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Abstract. This paper shows that the languages over a one-letter alphabet generated 
by context-free matrix grammars are always regular. Moreover we give a decision 
procedure for the question of whether a context-free matrix language is finite. Hereby 
we strengthen a result of [Mk 92] and settle a number of open questions in [DP 89]. 
Both results are obtained by a reduction to Petri net problems. 

1. Introduction 

Petri nets and vector addition systems are different representations of the same con- 
struct. While their notation as nets emphasizes their role as a specification and analysis 
tool for distributed systems, their alternative definition as vector replacement systems 
illustrates their importance in the theory of formal languages. Here they are regarded 
as semi-Thue systems for commutative monoids over a finite alphabet in contrast to 
the usually considered free monoid. The alphabet is represented in the set of places, 
the transitions play the role of grammatical rules, and the actually derived sentential 
form is encoded in the marking. 

Additional features of grammars, such as the distinction between intermediate 
sentential forms and actual elements of the generated language, do not occur in the 
definitions of the nets, but can be implemented by considering only those elements 
of the reachability set of which submarkings on certain places have a fixed, predeter- 
mined value. 

Therefore, Petri net theory is applicable to certain problems in formal language 
theory in which 

- the ordering of the letters in words of the generated language is irrelevant, and 

* {dirk, jantzen}@informatik.uni-hamburg.de 



720 D. Hauschildt and M. Jantzen 

- t h e  ordering of  the letters within sentential forms does not influence the further 
derivation (except for the ordering of the result). 

The first condition is fulfilled if the alphabet contains only one letter or for problems 
like emptiness or finiteness of a language. The second requirement is a characterization 
of context-free grammars. 

Petri net theory is also applicable to extensions of ordinary grammars such as 
matrix grammars and random context grammars because their additional requirements 
can be easily expressed in terms of the nets. 

We will give two examples of this method by solving two problems about matrix 
grammars posed open in [DP 89]. 

- First, we show that languages of matrix grammars or random context grammars 
over a one-letter alphabet are always regular. 

- Second, we give a decision procedure for the question of  whether the language 
of a matrix grammar or of a random context grammar is finite. 

For this purpose we make use of the semilinearity algorithm presented in [Ha 90]. 
Given a specification of  a portion of the reachability set of a net, this algorithm decides 
whether the specified set is semilinear. It produces a semilinear representation of the 
set in that case and two close estimates otherwise. Another algorithm solving the 
same problem was developed by J.L.Lambert and can be found in [La 90]. 

A similar approach was applied in [KLM 89] to show that projections of reacha- 
bility sets to one coordinate are always semilinear. But since it is based on coverability 
graphs instead of MGTS's ,  one cannot put constraints on the final markings and apply 
the result to projections of  e.g. certain linear subsets of  the teachability set. 

Another algorithm investigating coverability graphs of Petri nets can be found in 
[Sch 92]. It allows to decide the problem of whether the the free Petri net language 
(again without final marking) is context-free. 

Section 2 gives the net theoretical definitions needed in the sequel. The semilin- 
earity algorithm, on which our results are based, is introduced in Sect. 3. The next 
section develops some applications of the algorithm in the field of Petri nets. Our 
two main results mentioned above are presented in Sect, 5. Finally, Sect. 6 contains a 
more detailed list of open problems which have been solved with our methods. 

2.  D e f i n i t i o n s  

2.1. Notations 

Throughout this paper we use capital letters for two-dimensional objects such as 
matrices. We write vectors (underlined) and atomar objects in downcase letters. 

A function ~ : A ---,/3, A being finite, is identified with the vector B A. Therefore 
we usually write za for _z(a). A function F �9 A -* zW B is considered equivalent to a 
B x A-matrix F .  

2.2. Petri nets 

A Petri net (more exactly: place/transition net) N = (P, T, F, B) consists of the set 
P of places, the set T of transitions, and two weight functions 
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F : T - + f V  P, 

g �9 T--+ffg P. 

P and T are assumed to be finite and disjoint. 
Markings are functions m �9 P --~ zW (usually written as vectors in zrvP). Some- 

times we will associate an initial marking _m 0 and/or a final marking rnf  with a net. 
This is done by adding m 0 and/or my  to the above 4-tuple. 

