-,7) and cS (M, ~) , contain ~ and are closed
with respect to homomorphism, but are strictly contained in , _ , ~ , they cannot be
closed with respect to intersection.

Now the results about complementation follows from the fact that the two families
are closed with respect to union and De Morgan's law. []

Finally we consider the class .c/S (AUSC) of unordered scattered context grammars
having only a single terminal symbol. These grammars are almost identical to Petri
nets with only one transition label. The class of languages generated by such grammars
coincides with the family of Petri net languages. Hence we can apply Corollary 4.4
to state:

Corollary 6.3. All languages over one-letter alphabets in S (AUSC) are regular.

7. Conclusion

By applying decidability results on semilinearity problems about Petri net reachability
relations proved in [Ha 90] we obtained some results as well in the theory of Petri
net languages as in the theory of regulated string rewriting. This way we solved a
number of long-standing open problems in the latter field.

Specifically we have proved that all elements of both

i it was already shown in [La 88, Corollary I l - I] by a reduction to the reachability problem that (two
of) tfiese sets cannot be Petri net languages.

728 D. Hauschildt and M. Jantzen

�9 the family o f languages defined by context-f ree matrix grammars without appear-
ance checking and

�9 the class o f terminal labelled Petri net languages,

are regular if the terminal alphabet consists of only one letter. Moreover , we proved
the decidabi l i ty of the finiteness problem for the family of languages defined by
context- f ree matr ix grammars without appearance checking.

A number o f problems, stated as open in [DP 89], have been settled as corollaries
of the above two theorems.

The interest ing quest ion of whether the class of context-free matrix languages
is c losed with respect to Kleene-s tar remains open for the t ime being. Al though it
is well known that the family of Petri net languages is not closed with respect to
this operation, the result cannot be transferred to matrix languages by the previous
techniques.

References

[DP 89]

[GGH 67]

[Ha 90]

[Ko 82]

[KLM 89]

lEa 86]

[La 88]

[La 90]

[Ma 84]

[Mk 92]

[GW 89]

[Ro 69]

[Sch 92]

[vL 75]

Dassow, J., Pfiun, G.: Regular rewriting in formal language theory. (EATCS Monographs on
Theoretical Computer Science) Berlin, Heidelberg, New York: Springer 1989
Ginsburg, S., Greibach, S., Harrison, M.A.: One-way stack automata. J. ACM 14, 389-418
(1967)
Hauschildt, D,: Semilinearity of the reachability set is decidable for Petri nets. Doctoral The-
sis, Dept. of Computer Science, University of Hamburg (1990). Also appeared as: Dept. of
Computer Science, University of Hamburg, Technical Report No. FBI-HH-B-146/90
Kosaraju, S.R.: Decidability of reachability in vector addition systems. Proc. 14 th Ann. ACM
STOC (1982), pp. 267-281
Kleine Brining, H., Lettmann, T., Mayr, E.: Projections of vector addition system reachability
sets are semilinear. TCS 64, 343-350 (1989)
Lambert J.L.: Consequences of the decidability of the teachability problem for Petri nets.
Rapport de recherche no 313, L.R.I., Universite de Paris-Sud (1986)
Lambert, J.L.: Some Consequences of the decidability of the reachability problem for Petri
nets. Advances in Petri Nets 1988 (Lect. Notes Comput. Sci., vol. 340, pp.266-282) Berlin,
Heidelberg, New York: Springer 1988
Lambert, J.L.: Vector Addition Systems and Semi-Linearity. Prepublication de I'Universite
Paris-Nord, Departement d'Informatique, N 90-8 (1990); also to appear in: SIAM J. Comput.
Mayr, E.W: An algorithm for the general Petri net reachability problem. SIAM J. Comput. 13,
441-460 (1984)
Mfikinen, E.: On the generative capacity of context-free matrix grammars over one-letter al-
phabet. Fund. Inf. 16, 93-97 (1992)
Gonczarowski, J., Warmuth, M.K.: Scattered versus context-sensitive rewriting. Acta Inf. 27,
81-95 (1989)
Rosenkranz, D.J.: Programmed grammars and classes of formal languages. J. ACM 16, 107-131
(1969)
Schwer, S.: The context-freeness of the language associated with vector addition systems is
decidable. Theor. Comput. Sci. 98, 199-247 (1992)
Leeuwen, J. van: Extremal properties of non-deterministic time complexity classes. In: Ge-
lenbe, E., Poitier, D. (eds.) International Computing Symposium, pp. 61-64. Amsterdam: North-
Holland/American Elsevier 1975