F is called the forward incidence function. F(t) describes how many tokens are 
moved from the places to the transition t when t fires. Conversely, the backward 
incidence function B determines the number of tokens returned by a transition. Hence, 
A := B - F  describes the change of the marking produced by the firing of  a transition. 
It is called the incidence function of the net. 

A transition t is enabled in the marking m if and only if F(t) < m. This is denoted 
by __re(t). The firing of t transforms m into m r = m + At(t) (in symbols __m(t)__mr). This 
definition is recursively extended to sequences of transitions: A transition sequence 
w = ~ l " ' t n  E T* is enabled in rrz iff___m(tj) and t 2 " ' ' t n  is enabled in m + At(tt). 
Then __m(w)m + A(/h) + . . .  + A(tn) .  Moreover, we assume that the empty word A is 

always enabled, i.e., m(A)__m holds for all markings __m of ZW P. 

2.3. (Semi-)linear sets 

A constant _c and a set of  periods X = { x j , . . .  ,x_n}, each of which is an element of  
g n ,  for some finite set A, defines the linear set 

L := ./I/(c; X) := {c + X .  r J _r ~ ~ x  } .  

The information encoded in X is twofold: considered as a set, it defines the number 
of  basic periods of L and considered as a mapping, it describes which periods can be 
added to elements of L without leaving the set. The image X._r  of the homomorphic 
mapping X : ZW x ~-~ Z A is the set U'(_0; X )  of linear combinations of X.  If  r~ -7' 0 
for all Z c X we call X �9 _r a proper linear combination of X .  

A semilinear set SL is the union of finitely many linear sets. If the periods sets 
of  all l inear components of SL coincide, i.e., if SL = U {.~If(e_; x )  ] e C C} for a 
fixed set X ,  we characterize it more shortly by ..4/'(C; X). 

The Parikh mapping ~ �9 A* ~ ~ A  relates every word w C A* to the vector 
_x c fV A for which xa contains the number of occurrences of the symbol a in w. 

The dimension of a semilinear set SL (written as DIM(SL)) is not defined as 
the dimension of its affine hull, but as the maximum of the dimensions of its 
linear components (which are defined as usual). For SL = ./V'((O,O); {(0, 1)}) U 

./1/'((0,0); {(1,0)}) we have DIM(SL)= 1. 

2.4. The reachability relation 

The reachability relation ]~N of a Petri net N is defined by 

R N  := {(_a, b) c ~W P x ~W P I 3w ~ T*: _a(w)b }. 

It is often useful to extend this relation by some information about the paths connecting 
a and _b. Therefore we define the extended reachability relation 
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ERN := {(_a, _b, f )  C P I P  x/}YP x P IT  f 3w E T*: _a(w)b and tb(w) = f }. 

The index is omitted if the net is evident from the context. 
Very often one is interested in the reachability set R (N, __m0) of markings reachable 

from a certain fixed initial marking m 0. It is defined by 

R(N,  mo) := {(m E P I P  I @w E T*: _mo(w}_m }. 

We will also consider the set of  paths leading from a fixed initial marking to 
a fixed final marking. Given a homomorphism h : T* -~ A*, where A is a finite 
alphabet, we define the labelled terminal Petri net language L (N, h, too, my) by 

L(N,h ,  mo,mf) := {h(w) ~ A* I mo(w)ms} .  

3. The semilinearity algorithm 

In order to formulate queries about portions of the reachability relation, a kind of a 
specification language for reachability relations was introduced in [Ha 90]. It contains 
semilinearity problems of the form ~ = (N, L, 70 where 

(i) N is a Petri net, 
(ii) L C_ P I  P x P I P  • P I T  defines the portion of the reachability relation to be dealt 

with, and 
(iii) the homomorphism 7r : s P x ZW P x ggT ---, V selects the type of information 

to be computed. V is an arbitrary vector space. Usually, 7r is just a projection. 

The set of interest specified by ,~,,o is SOL~ := 7r(ERN N L). 
If, for example, the net has a fixed initial marking m o, the reachability set 

R (N,__mo) can be specified by setting L to {__too} x P I P  x P i T  and 7r(_a,_b, f )  := _b. 
Given a semilinearity problem ~/~, the semilinearity algorithm presented in 

[Ha 90] computes two semilinear sets LBs.,~ and UBs,~ with 

L B ~  a_ SOLs~ C_ UB~ 

and such that 
DIM(UB.~ \ LB~)  >_ DIM(UB.~ \ LB;~) 

holds for every pair LB ~, UB ~ of semilinear sets with LB ~ c SOLs/~ C_ UB t. This 
assertion implies L B ~  = SOL:~ = UB,s,, for the case that SOL~/itself is semilinear. 

The goal is achieved by iteratively computing sets F ~  of so-called M G T S ' s  
(marked graph transition sequences) each of which describes a portion of SOL~. 
These structures are adopted from similar constructs used in algorithms for the reach- 
ability problem: given a net N and two markings m0, m s ,  is _m S reachable from 
m 0. An MGTS is essentially the same as a regular constraint graph with a consistent 
labelling in [Ma 84] and still very similar to a GVASS satisfying 0 in [Ko 82]. The 
name MGTS itself firstly occurred in [La 86]. (A shortened version of this paper 
was later published as [La 88].) In fact, every MGTS computed in the semilinearity 
algorithm is the result of  an invocation of the teachability algorithm. 

The exact structure of an MGTS is not important for our purposes and will not 
be discussed here. With every MGTS U we can associate a set SOLu containing the 
elements of SOLc~ described by U. Unfortunately, no method to characterize SOLu 
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in a more effective way than by giving U itself is known so far. The set F ~  of 
MGTS's  is a complete description of SOL:~ by virtue of the fact that 

U {SOLu I U E F,~} = SOL.~/.. 

The additional information about SOL~/, contained in F~r comprises in two state- 
ments. Firstly, a fixed, linear upper estimate UBu of SOLu is attached to every 
U C F~,. Theorem 3.1 below exhibits a method to compute also some lower bounds 
for SOLu. By defining one of them as LBu we determine two first approximations 

L B o : = U { L B u  I U � 9  and U B o : = U { U B u  I U � 9  (1) 

of  SOL~. The algorithm proceeds by recursively considering the linear components 
of  UBo \ LBo as L. This way, it evaluates some closer information about the still 
undecided regions. The process halts when no more progress can be made this way. 

In every round of its computation, the algorithm considers a portion Li of  L and 
computes a set Fi of  MGTS's  describing Li. The problem to be solved then is to 
determine some lower bounds LBu C SOLu for every U �9 -Pi in such a way that 
DIM(UBi \ LBi) < DIM(Li). One can show that UB~_I and LBi-I  were already 
optimal (in the sense that the dimension of the undecided region is minimal) when 
such lower bounds cannot be found. 

Theorem 5.3.7 is used in [Ha 90] to construct linear subsets of  some SOLu. To 
avoid unnecessary definitions we give only a simplified version of that theorem. 

Theorem 3.1. Let U be an MGTS with UBu = .,/t/'(_c_; X). Given a finite subset C of 
UBu and a proper linear combination z_ of X, one can find a constant n > 0 with 

./F'(C + n .  x_; {x}) C SOLu. 

Informally, the theorem says that one can shift any element of UBu =: ./V'(g_; X)  
into SOLu by sufficiently often adding an arbitrary proper linear combination z__ of  
X to it. The number n in the theorem can be obtained by determining the necessary 
number of  shift operations for every _c �9 C and then building the maximum. 

4. Applications in the field of Petri nets 

This section extracts the information needed in connection with matrix grammars 
out of  Theorem 3.1. We consider an MGTS U with UBu = ..4/'(_c; X).  If the set 
X of  periods is empty, i.e., if UBu = {c}, the theorem (applied to C := {_c} and 
x := 0) reveals that c E SOLu. With IXI >_ 1 the theorem shows that SOLu contains 
infinitely many elements. This leads to our first observation. 

Corol la ry  4.1. For a given semilinearity problem ~ it is decidable whether SOL J~ 
is fnite. 

Proof. We just have to compute the set F.~ of MGTS's.  SOLu is infinite if and only 
if there is a U E F~ withUBg =: ,/I/'(c_;X) and IxI _> 1. [] 

The other case we consider contains semilinearity problems ~ = (N, L, :r) in 
which 7r maps L to the set zW of natural numbers. We will show that in this case 
UBo \ LBo is finite, i.e., that the first round of the semilinearity algorithm decides 
x E SOL~, for all but finitely many numbers x. By Eq. (1), it suffices to consider the 
UBu and LBu,  U �9 I':~, separately. 
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Lemma 4.2. Let ~ = (N, L, 7r) be a semilinearity problem with 7r �9 L ---+ fig. For 
every MGTS U c Fp there exists a subset Lt3u of  S O L u  such that UBu \ L B u  is 
finite. 

Proof  Let UBu = ./t/'(c; X )  and m be a proper linear combination of X.  By the 
choice of 7r, m is a natural number. If  m = 0, UBu is finite and the lemma holds 
trivially. 

Assuming m > 1, we partition fig into residue classes 

R i = { x E f i g l  x - i  ( m o d m ) }  

and select a point r~ E Ri for every Ri not disjoint to UBu. By applying Theorem 3.1 
to 

C : = { r i ] R i n U B u r  and x : = m ,  

we obtain a subset L B u  := J l / ' ( C + n . m ;  {m}) of S O L u  which contains all elements 
of  UBu which are not smaller than a certain bound, namely n.m+max{r i  ] R i A U B u  7 ! 
t3}. To see this we consider the residue classes Ri separately. Nothing is to prove if 
Ri  (? UBu is empty. Otherwise the subset 

. / U ' ( r i + n . m ; { m } ) : { x c f i g l x > r i + m . n ,  x ~ r i  ( m o d m ) }  

of L B u  contains all sufficiently large elements of R~. [] 

Since the semilinearity algorithm selects all its lower bounds as suggested by the 
lemma, it nearly has finished its task after one round. The second round only has to 
consider the elements of the set difference UBo \ LBo one at a time to determine 
whether they belong to S O L ~ .  This leads to our second corollary. 

Corol la ry  4.3. Let ~ = (N,  L, 7r) be a semilinearity problem with 7r : L --~ fig. Then 
SOL.~ is an effectively computable semilinear set. 

From Corollary 4.3 it easily follows that the length set, i.e., the set {[w] ] w E L}, 
of  every Petri net language L is semilinear. Furthermore, if L is a language over a 
one-letter alphabet, then it is regular. Hence we obtain the following corollary. 

Corollary 4.4. Let L = L ( N ,  h, re_o, my)  be a Petri net language with h " T* --+ {a}*. 
Then L is an effectively computable regular set. 

5. Applications in the field of matrix grammars 

It is well known that programmed grammars generate the same class of  languages 
as matrix grammars with appearance checking, Arbitrary matrix grammars with ap- 
pearance checking and A- rules generate the recursively enumerable languages, while 
those without A-rules generate only context-sensitive languages that are in NP.  We 
begin with some definitions from [DP 89]. 

Definition 5.1. Let G = (VN, I/T, S, R)  be a context-free grammar with nonterminal 
alphabet VN, terminal alphabet VT, initial symbol S E VN, and a set 1~ C VN x 
(VN U VT)* in which all productions carry a unique label from a set Z.  I f  r is a label 
o f  the production A ~ w we write r : A ~ w. 

A context-free matrix grammar 5~ based on the context-free grammar G is specified 
by the triplet Yr := ( G, M,  F )  where M C_ E* is a finite set of  sequences'of production 
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labels, each of  which is called a matrix and the set F C_ Z, containing the labels of  
those productions that can be passed over in case they are not applicable. This is 
called appearance checking. 

Derivation of sentential forms proceeds as follows: u ~ v holds if and only if 
a c  

there exists a matrix m = rl r2 . . .  rn in M with ri " Ai -+ v~ and some strings 
Wo, W l , . . . , w n  E (VN U VT)* such that u = wo, v = w~, and for each i C { 1 , . . . , n }  
either of  the cases (a) or (b) holds: 

(a) w~_~ = w~_~ A~ w~'_, and we = w~_~ ve w~'_~, 
(b) wi = w~_l, Ai  does not occur in wi, and ri E F. 

I f  F = ~ then we write ~ instead of ~ .  Note that in this case all non-applicable pro- 
a c  

ductions lead to a blocking derivation. The language generated by the matrix grammar 
~ '  := (G, M,  F)  is defined as 

L(.~c) := {w �9 V~ I Ao ~ w}. 
~ C  

Definition 5.2. The family of  all context-free matrix languages with possible appear- 
ance checking is denoted by cc~ / (M, ~,~;~T, ac). We write S (M, D - A ,  ac) if only 
A-free context-free grammars are permitted. The corresponding classes of languages 
that can be generated by grammars without appearance checking, i.e., with F = O, are 
denoted by oc~j (M, ~ )  and cg~ (M, D - A ) .  

It is known that , ~  (M, U ~ ' - A ,  ac) is an A F L  strictly contained in the family of 
context-sensitive languages (see [Ro 69], [vL 75], and [DP 89]), w h i l e , ~  (M, ~ ,  ac) 
equals the family of  recursively enumerable sets. The inclusions 

, ~ ( M ,  ~ - A )  c_ , ~ ( M ,  ~ ' - A ,  ac) and , ~ ( M ,  ~ - A )  C_ , ~ ( M ,  g-Av--~) 

are obvious from the definition. It was conjectured, but not proved in [DP 89] that 
these inclusions are proper. This assumption will be confirmed in this section by 
proving that each language over a one-letter alphabet within the former family is 
necessarily regular. 

It was shown in [DP 89, pp. 267-270] that Petri nets (with a fixed initial marking) 
can be simulated by matrix grammars, i.e., given N and m o, one can compute a 
matrix grammar ~~ such that the set of reachable markings equals ~b(L (.~)). 

We will demonstrate here that the reverse simulation can be accomplished as well. 
Let ~ = (G, M, 0) be a context-free matrix grammar with G = (VN, VT, R, S) being 
its underlying grammar, and ,..,4 = (Q, ~', q0, {q0}) be the canonical finite automaton 
accepting M*,  the set of  valid applications of sets of rules of G. 

The place set of  the net N = (P, T, F, B) shall contain one place for every state of  
.... 4 and one place for every (terminal or nonterminal) symbol of G. This is achieved 
by setting P := VN tO VT U Q. Moreover, the transition set coincides with I7. For 

every rule r : A --+ w let q ~ q' be the corresponding arc o f ,  ,-g4. Then we set 

F(r)  := r  and B(r)  := r  

If  the net N is started from an initial marking m o containing one token on S and 
one token on qo, it simulates derivations of ..~r step by step. Every reachable marking 
contains the Parikh image of the current sentential form in VN tO VT and the state of  
the automaton in Q. 
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The other two parameters of the semilinearity problem are used to select the 
actual elements of L (;r We are interested in transition sequences leading from 
m 0 = ~(5'q0) to any final marking in which q0 contains one token and all elements 
of VN and Q are empty. This assures that the 'derived' sentential form contains no 
more nonterminals and the automaton is in its (initial and) only final state. Hence we 
define 

L : :  {@(S q0), ~(v q0), ~(~)) Iv e V~, w ~ ~* }. 

The mapping 7r is used to project an element (_a,_b, f)  of L onto the portion of_b 
describing the final marking on VT. This way we obtain 

SOL,~ : {~(w) I w ~ L (:r 

as required. 
With the help of this simulation we easily develop the assertions proposed in the 

introduction. 

Theorem 5.3. All languages over one-letter alphabets in ~" (M, ~ )  are regular. 

Proof Let {a}* D L c ~ ' ( M ,  ~ 7 )  and :J~ = (N, L, 70 be the semilinearity problem 
derived from L. Then 7r maps L into ZA/"vT" = 2V. Hence Corollary 4.3 is applicable and 
shows that SOL~ = ~(L (:r is semilinear. Consequently, L (,~r itself is regular. 

[] 

By using the same simulation, the finiteness problem for the families of context- 
free matrix grammars without appearance checking can be reduced to Corollary 4.1. 

Theorem 5.4. Finiteness for context-free matrix languages without appearance check- 
ing is decidable. 

Proof Again let L E .~//(M, ~ - )  and ~/~ = (N, L, 70 be the semilinearity problem 
derived from L. Then SOL~ = ~(L (.~')) being finite is equivalent to ~ L (o,)  itself 
being finite. Hence the theorem follows from Corollary 4.1. [] 

6. Answers to open questions 

Dassow and Pfiun [DP 89, Problem 1.3.3] posed open six problems on matrix and 
random context grammars. Four of the problems consider the decidability of the 
finiteness problem for the families 

(RC, ~ 7 - , ~ ) ,  ~"  (M, W - A ) ,  , ~  (RC, ~)7),  and 5g ~ (M, U.~r). 

Since random context grammars can be effectively transformed in matrix grammars, 
all four cases can be reduced to Theorem 3.1, and answered with 'yes'. 

The other two decidability questions of Dassow and P~un, the word problems for 

~ ' ( R C ,  ~ ; " )  and ,)b~(M, ~ - ) ,  

can be solved with the methods presented in the book [DP 89] itself. If one wants 
to decide whether a string w is an element of a context- free matrix language L one 
first computes the matrix language L'  := L N {w} (Lemma 1.3.5, closedness under 
intersection by regular sets) and then determines whether L'  is empty (decidable by 
Theorem 1.3.4). 
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We now have a Iook at our other main result, Theorem 3.1. It tells us that matrix 
languages over a one-letter alphabet are regular. Therefore the following context- 
sensitive, but not context-free languages 

{a2nin>_ 1}, {a 'F I n - >  1}, and {a '~ I n i s a p r i m e n u m b e r  } (2) 

cannot be in ~ ( M ,  ~ j - ) l .  This observation solves the open problem 1.1.1 of 
[DP 89]. Moreover, these sets serve as the "concrete" languages in ~ ( ~ J ~ ) \  
Sr (M, g~-~r) sought for in [DP 89, Problem 1.2.2]. 

Since context-free matrix grammars with appearance checking, but without A-rules 
exist for the three languages of Eq. (2), we can answer the last question in [DP 89, 
Problem 1.2.3] as well: 

Corollary 6.1. The inclusion S (M, ~"~r-A) C S (M, ~"$~'~-A, ac) is strict. 

The same observation further shows that cS  (M, ~ ' ~ )  is not a superset of 
S (M, ~ -A,  ac) and strictly contained in ~ ([DP 89, Problem 1.2.1]). The last 
inclusion could as well be deduced from the decidability of the membership problem 
for S (M, fr (see the remark above). 

The inclusions ~ (RC, f r  C_ c ~  (M, ~ )  C , ~  have some implications 
to closure properties as well: 

Corollary 6.2. The families S (RC, ~ )  and S (M, ~m-~) are not closed with re- 
spect to intersection or to complementation. 

Proof It is well known (see [GGH 67, Theorem 3.1]) that the closure of ~ with 
respect to homomorphism and intersection is the class of recursive enumerable lan- 
guages. Since both, c ~  (RC, U~-,7) and cS  (M, ~ ) ,  contain ~ and are closed 
with respect to homomorphism, but are strictly contained in , _ , ~ ,  they cannot be 
closed with respect to intersection. 

Now the results about complementation follows from the fact that the two families 
are closed with respect to union and De Morgan's law. [] 

Finally we consider the class .c/S (AUSC) of unordered scattered context grammars 
having only a single terminal symbol. These grammars are almost identical to Petri 
nets with only one transition label. The class of languages generated by such grammars 
coincides with the family of Petri net languages. Hence we can apply Corollary 4.4 
to state: 

Corollary 6.3. All languages over one-letter alphabets in S (AUSC ) are regular. 

7. Conclusion 

By applying decidability results on semilinearity problems about Petri net reachability 
relations proved in [Ha 90] we obtained some results as well in the theory of Petri 
net languages as in the theory of regulated string rewriting. This way we solved a 
number of long-standing open problems in the latter field. 

Specifically we have proved that all elements of both 

i it was already shown in [La 88, Corollary I l - I ] by a reduction to the reachability problem that (two 
of) tfiese sets cannot be Petri net languages. 
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�9 the family  o f  languages defined by context-f ree  matrix grammars  without appear-  
ance checking  and 

�9 the class o f  terminal  labelled Petri net languages,  

are regular  if  the terminal  alphabet  consists of  only one letter. Moreover ,  we proved 
the decidabi l i ty  of  the finiteness problem for the family of  languages defined by 
context- f ree  matr ix grammars  without  appearance checking.  

A number  o f  problems,  stated as open in [DP 89], have been settled as corollaries 
of  the above  two theorems.  

The  interest ing quest ion of  whether  the class of  context-free matrix languages 
is c losed with respect  to Kleene-s tar  remains open for the t ime being. Al though it 
is well  known that the family  of  Petri net languages is not closed with respect  to 
this operation, the result  cannot be transferred to matrix languages by the previous 
techniques.  
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